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Abstract

Q-learning, the most popular of reinforcement
learning algorithms, has always included an ex-
tension to eligibility traces to enable more rapid
learning and improved asymptotic performance
on non-Markov problems. The � parameter
smoothly shifts on-policy algorithms such as
TD(�) and Sarsa(�) from a pure bootstrapping
form (�=0) to a pure Monte Carlo form (�=1).
In off-policy algorithms, including Q(�), GQ(�),
and off-policy LSTD(�), the � parameter is in-
tended to play the same role, but does not; on ev-
ery exploratory action these algorithms bootstrap
regardless of the value of �, and as a result they
fail to approximate Monte Carlo learning when
� = 1. It may seem that this is inevitable for any
online off-policy algorithm; if updates are made
on each step on which the target policy is fol-
lowed, then how could just the right updates be
‘un-made’ upon deviation from the target policy?
In this paper, we introduce a new version of Q(�)
that does exactly that, without significantly in-
creased algorithmic complexity. En route to our
new Q(�), we introduce a new derivation tech-
nique based on the forward-view/backward-view
analysis familiar from TD(�) but extended to ap-
ply at every time step rather than only at the end
of episodes. We apply this technique to derive
first a new off-policy version of TD(�), called
PTD(�), and then our new Q(�), called PQ(�).
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1. Off-policy eligibility traces
Eligibility traces (Sutton 1988, Singh & Sutton 1996) are
the mechanism by which temporal-difference (TD) algo-
rithms such as Q-learning (Watkins 1989), Sarsa(�) (Rum-
mery 1995), and TD(�) (Sutton 1988) escape the tyranny
of the time step. In their simplest, one-step forms, these
algorithms pass credit for an error back only to the sin-
gle state preceding the error. If the time step is short, then
the backward propagation of accurate values can be quite
slow. With traces, credit is passed back to multiple preced-
ing states, and learning is often significantly faster (Singh
& Dayan 1998).

In on-policy TD algorithms with traces, such as TD(�) and
Sarsa(�), the assignment of credit to previous states fades
for more distantly preceding states according to the boot-
strapping parameter � 2 [0, 1]. If � = 0, then the traces
fall to zero immediately and the one-step form of the algo-
rithm is produced. If � = 1, then the traces fade maximally
slowly, no bootstrapping is done, and the resulting algo-
rithm can be considered a Monte Carlo algorithm because
in the limit it is almost equivalent to updating towards the
complete observed return. The equivalence to Monte Carlo
is exact in the episodic case under off-line updating (Sutton
& Barto 1998) and for the new “true-online TD(�)” algo-
rithm recently introduced by van Seijen and Sutton (2014),
and it approaches exactness in the conventional online case
as the step-size parameter approaches zero.

Many off-policy TD algorithms also use traces, but less
successfully. For example, Watkins’s (1989) Q(�) assigns
credit to preceding state–action pairs, fading with tempo-
ral distance, but only as long as greedy actions are taken.
On the first non-greedy (exploratory) action, the traces
are cut and the algorithm bootstraps (updates its estimates
as a function of other estimates) regardless of the value
of �. This is a problem because we would like to use
� = 1 to specify non-bootstrapping, Monte Carlo updates.
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Newer off-policy algorithms, including GQ(�) (Maei &
Sutton 2010), GTD(�) (Maei 2011), off-policy LSTD(�)
(Yu 2010), and others (Geist & Scherrer 2014) extend bet-
ter to function approximation, but have essentially the same
weakness: when the action taken deviates from the target
policy all these algorithms cut off their traces and bootstrap.
Peng’s (1993) Q(�) has a different problem. It never cuts
the traces, but fails to converge to the optimal value func-
tion: for � = 1 it approximates on-policy Monte Carlo.
None of the existing off-policy algorithms make Monte
Carlo updates when � = 1; they do not update toward com-
plete returns even in the most favorable case of episodic,
off-line updating and infinitesimal step size. More gener-
ally, their degree of bootstrapping cannot be set via � inde-
pendently of the actions taken.

It might seem impossible for an online off-policy TD algo-
rithm to do anything other than bootstrap when the action
taken deviates from the target policy. By the time of devia-
tion many online updates have already been made, but the
deviation means that they cannot be counted as due to the
target policy. The right thing to do, if � = 1, is to some-
how undo the earlier updates, but this has always seemed
impossible to do online without greatly increasing the com-
putational complexity of the algorithm. In this paper we
show that, surprisingly, it can be done with very little ad-
ditional memory and computation. In the case of linear
function approximation, one additional vector is needed to
hold provisional weights, which record the portion of the
main weights that may need to be removed later upon devi-
ation, or otherwise adjusted based on the degree of match
to the target policy. With this technique we produce the
first off-policy TD learning algorithms that are also Monte
Carlo algorithms at � = 1. We call the new algorithms
PTD(�) and PQ(�) (where the ‘P’ alludes to their use of
the distinctive mechanism of Provisional weights).

The main contributions of this paper are 1) the two new
off-policy algorithms PTD(�) and PQ(�); 2) a new forward
view of these algorithms that ensures Monte Carlo equiva-
lence at � = 1; 3) the notion of an “interim” forward view
and a technique for using it to derive and prove equivalence
of backward-view algorithms; and 4) applications of the
technique to derive and prove equivalences for PTD(�) and
PQ(�). A smaller contribution is that the new forward view
allows arbitrary � and � that are general functions of state.
The new algorithms are described in terms of linear func-
tion approximation but, like the original Q-learning, they
are guaranteed convergent only for the tabular case; the ex-
tension to gradient-TD methods (a la Maei 2011) seems
straightforward but is left to future work (see van Hasselt,
Mahmood & Sutton, 2014). The flow of this paper is to
first present the new forward view, then the derivation tech-
nique, and finally the new algorithms.

2. A new forward view
A key part of previous analyses of eligibility traces has
been the notion of a forward view specifying the ideal up-
date in terms of future events (Sutton & Barto 1998, Chap-
ter 7). It can then sometimes be shown that a causal algo-
rithm (a backward view) is mathematically equivalent in its
overall effect to the forward view. In this section we in-
crementally introduce notation and ideas leading to a new
forward-view algorithm expressed as a backup diagram and
an error equation. By design, the new forward view be-
comes a Monte Carlo algorithm when � = 1, and thus
so will any equivalent backward-view algorithm. We will
show in subsequent sections that PTD(�) is such an equiva-
lent backward-view algorithm and that PQ(�) is equivalent
to an analogous forward view for state–action values. The
new forward view is significantly more general than previ-
ous forward views in that 1) it applies to the off-policy case
as well as to the on-policy case; 2) it applies at each time
step rather than just at the end of an episode (i.e., it is an
interim forward view); and 3) it includes general functional
forms for termination and bootstrapping.

We consider a continuing setting in which an agent and
environment interact at each of a series of time steps,
t = 0, 1, 2, . . .. At each step t, the environment is in state
St and generates a feature vector �(St) 2 Rn. The agent
then chooses an action At from a distribution defined by its
fixed behavior policy b(·|St) (the only influence of St on b
is typically via �(St), but we do not require this). The en-
vironment then emits a reward Rt+1 2 R and transitions to
a new state St+1, and the process continues. The next state
and expected reward are assumed to be chosen from a joint
distribution that depends only on the preceding state and
action (the Markov assumption). We consider the problem
of finding a weight vector ✓ 2 Rn such that

✓>�(s) ⇡ E⇡

" 1X

t=0

Rt+1

tY

k=1

�(Sk)

�����S0 = s

#
(1)

in some sense (for some norm), where the expectation is
conditional on actions being selected according to an al-
ternative policy ⇡, called the target policy, and �(·) is an
almost arbitrary function from the state space to [0, 1]. We
will refer to �(·) as the termination function because when
it falls to zero it terminates the quantity whose expectation
is being estimated (as in Sutton 1995, Modayil et al. 2014,
Sutton et al. 2011, Maei 2011). The only restriction we
place on the termination function (and on the environment)
is that

Q1
k=1 �(St+k) = 0 w.p.1, 8t.

