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Abstract

RoboCup simulated soccer presents many
challenges to reinforcement learning meth-
ods, including a large state space, hidden
and uncertain state, multiple agents, and
long and variable delays in the e�ects of ac-
tions. We describe our application of episodic
SMDP Sarsa(�) with linear tile-coding func-
tion approximation and variable � to learning
higher-level decisions in a keepaway subtask
of RoboCup soccer. In keepaway, one team,
\the keepers," tries to keep control of the ball
for as long as possible despite the e�orts of
\the takers." The keepers learn individually
when to hold the ball and when to pass to
a teammate, while the takers learn when to
charge the ball-holder and when to cover pos-
sible passing lanes. Our agents learned poli-
cies that signi�cantly out-performed a range
of benchmark policies. We demonstrate the
generality of our approach by applying it to a
number of task variations including di�erent
�eld sizes and di�erent numbers of players on
each team.

1. Introduction

RoboCup simulated soccer has been used as the basis
for successful international competitions and research
challenges (Kitano et al., 1997). As presented in detail
by Stone (2000), it is a fully distributed, multiagent do-
main with both teammates and adversaries. There is
hidden state, meaning that each agent has only a par-
tial world view at any given moment. The agents also
have noisy sensors and actuators, meaning that they
do not perceive the world exactly as it is, nor can they
a�ect the world exactly as intended. In addition, the
perception and action cycles are asynchronous, pro-
hibiting the traditional AI paradigm of using percep-
tual input to trigger actions. Communication oppor-
tunities are limited, and the agents must make their
decisions in real-time. These italicized domain charac-

teristics combine to make simulated robotic soccer a
realistic and challenging domain.

In principle, modern reinforcement learning methods
are reasonably well suited to meeting the challenges
of RoboCup simulated soccer. Reinforcement learn-
ing is all about sequential decision making, achieving
delayed goals, and handling noise and stochasticity.
It is also oriented toward making decisions relatively
rapidly rather than relying on extensive deliberation
or meta-reasoning. There is a substantial body of re-
inforcement learning research on multiagent decision
making, and soccer is an example of the relatively be-
nign case in which all agents on the same team share
the same goal. In this case it is often feasible for each
agent to learn independently, sharing only a common
reward signal. The problem of hidden state remains
severe, but can, again in principle, be handled using
function approximation, which we discuss further be-
low. RoboCup soccer is a large and di�cult instance
of many of the issues which have been addressed in
small, isolated cases in previous reinforcement learning
research. Despite substantial previous work (e.g., An-
dou, 1998; Stone & Veloso, 1999; Uchibe, 1999; Ried-
miller et al., 2001), the extent to which modern rein-
forcement learning methods can meet these challenges
remains an open question.

Perhaps the most pressing challenge in RoboCup sim-
ulated soccer is the large state space, which requires
some kind of general function approximation. Stone
and Veloso (1999) and others have applied state ag-
gregation approaches, but these are not well suited
to learning complex functions. In addition, the theory
of reinforcement learning with function approximation
is not yet well understood (e.g., see Sutton & Barto,
1998; Baird & Moore, 1999; Sutton et al., 2000). Per-
haps the best understood of current methods is linear
Sarsa(�), which we use here. This method is known
not to converge in the conventional sense, but several
lines of evidence suggest that it nevertheless remains
near a good solution (Gordon, 2001; Tsitsiklis & Van
Roy, 1997; Sutton, 1996). Certainly it has advantages
over o�-policy methods such as Q-learning, which can



be unstable with linear and other kinds of function ap-
proximation. An important open question is whether
Sarsa's failure to converge in the conventional sense
is of practical importance or is merely a theoretical
curiosity. Only tests on large-state-space applications
such as RoboCup soccer will answer this question.

In this paper we begin to scale reinforcement learning
up to RoboCup simulated soccer. We consider a sub-
task of soccer involving 5{7 players rather than the
full 22. This is the task of keepaway , in which one
team merely seeks to keep control of the ball as long
as possible. In the next section we describe keepaway
and how we build on prior work in RoboCup soccer to
formulate this problem at an intermediate level above
that of the lowest level actions and perceptions. In
Section 3 we map this task onto an episodic reinforce-
ment learning framework, and in Sections 4 and 5 we
describe our learning algorithm in detail and our re-
sults respectively. Related work is discussed further in
Section 6.

