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Abstract

Several researchers have proposed modeling
temporally abstract actions in reinforcement
learning by the combination of a policy and a ter-
mination condition, which we refer to as an op-
tion. Value functions over options and models of
options can be learned using methods designed
for semi-Markov decision processes (SMDPs).
However, all these methods require an option to
be executed to termination. In this paper we ex-
plore methods that learn about an option from
small fragments of experience consistent with
that option, even if the option itself is not exe-
cuted. We call these methods intra-option learn-
ing methods because they learn from experience
within an option. Intra-optionmethods are some-
times much more efficient than SMDP meth-
ods because they can use off-policy temporal-
difference mechanisms to learn simultaneously
about all the options consistent with an expe-
rience, not just the few that were actually exe-
cuted. In this paper we present intra-option learn-
ing methods for learning value functions over op-
tions and for learning multi-time models of the
consequences of options. We present compu-
tational examples in which these new methods
learn much faster than SMDP methods and learn
effectively when SMDP methods cannot learn at
all. We also sketch a convergence proof for intra-
option value learning.

1 Introduction

Learning, planning, and representing knowledge at multi-
ple levels of temporal abstraction remain key challenges
for AI. Recently, several researchers have begun to address

these challenges within the framework of reinforcement
learning and Markov decision processes (MDPs) (e.g.,
Singh, 1992a,b; Kaelbling, 1993; Lin, 1993; Dayan & Hin-
ton, 1993; Thrun and Schwartz, 1995; Sutton, 1995; Hu-
ber and Grupen, 1997; Kalmár, Szepesvári, and Lörincz,
1997; Dietterich, 1998; Parr and Russell, 1998; Precup,
Sutton, and Singh 1997, 1998a,b). This framework is ap-
pealing because of its general goal formulation, applicabil-
ity to stochastic environments, and ability to use sample
or simulation models (e.g., see Sutton and Barto, 1998).
Extensions of MDPs to semi-Markov decision processes
(SMDPs) provide a way to model temporally abstract ac-
tions, as we summarize in Sections 3 and 4 below. Com-
mon to much of this recent work is the modeling of a tem-
porally extended action as a policy (controller) and a con-
dition for terminating, which we together refer to as an op-
tion. Options are a flexible way of representing temporally
extended courses of action such that they can be used inter-
achangeably with primitive actions in existing learning and
planning methods (Sutton, Precup, and Singh, in prepara-
tion).

In this paper we explore ways for learning about options
using a class of off-policy, temporal-difference methods
that we call intra-option learning methods. Intra-option
methods look inside options to learn about them even
when only a single action is taken that is consistent with
them. Whereas SMDP methods treat options as indivisi-
ble black boxes, intra-option methods attempt to take ad-
vantage of their internal structure to speed learning. Intra-
option methods were introduced by Sutton (1995), but only
for a pure prediction case, with a single policy.

The structure of this paper is as follows. First we introduce
the basic notation of reinforcement learning, options and
models of options. In Section 4 we briefly review SMDP
methods for learning value functions over options and thus
how to select among options. Our new results are in Sec-
tions 5–7. Section 5 introduces an intra-option method for



learning value functions and sketches a proof of its con-
vergence. Computational experiments comparing it with
SMDP methods are presented in Section 6. Section 7 con-
cerns methods for learning models of options, as are used
in planning: we introduce an intra-optionmethod and illus-
trate its advantages in computational experiments.

2 Reinforcement Learning (MDP)
Framework

In the reinforcement learning framework, a learning agent
interacts with an environment at some discrete, lowest-level
time scale . At each time step, the agent
perceives the state of the environment, , and on that
basis chooses a primitive action, . In response
to , the environment produces one step later a numerical
reward, , and a next state, . We denote the
union of the action sets by . If and ,
are finite, then the environment’s transition dynamics are
modeled by one-step state-transition probabilities, and one-
step expected rewards,

Pr and

for all and (it is understood here that
for ). These two sets of quantities together

constitute the one-step model of the environment.

