
Sample-Based Learning and Search with Permanent and Transient
Memories

David Silver silver@cs.ualberta.ca
Richard S. Sutton sutton@cs.ualberta.ca
Martin Müller mmueller@cs.ualberta.ca

Department of Computing Science, University of Alberta, Edmonton, Alberta

Abstract

We present a reinforcement learning architec-
ture, Dyna-2, that encompasses both sample-
based learning and sample-based search, and
that generalises across states during both
learning and search. We apply Dyna-2 to
high performance Computer Go. In this do-
main the most successful planning methods
are based on sample-based search algorithms,
such as UCT, in which states are treated
individually, and the most successful learn-
ing methods are based on temporal-difference
learning algorithms, such as Sarsa, in which
linear function approximation is used. In
both cases, an estimate of the value func-
tion is formed, but in the first case it is
transient, computed and then discarded af-
ter each move, whereas in the second case it
is more permanent, slowly accumulating over
many moves and games. The idea of Dyna-2
is for the transient planning memory and the
permanent learning memory to remain sepa-
rate, but for both to be based on linear func-
tion approximation and both to be updated
by Sarsa. To apply Dyna-2 to 9×9 Computer
Go, we use a million binary features in the
function approximator, based on templates
matching small fragments of the board. Us-
ing only the transient memory, Dyna-2 per-
formed at least as well as UCT. Using both
memories combined, it significantly outper-
formed UCT. Our program based on Dyna-2
achieved a higher rating on the Computer Go
Online Server than any handcrafted or tradi-
tional search based program.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

1. Introduction

Reinforcement learning can be subdivided into two
fundamental problems: learning and planning. Infor-
mally, the goal of learning is for an agent to improve its
policy from its interactions with the environment. The
goal of planning is for an agent to improve its policy
without further interaction with its environment. The
agent can deliberate, reason, ponder, think or search,
so as to find the best behaviour in the available com-
putation time. Sample-based methods can be applied
to both problems. During learning, the agent samples
experience from the real world: it executes an action at
each time-step and observes its consequences. During
planning, the agent samples experience from a model
of the world: it simulates an action at each computa-
tional step and observes its consequences. We propose
that an agent can both learn and plan effectively using
sample-based reinforcement learning algorithms. We
use the game of 9 × 9 Go as an example of a large-
scale, high-performance application in which learning
and planning both play significant roles.

In the domain of Computer Go, the most success-
ful learning methods have used sample-based rein-
forcement learning to extract domain knowledge from
games of self-play (Schraudolph et al., 1994; Dahl,
1999; Enzenberger, 2003; Silver et al., 2007). The
value of a position is approximated by a multi-layer
perceptron, or a linear combination of binary features,
that form a compact representation of the state space.
Temporal difference learning is used to update the
value function, slowly accumulating knowledge from
the complete history of experience.

The most successful planning methods use sample-
based search to identify the best move in the current
position. 9× 9 Go programs based on the UCT algo-
rithm (Kocsis & Szepesvari, 2006) have now achieved
master level (Gelly & Silver, 2007; Coulom, 2007). The
UCT algorithm begins each new move with no domain

Sample-Based Learning and Search with Permanent and Transient Memories

knowledge, but rapidly learns the values of positions
in a temporary search tree. Each state in the tree
is explicitly represented, and the value of each state
is learned by Monte-Carlo simulation, from games of
self-play that start from the current position.

In this paper we develop an architecture, Dyna-2, that
combines these two approaches. Like the Dyna archi-
tecture (Sutton, 1990), the agent updates a value func-
tion both from real experience, and from simulated ex-
perience that is sampled using a model of the world.
The new idea is to maintain two separate memories: a
permanent learning memory that is updated from real
experience; and a transient planning memory that is
updated from simulated experience. Both memories
use linear function approximation to form a compact
representation of the state space, and both memories
are updated by temporal-difference learning.

2. Reinforcement Learning

We consider sequential decision-making processes, in
which at each time-step t the agent receives a state st,
executes an action at according to its current policy
πt(s, a), and then receives a scalar reward rt+1.

2.1. Sample-Based Learning

Most efficient reinforcement learning methods use a
value function as an intermediate step for computing
a policy. In episodic tasks the action-value function
Qπ(s, a) is the expected total reward from state s after
taking action a and then following policy π.

