
On the Role of Tracking in Stationary Environments

Richard S. Sutton sutton@cs.ualberta.ca
Anna Koop anna@cs.ualberta.ca
David Silver silver@cs.ualberta.ca

Department of Computing Science, University of Alberta, Edmonton, T6G 2E8, Canada

Abstract

It is often thought that learning algorithms
that track the best solution, as opposed to
converging to it, are important only on non-
stationary problems. We present three re-
sults suggesting that this is not so. First
we illustrate in a simple concrete example,
the Black and White problem, that tracking
can perform better than any converging algo-
rithm on a stationary problem. Second, we
show the same point on a larger, more re-
alistic problem, an application of temporal-
difference learning to computer Go. Our
third result suggests that tracking in station-
ary problems could be important for meta-
learning research (e.g., learning to learn, fea-
ture selection, transfer). We apply a meta-
learning algorithm for step-size adaptation,
IDBD (Sutton, 1992a), to the Black and
White problem, showing that meta-learning
has a dramatic long-term effect on perfor-
mance whereas, on an analogous converg-
ing problem, meta-learning has only a small
second-order effect. This small result sug-
gests a way of eventually overcoming a major
obstacle to meta-learning research: the lack
of an independent methodology for task se-
lection.

1. Introduction

Much of machine learning can be characterized as
the search for a solution that, once found, no longer
need be changed. Throughout conventional supervised
and unsupervised learning the common presumption
is that learning will be done in a separate phase and
only after it is complete will the system be used. No

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

learning is expected during the normal operation of
the learned system. In supervised learning, of course,
it is often not possible for learning to continue during
normal operation because appropriate training data
are no longer be available. Reinforcement learning
and unsupervised learning, on the other hand, are
not strongly limited in this way. They could continue
to learn during their normal operation; the training
information they require would still be available at
this time. Nonetheless, the focus in the overwhelm-
ing majority of current work in these areas is on find-
ing a single, stationary solution. When reinforce-
ment learning is applied in a game-playing context, as
in the world’s best backgammon player TD-Gammon
(Tesauro, 1995), the objective is to find a single, static,
high-quality evaluation function. When reinforcement
learning is applied to learning to fly a helicopter (Ng
et al., 2004), the search for a good policy is done in
simulation and no learning is done while the helicopter
is actually flying. When reinforcement learning is ap-
plied to learning a good gait for a robot dog (Kohl &
Stone, 2004), the learning occurs during an extensive
self-training period and does not continue after the
dog is playing soccer. In many of these cases, even if
the learning could continue during normal operation,
the prior experience is so extensive and the adapta-
tion so slow that no significant learning would occur
during normal operation. The standard paradigm of
machine learning, with a few notable exceptions, is
about learning systems that converge to an optimal
or good solution. In this sense, machine learning has
been more concerned with the results of learning than
with the ongoing process of learning.1

Focusing only on the results of learning is of course not
adequate when dealing with a non-stationary environ-
ment. If the world may change, then no prior learning

1There are important exceptions to this general charac-
terization, most notably work on meta-learning and con-
tinual learning, some of which we will discuss later in this
paper. There is also extensive work on tracking algorithms
in literatures more commonly associated with engineering.

On the Role of Tracking in Stationary Environments

could ever be sufficient on its own. When the world
changes, mistakes will be made and, if learning does
not continue, they will be made over and over again.
The need for tracking in nonstationary environments,
although widely acknowledged, has not been exten-
sively pursued. For the most part researchers have
chosen to focus on the stationary case, in part because
it is clearer, and in part perhaps because it is seen as
a step best completed before moving on to the nonsta-
tionary case.

In this paper we suggest that focusing on convergence
to a single solution rather than continual tracking of a
solution may not be good enough even for stationary
problems. We assume that our data are coming from
a system with evolving states and thus are not identi-
cally and independently distributed. For example, the
world may be a Markov decision process. The need for
tracking may arise in such cases just because the world
is large. The learning agent encounters different parts
of it at different times. In this case, rather than find-
ing a single global solution, it may be advantageous
for the agent to adapt to the local environment—the
specific part of the state space it finds itself encoun-
tering at the particular time. By local here we mean
temporally local. The right answers in nearby times
may tend to be similar: in other words, the world may
be temporally coherent. Temporal coherence occurs in
nonstationary problems, of course, but it can also oc-
cur in a stationary problem.