The agent’s objective is to learn a policy , which is a
mapping from states to probabilities of taking each action,
that maximizes the expected discounted future reward from
each state :

where is a discount-rate parameter. The quantity
is called the value of state under policy , and

is called the value function for policy . The optimal value
of a state is denoted

Particularly important for learning methods is a parallel
set of value functions for state–action pairs rather than for
states. The value of taking action in state under pol-
icy , denoted , is the expected discounted future
reward starting in , taking , and henceforth following :

This is known as the action-value function for policy .
The optimal action-value function is

The action value functions satisfy the Bellman equations:

(1)

(2)

3 Options

We use the term options for our generalization of primitive
actions to include temporally extended courses of action. In
this paper, we focus on Markov options, which consist of
three components: a policy , a termina-
tion condition , and an input set . An
option is available in state if and only if . If
the option is taken, then actions are selected according to
until the option terminates stochastically according to . In
particular, if the option taken in state is Markov, then the
next action is selected according to the probability distri-
bution . The environment then makes a transition to
state , where the option either terminates, with proba-
bility , or else continues, determining accord-
ing to , possibly terminating in according to

, and so on. When the option terminates, then the
agent has the opportunity to select another option.

The input set and termination condition of an option to-
gether restrict its range of application in a potentially use-
ful way. In particular, they limit the range over which the
option’s policy needs to be defined. For example, a hand-
crafted policy for a mobile robot to dock with its battery
charger might be defined only for states in which the bat-
tery charger is within sight. The termination condition
would be defined to be outside of and when the robot
is successfully docked. For Markov options it is natural
to assume that all states where an option might continue
are also states where the option might be taken (i.e., that

). In this case, needs to be defined
only over rather than over all of .

Given a set of options, their input sets implicitly define a
set of available options for each state . The sets

are much like the sets of available actions, . We can
unify these two kinds of sets by noting that actions can be
considered a special case of options. Each action corre-
sponds to an option that is available whenever is avail-
able ( ), that always lasts exactly one
step ( ), and that selects everywhere
( ). Thus, we can consider the agent’s
choice at each time to be entirely among options, some of
which persist for a single time step, others which are more
temporally extended. We refer to the former as one-step or
primitive options and the latter as multi-step options.



We now consider Markov policies over options,
, and their value functions. When initiated in

a state , such a policy selects an option ac-
cording to probability distribution . The option
is taken in , determining actions until it terminates in

, at which point a new option is selected, according to
, and so on. In this way a policy over options, ,

determines a policy over actions, or flat policy, .
Henceforth we use the unqualified term policy for Markov
policies over options, which includeMarkov flat policies as
a special case.

Note, however, that is typically not Markov because
the action taken in a state depends on which option is being
taken at the time, not just on the state. We define the value
of a state under a general flat policy as the expected
return if the policy is started in :

where denotes the event of being initiated in
at time . The value of a state under a general policy (i.e.,
a policy over options) can then be defined as the value
of the state under the corresponding flat policy:

.

It is natural to also generalize the action-value function to
an option-value function. We define , the value of
taking option in state under policy , as

where , the composition of and , denotes the policy
that first follows until it terminates and then initiates in
the resultant state.

Options are closely related to the actions in a special kind
of decision problem known as a semi-Markov decision pro-
cess, or SMDP (e.g., see Puterman, 1994). Any fixed set
of options for a given MDP defines a new SMDP overlaid
on the MDP. The appropriate form of model for options,
analogous to the and defined earlier for actions, is
known from existing SMDP theory. For each state in which
an option may be started, this kind of model predicts the
state in which the option will terminate and the total reward
received along the way. These quantities are discounted in
a particular way. For any option , let denote the
event of being taken in state at time . Then the reward
part of the model of for state is

(3)

where is the random time at which terminates. The

state-prediction part of the model of for state is

Pr

(4)

for all , under the same conditions, where is an
identity indicator, equal to 1 if , and equal to 0 else.
Thus, is a combination of the likelhood that is the
state in which terminates together with a measure of how
delayed that outcome is relative to . We call this kind of
model a multi-time model because it describes the outcome
of an option not at a single time but at potentially many
different times, appropriately combined.