In large domains, it is not possible or practical to learn
a value for each individual state. In this case, it is
necessary to approximate the value function using fea-
tures φ(s, a) and parameters θ. A simple and success-
ful approach (Sutton, 1996) is to use a linear function
approximation Q(s, a) = φ(s, a)T θ. We note that ta-
ble lookup is a special case of linear function approx-
imation, using binary features φ(s, a) = e(s, a), where
e(s, a) is a unit vector with a one in the single compo-
nent corresponding to (s, a) and zeros elsewhere.

The TD(λ) algorithm (Sutton, 1988) estimates the
value of the current state from the value of subse-
quent states. The λ parameter determines the tem-
poral span over which values are updated. At one ex-
treme, TD(0) bootstraps the value of a state from its
immediate successor. At the other extreme, TD(1)
updates the value of a state from the final return;
it is equivalent to Monte-Carlo evaluation (Sutton &
Barto, 1998). TD(λ) can be incrementally computed
by maintaining a vector of eligibility traces zt.

The Sarsa algorithm (Rummery & Niranjan, 1994)
combines temporal difference evaluation with policy
improvement. An action-value function is estimated
by the TD(λ) algorithm, and the policy is improved
by selecting actions according to an ε-greedy policy.
The action-value function is updated from each tuple
(s, a, r, s′, a′) of experience, using the TD(λ) update
rule,

δt = rt+1 + Q(st+1, at+1)−Q(st, at) (1)
zt = λzt−1 + φ(st, at) (2)
θt = θt−1 + αδtzt(s) (3)

2.2. Sample-Based Search

Sample-based planning applies sample-based reinforce-
ment learning methods to simulated experience. This
requires a sample model of the world: a state tran-
sition generator At(s, a) ∈ S × A 7→ S and reward
generator Bt(s, a) ∈ S × A 7→ R. The effectiveness
of sample-based planning depends on the accuracy of
the model (Paduraru, 2007). In sample-based search,
experience is simulated from the real state s, so as to
identify the best action from this state.

Monte-Carlo simulation is a simple but effective
method for sample-based search. Multiple episodes
are simulated, starting from the real state s, and fol-
lowing a random policy. The action-values Q(s, a) are
estimated by the empirical average of the returns of
all episodes in which action a was taken from the real
state s. After simulation is complete, the agent selects
the greedy action argmaxa Q(s, a), and proceeds to the
next real state.

Monte-Carlo tree search constructs a search tree con-
taining all state–action pairs that have been visited
by the agent. Each simulation consists of two dis-
tinct phases: greedy action selection while within the
tree, and then random action selection until termi-
nation. If a simulated state s is fully represented in
the search tree, i.e. all actions from s have already
been tried, then the agent selects the greedy action
argmaxa Q(s, a). Otherwise, the agent selects actions
at random. After each simulation, the action-values
Q(s, a) of all states and actions experienced in the
episode are updated to the empirical average return
following each state–action pair. In practice, only one
new state–action pair is added per episode, resulting
in a tree-like expansion.

The UCT algorithm (Kocsis & Szepesvari, 2006) im-
proves the greedy action selection in Monte-Carlo tree
search. Each state of the search tree is treated as a
multi-armed bandit, and actions are chosen using the
UCB algorithm for balancing exploration and exploita-

Sample-Based Learning and Search with Permanent and Transient Memories

tion (Auer et al., 2002).

2.3. Dyna

The Dyna architecture (Sutton, 1990) combines
sample-based learning with sample-based planning.
The agent learns a model of the world from real ex-
perience, and updates its action-value function from
both real and simulated experience. Before each real
action is selected, the agent performs some sample-
based planning. For example, the Dyna-Q algorithm
remembers all previous states, actions and transitions.
During planning, experience is simulated by sampling
states, actions and transitions from the empirical dis-
tribution. A Q-learning update is applied to update
the action-value function after each sampled transi-
tion, and after each real transition.

2.4. Tracking

Traditional learning methods focus on finding a single
best solution to the learning problem. In reinforcement
learning one may seek an algorithm that converges on
the optimal value function (or optimal policy). How-
ever, in large domains the agent may not have suffi-
cient resources to perfectly represent the optimal value
function. In this case we can actually achieve better
performance by tracking the current situation rather
than converging on the best overall parameters. The
agent can specialise its value function to its current re-
gion of the state space, and update its representation
as it moves through the state space. The potential for
specialisation means that tracking methods may out-
perform converging methods, even in stationary do-
mains (Sutton et al., 2007).