In this paper we present two examples of stationary en-
vironments with temporal coherence, in which track-
ing algorithms perform better than the best converged
solutions. The first is a very simple abstract prob-
lem that we call the Black and White world. This is
an extreme example with strong representational lim-
itations, so strong that its 20 states is a big space.
This example helps refine our intuitions and termi-
nology because it is absolutely concrete and in that
sense clear. The second example is larger and more
representative of how tracking might be important in
applications. We show in a experiment with computer
Go that a tracking algorithm can perform better than
a converging algorithm in learning a static evaluation
function in a stationary problem. This example sug-
gests that making a distinction between tracking and
convergence matters for the ultimate applications of
machine learning.

Another role that tracking in stationary environments
may play in machine learning is in helping make
sense of the utility of meta-learning methods such as
learning-to-learn, transfer between tasks, feature se-
lection and relevance, and step-size adaptation. In

studying these topics one is explicitly concerned with
a sequence of learning problems. One way this can be
explored is in a tracking context with a nonstation-
ary world. Another way, and the most common way,
is to use a experimenter-provided sequence of tasks.
This approach has always been methodologically sus-
pect (Ben-David & Schuller, 2003; Konidaris, 2006)
because many meta-learning methods will work well on
some set of tasks but not on others, and it is not clear
where the tasks would come from in real applications.
If it were possible to use a single stationary task to
produce a sequence of tasks inherently related by be-
ing parts of an overall task, then this could provide a
well-grounded methodology for studying demonstrat-
ing the merits of meta-learning.

Studies of meta-learning end up focusing on sequences
of tasks because, ultimately, meta-learning is a second-
order effect (Caruana, 2005). On any single task it will
have a small effect, one that is easily overwhelmed by
the first-order effect of the performance of the base
learning system. Interest in meta-learning comes from
the belief that even though it is a second-order effect
on the first problem, over many problems the repeated
influence of this second-order effect will become domi-
nant. For example, on a single problem the time spent
discovering new features may slightly improve perfor-
mance, but the problem may be solved by the time
the correct features are found. The big advantage of
discovering new features become visible only on subse-
quent problems, on which the found features will en-
able rapid learning. Thus, in any single problem meta-
learning’s effect may be small and obscured, whereas
in a tracking task these second-order effects may be
dominant. To the extent that this is true, tracking
may be a better paradigm for studying meta-learning.

In this paper we show first a very simple example called
the Black and White world. We consider two versions
of this world, one is in which there is temporal coher-
ence and tracking is better than converging, and one
in which there is no temporal coherence and there is
no advantage to tracking. We show that in the former
case a meta-learning technique can provide dramatic
performance improvements, whereas in the case with-
out temporal coherence there is little advantage to the
meta-learning technique.

2. Tracking in the Black and White
world

To illustrate the idea that tracking can be better than
converging, we created a simple 20-state world (Fig-
ure 1). The agent follows a random walk, occasionally
looking up and seeing either black or white. The goal

On the Role of Tracking in Stationary Environments

Figure 1. The Black and White world. The agent follows
a random walk right and left, occasionally observing the
color above it. The states wrap.

is to predict the probability of observing black using a
single scalar parameter. The environment is station-
ary, but cannot be represented accurately with only
one parameter.

The prediction yt ∈ (0, 1) is computed from a logistic
sigmoid over the learned parameter w:

yt =
1

1 + e−wtxt
, (1)

where wt ∈ <n denotes the learned parameter at time
step t, and xt ∈ <n denotes a feature vector at time
step t, where here in the Black and White world we
have the simplest case in which n = 1 and xt = 1
for all t. We describe it here in the general, multi-
dimensional form because we will use that form in the
computer Go application presented in the next section.
We will refer to the parameter wt as the weight vector
or, in the scalar case, simply as the weight.

The target value for the prediction is the actual obser-
vation when the agent looks up, which we denote as
zt, where zt = 0 if the agent looks up and sees white,
zt = 1 if the agent looks up and sees black, and zt is
undefined if the agent does not look up on time step t.
On time steps on which the agent looks up it incurs a
loss, the cross entropy between the target zt and the
current prediction yt:

Lt = −zt log (yt)− (1− zt) log (1− yt). (2)

On these time steps the weight is updated by gradient
descent:

wt+1 = wt + αδtxt, (3)

where δt is the difference between the target and the
prediction: δt = zt − yt. The learning rate is deter-
mined by the step-size parameter α > 0.