4 SMDP Learning Methods

Using multi-time models of options we can write Bellman
equations for general policies and options. For example,
the Bellman equation for the value of option in state
under a Markov policy is

(5)

The optimal value functions and optimal Bellman equa-
tions can also be generalized to options and to policies over
options. Of course, the conventional optimal value func-
tions and are not affected by the introduction of
options; one can ultimately do just as well with primitive
actions as one can with options. Nevertheless, it is inter-
esting to know how well one can do with a restricted set of
options that does not include all the actions. For example,
one might first consider only high-level options in order to
find an approximate solution quickly. Let us denote the re-
stricted set of options by and the set of all policies that
select only from by . Then the optimal value func-
tion given that we can select only from is

(6)

(7)

where denotes the event of starting the execution
of option in state , is the random numbner opf steps
elapsing during , is the resulting next state, and is the
cumulative discounted reward received along the way. The
optimal option values are defined as:

(8)

(9)



Given a set of options, , a corresponding optimal pol-
icy, denoted , is any policy that achieves , i.e., for
which for all states . If and
models of the options are known, then optimal policies
can be formed by choosing in any proportion among the
maximizing options in (7). Or, if is known, then opti-
mal policies can be formed by choosing in each state in
any proportion among the options for which

. Thus, computing approximations to
or become the primary goals of planning and learning
methods with options.

The problem of finding the optimal value functions for a set
of options can be addressed by learning methods. Because
an MDP augmented by options forms an SMDP, we can ap-
ply SMDP learning methods as developed by Bradtke and
Duff (1995), Parr and Russell (1998), Parr (in preparation),
Mahadevan et al. (1997), and McGovern, Sutton and Fagg
(1997). In these methods, each option is viewed as an in-
divisible, opaque unit. After the execution of option is
started in state , we next jump to the state in which it
terminates. Based on this experience, an estimate
of the optimal option-value function is updated. For exam-
ple, the SMDP version of one-step Q-learning (Bradtke and
Duff, 1995), which we call one-step SMDPQ-learning, up-
dates after each option termination by

where is the number of time steps elapsing between and
, is the cumulative discounted reward over this time, and

it is implicit that the step-size parameter may depend ar-
bitrarily on the states, option, and time steps. The estimate

converges to for all and un-
der conditions similar to those for conventional Q-learning
(Parr, in preparation).

5 Intra-Option Value Learning

One drawback to SMDP learning methods is that they need
to execute an option to termination before they can learn
about it. Because of this, they can only be applied to one
option at a time—the option that is executing at that time.
More interesting and potentially more powerful methods
are possible by taking advantage of the structure inside
each option. In particular, if the options are Markov and
we are willing to look inside them, then we can use spe-
cial temporal-differencemethods to learn usefully about an
option before the option terminates. This is the main idea
behind intra-optionmethods.

Intra-option methods are examples of off-policy learning
methods (Sutton and Barto, 1998) in that they learn about

the consequences of one policy while actually behaving ac-
cording to another, potentially different policy. Intra-option
methods can be used to learn simultaneously about many
different options from the same experience. Moreover, they
can learn about the values of executing optionswithout ever
executing those options.

Intra-option methods for value learning are potentially
more efficient than SMDP methods because they extract
more training examples from the same experience. For ex-
ample, suppose we are learning to approximate
and that is Markov. Based on an execution of from to

, SMDP methods extract a single training example for
. But because is Markov, it is, in a sense, also

initiated at each of the steps between and . The jumps
from each intermediate to are also valid experi-
ences with , experiences that can be used to improve es-
timates of . Or consider an option that is very
similar to and which would have selected the same ac-
tions, but which would have terminated one step later, at

rather than at . Formally this is a different
option, and formally it was not executed, yet all this experi-
ence could be used for learning relevant to it. In fact, an op-
tion can often learn something from experience that is only
slightly related (occasionally selecting the same actions) to
what would be generated by executing the option. This is
the idea of off-policy training—to make full use of what-
ever experience occurs in order to learn as much possible
about all options, irrespective of their role in generating the
experience. To make the best use of experience we would
like an off-policy and intra-option version of Q-learning.

It is convenient to introduce new notation for the value of a
state–option pair given that the option is Markov and exe-
cuting upon arrival in the state:

Then we can write Bellman-like equations that relate
to expected values of , where is the

immediate successor to after initiating Markov option
in :

where is the immediate reward upon arrival in . Now
consider learning methods based on this Bellman equa-
tion. Suppose action is taken in state to produce
next state and reward , and that was selected
in a way consistent with the Markov policy of an option



. That is, suppose that was selected accord-
ing to the distribution . Then the Bellman equation
above suggests applying the off-policy one-step temporal-
difference update:

where

The method we call one-step intra-option Q-learning ap-
plies this update rule to every option consistent with every
action taken .

Theorem 1 (Convergence of intra-option Q-learning)
For any set of deterministic Markov options , one-step
intra-option Q-learning converges w.p.1 to the optimal
Q-values, , for every option, regardless of what options
are executed during learning, provided every primitive
action gets executed in every state infinitely often.