3. Permanent and Transient Memories

We define a memory to be the set of features and
corresponding parameters used by an agent to esti-
mate the value function. In our architecture, the agent
maintains two distinct memories: a permanent mem-
ory (φ, θ) updated during sample-based learning, and a
transient memory (φ̄, θ̄) updated during sample-based
search. The value function is a linear combination of
the transient and permanent memories, such that the
transient memory tracks a local correction to the per-
manent memory,

Q(s, a) = φ(s, a)T θ (4)
Q̄(s, a) = φ(s, a)T θ + φ̄(s, a)T θ̄ (5)

where Q(s, a) is a permanent value function, and
Q̄(s, a) is a combined value function.

We refer to the distribution of states and actions en-

countered during real experience as the learning distri-
bution, and the distribution encountered during simu-
lated experience as the search distribution. The per-
manent memory is updated from the learning distribu-
tion and converges on the best overall representation
of the value function, based on the agent’s past ex-
perience. The transient memory is updated from the
search distribution and tracks the local nuances of the
value function, based on the agent’s expected future
experience.

4. Dyna-2

Algorithm 1 Episodic Dyna-2

1: procedure Learn
2: Initialise A,B . Transition and reward models
3: θ ← 0 . Clear permanent memory
4: loop
5: s← s0 . Start new episode
6: θ̄ ← 0 . Clear transient memory
7: z ← 0 . Clear eligibility trace
8: Search(s)
9: a← π(s; Q̄) . e.g. ε-greedy

10: while s is not terminal do
11: Execute a, observe reward r, state s′

12: (A,B)← UpdateModel(s, a, r, s′)
13: Search(s′)
14: a′ ← π(s′; Q̄)
15: δ ← r + Q(s′, a′)−Q(s, a) . TD-error
16: θ ← θ + α(s, a)δz . Update weights
17: z ← λz + φ . Update eligibility trace
18: s← s′, a← a′

19: end while
20: end loop
21: end procedure

22: procedure Search(s)
23: while time available do
24: z̄ ← 0 . Clear eligibility trace
25: a← π̄(s; Q̄) . e.g. ε-greedy
26: while s is not terminal do
27: s′ ← A(s, a) . Sample transition
28: r ← B(s, a) . Sample reward
29: a′ ← π̄(s′; Q̄)
30: δ̄ ← r + Q̄(s′, a′)− Q̄(s, a) . TD-error
31: θ̄ ← θ̄ + ᾱ(s, a)δ̄z̄ . Update weights
32: z̄ ← λ̄z̄ + φ̄ . Update eligibility trace
33: s← s′, a← a′

34: end while
35: end while
36: end procedure

Sample-Based Learning and Search with Permanent and Transient Memories

The Dyna-2 architecture can be summarised as Dyna
with Sarsa updates, permanent and transient mem-
ories, and linear function approximation (see Algo-
rithm 1). The agent updates its permanent memory
from real experience. Before selecting a real action,
the agent executes a sample-based search from the
current state. The search procedure simulates com-
plete episodes from the current state, sampled from
the model, until no more computation time is avail-
able. The transient memory is updated during these
simulations to learn a local correction to the perma-
nent memory; it is cleared at the beginning of each
real episode.

A particular instance of Dyna-2 must specify learn-
ing parameters: a policy π to select real actions; a
set of features φ for the permanent memory; a tempo-
ral difference parameter λ; and a learning rate α(s, a).
Similarly, it must specify the equivalent search param-
eters: a policy π̄ to select actions during simulation; a
set of features φ̄ for the transient memory; a temporal
difference parameter λ̄; and a learning rate ᾱ(s, a).

The Dyna-2 architecture subsumes a large family of
learning and search algorithms. If there is no transient
memory, φ̄ = ∅, then the search procedure has no effect
and may be skipped. This results in the linear Sarsa
algorithm.