In the Black and White world, the single best param-
eter value for minimizing loss is wt = 0, because in
the long run the frequency of seeing black is 0.5. With
a sufficiently small step-size parameter, wt approaches
0. With a larger step-size parameter, the weight up-
date is more influenced by the current error than by
the long term average, and wt will vary by a larger
amount. In the Black and White world, observations
made soon after each other are more likely to be the
same color than observations separated by longer time

5 10 15 20 25 30 35 40 45 50

0

0.5

1
Prediction

yt

time−step

Figure 2. A sample trajectory in the Black and White
world, showing the prediction on each time-step and the
actual color above the agent. The prediction is modified
only on time steps on which the color is observed. Here
α = 2.

frames. This temporal coherence suggests that track-
ing may be beneficial. Figure 2 illustrates this, chart-
ing which part of the world (black or white) the agent
is in together with the prediction at that time for a
typical sequence of 50 time steps.

When the agent remains in a consistent region, the
prediction approaches the correct value. After the first
observation in a new region, the prediction is adjusted
accordingly. With a small α, as in this example, it may
take several observations before the prediction catches
up with the target.

To empirically illustrate the benefits of tracking in a
stationary environment, we tested several settings of α
in the Black and White world. For each setting, we ran
30 episodes each with 200,000 observation steps. Re-
sults are reported for the second 100,000 steps only,
to remove any effect of the initial conditions. The
look, left, and right actions were chosen randomly
with probabilities 0.5, 0.25, and 0.25 respectively. The
boundaries of the world wrap: taking the left action
in the leftmost state moves the agent to the rightmost
state, and similarly for the right action in the right-
most state.

The mean loss and standard errors are displayed in
Figure 3. The dotted line is the loss of the best con-
verged solution. The solid line shows the tracking re-
sults. For small values of α the solution was arbitrar-
ily close to the converged solution, with corresponding
loss. For very high values of α, the loss of the tracking
solution was worse than that of the converged solu-
tion. For intermediate values, the loss of the tracking
solution was significantly better than the converged
solution. In this world, an α value of 4 resulted in
the lowest loss among the values tested. Across all
α = 4 runs, the average loss was 0.24. The loss of the
best converged solution was almost three times this,
at 0.69.

The best choice of α depends on the degree of temporal

On the Role of Tracking in Stationary Environments

0.0039 0.0156 0.0625 0.25 1 4 16 64

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step−size α

Mean
loss per

time−step

Figure 3. Comparison of the mean log loss per time-step for
fixed step-sizes in the Black and White world. The dotted
line marks the loss of the converged solution. Standard
error bars are given.

coherence of the environment. If the probability of
looking up is increased, the lowest loss occurs with
larger values of α. When the probability of looking is
very small, temporal coherence is completely lost and
the best values for α are those that allow approximate
convergence. In a later section we will see how α can
be set by a meta-learning algorithm.

3. Tracking versus converging in Go

To compare tracking and converging algorithms in a
more complex domain, we used the game of 5× 5 Go.
Even with a small board size, this domain poses a
considerable challenge. There are more than 5× 1010

unique states, and the game contains sufficient strate-
gic depth to merit a regular column in professional Go
periodicals (Davies, 1994).

In a complex domain such as Go, it is usual to seek the
best approximation to the optimal policy that can be
achieved by a particular representation, for example a
linear combination of binary features (Silver, Sutton
& Müller, 2007), or a multi-layer perceptron (Schrau-
dolph, Dayan & Sejnowski, 1994; Enzenberger, 2003).
However, it may be possible to do better than any
fixed policy, given the same representation. At each
time step, the agent seeks the best policy for the dis-
tribution of states encountered when starting from the
current state. Thus, the agent devotes its learning re-
sources to the current situation, rather than spreading
them across the complete distribution of states.

To demonstrate this idea, we chose the representation
used by Silver et al. (2007). The value function V (s)

is approximated by a linear combination of binary fea-
tures x(s), squashed by a sigmoid function (see Equa-
tion 1 and Figure 4). The reward function is r = 1 for
winning, and r = 0 otherwise, so that the value func-
tion estimates the probability of winning the game.