2. Keepaway Soccer

We consider a subtask of RoboCup soccer, keepaway ,
in which one team, the keepers, is trying to maintain
possession of the ball within a limited region, while
another team, the takers, is trying to gain possession.
Whenever the takers take possession or the ball leaves
the region, the episode ends and the players are re-
set for another episode (with the keepers being given
possession of the ball again).

Parameters of the task include the size of the region,
the number of keepers, and the number of takers. Fig-
ure 1 shows a screen shot of 3 keepers and 2 takers
(called 3 vs. 2, or 3v2 for short) playing in a 20m x
20m region.
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Figure 1: A screen shot from a 3 vs. 2 keepaway episode
in a 20m x 20m region.

All of our work uses version 5.25 of the standard
RoboCup soccer simulator (Noda et al., 1998). An om-
niscient coach agent manages the play, ending episodes
when a taker gains possession of the ball for a set pe-
riod of time or when the ball goes outside of the region.

At the beginning of each episode, the coach resets the
location of the ball and of the players semi-randomly
within the region of play. The takers all start in one
corner (bottom left). Three randomly chosen keepers
are placed one in each of the three remaining corners,
and any keepers beyond three are placed in the center
of the region. The ball is initially placed next to the
keeper in the top left corner.

In the RoboCup soccer simulator, agents typically
have limited and noisy sensors: each player can see
objects within a 90o view cone, and the precision of
an object's sensed location degrades with distance. To
simplify the problem, we gave our agents (both keep-
ers and takers) a full 360o of noise-free vision (object
movements and agent actions retain their usual noisy
characteristics). We have not yet determined whether
this simpli�cation was necessary or helpful1.

Keepaway is a subproblem of robotic soccer. The
principal simpli�cations are that there are fewer play-
ers involved; they are playing in a smaller area; and
the players are always focused on the same high-level
goal|they don't need to balance o�ensive and defen-
sive considerations. Nevertheless, the skills needed to
play keepaway well are also very useful in the full prob-
lem of robotic soccer. Indeed, ATT-CMUnited-2000|
the 3rd-place �nishing team in the RoboCup-2000 sim-
ulator league|incorporated a successful hand-coded
solution to an 11 vs. 11 keepaway task (Stone &
McAllester, 2001).

3. Mapping Keepaway onto

Reinforcement Learning

Our keepaway problem maps fairly directly onto the
discrete-time, episodic, reinforcement-learning frame-
work. The RoboCup soccer simulator operates in dis-
crete time steps, t = 0; 1; 2; : : :, each representing 100
msec of simulated time. When one episode ends (e.g.,
the ball is lost to the takers), another begins, giving
rise to a series of episodes. Each player learns inde-
pendently and may perceive the world di�erently. For
each player, an episode begins when the player is �rst
asked to make a decision and ends when possession of
the ball is lost by the keepers.

As a way of incorporating domain knowledge, our
learners chose not from the simulator's primitive ac-
tions, but from higher level actions constructed from
skills used in the CMUnited-99 team. Those skills in-
cluded

1Preliminary tests indicate that at least the noise-free
vision is not essential.



HoldBall(): Remain stationary while keeping pos-
session of the ball in a position that is as far away
from the opponents as possible.

PassBall(k): Kick the ball directly towards keeper
k.

GetOpen(): Move to a position that is free from op-
ponents and open for a pass from the ball's current
position (using SPAR (Veloso et al., 1999)).

GoToBall(): Intercept a moving ball or move di-
rectly towards a stationary ball.

BlockPass(k): Move to a position between the
keeper with the ball and keeper k.

