
           

Comparing Policy-Gradient Algorithms

Richard S. Sutton sutton@research.att.com

Satinder Singh∗ satinder.baveja@syntekcapital.com

David McAllester dmac@research.att.com

AT&T Shannon Laboratory, 180 Park Ave., Florham Park, NJ 07932 USA

Editor:

Abstract

We present a series of formal and empirical results comparing the efficiency of vari-
ous policy-gradient methods—methods for reinforcement learning that directly update a
parameterized policy according to an approximation of the gradient of performance with
respect to the policy parameter. Such methods have recently become of interest as an
alternative to value-function-based methods because of superior convergence guarantees,
ability to find stochastic policies, and ability to handle large and continuous action spaces.
Our results include: 1) formal and empirical demonstrations that a policy-gradient method
suggested by Sutton et al. (2000) and Konda and Tsitsiklis (2000) is no better than RE-
INFORCE, 2) derivation of the optimal baseline for policy-gradient methods, which differs
from the widely used V π(s) previously thought to be optimal, 3) introduction of a new
all-action policy-gradient algorithm that is unbiased and requires no baseline, and demon-
strating empirically and semi-formally that it is more efficient than the methods mentioned
above, and 4) an overall comparison of methods on the mountain-car problem including
value-function-based methods and bootstrapping actor-critic methods. One general con-
clusion we draw is that the bias of conventional value functions is a feature, not a bug; it
seems required is order for the value function to significantly accelerate learning.
Keywords: Reinforcement Learning, Policy-Gradient Methods, Actor-Critic Methods,
Value Functions, Return Baselines

1. Policy-Gradient Methods

Despite many successful applications, reinforcement learning with function approximation
has few theoretical guarantees of effectiveness. The most popular methods approximate the
optimal action-value function and then select in each state the action with highest estimated
value. When used in conjunction with linear function approximation, such action-value
methods have been shown not to converge, and off-policy versions such as Q-learning have
even been shown to diverge. It is not clear how serious a problem this is; even without
converging on-policy methods may perform well, and modified algorithms may yet save the
off-policy case. Nevertheless, these convergence problems have motivated the search for
alternatives with better and clearer convergence properties.

One such alternative is to directly parameterize the policy rather than to compute it
from a parameterized action-value function. The policy parameter can then be adjusted
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exclusively toward improving performance irrespective of value-function accuracy. In par-
ticular, the policy parameter parameter, θ, can be adjusted approximately in proportion to
the gradient of overall performance:

∆θ = α∇̂θ J(θ), (1)

where α is a step size and J(θ) is an overall performance measure for the policy determined
by θ—either the average reward per step or the total reward over an episode from a desig-
nated start state.1 We call reinforcement learning methods that follow this general schema
policy-gradient methods (e.g., Williams, 1988; Sutton, McAllester, Singh, & Mansour, 2000;
Konda & Tsitsiklis, 2000; Ungar & Grudic, ; Baxter & Bartlett, in prep.).

Parameterized policy methods have a number of potential advantages over action-value
methods. The first advantage is signaled by the very existence of the gradient ∇θ J(θ).
In action-value methods, an infintessimal change in the value-function parameter can push
the value of one action over that of another, causing a discontinuous change in the policy,
the states visited, and overall performance; in these methods the gradient is everywhere
either undefined or zero. This is the underlying reason why such methods fail to converge
in the normal sense (Gordon, 1995; Bertsekas & Tsitsiklis, 1996). A second advantage of
parameterizing the policy is that one can represent and learn stochastic policies. With
function approximation, the optimal policy for many problems is stochastic (the most fa-
miliar example of this are POMDPS, a special case of function approximation, e.g., Singh,
Jaakkola, & Jordan, 1994).2 A third significant problem with action-value methods is their
need to find a maximum action value over all actions on every step. In problems with a
large, continuous, or infinite action space this is problematic. Any general solution must
involve spreading the search for the best action over multiple time steps, as parameterized
policy methods do by keeping track of a current estimate of the best policy.3

In comparing policy-gradient methods we are concerned primarily with the bias and
variance of the gradient estimate in (1). Ideally we would like methods of zero bias, and
several such methods are known. We will compare these methods according to the variance,
or “efficiency” of their estimators, which translates into how quickly they learn.