V(s)

x(s) w

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

. .
 . . .

 .

s

. .
 .

-0.013522 -0.035203
(a) (b) (c) (d)

Figure 1: (a) Capturing moves for black, (b) A position from a game of 5x5 Atari-Go, (c)
A 2x2 location invariant shape feature that matches once on the left and twice on the right
hand side of the game position, and a corresponding weight learned by the agent (d) A 2x2
location dependent feature that matches both the top-left and top-right corners of the same
position, and corresponding weight.

2 Local Shape

Professional Go players analyse positions using a large vocabulary of local shapes, such
as joseki (corner patterns) and tesuji (tactical patterns). These may occur at a variety of
different scales, and may be specific to a position on the board or equally applicable across
the whole board. To encapsulate all these forms of knowledge, we encoded local shape
knowledge using a multi-scale representation that includes both location dependent and
location invariant features.

In addition, current Computer Go programs rely heavily on the use of pattern databases to
represent local positional knowledge [?, ?] . Manyman-years are devoted to hand-encoding
professional expertise into the strongest programs, in the form of local shape knowledge
(see Figure ??). If these databases could be learned purely from experience, it is likely to
significantly boost the robustness and overall performance of the top programs.

Prior work on local shape extraction has focussed on supervised learning for local move
prediction [?, ?]. Despite some limited success, this approach has not led to strong play,
due perhaps to its focus on mimicking rather than evaluating and understanding the shapes
encountered. A second approach has been to train neural networks by temporal difference
learning, where the networks implicitly contain some representation of local shape [?, ?].
Although successful in many regards, the local shape knowledge is limited in scope by the
network architecture. Furthermore, the results cannot be directly understood or interpreted
in the manner of pattern databases.

Table 1: For each feature set F , the total number n(F) of local shape features in F , and
the total number of active featuresm(F) active in any given position.

F 1x1 2x1 2x2 3x2 3x3

n(F)
LI 3 9 81 729 19,683
LD 27 54 324 2,916 78,732

m(F)
LI 50 80 128 32 72
LD 50 40 32 32 32

Σ

Figure 4. Value function approximation for 5× 5 Go

Each binary feature recognizes a particular pattern of
stones within some rectangle on the board. Binary fea-
tures are used for all possible configurations from 1×1
up to 3×3; some example features are shown in the left
sides of Figures 6 and 7. Weights are shared between
sets of symmetric shapes, to take account of any rota-
tional, reflectional and translational symmetries that
may exist (Silver el al., 2007). The weights for these
features can be interpreted as the expected contribu-
tion that each shape makes to winning the game, over
the on-policy distribution of states.

As in the Black and White world, we adjust weights so
as to minimize the cross entropy between the current
prediction and the subsequent prediction. Thus, we
use equations 2 and 3, where the target at time t is set
according to the TD(0) algorithm (Sutton, 1988):

zt = rt+1 + V (st+1). (4)

We considered two versions of the learning algorithm.
For the converging agent, we initialized all weights to
small random values and trained offline for 250,000
complete episodes of self-play. For the tracking agent,
we also initialized the weights randomly. At every
time-step t, we trained the agent online for 10,000
episodes of self-play, starting from the current posi-
tion st.2 The result of 5 × 5 Go is usually deter-
mined within the first 25 moves, thus the tracking

2This tracking approach to computer Go is surprisingly
practical. Because we use a linear evaluation function and
binary features, learning is very fast. In this setting the
learning algorithm is fast enough to simulate and process
10,000 complete games in just a few seconds (see table 2).
In fact, a fully functional 9x9 Computer Go program cur-
rently competes online on the Computer Go Online Server,
using precisely this tracking algorithm. Not only does this
demonstrate that the tracking algorithm is practical, but
also that it can be used under strict time constraints (5
minutes per complete game on CGOS).

On the Role of Tracking in Stationary Environments

Features Tracking beats converging
Black White Total

1× 1 82% 43% 62.5%
2× 2 90% 71% 80.5%
3× 3 93% 80% 86.5%

Table 1. Percentage of 5×5 Go games won by the tracking
agent playing against the converging agent when playing
as Black (first to move) and as White.

agent received slightly less experience than the con-
verging agent. We played the tracking and converg-
ing agents against each other to compare their per-
formance. Both agents used an ε-greedy policy during
self-play training, but a greedy policy to select their ac-
tual moves. The step-size was set to αt = 0.1/||x(st)||
for both agents.