All of these skills except PassBall(k) are simple func-
tions from state to a corresponding action; an invo-
cation of one of these normally controls behavior for
a single time step. PassBall(k), however, requires an
extended sequence of actions|getting the ball into po-
sition for kicking, and then a sequence of kicks in the
desired direction (Stone, 2000); a single invocation of
PassBall(k) inuences behavior for several time steps.
Moreover, even the simpler skills may last more than
one time step because the player occasionally misses
the step following them; the simulator occasionally
misses commands; or the player may �nd itself in a sit-
uation requiring it to take a speci�c action, for instance
to self-localize. In these cases there is no new opportu-
nity for decision making until two or more steps after
invoking the skill. To handle such possibilities, it is
convenient to treat the problem as a semi-Markov de-
cision process, or SMDP (Puterman, 1994; Bradtke &
Du�, 1995). An SMDP evolves in a sequence of jumps
from the initiation of each SMDP action to its termi-
nation one or more time steps later, at which time
the next SMDP action is initiated. SMDP actions
that consist of a subpolicy and termination condition
over an underlying decision process, as here, have been
termed options (Sutton et al., 2000).

Let t0; t1; t2; : : : ; tj denote the SMDP time steps, those
at which options are initiated and terminated, where
t0 denotes the �rst time step of the episode and tj the
last (all options terminate at the end of an episode).
From the point of view of the SMDP, then, the episode
consists of a sequence of states, options, and rewards

s0; a0; r1; s1; : : : ; si; ai; ri+1; si+1; : : : ; rj ; sj

where si denotes the state of the simulator at time step
ti, ai denotes the option initiated at ti based on some,
presumably incomplete, perception of si, and ri+1 2 <
and si+1 represent the resultant reward and state at
the termination of ai. The �nal state of the episode, sj
is the state where the takers have possession or the ball
has gone out of bounds. We wish to reward the keepers
for each time step in which they keep possession, so we

set ri = ti � ti�1. The takers, on the other hand, are
penalized for each time step, so their reward is just
the inverse: ti�1 � ti. Because the task is episodic,
no discounting is necessary: the goal at each learning
step is to take an action such that the remainder of the
episode will be as long or as short (keeper or taker) as
possible, and thus to maximize total reward.

3.1 Keepers

Our experiments investigated learning by the keepers
when in possession2 of the ball. Keepers not in pos-
session of the ball are required to select the Receive
option:

Receive: If a teammate possesses the ball, or can
get to the ball faster than this keeper can, invoke
GetOpen() for one step; otherwise, invoke GoTo-
Ball() for one step. Repeat until a keeper has
possession of the ball or the episode ends.

A keeper in possession, on the other hand, is faced
with a genuine choice. It may hold the ball, or it
may pass to one of its teammates. That is, it chooses
an option from fHoldball, PassK2ThenReceive,
PassK3ThenReceive, . . . , PassKnThenReceiveg where
the Holdball option simply executes HoldBall() for one
step (or more if, for example, the server misses the
next step) and the PasskThenReceive options involve
passes to the other keepers. The keepers are numbered
by their closeness to the keeper with the ball: K1 is
the keeper with the ball, K2 is the closest keeper to
it, K3 the next closest, and so on up to Kn, where n

is the number of keepers. Each PasskThenReceive is
de�ned as

PasskThenReceive: Invoke PassBall(k) to kick the
ball toward teammate k. Then behave and termi-
nate as in the Receive option.

The keepers' learning process thus searches a con-
strained policy space characterized only by the choice
of option when in possession of the ball. Examples of
policies within this space are provided by our bench-
mark policies:

Random: Choose randomly among the n options,
each with probability 1

n .
Hold: Always choose HoldBall()
Hand-coded:

If no taker is within 10m, choose HoldBall();
Else If teammate k is in a better location than
the keeper with the ball and the other team-

2\Possession" in the soccer simulator is not well-de�ned
because the ball never occupies the same location as a
player. One of our agents considers that it has possession
of the ball if the ball is close enough to kick it.



mates, and the pass is likely to succeed (using
the CMUnited-99 pass-evaluation function, which
is trained o�-line using the C4.5 decision tree
training algorithm (Quinlan, 1993)), then choose
PassBall(k);
Else choose HoldBall().