The policy can be parameterized in many different ways. If there are a few discrete
actions, then each can be given a parameterized function from states producing a scalar
“preference” for that action. The action probabilities are be skewed toward the most pre-
ferred actions. This approach nicely parallels that of action-value methods, and highlights
the key difference that preferences are updated only to get the policy right, not to match
any values. For continuous actions, it is common to use a parameterized mapping from

1. Such an overall performance measure is required whenever function approximation is used in reinforce-
ment learning. We can not use per-state measures, such as value functions, as has been done in the
tabular case, because with function approximation all the states interact—the best parameter value dif-
fers from state to state. This forces some kind of overall, across-state performance measure in order to
make the problem well defined.

2. Although action-value methods can be used to produce differentiable stochastic policies through soft-max
action selection, this introduces new parameters and difficulties in setting the “softness” of the max.

3. Note that parameterized policy methods may maintain parameterized value functions as well. The key
property (of policy gradient methods) is that the policy parameter is updated solely according to an
estimate of the gradient (1), irrespective of values.

2



      
Comparing Policy-Gradient Algorithms

states to a few numbers describing the probability distribution over actions in that state,
for example, a mean and standard deviation. There are many other possibilities suited to
particular applications. For example, consider a cascade of communicating machines each
making some independent stochastic decisions and passing information on to others until
a final overall action is chosen. Policy gradient methods can be applied to such cases as
long as one can determine the probability with which the final action was selected and the
gradient of that probability with respect to the parameters of the nodes.

2. Prior Policy-Gradient Theory

We consider the standard reinforcement learning framework (see, e.g., Sutton and Barto,
1998), in which a learning agent interacts with a Markov decision process (MDP). The state,
action, and reward at each time t ∈ {0, 1, 2, . . .} are denoted st ∈ S, at ∈ A, and rt ∈ <
respectively. The environment’s dynamics are characterized by state transition probabilities,
Pass′ = Pr {st+1 = s′ | st = s, at = a}, and expected rewards Ras = E {rt+1 | st = s, at = a},
∀s, s′ ∈ S, a ∈ A. The agent’s decision making procedure at each time is characterized by
a policy, π(s, a, θ) = Pr {at = a | st = s, θ}, ∀s ∈ S, a ∈ A, where θ ∈ <l, for l << |S|, is a
parameter vector. We assume that π is diffentiable with respect to its parameter, i.e., that
∇θ π(s, a) exists. We also usually write just π(s, a) for π(s, a, θ).

With function approximation, two ways of formulating the agent’s objective are useful.
One is the average reward formulation, in which policies are ranked according to their
long-term expected reward per step:

J(π) = lim
n→∞

1
n
E {r1 + r2 + · · ·+ rn | π}

=
∑
s

dπ(s)
∑
a

π(s, a)Ras ,

where dπ(s) = limt→∞ Pr {st = s | s0, π} is the stationary distribution of states under π,
which we assume exists and is independent of s0 for all policies. In the average reward
formulation, the return Rt for taking action at in state st is defined as

Rt =
∞∑
t=1

(rt − J(π)) .

The second formulation we cover is that in which there is a designated start state s0, and
we care only about the long-term reward obtained from it. We will give our results only
once, but they will apply to this formulation as well under the definitions

Rt =
∞∑
k=1

γk−1rt+k,

and
J(π) = Eπ {R0},

where γ ∈ [0, 1] is a discount rate (γ = 1 is allowed only in episodic tasks). In this
formulation, we define dπ(s) as a discounted weighting of states encountered starting at s0

and then following π: dπ(s) =
∑∞
t=0 γ

tPr {st = s | s0, π}.
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The policy-gradient theorem, providing the basis of much of the recent interest in these
methods, is that the gradient of performance with respect to the policy parameters can be
written as

∇θ J =
∑
s

dπ(s)
∑
a

Qπ(s, a)∇θ π(s, a), (2)

where Qπ is the usual action-value function:

Qπ(s, a) = Eπ {Rt | st = s, at = a}.