The first experiment used only the 1×1 features. Each
subsequent experiment included additional features of
increasing complexity, up to 3 × 3. Every experiment
consisted of 200 games, retraining both agents from
scratch for each game, and alternating colours between
games. In all experiments, the tracking agent won a
substantial majority of the games (Table 1 and Fig-
ure 5) with the advantage being largest for the more
expressive representations.

The simplest representation, using just the 1 × 1 fea-
tures, demonstrates a clear advantage for tracking over
converging. For example, it is usually bad for Black
to play on the corner intersection, and so the con-
verging agent learns a negative weight for this feature.
However, Figure 6 shows a position in which the cor-
ner intersection is the most important point on the
board for Black: it makes two eyes and allows the
Black stones to live. By learning about the particular
distribution of states arising from this position, the
tracking agent learns a large positive weight for the
corner feature. When playing Black in this position,
the converging agent plays in the central intersection
and loses; whereas the tracking agent plays in the cor-
ner and wins.

As the representation becomes more expressive, the
agent is able to learn more complex patterns and
the performance of both tracking and converging in-
creases. However, the tracking agent is able to ex-
ploit the additional features better than the converg-
ing agent (see Figure 5). For example, the converging
agent now learns that the corner intersection is bad
in general, but good when it occurs in a 3 × 3 pat-
tern providing two eyes. However, there are still spe-
cial cases where this does not hold. Figure 7 shows a
similar position in which this same corner pattern is

Features Total CPU (minutes)
features Tracking Converging

1× 1 75 3.5 10.1
2× 2 1371 5.7 13.8
3× 3 178518 9.1 22.2

Table 2. Memory and CPU requirements for tracking and
converging agents. The total number of binary features
indicates the memory consumption. The CPU time is
the average training time required to play a complete
game: 250,000 episodes of training for the converging
agent; 10,000 episodes of training per move for the tracking
agent.

Figure 5. Games won by tracking agent against converging
agent, playing 100 games as Black and 100 games as White.

b

a

Figure 6. (Left) A 1× 1 feature with a central black stone.
(Right) With Black to play, move b is the winning move.
Using 1 × 1 features, the converging agent plays centrally
at a, having learned that this is a good feature in general.
However, the tracking agent learns that Black must play
at b in this particular situation, to make two eyes.

On the Role of Tracking in Stationary Environments

b

a

Figure 7. (Left) A 3 × 3 feature making two eyes in the
corner. (Right) Black to play, move a is now the winning
move. Using 3 × 3 features, the converging agent makes
two eyes at b, believing this to be a good shape in general.
However, the tracking agent realizes that move b is redun-
dant (black already has two eyes) and learns to play the
winning move at a.

now bad: Black already has two eyes and should play
in the center to maximize his territory. The converg-
ing agent is unable to understand the global context
and plays the wrong move in the corner. The track-
ing agent learns that the corner pattern is not as im-
portant as the central territory in this context, and
plays the correct move in the center. Thus, the track-
ing agent customizes its policy to the current situation
and outperforms the converging agent, even when the
representation is expressive and rich with features.

4. Step-size adaptation in the Black
and White world

As we saw in the Black and White world, the best
step-size parameter α generally depends on the degree
of temporal coherence of the world, which may not
be known a priori. This is an area in which meta-
learning might play a role. We present an adaptation
of the incremental delta-bar-delta (IDBD) algorithm,
an online meta-learning algorithm that uses gradient
descent to learn step-size parameters (Sutton, 1992a,
1992b). Here we use a version of IDBD customized for
the log loss we use in this paper. Our derivation of
the IDBD algorithm for log loss directly parallels that
presented by Sutton (1992a) for squared error.