We turn now to the representation of state used by
the keepers, ultimately for value function approxima-
tion as described in the next section. Note that values
are only needed on the SMDP steps, and on these one
of the keepers is always in possession of the ball. On
these steps the keeper determines a set of state vari-
ables, computed based on the positions of: the keep-
ers K1{Kn, ordered as above; the takers T1{Tm (m
is the number of takers), ordered by increasing dis-
tance from K1; and C, the center of the playing region
(see Figure 2 for an example with 3 keepers and 2
takers). Let dist(a; b) be the distance between a and
b and ang(a; b; c) be the angle between a and c with
vertex at b. For example, ang(K3;K1; T1) is shown in
Figure 2. With 3 keepers and 2 takers, we used the
following 13 state variables:

� dist(K1; C), dist(K2; C), dist(K3; C)
� dist(T1; C), dist(T2; C)
� dist(K1;K2), dist(K1;K3)
� dist(K1; T1), dist(K1; T2)
� Min(dist(K2; T1); dist(K2; T2))
� Min(dist(K3; T1); dist(K3; T2))
� Min(ang(K2;K1; T1); ang(K2;K1; T2))
� Min(ang(K3;K1; T1); ang(K3;K1; T2))

This list generalizes naturally to additional keepers
and takers, leading to a linear growth in the number
of state variables.
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Figure 2: The state variables used for learning with 3
keepers and 2 takers. Keepers and takers are numbered by
increasing distance from K1, the keeper with the ball.

3.2 Takers

The takers are relatively simple, choosing only options
of minimum duration (one step, or as few as possi-
ble given server misses) that exactly mirror CMU-
nited skills. When a taker has the ball, it tries
to maintain possession by invoking HoldBall() for a
step. Otherwise, it chooses an option that invokes one

of fGoToBall(), BlockPass(K2), BlockPass(K3), . . . ,
BlockPass(Kn)g for one step or as few steps as per-
mitted by the server. In case no keeper has the ball
(e.g., during a pass), K1 is de�ned here as the keeper
predicted to next gain possession by a routine from
the CMUnited-99 team. We used the following three
policies as taker benchmarks, characterized by their
behavior when not in possession:

Random-T: Choose randomly from the n options,
each with probability 1

n .
All-to-ball: Always choose the GoToBall() option.
Hand-coded-T:

If fastest taker to the ball, or closest or second
closest taker to the ball: choose the GoToBall()
option;
Else let k be the keeper with the largest angle
with vertex at the ball that is clear of takers:
choose the BlockPass(k) option.

The takers' state variables are similar to those of the
keepers. As before, C is the center of the region.
T1 is the taker that is computing the state variables,
and T2{Tm are the other takers ordered by increas-
ing distance from K1. Kimid is the midpoint of the
line segment connecting K1 and Ki for i 2 [2; n] and
where the Ki are ordered based on increasing distance
of Kimid from T1. That is, 8i; j s.t. 2 � i < j,
dist(T1;Kimid) � dist(T1;Kjmid). With 3 keepers
and 3 takers, we used the following 18 state variables:

� dist(K1; C), dist(K2; C), dist(K3; C)
� dist(T1; C), dist(T2; C), dist(T3; C)
� dist(K1;K2), dist(K1;K3)
� dist(K1; T1), dist(K1; T2), dist(K1; T3)
� dist(T1;K2mid), dist(T1;K3mid)
� Min(dist(K2mid; T2); dist(K2mid; T3))
� Min(dist(K3mid; T2); dist(K3mid; T3))
� Min(ang(K2;K1; T2); ang(K2;K1; T3))
� Min(ang(K3;K1; T2); ang(K3;K1; T3))
� number of takers closer to the ball than T1

Once again, this list generalizes naturally to di�erent
numbers of keepers and takers.

