 PROBABILITY AND MATHEMATICAL STATISTICS _~

G A Se_riés ofMonographsand Textbooks “ .

e |Nmonucnon TO -
srocuAsnc DYNAMIC PROGRAMMING

: SHELDONMROSS

ACADEMIC PRESS

Discounted Dynamic Programming

1. Introduction

Consider a process that is observed at time points n = 0, 1,2, ... to be
in one of a number of possible states. The set of possible states is as-
sumed to be countable and will be labeled by the nonnegative integers
0, 1, 2, After observing the state of the process, an action must be
chosen, and we let A (assumed finite) denote the set of all possible
actions.

If the process is in state i at time n and action a is chosen, then,
independent of the past, two things occur:

(i) We receive an expected reward R(i, a).
(i) The next state of the system is chosen according to the transition
probabilities P, (a).

If we let X, denote the state of the process at time n and a, the action
chosen at that time, then assumption (ii) is equivalent to stating that

P{Xn+l =jIXO’GOi Xlaal’ ""Xn =ia,= a} = Pij(a)'

Thus both the rewards and the transition probabilities are functions
only of the last state and the subsequent action. Furthermore, we
suppose that the costs are bounded, and we let B be such that
|R(, a)| < B for all i and a.

To choose actions we must follow some policy. We place no re-
strictions on the class of allowable policies, and we therefore define a
policy to be any rule for choosing actions. Thus the action chosen by

29

30 II. DISCOUNTED DYNAMIC PROGRAMMING

a policy, for instance, may depend on the history of the process up to
that point or it may be randomized in the sense that it chooses action
a with some probability P,, a€ A.

An important subclass of the class of all policies is the class of
stationary policies. Here, a policy is said to be stationary if it is non-
randomized and the action it chooses at time ¢ only depends on the
state of the process at time t. In other words, a stationary policy is a
function / mapping the state space into the action space, with the inter-
pretation that for each state i, f(i) denotes the action the policy chooses
when in state i. It follows that if a stationary policy f is employed, then
the sequence of states {X,,n = 0, 1,2,...} forms a Markov chain with
transition probabilities P;; = P;;(f(i)); and it is for this reason that the
process is called a Markov decision process.

To determine policies that are in some sense optimal, we first need
to decide on an optimality criterion. In this chapter we use the total
expected discounted return as our criterion. This criterion assumes a
discount factor &, 0 < « < 1, and, among all policies =, attempts to
maximize

o0
Va(i) = E, l: Zo R(X,, a,)a"| X = i], (1.1)
where E, represents the conditional expectation, given that policy = is
employed. Because R(X,,a,) is just the reward earned at time n, it
follows that V(i) represents the expected total discounted return earned
when the policy = is employed and the initial state is i. [Note that (1.1)
is well defined because rewards are bounded and « < 1, which implies

that | V,(i)] < B/l — «).]

2. The Optimality Equation
and Optimal Policy

The use of a discount factor is economically motivated by the fact that
a reward to be earned in the future is less valuable than one earned

today. Let
V(i) = sup V,(i).

2. THE OPTIMALITY EQUATION AND OPTIMAL PoLICY 31

A policy n* is said to be a-optimal if

V(i) = V(@) for alli=0.
Hence, a policy is a-optimal if its expected a-discounted return is
maximal for every initial state.

The following theorem yields a functional equation satisfied by the
optimal value function V.

Theorem 2.1 The Optimality Equation
V(i) = max[R@i, a) + a 3, Py@V(j)], i 20. 2.1
J

If'roof : Let = be any arbitrary policy, and suppose that n chooses
action q at time 0 with probability P,, a € 4. Then,

V(i) = X P[RG, @) + 3 Pi(@Wo(j)],
j

acd

where W,(j) represents the expected discounted return from time 1
onward, given that policy n is being used and that the state at time | is
J. However, if the state at time 1 is j, the situation at this time is the same
as if the process had started in state j, with the exception that all returns
are now multiplied by «. Hence,