If the two policies are the same, ⇡ = b, then the setting is
called on-policy. If ⇡ 6= b, then we have the off-policy case,
which is harder. For now we assume the two policies do not
change over time (ultimately we will want to include con-
trol algorithms, in which at least the target policy changes).
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We also assume that the behavior policy overlaps the target
policy in the sense that ⇡(a|s) > 0 =) b(a|s) > 0, 8a,s.
The degree of deviation of the target policy from the be-
havior policy at each time t is captured by the importance-
sampling ratio (Precup et al. 2000, 2001):

⇢t =

⇡(At|St)

b(At|St)
. (2)

If the behavior policy is not known, (for example, if it’s a
human expert), then b(At|St) is taken to be 1.

In the off-policy case it is awkward to seek the approxi-
mation (1) from data because the expectation is under ⇡
whereas the data is due to b. Some actions chosen by b
will match ⇡, but not an infinite number in succession.
This is where it is useful to interpret �(·) as termination
rather than as discounting. That is, we consider any trajec-
tory, S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . as having ter-
minated partly after one step, at S1, with degree of termina-
tion 1��(S1), yielding a return of R1, and partly after two
steps, at S2, with degree of termination �(S1)(1 � �(S2)),
yielding a return of R1 + R2. The third partial termination
would have a degree of termination of �1�2(1��3) (where
here we have switched to the shorthand �t = �(St)) and
would yield a return of R1 + R2 + R3. Notice how in this
partial termination view we end up with undiscounted, or
flat, returns with no factors of �(·). More importantly, we
get short returns that have actually terminated, to various
degrees, after each finite number of steps, rather than hav-
ing to wait for an infinite number of steps to obtain a return
as suggested by the discounting perspective.

Now consider the off-policy aspect and the role of the
importance-sampling ratios. The first return, consisting of
just R1, needs to be weighted not only by its degree of ter-
mination, 1��1, but also by the importance sampling ratio
⇢0. This ratio will emphasize or de-emphasize this return
depending on whether the action A0 was more or less com-
mon under ⇡ than it is under b. If it was an action that
would rarely be done under the target policy ⇡ and yet is
in fact common (under the behavior policy b) then this in-
stance of it will be de-emphasized proportionally to make
up for its prevalence. If it would be common under the
target policy but is rare (under the behavior policy) then
its emphasis is pumped up proportionally to balance its in-
frequency. The overall weight on this return should then be
the product of the degree of termination and the importance
sampling ratio, or ⇢0(1� �1). The weighting of the second
return, R1 + R2, will depend on its degree of termination,
�1(1 � �2) times the product of two importance sampling
ratios, ⇢0⇢1. The first ratio takes into account the match
of the target and behavior policies for A0, and the second
takes into account the match for A1. The overall weighting
on the second term is ⇢0⇢1 �1(1 � �2). Continuing simi-
larly, the weighting on the third flat return, R1 + R2 + R3,

O�-policy Monte Carlo

A0

R1

S1

A1

R2

S2

Rt

At�1

⇢0⇢1⇢2 �1�2(1 � �3)

A2

S3

R3

⇢0(1 � �1)

⇢0⇢1 �1(1 � �2)

S0

St

⇢0 · · · ⇢t�1 �1 · · · �t

Figure 1. The backup diagram and interim forward view of an off-
policy Monte Carlo algorithm (⇢ but no �).

is ⇢0⇢1⇢2 �1�2(1 � �3).

These weights and the backup diagrams for these three re-
turns are shown in the first three columns of Figure 1. Such
figures are the standard way of diagramming a “complex”
backup—a backup composed of of multiple sub-backups,
one per column, each done in parallel with the weighting
written below them (e.g., see Sutton & Barto 1998, Chap-
ter 7). An important difference, however, is that here the
sub-backups all use flat returns, whereas previous backup
diagrams always implicitly included discounting.

The last column of the diagram is another small innovation.
This sub-backup is an interim forward view, meaning that
it looks ahead not to the next episode boundary, but to an
arbitrary finite horizon time t. The horizon could coincide
with the episode boundary (or be arbitrarily far out in the
future), so interim forward views are a strict generalization
of conventional forward views. Normally we will chose the
horizon t to be something like the current limit of available
data—the current time. Interim forward views are used to
talk about the updates that could have been done in the past
using all the data up to the current time. Note that the last
sub-backup ends in a non-terminal state. According to the
convention of backup diagrams, this means that bootstrap-
ping using the current approximation is done at time t.

Next we introduce full bootstrapping into our new forward
view. We generalize the conventional scalar � parameter
to an arbitrary bootstrapping function �(·) from the state
space to [0, 1] (as in Sutton & Singh 1994, Maei & Sutton
2010, cf. Kearns & Singh 2000, Downey & Sanner 2010).
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PTD(�)

A0

R1

S1

A1

R2

S2

Rt

At�1

⇢0 (1 � �1)

⇢0 �1(1 � �1)

⇢0⇢1 �1�1 (1 � �2)

⇢0⇢1 �1�1 �2(1 � �2)

S0

St

⇢0 · · · ⇢t�1 �1 · · · �t�1 �1 · · · �t

⇢0 · · · ⇢t�1 �1 · · · �t�1 �1 · · · �t�1(1 � �t)

Figure 2. The backup diagram corresponding to our new forward
view and to the PTD(�) algorithm. Note that if �t = 1 8t, then
all the weightings are identical to those in Figure 1.

The bootstrapping factor at time t, �t = �(St), represents
the degree of bootstrapping upon arrival in St, just as the
termination factor �t = �(St) represents the degree of ter-
mination upon arriving there. The new backup diagram is
shown in Figure 2. Each terminating sub-backup of the
Monte Carlo backup in Figure 1 has been split into a termi-
nating sub-backup and a bootstrapping sub-backup. Each
sub-backup is a way in which the return can finish and no
longer be subject to reweighting based on subsequent im-
portance sampling ratios. The overall backup is best read
from left to right. In the first two columns, the return can
terminate in S1 with a weighting of ⇢0(1 � �1), yielding a
return of just R1 or, to the extent that that does not occur,
it can bootstrap in S1 yielding a return of R1 + ✓>�(S1).
Bootstrapping can only be done to the extent that there was
no prior deviation, ⇢0, or termination, �1, and only to the
extent that �1 is less than 1; the overall weighting is thus
⇢0�1(1 � �1). To the extent that neither of these occur we
go on similarly to the two-step sub-backups, which yield
returns of R1 + R2 or R1 + R2 + ✓>�(S2) respectively
if they apply, or we go on to the three-step sub-backups,
and so on until we reach the last bootstrapping sub-backup
at the horizon, at which bootstrapping is complete as if
�t = 0, yielding a return of R1 + · · ·+Rt +✓>�(St) with
weighting ⇢0 · · · ⇢t�1 �1 · · · �t�1 �1 · · · �t. Notice that, if
�t = 1 8t, then the weightings on all the bootstrapping sub-
backups, save the last, are zero, and all the other weight-
ings are identical to those in Figure 1. This proves that this
forward view is identical in this special case to off-policy
Monte Carlo.