If there is no permanent memory, φ = ∅, then Dyna-2
reduces to a sample-based search algorithm. For exam-
ple, Monte-Carlo tree search is achieved by choosing
table lookup φ̄(s, a) = e(s, a)1; using a simulation pol-
icy that is greedy within the tree, and then uniform
random until termination; and selecting learning pa-
rameters λ̄ = 1 and ᾱ(s, a) = 1/n(s, a), where n(s, a)
counts the number of times that action a has been
selected in state s. The UCT algorithm replaces the
greedy phase of the simulation policy with the UCB
rule for action selection.

Finally, we note that real experience may be accumu-
lated offline prior to execution. Dyna-2 may be exe-
cuted on any suitable training environment (e.g. a he-
licopter simulator) before it is applied to real data (e.g.
a real helicopter). The permanent memory is updated
offline, but the transient memory is updated online.
Dyna-2 provides a principled mechanism for combin-
ing offline and online knowledge(Gelly & Silver, 2007);
the permanent memory provides prior knowledge and
a baseline for fast learning. Our examples of Dyna-2
in Computer Go operate in this manner.

1The number of entries in the table can increase over
time, to give a tree-like expansion.

5. Dyna-2 in Computer Go

In domains with spatial coherence, binary features can
be constructed to exploit spatial structure at multiple
levels (Sutton, 1996). The game of Go exhibits strong
spatial coherence: expert players describe positions us-
ing a broad vocabulary of shapes (Figure 1a). A simple
way to encode basic shape knowledge is through a large
set of local shape features which match a particular
configuration within a small region of the board (Silver
et al., 2007). We define the feature vector φsquare(m) to
be the vector of local shape features for m×m square
regions, for all possible configurations and square lo-
cations. For example, Figure 1a shows several local
shape features of size 3×3. Combining local shape fea-
tures of different sizes builds a representation spanning
many levels of generality: we define the multi-level fea-
ture vector φsquare(m,n) = [φsquare(m); ...;φsquare(n)].
In 9× 9 Go there are nearly a million φsquare(1,3) fea-
tures, about 200 of which are non-zero at any given
time.

Local shape features can be used as a permanent mem-
ory, to represent general domain knowledge. For exam-
ple, local shape features can be learned offline, using
temporal difference learning and training by self-play
(Silver et al., 2007; Gelly & Silver, 2007). However,
local shape features can also be used as a transient
memory2, by learning online from simulations from
the current state. The representational power of lo-
cal shape features is significantly increased when they
can track the short-term circumstances (Sutton et al.,
2007). A local shape may be bad in general, but good
in the current situation (Figure 1b). By training from
simulated experience, starting from the current state,
we can focus learning on what works well now.

We apply the Dyna-2 algorithm to 9 × 9 Computer
Go using local shape features φ(s, a) = φ̄(s, a) =
φsquare(1,3)(s◦a), where s◦a indicates the afterstate fol-
lowing action a in state s (Sutton & Barto, 1998). We
use a self-play model, an ε-greedy policy, and default
parameters of λ = λ̄ = 0.4, α(s, a) = 0.1/|φ(s, a)|,
ᾱ(s, a) = 0.1/|φ̄(s, a)|, and ε = 0.3. We modify the
Dyna-2 algorithm slightly to utilise the logistic func-
tion and to minimise a cross-entropy loss function, by
replacing the value function approximation in (4) and
(5),

Q(s, a) = σ(φ(s, a)T θ) (6)
Q̄(s, a) = σ(φ(s, a)T θ + φ̄(s ◦ a)T θ̄) (7)

where σ(x) = 1
1+e−x is the logistic function.

2Symmetric local shape features share weights in the
permanent memory, but not in the transient memory.

Sample-Based Learning and Search with Permanent and Transient Memories
shapes

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

C

C

C

A

A

A

C

C

C

A

A

A

C

C

C

A

A

A

D

D

D

B

B

B

D

D

D

B

B

B

D

D

D

B

B

B

Black to play

guzumi

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

E

E

E

E

White to play

generalisation1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

F

F

F

F G

G

G

G

G

G

G

G

G

Black to play

generalisation2

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

F

F

F

F G

G

G

G

G

G

G

G

G

White to playFigure 1. a) Examples of 3× 3 local shape features, matching common shapes known to Go players: the one-point jump
(A), hane (B), net (C) and turn (D). b) The empty triangle (E) is normally considered a bad shape; it can be learned
by the permanent memory. However, in this position the empty triangle makes a good shape, known as guzumi; it can
be learned by the transient memory. c) White threatens to cut blacks stones apart at F and G. 2 × 2 and 3 × 3 local
shape features can represent the local consequences of cutting at F and G respectively. d) A position encountered when
searching from (c): Dyna-2 is able to generalise, using local shape features in its transient memory, and can re-use its
knowledge about cutting at F and G. UCT considers each state uniquely, and must re-search each continuation.