Wn(j) < (XV(.})’
and thus
V(i) < Y, P[R@G,a) + a Y, Pi(a)V())]

aed J

< Y, Pamax[RG, @) + o 3, Py(@V(j)]
J

aeAd

= m{fax[R(i, a) + o Z Pij@V()] (2.2)

Because = is arbitrary, (2.2) implies that
V(i) < max[R(i, a) + « Y, P;(a)V(j)]. (2.3)
a j

To go the other way, let a, be such that
R(i, ap) + a ; Pi(ao)V(j) = max[R(i, a) + « Y Pi{@)V(j)]. (24)
a J

Let 7 be the policy that chooses a, at time 0 and, if the next state is j,

32 11. DiscounTeD DYNAMIC PROGRAMMING

then views the process as originating in state j, following a policy =;
such that V, (j) = V(J) — €. Hence,

Vn(i) = R(’s aO) +a Z Pij(aO)an(j)
> R(i, ag) + o Y, Pifao)V(j) — e,
J

which, because V(i) = V,(i), implies that
V(i) = R(, ap) + o Z P;(ao)V(j) — ae.
J

Hence, from (2.4) we obtain
V(i) = max[R(, a) + « Z P (a)V(j)] — €, (2.5)

and the result follows from (2.3) and (2.5) because € is arbitrary. []

We are now ready to prove the important result that the policy
determined by the optimality equation is optimal.

Theorem 2.2 Let f be the stationary policy that, when theﬁ process
is in state i, selects the action (or an action) maximizing the right side

of (2.1), that is, f(i) is such that
RG, f() + a Y, P (SDV()) = max [RG, @) + o ; P (aV(j)], i=0.
J

Then
V(i) = V(i) for alli >0,

and hence S is a-optimal.
Proof: Because
V(i) = max[R(i, a) + « ¥, Pi(@)V(j)]
“ J

= R(, () + a X Pi(SD)V(), (2.6)
J

we see that V is equal to the expected discounted return qf a two-st.age
problem in which we use f for the first stage and then receive a terminal
reward V(j) (if we end in state j). But because this terminal reyvz.ird has
the same value as using f for another stage and then receiving the
terminal reward V, we see that V is equal to the expected reward of a

2. THE OPTIMALITY EQUATION AND OPTIMAL PoLicy 33

three-stage problem in which we use f for two stages and then receive
the terminal reward V. Continuing this argument shows that

V(i) = En-stage return under f|X, = i) + o"E(V(X,)| X, = i).
Letting n — co, we obtain, using V(j) < Bl —a)and 0 < o < 1,
V(i) = Vi),
which proves the theorem. [

Technical Remark: The preceding proof can be stated more for-
mally as follows: For any stationary policy g, define the operator T,
mapping bounded functions on the state space into itself in the follow-
ing manner. For any bounded function u(i)(i = 0, 1,...), T,u is defined
as that function whose value at i is given by

(Ta)(i) = RG, g()) + o 3. Piy(g(Duj).

Thus T,u evaluated at i represents the expected discounted return if
the initial state is i and we employ g for one stage and are then termi-
nated with a final return u(j) (if the final state is j).

It is easy to show that for bounded functions u and v

() u<v=Tu< Ty,
(i) Tpu—V, asn— o,

where Tyu = Tyu, Tyu = T(Ts"'u),n > 1.

If f is the policy chosen by the optimality equation, we have by
(2.1) that

TfV = V,
implying that
TV = Ty (T, V) =TV 'V ==V,
and, letting n — oo,
Vf = V. D

The following proposition shows that V is the unique bounded
solution of the optimality equation.

Proposition 2.3 V is the unique bounded solution of the optimality
equation (2.1).

DiscOUNTED DYNAMIC PROGRAMMING

34 1.