4. Reinforcement Learning Algorithm

We used the SMDP version of the Sarsa(�) algo-
rithm with linear tile-coding function approximation
(also known as CMACs) and replacing eligibility traces
(see Albus, 1981; Rummery & Niranjan, 1994; Sutton
& Barto, 1998). Each player learned independently
from its own actions and its own perception of the
state. One complication is that most descriptions of
Sarsa(�) assume the agent has control and occasion-
ally calls the environment to obtain the next state



and reward, whereas here the RoboCup simulator re-
tains control and occasionally presents state percep-
tions and option choices to the agent. This alternate
orientation requires a di�erent perspective on the stan-
dard algorithm. We need to specify three routines: 1)
RLstartEpisode, to be run by the player on the �rst
time step in each episode in which it chooses an op-
tion, 2) RLstep, to be run on each SMDP step, and
3) RLendEpisode, to be run when an episode ends.
These three routines are given in Figure 3. Note that
the traces decay only on SMDP time steps. In e�ect,
we are using variable � (Sutton & Barto, 1998), set-
ting � = 1 for these missing time steps. This scheme
is one reasonable way to handle eligibility traces for
SMDPs.

As we explain below, the primary memory vector ~�

and the eligibility trace vector ~e are both of large di-
mension (e.g., thousands of dimensions for 3v2 keep-
away), whereas the feature sets Fa are relatively small
(e.g., 416 elements). The steps of greatest computa-

tional expense are those in which ~� and ~e are updated.
By keeping track of the few nonzero components of ~e,
however, this expense can be kept to a small multiple
of the size of the Fa (i.e., of 416). The initial value for
~� was ~0.

For the results described in this paper we used the
following values of the scalar parameters: � = 0:125,
� = 0:01, and � = 0. In previous work (Stone et al.,
2001), we experimented systematically with a range
of values for the step-size parameter. We varied �

over negative powers of 2 and observed the classical
inverted-U pattern, with fastest learning at an inter-
mediate value of about � = 2�3 = 0:125, which we
use here. We also experimented informally with � and
�. The value � = 0:01 appears su�ciently exploratory
without signi�cantly a�ecting �nal performance. The
e�ect of varying � is not yet clear, so in this paper we
treat the simplest case of � = 0.

It remains to specify how the feature sets Fa are con-
structed by the tile coding process. We use general
tile coding software which allows us to take arbitrary
groups of continuous state variables and lay in�nite,
axis-parallel tilings over them (e.g., see Figure 4). The
tiles containing the current state in each tiling together
make up a feature set Fa, each action a indexing the
tilings di�erently. The tilings are formally in�nite in
extent, but in our case, all the state variables are in
fact bounded. Nevertheless, the number of possible
tiles is extremely large, only a relatively few of which
are ever visited (in our case about 10,000). Thus the

primary memory vector ~� and the eligibility trace vec-
tor ~e have only this many nonzero elements. Using

RLstartEpisode:
For all a 2 A(current state):
Fa  set of tiles for a and current state
Qa  

P
i2Fa

�(i)

LastOption 

�
argmaxaQa w/prob. 1� �
random option w/prob. �

LastOptionT ime CurrentT ime

~e = ~0
For all i 2 FLastOption:

e(i) 1

RLstep:
r  CurrentT ime� LastOptionT ime
�  r �QLastOption

For all a 2 A(current state):
Fa  set of tiles for a and current state
Qa  

P
i2Fa

�(i)

LastOption 

�
argmaxaQa w/prob. 1� �
random option w/prob. �

LastOptionT ime CurrentT ime
�  � +QLastOption

~�  ~� + � � ~e
QLastOption  

P
i2FLastOption

�(i)

~e �~e
If player acting in current state:

For all a 2 A(current state) s.t. a 6= LastOption:
For all i 2 Fa:

e(i) 0
For all i 2 FLastOption:

e(i) 1

RLendEpisode:
r  CurrentT ime� LastOptionT ime
�  r �QLastOption

~�  ~� + � � ~e

Figure 3: The three main routines of our Sarsa(�) im-
plementation presented for a keeper. A taker has the sign
of the reward, r, reversed. As discussed in the text, the
set of actions available, A, may depend on the state. For
example, the keepers not in possession of the ball must se-
lect the Receive option, whereas the keeper with the ball
chooses from among HoldBall and PasskThenReceive.

open-addressed hash-coding, only these nonzero ele-
ments need be stored.