(For proofs and original sources for the policy gradient theorem, see Marbach and Tsitsiklis
(1998), Sutton, McAllester, Singh, and Mansour (2000), Jaakkola, Singh, and Jordan (1995),
and Cao and Chen (1997).) The key aspect of this expression for the gradient is that their
are no terms of the form ∇θ dπ(s): the effect of policy changes on the distribution of states
does not appear. This is convenient because it is not clear how to estimate ∇θ dπ(s) whereas
the terms that do appear in this expression are either known or can be estimated in several
ways by sampling, as we consider in the next section.

For now, we complete the presentation of prior policy-gradient theory with a convergence
theorem for unbiased policy gradient methods...

3. Policy-Gradient Methods

We wish now to use the policy-gradient theorem in combination with the schema of (1) to
derive policy-gradient algorithms. Consider the factors from last to first in (2). The last
factor, ∇θ π(s, a) is not much of a problem; by assumption we know the function π and
its gradient with respect to θ at any state and action. The middle factor, Qπ(s, a), we
are unlikely to know exactly; for now just assume we can somehow form an estimate of it,
Q̂π(s, a). Finally, the first factor, dπ(s), is how often we visit each state under policy π.
This is easy to approximate from the empirical distribution of states visited when following
π, as it is natural to assume we will be doing if π is our best known policy. We can write

∇θ J = Es∼π

{∑
a

Qπ(s, a)∇θ π(s, a)

}
, (3)

where the state s is now sampled according to π (and thus according to dπ(s)). Bringing
in the approximation for Qπ and (1), this suggests making a θ update for each time step t
of available experience following π of:

∆θt = α
∑
a

Q̂π(st, a)∇θ π(st, a), (4)

using the actual state st occuring on that step. Algorithms of this form we call all-action
methods because an update is made for all actions possible in each state encountered ir-
respective of which action was actually taken. This aspect creates both strengths and
weaknesses, as we consider in detail in Section 6. For now we just identify the major alter-
native. In a single-action method an update is performed for each time step only for the
one action actually taken on that step. To compensate for the fact that some actions are
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taken more often than others, we divide by the probability of taking the action. That is,
(3) and (4) are replaced by

∇θ J = Es,a∼π

{
Qπ(s, a)
π(s, a)

∇θ π(s, a)
}
, (5)

and

∆θt = α
Q̂π(st, at)
π(st, at)

∇θ π(st, at). (6)

Note that here the update at time t is based on the actual action occurring at this time, at,
as well as the state, st.

To complete the specification of an algorithm, whether of the all-action or single-action
form, we need to specify three further things: 1) the nature of the approximate action
values Q̂π, 2) the form of the policy parameterization, and 3) the details and timing of
the implementation of these methods (i.e., the backward views (Sutton & Barto, 1998)
corresponding to these forward views).

Other than the issue of return baselines, which we address in Section 5, there are three
major approaches to forming the approximation Q̂π. First, in single-action methods, the
return, Rt, can be used as an unbiased estimator of Qπ(st, at). In the episodic case, this
leads to Williams’s REINFORCE algorithm (Williams, 1988, 1992). Baxter and Bartlett
(in prep.) extend this approach to the average-reward case by using a discounted return
Q̂π(st, at) = 1

γ (rt+1 + γrt+2 + γ2rt+3 + · · ·), with γ chosen sufficiently large relative to the
mixing time of the MDP. The second approach to approximating Qπ(st, at), also possible
only in single-action methods, is to use truncated (and corrected) returns, as in temporal-
difference methods. For example, the one-step truncated, corrected return for time t is