There is one final important issue before we can reduce

these ideas and backups to equations. The preceding dis-
cussion has suggested that there is a total amount of weight
that must be split up among the component backups of the
complex backup. This is not totally incorrect. The expec-
tation of the total weight along a trajectory is always one
by construction, but the total weight for a sample trajec-
tory will often be significantly larger or smaller than one.
This is entirely caused by the importance sampling ratios.
Previous complex backups, including off-policy ones like
Q-learning, have not had to deal with this issue. We deal
with it here by switching from viewing the backup diagram
as a way of generating a return to a way of generating an
error. We compute the weighting and then use it to weight
the complete error rather than just the return portion of the
error. This change does not affect the expected update of
the algorithm, but we believe that it significantly reduces
the average variance (Precup et al. 2001).

As an example of how error weighting can reduce variance,
consider a state in which two actions are available, after
each of which a single reward is received and the episode
terminates. If the first action is taken, then the reward is
+1, whereas, if the second action is taken, then the reward
is �1. Suppose further that the target policy is to always
select the first action, whereas the behavior policy is to se-
lect from the two actions randomly with equal probability.
Then, on half of the episodes the first action will be taken
and we will have a weighting of ⇢ = 2 and a return of
G = +1, while on the other half of the episodes the sec-
ond action will be taken and we will have a weighting of
⇢ = 0 and a return of G = �1. Now suppose that our cur-
rent prediction is already correct at ✓>� = 1, and consider
the updates that result under return weighting and under
error weighting. If the weighting is applied to the return,
then the update is according to ⇢G � ✓>�, which is either
+1 or �1 with equal probability. Whereas, if the weight-
ing is applied to the error, then the update is according to
⇢(G�✓>�), which is always zero. Although both schemes
have the same expected value, the error weighting clearly
has lower variance in this example.

In our complex backup (Figure 2) there are two kinds of
sub-backups. The first, ending with a terminal state, corre-
sponds to a multi-step flat error without bootstrapping:

✏t
k = Rk+1 + Rk+2 + · · · + Rt � ✓>�(Sk). (3)

The second sub-backup of each pair, ending with a non-
terminal state, corresponds to a multi-step flat TD error,
that is, a multi-step flat error with bootstrapping:

¯�t
k = Rk+1 + · · · + Rt + ✓>�(St) � ✓>�(Sk). (4)

We denote the overall error corresponding to the forward
view in Figure 2 by ��⇢

0,t (the error (�) including both boot-
strapping (�) and importance-sampling weightings (⇢) at
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time 0 with data to horizon t). It can be written compactly
as a nested sum of pairs of terms, each corresponding to a
sub-backup of the figure:

��⇢
0,t = ⇢0


(1 � �1)✏

1
0 + �1(1 � �1)

¯�1
0

+ �1�1⇢1

h
(1 � �2)✏

2
0 + �2(1 � �2)

¯�2
0

+ �2�2⇢2

h
(1 � �3)✏

3
0 + �3(1 � �3)

¯�3
0

+ · · · �t�1�t�1⇢t�1

⇥
(1 � �t)✏

t
0 + �t

¯�t
0

⇤ii�

= ⇢0

t�1X

i=1

Ci�1
0

h
(1 � �i)✏

i
0 + �i(1 � �i)

¯�i
0

i

+ ⇢0C
t�1
0

⇥
(1 � �t)✏

t
0 + �t

¯�t
0

⇤
,

where

Ct
k =

tY

i=k+1

�i�i⇢i . (5)

This completes our specification of the forward view error
from time step 0. If we carefully repeat the same steps
starting from an arbitrary time step k < t, then we get the
following general form for the new forward-view error:

��⇢
k,t = ⇢k

t�1X

i=k+1

Ci�1
k

h
(1 � �i)✏

i
k + �i(1 � �i)

¯�i
k

i

+ ⇢kCt�1
k

⇥
(1 � �t)✏

t
k + �t

¯�t
k

⇤
. (6)

Finally, the error ��⇢
k,t is used to form the forward-view in-

crement in the weight vector at step k with horizon t:

�✓F

k,t = ↵��⇢
k,t�(Sk), (7)

where ↵ > 0 is a step-size parameter, and �✓F

k,t denotes
the update that would ideally be made at step k given data
only up to horizon t. Of course, once the data stream has
advanced to t+1, a different update would have been ideal
at step k. This is one reason we do not actually make these
updates online. Another is that we will be seeking to estab-
lish equivalences, as in previous work, for off-line updating,
in which, as here, we compute forward-view updates, but
do not actually change the weight vector as we go along.
The exact form of the equivalences, and our technique for
deriving backward-view updates that could be done online,
is presented in the next section.

3. Interim equivalence technique
In this section we introduce a new technique for moving
from an arbitrary interim forward view to an equivalent
backward view, that is, to a causal mechanistic algorithm.
The technique is general, but the resultant algorithm may or

may not have an efficient implementation using incremen-
tally computed auxiliary variables such as eligibility traces.
In the next two sections we use this technique to derive ef-
ficient implementations of our new algorithms PTD(�) and
PQ(�). A precursor to our general technique was previ-
ously developed by van Seijen & Sutton (2014).

In demonstrations of equivalence between forward and
backward views, it is conventional to assume off-line up-

dating (Sutton & Barto 1998), in which updates to the
weight vector are computed on each time step but collected
on the side and not used to change the weight vector un-
til the end of the episode. Equivalence means that, by the
end of the episode, the sum of the updates of the forward
view is equal to the sum of the updates of the backward
view. That is, there is a forward view update �✓F

k and a
backward view update �✓B

k for each step k of the episode,
which may depend on the weight vector ✓, assumed con-
stant during the episode. Equivalence then means thatPT�1

k=0 �✓F

k =

PT�1
k=0 �✓B

k where the episode is taken to
start at step 0 and terminate at step T .

An interim equivalence is slightly stronger. We still assume
off-line updating, but now we require an equivalence not
just at the end of the episode but at every possible horizon
t within the episode. That is, we seek

t�1X

k=0

�✓B

k =

t�1X

k=0

�✓F

k,t, 8t, (8)

where �✓F

k,t denotes a forward view update for step k with
horizon t. This is a tall order, and it is not always possi-
ble to achieve it with a computationally efficient algorithm.
Nevertheless, the following theorem shows that it can al-
ways be achieved and suggests how the backward-view up-
date might be derived from the forward-view.
Theorem 1 (Interim equivalence technique). The algo-

rithm with backward-view update

�✓B
t =

tX

k=0

�✓F

k,t+1 �
t�1X

k=0

�✓F

k,t. (9)

is equivalent in the interim sense (8) with respect to the

forward-view update �✓F

k,t.

Proof. Define ✓F
t =

Pt�1
k=0 �✓F

k,t. Then
Pt�1

k=0 �✓B
k =

Pt�1
k=0(✓

F
k+1�✓F

k ) = ✓F
t �✓F

0 = ✓F
t =

Pt�1
k=0 �✓F

k,t.