Proof: (Sketch) On experiencing , for every op-
tion that picks action in state , intra-option Q-learning
performs the following update:

Let be the action selection by deterministic Markov op-
tion . Our result follows directly from Theo-
rem of Jaakkola et al. (1994) and the observation that the
expected value of the update operator yields
a contraction, as shown below:

6 Illustrations of Intra-Option Value
Learning

As an illustration of intra-option value-learning, we used
the gridworld environment shown in Figure 1. The cells of

HALLWAYS

o

8 multi-step options

up

down

rightleft

(to each room's 2 hallways)

4 stochastic 
primitive actions

Fail 33% 
of the time 

G

* o2

1

Figure 1: The rooms example is a gridworld environment
with stochastic cell-to-cell actions and room-to-room hall-
way options. Two of the hallway options are suggested by
the arrows labeled and . The label indicates the
location used as a goal.

the grid correspond to the states of the environment. From
any state the agent can perform one of four actions, up,
down, left or right, which have a stochastic effect.
With probability 2/3, the actions cause the agent to move
one cell in the corresponding direction, and with probabil-
ity 1/3, the agent moves instead in one of the other three di-
rections, each with 1/9 probability. If the movement would
take the agent into a wall, then the agent remains in the
same cell. There are small negative rewards for each ac-
tion, with means uniformly distributed between 0 and -1.
The rewards are also perturbed by gaussian noise with stan-
dard deviation 0.1. The environment also has a goal state,
labeled “G”. A complete trip from a random start state to
the goal state is called an episode. When the agent enters
“G”, it gets a reward of and the episode ends. In all the
experiments the discount parameter was and all
the initial value estimates were .

In each of the four rooms we provide two built-in hallway
options designed to take the agent from anywhere within
the room to one of the two hallway cells leading out of
the room. The policies underlying the options follow the
shortest expected path to the hallway.

For the first experiment,we applied the intra-optionmethod
in this environment without selecting the hallway options.
In each episode, the agent started at a random state in the
environment and thereafter selected primitive actions ran-
domly, with equal probability. On every transition, the up-
date (5) was applied first to the primitive action taken, then
to any of the hallway options that were consistent with it.
The hallway options were updated in clockwise order, start-
ing from any hallways that faced up from the current state.
The value of the step-size parameter was .

This is a case in which SMDPmethods would not be able to
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Figure 2: The learning of option values by intra-option
methods without ever selecting the options. The value of
the greedy policy goes to the optimal value (upper panel)
as the learned values approach the correct values (as shown
for one state, in the lower panel).

learn anything about the hallway options, because these op-
tions are never executed. However, the intra-optionmethod
learned the values of these actions effectively, as shown in
Figure 2. The upper panel shows the value of the greedy
policy learned by the intra-option method, averaged over
and over 30 repetitions of the whole experiment. The lower
panel shows the correct and learned values for the two hall-
way options that apply in the state marked in Figure 1.
Similar convergence to the true values was observed for all
the other states and options.

So far we have illustrated the effectiveness of intra-option
learning in a context in which SMDP methods do not ap-
ply. How do intra-optionmethods compare to SMDPmeth-
ods when both are applicable? In order to investigate this
question, we used the same environment, but now we al-
lowed the agent to choose among the hallway options as
well as the primitive actions, which were treated as one-
step options. In this case, SMDP methods can be ap-
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Figure 3: Comparison of SMDP, intra-option and macro Q-
learning. Intra-option methods converge faster to the cor-
rect values.

plied, since all the options are actually executed. We ex-
perimented with two SMDP methods: one-step SMDP Q-
learning (Bradtke and Duff, 1995) and a hierarchical form
of Q-learning called macro Q-learning (McGovern, Sutton
and Fagg, 1997). The difference between the two methods
is that, when taking a multi-step option, SMDP Q-learning
only updates the value of that option, whereas macro Q-
learning also updates the values of the one-step options (ac-
tions) that were taken along the way.

In this experiment, options were selected not at random, but
in an -greedy way dependent on the current option-value
estimates. That is, given the current estimates , let

denote the best valued action
(with ties broken randomly). Then the policy used to select
options was

if
otherwise,

for all and . The probability of a random
action, , was set at in all cases. For each algorithm,



we tried step-size values of , and and then
picked the best one.