R
(1)
t = rt+1 + γq(st+1, at+1),

where q here is a parameterized approximation to Qπ. The one-step return generalizes to
k-step returns,

R
(k)
t = rt+1 + γrt+2 + · · ·+ γk−1rt+k + γkq(st+k, at+k),

where the k =∞ case corresponds exactly to using actual returns, R(∞)
t = Rt. More often

useful is the λ-return,

Rλt = (1− λ)
∞∑
k=1

λk−1R
(k)
t ,

which can also produce both the one-step return (λ = 0) and the actual return (λ = 1)
but with advantages in incremental implementation. Finally, the third approach to the
approximation Q̂π is simply to use a parameterized approximation such as q directly. This
seems to be the only approach possible for all-action algorithms because an estimate is
needed for actions other than that taken.
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4. Unbiased Values Don’t Help

If a parameterized approximation q ≈ Qπ is used, the question remains of how it is formed.
One appealing possibility suggested by Konda and Tsitsiklis (2000) and Sutton et al. (2000)
is that it is formed as a linear function in the synthetic features, ∇θ π(s,a)

π(s,a) :

q(s, a) = wT
∇θ π(s, a)
π(s, a)

, (7)

where w ∈ <l is the parameter vector underlying q. Suppose further that w is set to
minimize the squared error between q(st, at) and the return Rt, over time steps t in some
set of data:

w = arg min
w

∑
t

(Rt − q(st, at))2 . (8)

In this case, q is said to be an unbiased Under these circumstances, it can be shown that
the approximation q can be used in place of Qπ in the single-action gradient expression
(5) without losing equality. This suggests that such unbiased values should be used as the
approximate values Q̂π in the single-action algorithm (6). Unfortunately, we have since
established that such an approach does not improve over simply using the return estimates
Q̂πt directly without forming the explicit values:

Theorem 4: For any batch of data D, the total update from the single-action algorithm
(6) is the same for both Q̂π(st, at) = Q̂πt and Q̂π(st, at) = q(st, at) where q is given by (7)
and (8). That is ∑

t∈D
Q̂πt
∇θ π(st, at)
π(st, at)

=
∑
t∈D

q(st, at)
∇θ π(st, at)
π(st, at)

. (9)

Proof: Because w is the minimizing value in (8), the gradient of the expression with
respect to w must be zero:

0 = 2
∑
t∈D

(
Q̂πt − q(st, at)

)
∇wq(st, at)

=
∑
t∈D

(
Q̂πt − q(st, at)

) ∇θ π(st, at)
π(st, at)

.

Splitting this difference into two sides of an equality then immediately yields (9). QED.
In particular, suppose we choose Q̂πt = Rt, the actual returns, then theorem 4 states that,

over a batch, using the unbiased approximate values results in exactly the same updates as
REINFORCE. The approximate values introduce no bias, but neither do they reduce the
variance relative to the simpler REINFORCE algorithm. This result is so surprising that
an empirical study is useful to see if it extends to non-batch (per-episode) updating.

For this empirical study we used a suite of 50 random MDPs. Each MDP had 50 states
with two actions possible in each state. Episodes started in one of the 50 states at random
with equal probability and possibly ended after each action selection with probability 0.1
(γ = 1). If the episode did not end, then for each state–action pair one of two next
states were possible, chosen at random from the 50. The transition probabilities were a
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uniform random partition of the unit interval into two parts. The expected rewards Ras
for each state–action pair were chosen according to a unit-mean, unit-variance distribution.
The actual rewards were chosen by adding a mean-zero random variable to these expected
rewards with a variance of 0.1.

For function approximation, each state–action pair s, a was mapped to a 10-dimensional
binary feature vector φ(s, a) as follows. All elements of φ(s, a) were 0 except for one, which
was 1. The 1 was in one of the first five positions for one action, and one of the second
five positions for the other action. Which of the five in each case was determined by a
partition of the 50 states into 5 groups of 10. This corresponds to a state-aggregation
function approximator or POMDP, with each state in each group of 10 appearing the same.