The IDBD algorithm allows for a different step-size αi

for each component wi of the parameter vector w. The
weight update rule is similar to that for the scalar case
shown in Section 2:

wi
t+1 = wi

t + αi
t+1δtx

i
t. (5)

The step-size αi
t is a function of a new parameter βi

t:

αi
t = eβi

t . (6)

The parameter βi is updated according to the gradient
descent rule with meta-learning rate µ. The derivative

is with respect to βi, which can be thought of as the
derivative of the loss with respect to an infinitesimal
change in βi at all time steps. Let hi

t = ∂wi
t

∂βi . Then:

βi
t+1 = βi

t − µ
∂Lt

∂βi

= βi
t − µ

∂

∂βi
[−zt log(yt)− (1− zt) log(1− yt)]

= βi
t + µzt(1− yt)

n∑
j=1

∂wj
t x

j
t

∂βi

− µ(1− zt)yt

n∑
j=1

∂wj
t x

j
t

∂βi

≈ βi
t + µzt(1− yt)xi

t

∂wi
t

∂βi
+ µ(zt − 1)ytx

i
t

∂wi
t

∂βi

= βi
t + µδtx

i
th

i
t.

Note the derivative is exact in the scalar case.

We calculate the derivative of wi
t with an accumulating

trace:

hi
t+1 =

∂wi
t+1

∂βi

=
∂wi

t

∂βi
+

∂αi
t+1δt

∂βi
xi

t

= hi
t +

∂eβi
t+1

∂βi
δtx

i
t + eβi

t+1xi
t

∂(zt − yt)
∂βi

= hi
t + eβi

t+1δtx
i
t − eβi

t+1xi
tyt(1− yt)

n∑
j=1

∂wj
t x

j
t

∂βi

≈ hi
t + eβi

t+1δtx
i
t − eβi

t+1(xi
t)

2yt(1− yt)
∂wi

t

∂βi

= hi
t[1− αi

t+1(x
i
t)

2yt(1− yt)] + αi
t+1δtx

i
t

The full algorithm for semi-linear IDBD is given in
Figure 1.

Algorithm 1 Semi-linear IDBD
Initialize hi

0 to 0, wi
0 and βi

0 as desired.
for each time step t do

y ← 1

1+e
Pn

i=1 −wixi

δ ← z − y
for each weight i do

βi ← βi + µδxihi

αi ← eβi

wi ← wi + αiδxi

hi ← hi[1− αi(xi)2y(1− y)] + αiδxi

end for
end for

On the Role of Tracking in Stationary Environments

Figure 8. The step-size parameters found by several runs of
IDBD in the Black and White world with different initial
step-size values.

In our earlier experiments with fixed values of α in the
Black and White world we found that the best step
size was approximately 4 (see Figure 3). Can IDBD
find this value? Several sample runs of one million
steps with µ = 2−13 are illustrated in Figure 8, with
different initial values for β0. In all cases, the α values
in the last ten thousand steps were between 4.69 and
4.88. These values are certainly closer to 4 than to any
of the other α values tried earlier, but is this range
near the optimum? To determine this, we repeated
the fixed-α experiment of Figure 3 at a finer grain. As
before, we measured the mean loss for the last 100,000
steps of thirty 200,000-step runs. We can see from
Figure 9 that the best α is between 4.5 and 5. The α
found by IDBD is consistently within this range.

5. Tracking as a sensitive assay for
meta-learning

In the Black and White world the advantages of step-
size meta-learning were apparent—finding the best α
parameter reduced the loss by a factor of three. This
benefit arose because the problem is temporally coher-
ent and is thus best approached as a tracking problem.
If the problem was best approached as a converging
problem it would be much harder to show a benefit for
meta-learning.

To illustrate this, we created a temporally-incoherent
version of the Black and White world. In it there is
only one state and the task is to predict an observation
that is randomly black or white with equal probabil-
ity. The best prediction is always 0.5, achieving the
minimal per-time-step loss of 1.0.

2 3 4 5 6 7 8

0.24

0.25

0.26

0.27

Step−size α

Mean
loss per

time−step

Figure 9. A more detailed look at performance in the Black
and White world as a function of step size (cf. Figure 3).

As before, only one weight is learned. We applied
our learning algorithm with and without IDBD to this
world. Without IDBD, a fixed step size was used for
the duration of a run. With IDBD, the step size was
initialized identically and then changed by the IDBD
rule with a meta step-size of µ = 2−10. Each run con-
sisted of 1,000 steps, and results were averaged over
thirty runs. The weight w0 was initialized to -5.

Results are shown in Figure 10. For intermediate val-
ues of α, the mean per time-step loss approached that
of the optimal, converged solution (1.0). For smaller
values of α, 1,000 steps was not long enough to learn
a good weight, and the loss was higher. For large val-
ues of α, the prediction was always chasing the last
observation, resulting in high loss. Only in the high
loss case is there any significant advantage to using
IDBD. Although the choice of step-size is important
in this problem, there is not time to find it in the sin-
gle, small, stationary task. Performance is dominated
by the choice of the initial step size, swamping the
effect of meta-learning.