Proof: Suppose that u(i),i = 0,isa bounded function that satisfies
the optimality equation
u(i) = max[R(i, a) + a Y. Py(@u(p)], i=0.
“ J

For fixed i let @ be such that
u(i) = R(, @) + « Y. Pi(@)u(j).
J

Hence, because V satisfies the optimality equation, we have
u(i) — V(i) = R(, @) + o %} Pi(@u(j) — max[R(, a) + o Zj:P,-j(a)V(N
<« L@ [u(i) = V()]
<« ¥ Py@]u0) - V)l
< }::, P(@) Sl;p|u(j) - V()
= acsuplu(j) = 40
By reversing the roles of u and V we can similarly conclude that
V(i) — u(i) < « Sl}pr(j) — u(j)|.

Therefore
|VG) — u(i)] < « st}pl V(j) — u(j)ls

SO
WNWD—WMSa%MWD—Mm,

implying (because o < 1) that
sup|V(j) ~ u()| = 0. O

The following will also be needed later.

Proposition 2.4 For any stationary policy g, V, is the unique solu-

tion of A
V,(i) = RG, g() + @ 3, Pilg@)V,0))- 2.7
j

3. METHOD OF SUCCESSIVE APPROXIMATIONS 35

Proof: 1t is immediate that V, satisfies (2.7) because R(i, g(i)) is the
one-stage return and o }_; P; Hg@V,(j) is the expected additional re-
turn obtained by conditioning on the next state visited. That it is the
unique solution follows exactly as in the proof of Proposition 2.3. (In
fact, we can use Proposition 2.3 directly by considering a problem in
which g(i) is the only action available in state i, so V, is the optimal
value function for that problem.)

Remark: In operator notation, (2.7) states that
TV, =V,

3. Method of Successive Approximations

It follows from Theorem 2.2 that, if we could determine the optimal
value function V, then we would know the optimal policy—it would
be the stationary policy that, when in state i, chooses an action that
maximizes

R(i,a) + a) P;(a)V(}).
J
In this section we show how V can be obtained as a limit of the n-stage

optimal return.
As a prelude, note that for any policy 7 and initial state Js

| Ex[return from time (n + 1) onwards| X, = Al

En[i aiR(Xi’ai)lXO=j:”

i=n+1

(Z"+ lB

1 —o

s 3.1

The method of successive approximations is as follows: Let V(i) be
any arbitrary bounded function, and define V, by

V1(i) = max[R(, a) + a ? Pi(a)Vo(j)].

In general, for n > 1, let
V(i) = maax[R(i’ a) + a Z Pi(a)V,-,(j)].
i

36 11. DisCOUNTED DYNAMIC PROGRAMMING

It is worthwhile noting that V, is the maximal expected discounted
return of an n-stage problem that confers a terminal reward Vy(j) if the
process ends in state j. The following proposition shows that ¥, con-
verges uniformly to V as n —> co.

Proposition 3.1

() If Vo = 0, then | V(i) — V()] < o«"*'B(1 — o).
(i) For any bounded Vy, V(i) = V(i) uniformly in i as n —> 0.

Proof: Suppose Vo = 0, so V,(i) equals the maximal expected re-
turn in an n-stage problem starting in i. Now, for the a-optimal policy f,

V(i) = E (return during first n-stages) + E '(additional returns)
< V() + o«"*'B/(1 - a),

where the inequality follows from (3.1) and the definition of V. To go
the other way, note that V' must be larger than the expected return of
the policy that uses the n-stage optimal policy for the first n-stages and
any arbitrary policy for the remaining time. Hence,

V(i) > V,(i) + E[additional return from (1 + 1) onwards]
> V(i) — a"* B/ — a),

which, together with the preceding, proves (i).
To prove (ii) let V' denote V, when ¥, = 0. Then for any bounded

¥, we leave it for the reader to show that

[V.(i) — VIO) < o SL;PIVo(j)l,

which together with (i) proves the result. [

EXAMPLE 3.1 A Machine Replacement Model ~ Suppose that at the
beginning of each time period a machine is inspected and its condition
or state is noted. After observing this state, a decision as to whether or
not to replace the machine must be made. If the decision is to replace,
then a cost R is immediately incurred and the state at the beginning of
the next time period is 0, the state of a new machine. If the present state
is i and a decision not to replace is made, then the state at the beginning
of the next time period will be j with probability P;;. In addition, each
time the machine is in state i at the beginning of a time period, an
operating cost C(i) is incurred.