4. PTD(�) and TD(�)
We now apply the interim equivalence technique to derive
PTD(�) from the new forward view developed in Section
2. Continuing from (9), we have

�✓B
t = �✓F

t,t+1 +

t�1X

k=0

h
�✓F

k,t+1 � �✓F
k,t

i
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= ↵��⇢
t,t+1�t + ↵

t�1X

k=0

h
��⇢
k,t+1 � ��⇢

k,t

i
�k, (10)

by (7), where here, and in much of the following, we use
the notational shorthand �t = �(St). The term in brackets
above suggests that it would be useful to have a form for the
forward view error in terms of itself with a one-step longer
horizon. Note that increasing the horizon by one just adds
two more sub-backups on the right in Figure 2, with a small
adjustment to the weighting on the original final backup.
This suggests that the recursive form might be reasonably
simple, and in fact it is. In the supplementary material we
derive that, for k < t,

��⇢
k,t+1 = ��⇢

k,t + ⇢kCt
k�t + (⇢t � 1)�t�t⇢kCt�1

k
¯�t
k, (11)

where �t is the classical TD error:

�t = Rt+1 + �t+1✓
>�t+1 � ✓>�t. (12)

Using this, we can continue with our derivation, from (10),
as follows

�✓B
t = ↵⇢t�t�t

+ ↵
t�1X

k=0

h
⇢kCt

k�t + (⇢t � 1)�t�t⇢kCt�1
k

¯�t
k

i
�k

= ↵�t

 
⇢t�t +

t�1X

k=0

⇢kCt
k�k

!

+ (⇢t � 1)↵�t�t

t�1X

k=0

⇢kCt�1
k

¯�t
k�k

= ↵�tet + (⇢t � 1)ut, (13)

where here we define an eligibility trace et 2 Rn (cf. Maei
2011, p. 71) as

et = ⇢t�t +

t�1X

k=0

⇢kCt
k�k

= ⇢t�t + �t�t⇢t

✓
⇢t�1�t�1 +

t�2X

k=0

⇢kCt�1
k �k

◆

= ⇢t (�t + �t�tet�1) , (14)

and a provisional weight vector ut 2 Rn as

ut = ↵�t�t

t�1X

k=0

⇢kCt�1
k

¯�t
k�k

= ↵�t�t

"
t�2X

k=0

⇢kCt�1
k

¯�t
k�k + ⇢t�1C

t�1
t�1

¯�t
t�1�t�1

#

= ↵�t�t

"
t�2X

k=0

⇢kCt�1
k (

¯�t�1
k +

¯�t
t�1)�k + ⇢t�1

¯�t
t�1�t�1

#

= ↵�t�t

"
⇢t�1�t�1�t�1

t�2X

k=0

⇢kCt�2
k

¯�t�1
k �k

+

t�2X

k=0

⇢kCt�1
k

¯�t
t�1�k + ⇢t�1

¯�t
t�1�t�1

#

= �t�t

⇥
⇢t�1ut�1 + ↵¯�t

t�1et�1

⇤
. (15)

Theorem 2 (Equivalence of PTD(�)). The PTD(�) algo-

rithm defined by (12–15), with (2) and (4), is equivalent in

the sense of (8) to the new forward view defined by (3–7).

Proof. The result follows immediately from Theorem 1 and
the above derivation.

There are several observations to be made about the
PTD(�) algorithm vis-a-vis conventional TD(�).

First, note that the first term of the PTD(�) update (13) is
↵�tet, the same as the complete update rule of TD(�). The
second term has a factor of (⇢t � 1) so, if ⇢t is always 1,
as it is in the on-policy case, then this second term is al-
ways zero. This proves that PTD(�) is identical to TD(�)
under on-policy training. This means that the interim for-
ward view developed in Section 2 can also be viewed as
an interim forward view for TD(�) simply by taking the
special case of ⇢t = 1, 8t. The preceding derivation thus
establishes that TD(�) achieves an interim forward view.

Second, note that the per-time-step computational com-
plexity of PTD(�) is only slightly greater than that of
TD(�). TD(�) maintains two n-component memory vec-
tors, ✓t and et, while PTD maintains those and one more,
the provisional weight vector ut. The updating of ut in
(15) and its use in (13) involve only a few vector–scalar
multiplications and additions, while the eligibility-trace up-
date (14) is unchanged from TD(�). Thus the overall com-
plexity of PTD(�) remains of the same order as TD(�).

By design, PTD(�) with � = 1 achieves equivalence to
the forward view of off-policy Monte Carlo given in Fig-
ure 1, which we earlier suggested seemed impossible with-
out greatly increased computational complexity. How does
PTD(�) square the circle? Recall the challenging case men-
tioned earlier of a trajectory that follows the target policy
for a while and then deviates from it. Updates are made
during the early part of the trajectory that then have to be
precisely unmade upon deviation. What does PTD(�) do in
this scenario? In the first part of the trajectory, ⇢t will be
1, and thus the updates to ✓ by (13) will be just like those
of TD(�). During this time, a near copy of these updates
will be accumulating in u. That is, according to (15), if
�t and �t are near 1, and if ⇢t�1 = 1 as is presumed in
this example, then ut will be incremented by ↵¯�t

t�1et�1,
which is the same as the previous ✓ update except for the
slight difference between ¯�t

t�1 and �t�1. Now suppose at
time t there is a complete deviation from the target policy,
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⇢t = 0. By (13), ✓ will be decremented by exactly ut, thus
(approximately) undoing all the updates from the earlier
part of the trajectory, which are now invalid. Also on this
time step the new value ut+1 will start accumulating anew,
from zero. In effect, the copy of the accumulated updates
is removed from both ✓ and u. Of course, this is just an ap-
proximate characterization of what happens in PTD(�). For
example, there are small additional effects in the common
cases when �t and �t are actually less than one, and there
will be large additional effects if ⇢t is not less than 1, but
greater (in this case the copy in u is amplified, and adds to

✓). The online behavior of PTD(�) is complex and subtly
dependent on the values at each time step of �t, �t, and ⇢t.
This is why it is important that we can understand PTD(�)
in terms of high-level goals (the forward view of Section
2), and that its precise form has been derived explicitly to
achieve these goals (this section).

So far we have validated the way importance sampling cor-
rection is done in PTD(�) by pointing out that, if �t = 1 8t,
then it achieves the exact same updates as the Monte Carlo
forward view in Figure 1. But how do we know that this
Monte Carlo forward view is correct, and what about other
values of �t? Importance sampling corrections are meant
to “correct” for the data being due to the behavior policy,
b, rather than to the target policy, ⇡. Of course, the actual
updates are not the same because the data is not the same;
the idea is that the expected updates can be made the same.
That is, we would like PTD(�)’s expected update for any
state, with actions from any behavior policy, to equal the
expected update of TD(�) for the same state with actions
from the target policy. The following theorem establishes
a slightly stronger result, that the forward-view errors are
the same in expected value. The expected updates are then
equal because they are this error times the feature vector
at the time (and the step-size parameter). Recall that the
forward-view error of TD(�) is the same as ��⇢

k,t except with
all ⇢t = 1 8t, which we here denote as ��1

k,t.
Theorem 3 (On-policy and off-policy expectations). For

any state s,

Eb

h
��⇢
k,t

���Sk = s
i

= E⇡

h
��1
k,t

���Sk = s
i
, (16)

where Eb and E⇡ denote expectations under the behavior

and target policies, and ��1
k,t denotes a version of ��⇢

k,t with

⇢t = 1, 8t. (Proved in the supplementary material.)

This result establishes the off-line equivalence in expec-
tation of PTD(�) and TD(�), and of our Monte Carlo
forward-view and TD(1). The latter is significant because
it is already well known that TD(1) is equivalent in this
sense to a valid on-policy Monte Carlo algorithm (Sutton
& Barto 1998, Chapter 7). We have thus also validated
the way importance sampling correction is done in our off-
policy Monte Carlo forward view (Figure 1).

PQ(�)

A0

R1

S1

A1

R2

S2

Rt

St

At�1

(1 � �1)

�1(1 � �1)

⇢1 �1�1(1 � �2)

⇢1 �1�1�2(1 � �2)

⇢1 · · · ⇢t�1 �1 · · · �t�1 �1 · · · �t

⇢1 · · · ⇢t�1 �1 · · · �t�1 �1 · · · �t�1(1 � �t)

Figure 3. The backup diagram and forward view of PQ(�).