In our experiments we used primarily single-
dimensional tilings, i.e., simple stripes or intervals
along each state variable individually. For each vari-
able, 32 tilings were overlaid, each o�set from the oth-
ers by 1/32 of a tile width. In each tiling, the current
state is in exactly one tile. The set of all these \ac-
tive" tiles, one per tiling and 32 per group of state
variables, is what makes up the Fa. In the 3v2 case,
there are 416 tiles in eachFa because there are thirteen
state variables making thirteen single-variable groups,
or 13 � 32 = 416 total. For each state variable, we
speci�ed the width of its tiles based on the width of
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Figure 4: Our tile-coding feature sets were formed from
multiple overlapping tilings of the state variables. Here we
show two grid-tilings overlaid over the space formed by two
state variables. (In this paper we primarily considered one-
dimensional tilings.) Any state, such as that shown by the
dot, is in exactly one tile of each tiling. Tile coding, also
known as CMACs, has been widely used in conjunction
with reinforcement learning systems (e.g., Watkins, 1989;
Lin & Kim, 1991; Dean et al., 1992).

generalization that we desired. For example, distances
were given widths of about 3.0 meters, whereas angles
were given widths of about 10.0 degrees.

The choice here of state variables, widths, groupings,
and so on, was done manually. Just as we as peo-
ple have to select the state variables, we also have to
determine how they are represented to the learning
algorithm. A long-term goal of machine learning is
to automate representational selections, but to date
this is not possible even in supervised learning. Here
we seek only to make the experimentation with a va-
riety of representations relatively easy for us to do.
The speci�c choices described here were made after
some experimentation with learning by the keepers in
a policy-evaluation scenario (Stone et al., 2001).

As described in Section 3.2, we used similar features
and tilings for the takers as described above for the
keepers. One exception is that we considered the last
variable|the number of takers closer to the ball than
T1|as special in that it is e�ectively conjoined with
each other state variable. We accomplished these con-
junctions by creating separate tilings for each state
variable and for each possible value of this special
variable (it can take on as many values as there are
takers). To counter the potential increase in compu-
tational complexity caused by extra tiling groups, we
used only 8 tilings per conjunction, rather than 32.

This representation, which ignores most possible state-
variable conjunctions, may be less well suited to the
takers than it is to the keepers. We leave experimenta-
tion with representations for the takers as future work.

5. Empirical Results

Our main results to date have focused on learning by
the keepers in 3v2 keepaway in a 20x20 region. For
the opponents (takers) we used the Hand-coded-T pol-
icy (note that with just 2 takers, this policy is identi-
cal to All-to-ball). To benchmark the performance of
the learned keepers, we �rst ran the three benchmark
keeper policies, Random, Hold, and Hand-coded, as
laid out in Section 3.1. Average episode lengths for
these three policies were 5.5, 4.8, and 5.6 seconds re-
spectively. Figure 5 shows histograms of the lengths
of the episodes generated by these policies.
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Figure 5: Histograms of episode lengths for the 3 bench-
mark keeper policies in 3v2 keepaway in a 20x20 region.

We then ran a series of eleven runs with learning by
the keepers against the Hand-coded-T takers. Figure 6
shows learning curves for these runs. The y-axis is the
average time that the keepers are able to keep the ball
from the takers (average episode length); the x-axis
is training time (simulated time � real time). The
performance levels of the benchmark keeper policies
are shown as horizontal lines.
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Figure 6: Multiple successful runs under identical char-
acteristics: 3v2 keepaway in a 20x20 region against hand-
coded takers.

This data shows that we were able to learn policies
that were much better than any of the benchmarks.
All learning runs quickly found a much better pol-
icy than any of the benchmark policies, including the
hand-coded policy. A better policy was often found



even in the �rst data point, representing the �rst 1000
episodes of learning. Qualitatively, the keepers appear
to quickly learn roughly how long to hold the ball, and
then gradually learn �ne distinctions regarding when
and to which teammate to pass.