In addition we ignore local shape features consisting
of entirely empty intersections; we clear the eligibility
trace for exploratory actions; and we use the default
policy described in (Gelly et al., 2006) after the first
D = 10 moves of each simulation. We refer to the com-
plete algorithm as Dyna-2-Shape, and implement this
algorithm in our program RLGO, which executes al-
most 2000 complete episodes of simulation per second
on a 3 GHz processor.

For comparison, we implemented the UCT algorithm,
based on the description in (Gelly et al., 2006). We use
an identical default policy to the Dyna-2-Shape algo-
rithm, to select moves when outside of the search tree,
and a first play urgency of 1. We evaluate both pro-
grams by running matches against GnuGo, a standard
benchmark program for Computer Go.

We compare the performance of local shape features in
the permanent memory alone; in the transient memory
alone; and in both the permanent and transient mem-
ories. We also compare the performance of local shape
features of different sizes (see Figure 3). Using only the
transient memory, Dyna-2-Shape outperformed UCT
by a small margin. Using Dyna-2-Shape with both
permanent and transient memories provided the best
results, and outperformed UCT by a significant mar-
gin.

Local shape features would normally be considered
naive in the domain of Go: the majority of shapes and
tactics described in Go textbooks span considerably
larger regions of the board than 3×3 squares. Indeed,
when used only in the permanent memory, the local
shape features win just 5% of games against GnuGo.
However, when used in the transient memory, even
the φsquare(1,2) features achieve performance compa-
rable to UCT. Unlike UCT, the transient memory can

Figure 2. Winning rate of RLGO against GnuGo 3.7.10
(level 0) in 9×9 Go, using Dyna-2-Shape with 1000 simula-
tions/move, for different values of λ̄. Each point represents
the winning percentage over 1000 games.

generalise in terms of local responses: for example, it
quickly learns the importantance of black connecting
when white threatens to cut (Figures 1c and 1d).

We also study the effect of the temporal difference
parameter λ̄ in the search procedure (see Figure 2).
We see that bootstrapping (λ̄ < 1) provides signifi-
cant benefits. Previous work in sample-based search
has largely been restricted to Monte-Carlo methods
(Tesauro & Galperin, 1996; Kocsis & Szepesvari, 2006;
Gelly et al., 2006; Gelly & Silver, 2007; Coulom, 2007).
Our results suggest that generalising these approaches
to temporal difference learning methods may provide
significant benefits when value function approximation
is used.

Sample-Based Learning and Search with Permanent and Transient Memories

Figure 3. Winning rate of RLGO against GnuGo 3.7.10 (level 0) in 9 × 9 Go, using Dyna-2-Shape for different simula-
tions/move. Local shape features are used in either the permanent memory (dotted lines), the transient memory (dashed
lines), or both memories (solid lines). The permanent memory is trained offline from 100,000 games of self-play. Local
shape features varied in size from 1× 1 up to 3× 3. Each point represents the winning percentage over 1000 games.

6. Dyna-2 and Heuristic Search

In games such as Chess, Checkers and Othello, master
level play has been achieved by combining a heuristic
evaluation function with α-β search. The heuristic is
typically approximated by a linear combination of bi-
nary features, and can be learned offline by temporal-
difference learning and self-play (Baxter et al., 1998;
Schaeffer et al., 2001; Buro, 1999). Similarly, in the
permanent memory of our architecture, the value func-
tion is approximated by a linear combination of binary
features, learned offline by temporal-difference learn-
ing and self-play (Silver et al., 2007). Thus it is natu-
ral to compare Dyna-2 with approaches based on α-β
search.

Dyna-2 combines a permanent memory with a tran-
sient memory, using sample-based search. In contrast,
the classical approach uses the permanent memory
Q(s, a) as an evaluation function for α-β search. A
hybrid approach is also possible, in which the com-
bined value function Q̄(s, a) is used as an evaluation
function for α-β search, including both permanent and
transient memories. This can be viewed as searching
with a dynamic evaluation function that evolves ac-
cording to the current context. We compare all three
approaches in Figure 4.