5. PQ(�)
In this section we apply the interim-equivalence technique
to derive an action-value algorithm—a new version of Q(�)
with a Monte Carlo equivalence similar to that which we
have just shown for PTD(�). The learning problem is now
to find a weight vector ✓ such that:

✓>�(s, a) ⇡ E⇡

" 1X

t=0

Rt+1

tY

k=1

�(Sk)

�����S0 =s, A0 =a

#
, (17)

where �(s, a) is a feature vector for the state–action pair.
The intuition for the forward view is given in Figure 3. It
is similar to the state-value case (Figure 2), except that tra-
jectories now start with state–action pairs and, if they end
with bootstrapping, an average is done over the final ac-
tion values weighted by the target policy. That is, the final
correction term is not ✓>�(St), but ✓>

¯�⇡
t , where:

¯�⇡
t =

X

a

⇡(a|St)�(St, a). (18)

Our previous notation is redefined for action values as:

�t = �(St, At) (19)

✏t
k = Rk+1 + Rk+2 + · · · + Rt � ✓>�k (20)

¯�t
k = ✏t

k + ✓>
¯�⇡

t (21)

�t = ✏t+1
t + �t+1✓

>
¯�⇡

t+1 (22)

Using these, and repeating the steps from Section 2, the
forward-view error is redefined for action values as

��⇢
k,t =

t�1X

i=k+1

Ci�1
k

h
(1 � �i)✏

i
k + �i(1 � �i)

¯�i
k

i

+ Ct�1
k

⇥
(1 � �t)✏

t
k + �t

¯�t
k

⇤
, (23)



A new Q(�) with interim forward view and Monte Carlo equivalence

which again can be written recursively, for k < t:

��⇢
k,t+1 = ��⇢

k,t+Ct
k�t+Ct

k✓
>
(�t� ¯�⇡

t )+(⇢t�1)�t�tC
t�1
k

¯�t
k,

(24)
as we show in the supplementary material.

With the new notation, the forward-view update is the same
as for PTD(�): �✓F

k,t = ↵��⇢
k,t�k (7). Applying the interim

equivalence technique, as before, again brings us to (10),
and then to an efficient implementation:

�✓B

t = ↵��⇢
t,t+1�t + ↵

t�1X

k=0

h
��⇢
k,t+1 � ��⇢

k,t

i
�k (10)

= ↵�t�t + ↵
t�1X

k=0

Ct
k�t�k + ↵

t�1X

k=0

Ct
k✓

>
(�t � ¯�⇡

t )�k

+ ↵(⇢t � 1)�t�t

t�1X

k=0

Ct�1
k

¯�t
k�k

= ↵�t

 
�t+

t�1X

k=0

Ct
k�k

!
+ ↵✓>

(�t � ¯�⇡
t )

t�1X

k=0

Ct
k�k

+ (⇢t � 1)↵�t�t

t�1X

k=0

Ct�1
k

¯�t
k�k

= ↵�tet + ↵✓>
(�t � ¯�⇡

t )(et � �t) + (⇢t � 1)ut

(25)

where et 2 Rd and ut 2 Rd are again eligibility-trace
and provisional-weight vectors, but defined and updated
slightly differently for the action-value case:

et = �t +

t�1X

k=0

Ct
k�k = �t + �t�t⇢t

"
t�2X

k=0

Ct�1
k �k + �t�1

#

= �t + �t�t⇢tet�1, (26)

(as in Maei & Sutton 2010) and

ut = ↵�t�t

t�1X

k=0

Ct�1
k

¯�t
k�k

= �t�t

⇣
⇢t�1ut�1 + ↵¯�t

t�1et�1

+ ↵✓>��t�1 � ¯�⇡
t�1

�
(et�1 � �t�1)

⌘
. (27)

The derivation of (27) is provided in the supplementary
material.

Theorem 4 (Equivalence of PQ(�)). The PQ(�) algorithm

defined by (25–27), with (18–22) and (2), is equivalent in

the sense of (8) to the forward view (7) and (23) with (5).

Proof. The result follows immediately from Theorem 1
and the above derivation.

When the target policy is greedy with respect to the action
value function, then PQ(�) can be considered a version of
Q(�). In this case, ✓>

¯�⇡
t = maxa ✓>�(St, a), and one-

step Q-learning can be written simply as ↵�t�t. PQ(�)
with � = 0 is exactly equivalent to this because the second
and third terms of (25) are zero (et = �t and ut = 0).
Even if � > 0, the second term in (25) is zero because ei-
ther a greedy action is taken, in which case �t =

¯�⇡
t , or

else a non-greedy action is taken, in which case ⇢t = 0

and hence et = �t. Without the second term, the up-
date is like that of Watkin’s Q(�) except that the eligibil-
ity trace includes a factor of ⇢t, and there’s an additional
term of (⇢t � 1)ut. The ⇢t is key to maintaining the va-
lidity of the expectations (as in Theorem 3), and the addi-
tional term is responsible for ‘un-making’ the past updates
when a non-greedy action is taken—PQ(�)’s signature fea-
ture which makes it equivalent to Monte Carlo (for any tar-
get policy) when � = 1. Note that PQ(�) remains of linear
complexity—of the same order as, for example, Watkins’s
Q(�) with linear function approximation.

In the on-policy case (⇢t = 1), PQ(�) becomes the “sum-
mation Q(�)” algorithm of Rummery (1995), which might
also be called Expected Sarsa(�), as it is an eligibility-trace
extension of the Expected Sarsa algorithm investigated by
van Seijen, van Hasselt, Whiteson, and Wiering (2009).

6. Conclusions, limitations, and future work
We have presented a new technique for deriving learning
algorithms and used it to derive new off-policy versions
of TD(�) and Q(�). The new algorithms are the first off-
policy algorithms to become equivalent to Monte Carlo al-
gorithms when � = 1. Our formal results have treated
the case of linear function approximation and of fixed tar-
get and behavior policies. Convergence in the tabular case
should follow by simple application of existing results. In
the case of linear function approximation, a gradient-based
extension (a la Maei 2011) is required to obtain conver-
gence guarantees (as in van Hasselt et al., 2014). Conver-
gence in the control case has never been established for
any algorithm for � > 0 and remains an open problem.
Another intriguing direction for future work is to extend
our interim equivalence technique under off-line updating
to derive exact equivalences under online updating, using
the ideas recently introduced (for on-policy TD(�)) by van
Seijen and Sutton (2014).
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Supplementary material
Here we prove the theorems and derive the recursive relationships stated but not proved in the main text. First we prove
the recursions in the time horizon t for the forward-view errors used by PTD(�) and PQ(�). We then prove a recursion in
k for PTD (Lemma 1) and use it to prove Theorem 3 for PTD. Next we prove an analogous recursion in k (Lemma 2) and
theorem (Theorem 5) for PQ and for action values. Finally, we provide some further detail on a key step in the derivations
of the update of the provisional weights, ut, for both algorithms.