Next, we applied the same algorithm to learn policies
specialized for di�erent region sizes. In particular, we
trained the takers in 15x15 and 25x25 regions without
changing any of the other parameters, including the
representation used for learning. The results shown in
Table 5 indicate that the learned policies again out-
performed all of the benchmarks. In addition, it is ap-
parent that policies trained in the same size region as
they are tested (shown in boldface), performed better
than policies trained in other region sizes. In general
it is easier for the keepers to keep the ball in a larger
�eld since the takers have further to run. Thus, we ob-
serve a general increase in possession time from left to
right in the table. These results indicate that di�erent
policies are best on di�erent �eld sizes. Thus, were we
to take the time to laboriously �ne-tune a hand-coded
behavior, we would need to repeat the process on each
�eld size. On the other hand, the same learning mech-
anism is able to �nd successful policies on all three
�eld sizes without any additional human e�ort.

Testing Field Size

Keepers 15x15 20x20 25x25

Trained 15x15 11.0 9.8 7.2
on �eld 20x20 10.7 15.0 12.2
of size 25x25 6.3 10.4 15.0

Hand 4.3 5.6 8.0
Benchmarks Hold 3.9 4.8 5.2

Random 4.2 5.5 6.4

Table 1: Performance (possession times) of keepers
trained with various �eld sizes (and benchmark keepers)
when tested on �elds of various sizes.

Finally, we applied our learning algorithm to learn
policies for a slightly larger task, 4 vs. 3 keepaway.
Figure 7 shows that the keepers learned a policy that
outperformed all of our benchmarks in 4v3 keepaway
in a 30x30 region. In this case, the learning curves still
appear to be rising after 40 hours: more time may be
needed to realize the full potential of learning.

We have also begun exploring taker learning. As noted
in Section 3.2, the representation used for the keepers
may not be suited to taker learning. Nonetheless, us-
ing this representation, takers were able to learn poli-
cies that outperformed the Random and All-to-ball
taker policies. The best learned policies discovered so
far perform roughly equivalently to the Hand-coded-T
policy.

Our on-going research is aimed at improving the abil-
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Figure 7: Multiple successful runs under identical char-
acteristics: 4v3 keepaway in a 30x30 region against hand-
coded takers.

ity of the takers to learn by altering their representa-
tion and/or learning parameters. One promising line
of inquiry is into the e�cacy of alternately training
the takers and the keepers against each other so as to
improve both types of policies.

6. Related Work

Reinforcement learning has been previously applied to
robotic soccer. Using real robots, Uchibe (1999) used
reinforcement learning methods to learn to shoot a ball
into a goal while avoiding an opponent. This task dif-
fers from keepaway in that there is a well-de�ned goal
state. Also using goal-scoring as the goal state, TPOT-
RL (Stone & Veloso, 1999) was successfully used to
allow a full team of agents to learn collaborative pass-
ing and shooting policies using a Monte Carlo learning
approach, as opposed to the TD learning explored in
this paper. Andou's (1998) \observational reinforce-
ment learning" was used for learning to update play-
ers' positions on the �eld based on where the ball has
previously been located.

Perhaps most related to the work reported here, Ried-
miller et al. (2001) uses reinforcement learning to
learn low-level skills (\moves"), such as kicking, ball-
interception, and dribbling, as well as a cooperative be-
havior in which 2 attackers try to score against one or
two takers. In contrast to our approach, this work use
the full sensor space as the input representation, with a
neural network used as a function approximator. The
taker behaviors were always �xed and constant, and
no more than 2 attackers learned to cooperate.

Distributed reinforcement learning has been explored
previously in discrete environments, such as the pur-
suit domain (Tan, 1993) and elevator control (Crites
& Barto, 1996). This latter task di�ers in that the do-



main is continuous, that it is real-time, and that there
is noise both in agent actions and in state-transitions.

In conjunction with the research reported here, we
have explored techniques for keepaway in a full 11
vs. 11 scenario played on a full-size �eld (McAllester &
Stone, 2001). The successful hand-coded policies were
incorporated into ATT-CMUnited-2000, the 3rd-place
�nisher in the RoboCup-2000 simulator competition.
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