Dyna-2 outperformed classical search by a wide mar-
gin. In the game of Go, the consequences of a par-
ticular move (for example, playing good shape as in
Figure 1a) may not become apparent for tens or even
hundreds of moves. In a full-width search these conse-
quences remain beyond the horizon, and will only be
recognised if represented by the evaluation function.
In contrast, sample-based search only uses the perma-
nent memory as an initial guide, and learns to identify
the consequences of particular patterns in the current
situation. The hybrid approach successfully combines
this knowledge with the precise lookahead provided by
full-width search.

Using the hybrid approach, our program RLGO estab-
lished an Elo rating of 2130 on the Computer Go On-
line Server, more than any handcrafted or traditional
search program.

7. Related work

The Computer Go program MoGo uses the heuris-
tic UCT algorithm (Gelly & Silver, 2007) to achieve
dan-level performance. This algorithm can be viewed
as an instance of Dyna-2 with local shape features
in the permanent memory, and table lookup in the
transient memory. It uses a step-size of ᾱ(s, a) =

Sample-Based Learning and Search with Permanent and Transient Memories

0

10

20

30

40

50

60

70

80

10 100 1000 10000

W
in

s
 v

s
.

G
n

u
G

o

Simulations

Permanent + Transient: 1 ply

Permanent + Transient: 2 ply

Permanent + Transient: 3 ply

Permanent + Transient: 4 ply

Permanent + Transient: 5 ply

Permanent + Transient: 6 ply

Permanent: 1-ply

Permanent: 2-ply

Permanent: 3-ply

Permanent: 4-ply

Permanent: 5-ply

Permanent: 6-ply

UCT

Figure 4. Winning rate of RLGO against GnuGo 3.7.10 (level 0) in 9 × 9 Go, using Dyna-2-Shape. A full-width α-β
search is used for move selection, using a value function based on either the permanent memory (dotted lines), or both
memories (solid lines). A 1-ply search corresponds to the usual move selection procedure in Dyna-2. For comparison,
a 5-ply search takes approximately the same computation time as 1000 simulations. The permanent memory is trained
offline from 100,000 games of self-play. Each point represents the winning percentage over 1000 games.

1/(nprior(s, a)+n(s, a)). The confidence in the perma-
nent memory is specified by nprior in terms of equiva-
lent experience, i.e. the worth of the permanent mem-
ory, measured in episodes of simulated experience.

In addition, MoGo uses the Rapid Action Value Esti-
mate (RAVE) algorithm in its transient memory (Gelly
& Silver, 2007). This algorithm can also be viewed as
a special case of the Dyna-2 architecture, but using
features of the full history ht and not just the current
state st and action at.

We define a history to be a sequence of states and
actions ht = s1a1...stat, including the current action
at. An individual RAVE feature φRAV E

sa (h) is a binary
feature of the history h that matches a particular state
s and action a. The binary feature is on iff s occurs in
the history and a matches the current action at,

φRAV E
sa (s1a1...stat) =

{
1 if at = a and ∃i s.t. si = s;
0 otherwise.

(8)

Thus the RAVE algorithm provides a simple abstrac-
tion over classes of related histories. The implemen-
tation of RAVE used in MoGo makes two additional
simplifications. First, MoGo estimates a value for each

RAVE feature independently of any other RAVE fea-
tures, set to the average outcome of all simulations in
which the RAVE feature φRAV E

sa is active. Second, for
action selection, MoGo only evaluates the single RAVE
feature φRAV E

stat
corresponding to the current state st

and candidate action at. This somewhat reduces the
generalisation power of RAVE, but allows for a partic-
ularly efficient update procedure.

8. Conclusion

Reinforcement learning is often considered a slow pro-
cedure. Outstanding examples of success have, in the
past, learned a value function from months of offline
computation. However, this does not need to be the
case. Many reinforcement learning methods are fast,
incremental, and scalable. When such a reinforcement
learning algorithm is applied to simulated experience,
using a transient memory, it becomes a high perfor-
mance search algorithm. This search procedure can
be made more efficient by generalising across states;
and it can be combined with long-term learning, using
a permanent memory.