S.1 Derivation of Equation (11), the PTD recursion in t

From (6), for k < t, we immediately have

��⇢
k,t+1 = ⇢k

tX

i=k+1

Ci�1
k

h
(1 � �i)✏

i
k + �i(1 � �i)

¯�i
k

i
+ ⇢kCt

k

h
(1 � �t+1)✏

t+1
k + �t+1

¯�t+1
k

i

= ⇢k

t�1X

i=k+1

Ci�1
k

h
(1 � �i)✏

i
k + �i(1 � �i)

¯�i
k

i
+ ⇢kCt�1
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t
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¯�t
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¯�t
k + ⇢kCt

k

h
(1 � �t+1)✏

t+1
k + �t+1

¯�t+1
k

i
. (28)

Although this is already a recursion of the desired form, expressing ��⇢
k,t+1 in terms of ��⇢

k,t, we are not done yet. The
recursion can be simplified further by noting that

(1 � �t+1)✏
t+1
k + �t+1

¯�t+1
k = (1 � �t+1)

 
t+1X

i=k+1

Ri � ✓>�k

!
+ �t+1

 
t+1X

i=k+1

Ri + ✓>�t+1 � ✓>�k

!

=

t+1X

i=k+1

Ri � ✓>�k + �t+1✓
>�t+1

=

tX

i=k+1

Ri � ✓>�k + Rt+1 + �t+1✓
>�t+1 � ✓>�t + ✓>�t

=

tX

i=k+1

Ri � ✓>�k + �t + ✓>�t

=

¯�t
k + �t .

Substituting this in (28), we obtain our final recursion:

��⇢
k,t+1 = ��⇢

k,t � ⇢kCt�1
k �t�t

¯�t
k + ⇢kCt

k

�
¯�t
k + �t

�

= ��⇢
k,t � ⇢kCt�1

k �t�t
¯�t
k + ⇢kCt�1

k �t�t⇢t
¯�t
k + ⇢kCt

k�t

= ��⇢
k,t + ⇢kCt

k�t + (⇢t � 1)�t�t⇢kCt�1
k

¯�t
k. (11)
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S.2 Derivation of Equation (24), the PQ recursion in t

The first steps of this derivation are directly analogous to those in the previous section leading to (28), except here using
the definitions for the action-value case in Section 5. We do not repeat these steps here. In this case they lead to

��⇢
k,t+1 = ��⇢

k,t � Ct�1
k �t�t

¯�t
k + Ct

k

h
(1 � �t+1)✏

t+1
k + �t+1

¯�t+1
k

i
, (29)

for all k < t. Note that, compared to (28), ⇢k is absent.

Again, this recursion can be simplified. Using (20–22) we get
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Using this in (29), we obtain our final recursion:

��⇢
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S.3 Lemma 1: PTD recursion in k

The following lemma, used in proving Theorem 3 in the next section, shows how ��⇢
k,t depends on ��⇢

k+1,t. All definitions
are from Sections 2–4 (the state-value or PTD case).

Lemma 1 (PTD error recursion in k). For all k < t � 1,

��⇢
k,t = ⇢k

⇣
�k +

�
Dt

k � 1

�
¯�k+1
k + �k+1�k+1�

�⇢
k+1,t

⌘
, (30)

where

Dt
k =

t�1X

i=k+1

Ci�1
k (1 � �i�i) + Ct�1

k . (31)
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Proof. First note that from definitions (3) and (4) it is clear that

¯�i
k = ✏i

k + ✓>�i (32)

and
✏i
k = Rk+1 + Rk+2 + · · · + Ri � ✓>�k (3)

= Rk+1 + Rk+2 + · · · + Ri � ✓>�k+1 + ✓>�k+1 � ✓>�k

= Rk+1 + ✏i
k+1 + ✓>�k+1 � ✓>�k

=

¯�k+1
k + ✏i

k+1. (33)

Using these, the lemma can be directly derived:

��⇢
k,t = ⇢k

 
t�1X

i=k+1

Ci�1
k

h
(1 � �i)✏

i
k + �i(1 � �i)

¯�i
k

i
+ Ct�1

k

h
(1 � �t)✏

t
k + �t

¯�t
k

i!
(as in (6))

= ⇢k

 
t�1X

i=k+1

Ci�1
k

h
(1 � �i)✏

i
k + �i(1 � �i)

�
✏i
k + ✓>�i

�i
+ Ct�1

k

h
(1 � �t)✏

t
k + �t

�
✏t
k + ✓>�t

�i
!

(using (32))

= ⇢k

 
t�1X

i=k+1

Ci�1
k

h
(1 � �i�i)✏

i
k + �i(1 � �i)✓

>�i

i
+ Ct�1

k

h
✏t
k + �t✓

>�t

i!
(34)

= ⇢k

 
t�1X

i=k+2

Ci�1
k

h
(1 � �i�i)✏

i
k + �i(1 � �i)✓

>�i

i
+ Ct�1

k

h
✏t
k + �t✓

>�t

i

+ Ck
k

h
(1 � �k+1�k+1)✏

k+1
k + �k+1(1 � �k+1)✓

>�k+1

i!

= ⇢k

 
t�1X

i=k+2

Ci�1
k

h
(1 � �i�i)

�
¯�k+1
k + ✏i

k+1

�
+ �i(1 � �i)✓

>�i

i
+ Ct�1

k

h
¯�k+1
k + ✏t

k+1 + �t✓
>�t

i
(using (33))

+ (1 � �k+1�k+1)
�
Rk+1 � ✓>�k

�
+ �k+1(1 � �k+1)✓

>�k+1

!
(using Ck

k = 1)

= ⇢k

 
t�1X

i=k+2

Ci�1
k

h
(1 � �i�i)✏

i
k+1 + �i(1 � �i)✓

>�i

i
+ Ct�1

k

h
✏t
k+1 + �t✓

>�t

i
+

t�1X

i=k+2

Ci�1
k (1 � �i�i)

¯�k+1
k + Ct�1

k
¯�k+1
k

+ Rk+1 � ✓>�k + �k+1✓
>�k+1 � �k+1�k+1

�
Rk+1 � ✓>�k + ✓>�k+1

�
!

= ⇢k

 
t�1X

i=k+2

�k+1�k+1⇢k+1C
i�1
k+1

h
(1 � �i�i)✏

i
k+1 + �i(1 � �i)✓

>�i

i
+ �k+1�k+1⇢k+1C

t�1
k+1

h
✏t
k+1 + �t✓

>�t

i

+

t�1X

i=k+2

Ci�1
k (1 � �i�i)

¯�k+1
k + Ct�1

k
¯�k+1
k + �k � �k+1�k+1

¯�k+1
k

!

= ⇢k

 
�k+1�k+1�

�⇢
k+1,t +

"
t�1X

i=k+2

Ci�1
k (1 � �i�i) + 1 � �k+1�k+1 + Ct�1

k � 1

#
¯�k+1
k + �k

!
(using (34))

= ⇢k

 
�k+1�k+1�

�⇢
k+1,t +

"
t�1X

i=k+2

Ci�1
k (1 � �i�i) + Ck

k (1 � �k+1�k+1) + Ct�1
k � 1

#
¯�k+1
k + �k

!

= ⇢k

 
�k+1�k+1�

�⇢
k+1,t +

"
t�1X

i=k+1

Ci�1
k (1 � �i�i) + Ct�1

k � 1

#
¯�k+1
k + �k

!

= ⇢k

⇣
�k +

⇥
Dt

k � 1

⇤
¯�k+1
k + �k+1�k+1�

�⇢
k+1,t

⌘
.



A new Q(�) with interim forward view and Monte Carlo equivalence

S.4 Proof of Theorem 3 (On-policy and off-policy expectations for PTD)
All definitions here are from Sections 2-4 (the state-value or PTD case).

Theorem 3 (On-policy and off-policy expectations). For any state s,

Eb

h
��⇢
k,t

���Sk = s
i

= E⇡

h
��1
k,t

���Sk = s
i
, (35)

where Eb and E⇡ denote expectations under the behavior and target policies, and ��1
k,t denotes ��⇢

k,t with ⇢t = 1 for all t.