6. Conclusion

We have shown two examples in which tracking al-
gorithms perform better than converging ones even
though the underlying problem is stationary. The
Black and White world is an extremely small illustra-
tion where the issues can be fully examined and un-
derstood. Our computer Go example shows that the
advantages of tracking methods over converging meth-
ods can arise in larger and more realistic problems.
One of our conclusions is that tracking algorithms de-
serve more attention than they have previously been

On the Role of Tracking in Stationary Environments

0.0039 0.0156 0.0625 0.25 1 4 16
0

1

2

3

4

5

6

7

8

Step−size α

Mean
loss per

time−step

IDBD

Fixed α

Figure 10. Performance on the temporally-incoherent ver-
sion of the Black and White world as a function of a fixed
step-size or the initial step-size of the IDBD meta-learning
rule. On a single problem where tracking is not important
the advantages of meta-learning may be negligible.

afforded. Machine learning’s near exclusive focus on
convergence may be causing opportunities to be over-
looked.

Tracking becomes important in stationary domains
which have temporal coherence and are too large to
be solved exactly. We have emphasized the implica-
tions of tracking and temporal coherence for the study
of meta-learning, using as an example the IDBD step-
size learning algorithm. In the Black and White world,
we showed that IDBD improved performance substan-
tially on a temporally coherent version of the prob-
lem while having negligible effect on a version without
temporal coherence. These observations may provide
a route to resolving a nagging methodological problem
for meta-learning research: how to justify the choice
of a sequence of tasks. If the sequence can arise from
different parts of a single task, then this choice can
become non-arbitrary.

References

Ben-David, S., Schuller, R. (2003). Exploiting Task
Relatedness for Multiple Task Learning. Proceedings
of the Conference on Learning Theory, (pp. 567–580).

Caruana, R. (2005). Inductive Transfer Retrospec-
tive and Review. NIPS 2005 Workshop on Inductive
Transfer: 10 Years Later.

Davies, J. (1994). 5x5 Go. American Go Journal
28 (2) 9–12.

Enzenberger, M. (2003). Evaluation in Go by a neural

network using soft segmentation. 10th Advances in
Computer Games Conference (pp. 97–108).

Kohl, N., Stone, P. (2004). Policy Gradient Rein-
forcement Learning for Fast Quadrupedal Locomotion.
Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA 2004) (pp. 2619–
2624).

Konidaris, G. D. (2006). A Framework for Transfer
in Reinforcement Learning. ICML-06 Workshop on
Structural Knowledge Transfer for Machine Learning.

Ng, A. Y., Coates, A., Diel, M., Ganapathi, V.,
Schulte, J., Tse, B., Berger, E., Liang, E. (2004). In-
verted autonomous helicopter flight via reinforcement
learning. International Symposium on Experimental
Robotics.

Schraudolph, N. N. (1999). Local Gain Adaptation
in Stochastic Gradient Descent. Proceedings of the
9th International Conference on Artificial Neural Net-
works (pp. 569–574).

Schraudolph, N., Dayan, P., & Sejnowski, T. (1994).
Temporal difference learning of position evaluation in
the game of Go. Advances in Neural Information Pro-
cessing 6, (pp. 817-824).

Silver, D., Sutton, R., & Müller, M. (2007). Re-
inforcement learning of local shape in the game of
Go. 20th International Conference on Artificial In-
telligence (pp. 1053–1058).

Sutton, R. (1988). Learning to predict by the method
of temporal differences. Machine Learning 3 (1) 9–44.

Sutton, R. S. (1992a). Adapting bias by gradient de-
scent: An incremental version of delta-bar-delta. Pro-
ceedings of the Tenth National Conference on Artificial
Intelligence, (pp. 171–176).

Sutton, R. S. (1992b). Gain adaptation beats least
squares? Proceedings of the Seventh Yale Workshop on
Adaptive and Learning Systems, (pp. 161–166). Yale
University, New Haven, CT.

Tesauro, G. (1995). Temporal difference learning and
TD-Gammon. Communications of the ACM 38 (3).