Monte-Carlo tree search algorithms, such as UCT,
have recently received much attention. However, this

Sample-Based Learning and Search with Permanent and Transient Memories

is just one example of a sample-based search algorithm.
There is a spectrum of algorithms that vary from table-
lookup to function approximation; from Monte-Carlo
learning to bootstrapping; and from permanent to
transient memories. Function approximation provides
rapid generalisation in large domains; bootstrapping
is advantageous in the presence of function approx-
imation; and permanent and transient memories al-
low general knowledge about the past to be combined
with specific knowledge about the expected future. By
varying these dimensions, we have achieved a signifi-
cant improvement over the UCT algorithm.

In 9×9 Go, programs based on extensions to the UCT
algorithm have achieved dan-level performance. Our
program RLGO, based on the Dyna-2 architecture, is
the strongest program not based on UCT, and suggests
that the full spectrum of sample-based search meth-
ods merits further investigation. For larger domains,
such as 19× 19 Go, generalising across states becomes
increasingly important. Combining state abstraction
with sample-based search is perhaps the most promis-
ing avenue for achieving human-level performance in
this challenging domain.

References

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002).
Finite-time analysis of the multi-armed bandit prob-
lem. Machine Learning, 47, 235–256.

Baxter, J., Tridgell, A., & Weaver, L. (1998). Exper-
iments in parameter learning using temporal differ-
ences. International Computer Chess Association
Journal, 21, 84–99.

Buro, M. (1999). From simple features to sophisticated
evaluation functions. First International Conference
on Computers and Games (pp. 126–145).

Coulom, R. (2007). Computing Elo ratings of move
patterns in the game of Go. Computer Games Work-
shop.

Dahl, F. (1999). Honte, a Go-playing program using
neural nets. Machines that learn to play games (pp.
205–223). Nova Science.

Enzenberger, M. (2003). Evaluation in Go by a neural
network using soft segmentation. 10th Advances in
Computer Games Conference (pp. 97–108).

Gelly, S., & Silver, D. (2007). Combining online and
offline learning in UCT. 17th International Confer-
ence on Machine Learning (pp. 273–280).

Gelly, S., Wang, Y., Munos, R., & Teytaud, O. (2006).
Modification of UCT with patterns in Monte-Carlo
Go (Technical Report 6062). INRIA.

Kocsis, L., & Szepesvari, C. (2006). Bandit based
Monte-Carlo planning. 15th European Conference
on Machine Learning (pp. 282–293).

Paduraru, C. (2007). Planning with approximate and
learned MDP models. Master’s thesis, University of
Alberta.

Rummery, G., & Niranjan, M. (1994). On-line Q-
learning using connectionist systems (Technical Re-
port CUED/F-INFENG/TR 166). Cambridge Uni-
versity Engineering Department.

Schaeffer, J., Hlynka, M., & Jussila, V. (2001). Tempo-
ral difference learning applied to a high-performance
game-playing program. Proceedings of the Seven-
teenth International Joint Conference on Artificial
Intelligence (pp. 529–534).

Schraudolph, N., Dayan, P., & Sejnowski, T. (1994).
Temporal difference learning of position evaluation
in the game of Go. Advances in Neural Information
Processing 6 (pp. 817–824).

Silver, D., Sutton, R., & Müller, M. (2007). Reinforce-
ment learning of local shape in the game of Go. 20th
International Joint Conference on Artificial Intelli-
gence (pp. 1053–1058).

Sutton, R. (1988). Learning to predict by the method
of temporal differences. Machine Learning, 3, 9–44.

Sutton, R. (1990). Integrated architectures for learn-
ing, planning, and reacting based on approximating
dynamic programming. 7th International Confer-
ence on Machine Learning (pp. 216–224).

Sutton, R. (1996). Generalization in reinforcement
learning: Successful examples using sparse coarse
coding. Advances in Neural Information Processing
Systems 8 (pp. 1038–1044).

Sutton, R., & Barto, A. (1998). Reinforcement learn-
ing: an introduction. MIT Press.

Sutton, R., Koop, A., & Silver, D. (2007). On the
role of tracking in stationary environments. 17th
International Conference on Machine Learning (pp.
871–878).

Tesauro, G., & Galperin, G. (1996). On-line policy
improvement using Monte-Carlo search. Advances
in Neural Information Processing 9 (pp. 1068–1074).