Proof. First we note that

Eb

⇥
⇢kCt

k

��Sk = s
⇤

= Eb

"
⇢k

tY

i=k+1

�i�i⇢i

�����Sk = s

#

=

X

a

b(a|s)
X

s0

p(s0|s, a)

⇡(a|s)
b(a|s) �(s0

)�(s0
)Eb

"
tY

i=k+2

�i�i⇢i

�����Sk = s, Ak = a, Sk+1 = s0

#

=

X

a

⇡(a|s)
X

s0

p(s0|s, a)�(s0
)�(s0

)Eb

"
⇢k+1

tY

i=k+2

�i�i⇢i

�����Sk+1 = s0

#

=

X

a

⇡(a|s)
X

s0

p(s0|s, a)�(s0
)�(s0

)

X

a0

⇡(a0|s0
)

X

s00

p(s00|s0, a0
)�(s00

)�(s00
) · · ·

= E⇡

"
tY

i=k+1

�i�i

�����Sk = s

#
,

from which one can show

Eb

⇥
⇢kDt

k

��Sk = s
⇤

= Eb

"
⇢k

 
t�1X

i=k+1

Ci�1
k (1 � �i�i) + Ct�1

k

!�����Sk = s

#
(using (31))

= E⇡

"
t�1X

i=k+1

iY

i=k+1

�i�i(1 � �i�i) +

tY

i=k+1

�i�i

�����Sk = s

#

= 1 . (36)

Now we can start directly from the left-hand side of the theorem statement:

Eb

h
��⇢
k,t

���Sk = s
i

= Eb

h
⇢k

⇣
�k +

�
Dt

k � 1

�
¯�k+1
k + �k+1�k+1�

�⇢
k+1,t

⌘���Sk = s
i

(using Lemma 1)

= Eb

h
⇢k

⇣
�k + �k+1�k+1�

�⇢
k+1,t

⌘���Sk = s
i

(using (36))

=

X

a

b(a|s)⇡(a|s)
b(a|s)

⇣
Eb[�k|Sk = s, Ak = a] + Eb

h
�k+1�k+1�

�⇢
k+1,t

���Sk = s, Ak = a
i⌘

=

X

a

⇡(a|s)
⇣
Eb[�k|Sk = s, Ak = a] + Eb

h
�k+1�k+1�

�⇢
k+1,t

���Sk = s, Ak = a
i⌘

= E⇡[�k|Sk = s] +

X

a

⇡(a|s)
X

s0

p(s0|s, a)�(s0
)�(s0

)Eb

h
��⇢
k+1,t

���Sk+1 = s0
i

= E⇡

h
�k + �k+1�k+1Eb

h
��⇢
k+1,t

���Sk+1

i���Sk = s
i

= E⇡

h
�k + �k+1�k+1�k+1 + �k+2�k+2Eb

h
��⇢
k+2,t

���Sk+2

i���Sk = s
i

...



A new Q(�) with interim forward view and Monte Carlo equivalence

= E⇡

2

4
t�1X

j=k

 
jY

i=k+1

�i�i

!
�j

������
Sk = s

3

5 .

It thus only remains to show that ��1
k,t is equal to this sum, which we can show directly from (11) and the definition of ��1

k,t:

��1
k,t = ��1

k,t�1 +

 
t�1Y

i=k+1

�i�i

!
�t�1

= ��1
k,t�2 +

 
t�2Y

i=k+1

�i�i

!
�t�2 +

 
t�1Y

i=k+1

�i�i

!
�t�1

...

=

t�1X

j=k

 
jY

i=k+1

�i�i

!
�j .

S.5 Lemma 2: PQ recursion in k

This lemma is the analog of Lemma 1 for the action-value case, showing how ��⇢
k,t depends on ��⇢

k+1,t when these errors
are defined by (18–24). This lemma assists in proving Theorem 5 below. All definitions here are as in Section 5 (the
action-value or PQ case), plus Dt

k as in Lemma 1.

Lemma 2 (PQ error recursion in k). For all k < t � 1,

��⇢
k,t = �k + �k+1�k+1⇢k+1�

�⇢
k+1,t + �k+1�k+1✓

>
(�k+1 � ¯�⇡

k+1) + (Dt
k � 1)

�
✏k+1
k + ✓>�k+1

�
. (37)

Proof. The proof is analogous to that of Lemma 1. Here we have the helper identities

¯�i
k = ✏i

k + ✓>
¯�⇡

i , (38)

and
✏i
k = ✏i

k+1 + ✏k+1
k + ✓>�k+1. (39)

Then we can proceed directly:

��⇢
k,t =

t�1X

i=k+1

Ci�1
k

h
(1 � �i)✏

i
k + �i(1 � �i)

¯�i
k

i
+ Ct�1

k

⇥
(1 � �t)✏

t
k + �t

¯�t
k

⇤
(as in (23))

=

t�1X

i=k+1

Ci�1
k

h
(1 � �i)✏

i
k + �i(1 � �i)

�
✏i
k + ✓>

¯�⇡
i

�i
+ Ct�1

k

h
(1 � �t)✏

t
k + �t

�
✏t
k + ✓>

¯�⇡
t

�i
(using (38))

=

t�1X

i=k+1

Ci�1
k

h
(1 � �i�i)✏

i
k + �i(1 � �i)✓

>
¯�⇡

i

i
+ Ct�1

k

h
✏t
k + �t✓

>
¯�⇡

t

i
(40)

=

t�1X

i=k+2

Ci�1
k

h
(1 � �i�i)✏

i
k + �i(1 � �i)✓

>
¯�⇡

i

i
+ Ct�1

k

h
✏t
k + �t✓

>
¯�⇡

t

i

+ Ck
k

h
(1 � �k+1�k+1)✏

k+1
k + �k+1(1 � �k+1)✓

>
¯�⇡

k+1

i

=

t�1X

i=k+2

Ci�1
k

h
(1 � �i�i)

�
✏i
k+1 + ✏k+1

k + ✓>�k+1

�
+ �i(1 � �i)✓

>
¯�⇡

i

i
+ Ct�1

k

h
✏t
k+1 + ✏k+1

k + ✓>�k+1 + �t✓
>

¯�⇡
t

i

+ (1 � �k+1�k+1)
�
Rk+1 � ✓>�k

�
+ �k+1(1 � �k+1)✓

>
¯�⇡

k+1 (using (39) and Ck
k = 1)
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=

t�1X

i=k+2

Ci�1
k

h
(1 � �i�i)✏

i
k+1 + �i(1 � �i)✓

>
¯�⇡

i

i
+ Ct�1

k

h
✏t
k+1 + �t✓

>
¯�⇡

t

i

+

t�1X

i=k+2

Ci�1
k

h
(1 � �i�i)

�
✏k+1
k + ✓>�k+1

�i
+ Ct�1

k

h
✏k+1
k + ✓>�k+1

i

+ Rk+1 � ✓>�k + �k+1✓
>

¯�⇡
k+1 � �k+1�k+1

�
Rk+1 � ✓>�k + ✓>

¯�⇡
k+1

�

=

t�1X

i=k+2

�k+1�k+1⇢k+1C
i�1
k+1

h
(1 � �i�i)✏

i
k+1 + �i(1 � �i)✓

>
¯�⇡

i

i
+ �k+1�k+1⇢k+1C

t�1
k+1

h
✏t
k+1 + �t✓

>
¯�⇡

t

i

+

t�1X

i=k+2

Ci�1
k

h
(1 � �i�i)