Figure 3 shows two measures of the performance of the
learning algorithms. The upper panel shows the average
absolute error in the estimates of for the hallway op-
tions, averaged over the input sets , the eight hallway
options, and 30 repetitions of the whole experiment. The
intra-option method showed significantly faster learning
than any of the SMDP methods. The lower panel shows the
quality of the policy executed by each method, measured
as the average reward over the state space. The intra-option
method was also the fastest to learn by this measure.

7 Intra-Option Model Learning

In this section, we consider intra-option methods for learn-
ing multi-time models of options, and , given knowl-
edge of the option (i.e., of its , , and ). Such models are
used in planning methods (e.g., Precup, Sutton, and Singh,
1997, 1998a,b).

The most straightforward approach to learning the model
of an option is to execute the option to termination many
times in each state , recording the resultant next states
, cumulative discounted rewards , and elapsed times .

These outcomes can then be averaged to approximate the
expected values for and given by (3) and (4). For
example, an incremental learning rule for this could update
its estimates and , for all , after each execution
of in state , by

and (10)
(11)

where the step-size parameter, , may be constant or may
depend on the state, option, and time. For example, if is 1
divided by the number of times that has been experienced
in , then these updates maintain the estimates as sample
averages of the experienced outcomes. However the aver-
aging is done, we call these SMDP model-learning meth-
ods because, like SMDP value-learning methods, they are
based on jumping from initiation to termination of each op-
tion, ignoringwhat might happen along the way. In the spe-
cial case in which is a primitive action, note that SMDP
model-learning methods reduce exactly to those used to
learn conventional one-step models of actions.

Now let us consider intra-option methods for model learn-
ing. The idea is to use Bellman equations for the model,
just as we used the Bellman equations in the case of learn-
ing value functions. The correct model of a Markov option

is related to itself by

(12)

(13)

where and are the reward and next state given that ac-
tion is taken in state , and

for all . How can we turn these Bellman equations
into update rules for learning the model? First consider that
action is taken in and that the way it was selected is
consistent with , that is, that was selected
with the distribution . Then the Bellman equations
above suggest the temporal-difference update rules

(14)

and

(15)

where and are the estimates of and , re-
spectively, and is a positive step-size parameter. The
method we call one-step intra-option model learning ap-
plies these updates to every option consistent with every
action taken. Of course, this is just the simplest intra-option
model-learning method. Others may be possible using el-
igibility traces and standard tricks for off-policy learning
(see Sutton, 1995; Sutton and Barto, 1998).

Intra-option methods for model learning have advantages
over SMDP methods similar to those we saw earlier for
value-learningmethods. As an illustration, consider the ap-
plication of SMDP and intra-option model-learning meth-
ods to the rooms example. We assume that the eight hall-
way options are given as before, but now we assume that
their models are not given and must be learned. Experience
is generated by selecting randomly in each state among the
two possible options and four possible actions, with no goal
state. In the SMDP model-learning method, equations (10)
and (11) were applied whenever an option was selected,
whereas, in the intra-option model-learning method, equa-
tions (14) and (15) were applied on every step to all options
that were consistent with the action taken on that step. In
this example, all options are deterministic, so consistency
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Figure 4: Learning curves for model learning by SMDP
and intra-option methods.

with the action selected means simply that the optionwould
have selected that action.

For the SMDP method, the step-size parameter was varied
so that the model estimates were sample averages, which
should give fastest learning. The results of this method
are labeled “SMDP 1/t” on the graphs. We also looked
at results using a fixed learning rate. In this case and
for the intra-option method we tried step-size values of

, and , and picked the best value for each
method. Figure 4 shows the learning curves for all three
methods, using the best values, when a fixed alpha was
used. The upper panel shows the average andmaximum ab-
solute error in the reward predictions, and the lower panel
shows the average absolute error and the maximum abso-
lute error in the transition predictions, averaged over the
eight options and over 30 independent runs. The intra-
option method approached the correct values more rapidly
than the SMDP methods.

8 Closing

The theoretical and empirical results presented in this pa-
per suggest that intra-option methods provide an efficient
way for taking advantage of the structure inside an option.
Intra-option methods use experience with a single action
to update the value or model for all the options that are
consistent with that action. In this way they make much
more efficient use of the experience than SMDP methods,
which treat options as indivisible units. In the future, we
plan to extend these algorithms for the case of non-Markov
options, and to combine them with eligibility traces.
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