We consider two algorithms, both using complete Monte Carlo returns. One algorithm,
REINFORCE, simply uses (6) with Q̂π(st, at) = Rt. The other, which we will call KT, uses
(6) with Q̂π(st, at) = q(st, at) with q as given by (7) with parameter w updated incrementally
after each episode by

∆wt = β[Rt − q(st, at)]∇wq(st, at), (10)

where β is another step-size parameter. Both algorithms selected actions according to a
linear Gibbs softmax policy parameterization:

π(s, a) =
eθ
Tφsa∑

b∈A eθ
Tφsb

.

Note that this parameterization implies that ∇θ π(s, a) = π(s, a)[φsa −
∑
b π(s, b)φsb].

Figure ?? shows a typical learning curve, plotting the quality of the policy J(π) (de-
termined analytically) versus the number of episodes experienced, for each algorithm at
particular values of α and β. Figure ?? plots the value of J(π) after 50 episodes as a
function of the policy step-size parameter α. Several curves are shown for KT, each corre-
sponding to a different value of its additional step-size parameter β. Note that even at the
best value of β the KT algorithm only approaches the performance of REINFORCE.

5. Value Baselines

Part of the appeal of REINFORCE is that it avoids the learning of values altogether.
It involves a single learning process and a single step-size parameter. The price for this
simplicity, however, is often unacceptably high variance in the gradient estimates. It has
long been known that the efficiency of REINFORCE can be substantially improved by
using a suitable the “baseline” function, b : S 7→ < (e.g., Williams, 1988, 1992; Dayan,
1991; Sutton, 1984). Any such function can be added to our expression (5) for the gradient
to yield

∇θ J = Es,a∼π

{
[Qπ(s, a)− b(s)]∇θ π(s, a)

π(s, a)

}
, (11)

which follows because
∑
s
∇θ π(s,a)
π(s,a) = 0. The corresponding algorithm schema, from (6) is

then

∆θt = α[Q̂π(st, at)− b(s)]
∇θ π(st, at)
π(st, at)

. (12)
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The gradient equation (11) shows that the baseline term does not add bias—the expected
update is unchanged and still equal to the gradient. However, variance is often greatly
affected. For example, figure ?? compares the empirical performance on the random MDPs
testbed of REINFORCE as before, with no baseline, and REINFORCE with a baseline of
b(s) =

∑
a π(s, a)f(s, a) where f(s, a) = wTφsa with parameter w updated at the end of

each episode according to (10). The baseline resulted in greatly improved performance.
What is the best baseline function? The algorithm described in the empirical experiment

above reflects the conventional wisdom that the baseline should approximate the state value
function, i.e., that b(s) ≈ V π(s) =

∑
a π(s, a)Qπ(s, a). But is this right? Apparently not,

as a calculation of the minimum variance baseline shows...
[Satinder: ideal baseline result goes here.]
[followed by an empirical comparison of algorithm based on the ideal with the one used

above.]
[Discussion of Christian Shelton’s observation that a V π baseline eases the selection of

eligibility term for Gibbs softmax.
[Summary: That this means values are needed even if you like Monte Carlo methods like

REINFORCE, and that this means values can be used very effectively without introducing
bias.]

6. The All-Action Algorithm

[Focus on this algorithm. Analysis that in batch case all-action variance lower than beats
REINFORCE and unbiased values. No need for baseline. Empirical improvement over
RENFORCE. RMDPs and MC. That this method also uses values but can be unbiased.]

7. Are Unbiased Policy-Gradient Methods Competitive?

[All temporal difference PG methods are biased, as are value-function methods when action-
values are viewed as preferences. This section could present a broader comparison, including
sarsa, q, and actor-critic, some on RMDPs, more on MC. Is this too ambitious?]
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