�
✏k+1
k + ✓>�k+1

�i
+ Ct�1

k

h
✏k+1
k + ✓>�k+1

i
+ �k � �k+1�k+1

¯�k+1
k

= �k+1�k+1⇢k+1�
�⇢
k+1,t +

 
t�1X

i=k+2

Ci�1
k (1 � �i�i) + Ct�1

k

!
�
✏k+1
k + ✓>�k+1

�
+ �k � �k+1�k+1

¯�k+1
k

(using (40); now add and subtract (1 � �k+1�k+1)(✏
k+1
k + ✓>�k+1), the first element of the summation)

= �k+1�k+1⇢k+1�
�⇢
k+1,t +

 
t�1X

i=k+1

Ci�1
k (1 � �i�i) + Ct�1

k � 1 + �k+1�k+1

!
�
✏k+1
k + ✓>�k+1

�
+ �k � �k+1�k+1

¯�k+1
k

= �k+1�k+1⇢k+1�
�⇢
k+1,t +

�
Dt

k � 1 + �k+1�k+1

� �
✏k+1
k + ✓>�k+1

�
+ �k � �k+1�k+1

¯�k+1
k

= �k + �k+1�k+1⇢k+1�
�⇢
k+1,t + �k+1�k+1(✏

k+1
k + ✓>�k+1 � ¯�k+1

k ) + (Dt
k � 1)

�
✏k+1
k + ✓>�k+1

�

= �k + �k+1�k+1⇢k+1�
�⇢
k+1,t + �k+1�k+1✓

>
(�k+1 � ¯�⇡

k+1) + (Dt
k � 1)

�
✏k+1
k + ✓>�k+1

�
. (using (38))

S.6 Theorem 5: On-policy and off-policy expectations for PQ
All definitions here are from Section 5 (the state-value or PQ case), plus Dt

k from Lemma 1.

Theorem 5 (On-policy and off-policy expectations). For any state s,

Eb

h
��⇢
k,t

���Sk = s, Ak = a
i

= E⇡

h
��1
k,t

���Sk = s, Ak = a
i
,

where Eb and E⇡ denote expectations under the behavior and target policies, and ��1
k,t denotes ��⇢

k,t with ⇢t = 1 for all t.

Proof. The proof is analogous to that for Theorem 3. Using Lemma 2, the left-hand side can be written

Eb

h
��⇢
k,t

���Sk = s, Ak = a
i

= Eb

h
�k + �k+1�k+1⇢k+1�

�⇢
k+1,t + �k+1�k+1✓

>
(�k+1 � ¯�⇡

k+1) + (Dt
k � 1)

�
✏k+1
k + ✓>�k+1

����Sk = s, Ak = a
i

= Eb

h
�k + �k+1�k+1⇢k+1�

�⇢
k+1,t + �k+1�k+1✓

>
(�k+1 � ¯�⇡

k+1)

���Sk = s, Ak = a
i

(using Eb[X|Sk = s, Ak = a] = E⇡[Eb[X|Sk+1]|Sk = s, Ak = a])

= E⇡

h
Eb

h
�k + �k+1�k+1⇢k+1�

�⇢
k+1,t + �k+1�k+1✓

>
(�k+1 � ¯�⇡

k+1)

���Sk+1

i���Sk = s, Ak = a
i

(using E⇡[Eb[X|Sk+1]|Sk = s, Ak = a] = E⇡[X|Sk = s, Ak = a] for all X not depending on Ak+1)

= E⇡

h
�k + �k+1�k+1Eb

h
⇢k+1�

�⇢
k+1,t

���Sk+1

i
+ �k+1�k+1✓

>
(�k+1 � ¯�⇡

k+1)

���Sk = s, Ak = a
i

(using, as in Theorem 3, Eb[⇢kX|Sk = s] = E⇡[Eb[X|Ak = a]|Sk = s])

= E⇡

h
�k + �k+1�k+1E⇡

h
��⇢
k+1,t

���Sk+1, Ak+1

i
+ �k+1�k+1✓

>
(�k+1 � ¯�⇡

k+1)

���Sk = s, Ak = a
i
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... (repeatedly expand the ��⇢ term until, finally, ��⇢
t�1,t = �t�1)

= E⇡

2

4
t�1X

j=k

 
jY

i=k+1

�i�i

!
�
�j + ✓>

(�j � ¯�⇡
j )

�
� ✓>

(�k � ¯�⇡
k )

������
Sk = s, Ak = a

3

5 .

It thus only remains to show that ��1
k,t is equal to the quantity whose expectation is being taken here:

��1
k,t = �k + �k+1�k+1✓

>
(�k+1 � ¯�⇡

k+1) + �k+1�k+1�
�⇢
k+1,t

= �k + �k+1�k+1�k+1 + �k+1�k+1✓
>
(�k+1 � ¯�⇡

k+1) + �k+1�k+1�k+2�k+2✓
>
(�k+1 � ¯�⇡

k+1) + �k+2�k+2�
�⇢
k+2,t

...

=

t�1X

j=k

 
jY

i=k+1

�i�i

!
�
�j + ✓>

(�j � ¯�⇡
j )

�
� ✓>

(�k � ¯�⇡
k ) .

The last term is there because ��1
t�1,t = �t�1, so in the summation the indices of the � range from k to t � 1, but the indices

on the other terms range from k + 1 to t.

S.7 Additional detail on the provisional-weight updates (15) and (27)
A key step in the derivation of (15) is the transition from the second to the third equation, involving a re-writing of ¯�t

k in
terms of ¯�t�1

k . Here we spell it out more fully:

¯�t
k = Rk+1 + · · · + Rt�1 + Rt + ✓>�t � ✓>�k (from (4))

= Rk+1 + · · · + Rt�1 + Rt + ✓>�t � ✓>�k + ✓>�t�1 � ✓>�t�1

= Rk+1 + · · · + Rt�1 + ✓>�t�1 � ✓>�k| {z }
¯�t�1
k

+ Rt + ✓>�t � ✓>�t�1| {z }
¯�t
t�1

(regrouping)

=

¯�t�1
k +

¯�t
t�1.

The derivation for PQ’s provisional weight update (27) is similar to that for PTD, but was not included in the main text to
save space. We include it here:

ut = ↵�t�t

t�1X

k=0

Ct�1
k

¯�t
k�k

= ↵�t�t

"
t�2X

k=0

Ct�1
k

¯�t
k�k + Ct�1

t�1
¯�t
t�1�t�1

#

= ↵�t�t

"
t�2X

k=0

Ct�1
k

h
¯�t�1
k +

¯�t
t�1 + ✓>

(�t�1 � ¯�⇡
t�1)

i
�k +

¯�t
t�1�t�1

#

= �t�t

⇣
⇢t�1ut�1 + ↵¯�t

t�1et�1 + ↵✓>��t�1 � ¯�⇡
t�1

�
(et�1 � �t�1)

⌘
. (27)

As in the PTD derivation, the key step is moving from the second to the third equation by writing ¯�t
k in terms of ¯�t�1

k , as
follows:

¯�t
k = Rk+1 + · · · + Rt�1 + Rt + ✓>

¯�⇡
t � ✓>�k (from (21))

= Rk+1 + · · · + Rt�1 + Rt + ✓>
¯�⇡

t � ✓>�k + ✓>
¯�⇡

t�1 � ✓>
¯�⇡

t�1 + ✓>�t�1 � ✓>�t�1

= (Rk+1 + · · · + Rt�1 + ✓>
¯�⇡

t�1 � ✓>�k) + (Rt + ✓>
¯�⇡

t � ✓>�t�1) � ✓>
¯�⇡

t�1 + ✓>�t�1 (regrouping)

=

¯�t�1
k +

¯�t
t�1 + ✓>��t�1 � ¯�⇡

t�1

�
.