Let V(i) denote the minimal expected total a-discounted cost, given

3. METHOD OF SUCCESSIVE APPROXIMATIONS 37

that the initial state is i. Then V satisfies the optimality equation
V(i) = C(i) + min[R + aV(0), a Y P;;V(j)]. 3.2)
j

Under what. conditions on C(i) and the transition probability matrix
P =[P,]will l{(z‘) be increasing in i? First, it is clear that the operating
costs must be increasing, so let us assume the following condition.

Condition 1: C(i) is increasing in i.

' However, Condition 1 by itself is insufficient to imply that V(i) is
increasing in i. It is possible for states i and i (where i > i) that whereas
i has a higher operating cost than i it might take the process into a better
state than would i. To ensure that this does not occur, we suppose
that, under no replacement, the next state from i is stochastically in-
creasing in i, That is, we have the following condition.

Condition 2: For each k, 352, P,; increases in i.

. I.n other words, if T; is a random variable representing the next state
visited after i (assuming no replacement) then P(T; =j) = P;;, so
Condition 2 states thatt

T, < T, i=01,...

Bes:ause this is equivalent to E(f(T;)) increasing in i for all increasing
functions f, Condition 2 is equivalent to the statement that

Z P;;f(j) increases in i, for all increasing f.
J
We now prove by induction that, under Conditions 1 and 2, V(i)
increases in i.
Proposition 3.2 Under Conditions 1 and 2, V(i) increases in i.
Proof: Let
V(i) = C(i),
and forn > 1
Vn(i) = C(l) + mln[R + aVn—-l(O)a o Z PijVn——l(j)]'
J

t See the Appendix for a discussion on stochastic order relations.

38 II. DisCOUNTED DYNAMIC PROGRAMMING

It follows from Condition 1 that V,(i) increases in i. Hence, assume
that V,_,(j) increases in j, so, from Condition 2,3, P; ;Vu-1(J) increases
in i, and thus V,(i) increases in i. Hence, by induction, V(i) increases in
i for all n, and because

V(i) = lim V,(0),

the result follows. [

The structure of the optimal policy is a simple consequence of
Proposition 3.2

Proposition 3.3 Under Conditions 1 and 2, there exists an i, I < 0,
such that the a-optimal policy replaces when the state is i if i > and
does not replace if i < i.

Proof: It follows from the optimality equation (3.2) that it is optimal
to replace in i if

o ZP,-jV(j) > R + a¥(0).

Because V(j) increasing in j implies that 35, P;;V(j) increases in i, the
result follows, with i being given by

i=min[ia Z P,V(j) = R + aV(0)],

where i is taken to be co if the preceding set is empty.

4. Policy Improvement

We have seen that once V is determined the optimal policy is
the one that, when in state i, chooses the action a to maximize
R(@, a) + « 3; P;(a@)V(j). Suppose that for some stationary policy g we
have computed V,, the expected return under g; and suppose that we
now define h to be the policy that, when in state i, selects the action
that maximizes R(i, a) + o 3; P;(@)V,(j). How good is h compared
with g? We now show that h is at least as good as g, and if it is not
strictly better than g for at least one initial state, then g and h are both

optimal.

4. PoLicy IMPROVEMENT 39

Proposition 4.1 Let g be a stationary policy with expected return
V, and let h be the policy such that

R, h(@)) + ;P h@Vy(J) = max[R(, a) + a 3 Pi(@)V,(j)]. (4.1)
J

Then
Vi) 2 V(i) for alli,
and if V(i) = V,(i) for all i, then V,=V,=V.

Proof: Because
m‘:ax[R(i, a) + a Z Pi(a)V,(j)]
2 R, g() + o Y Pylg()V, () = V),

it follows from (4.1) that
RG, k() + o« 3, Py(h@Vj) =2 V,() for alli. (42)
J

Tl?is inequality states that using h for one stage and then switching to
g is better than using g throughout. However, because we can repeat
this argument after the first stage (that is, at the moment when the
first policy is about to switch to g), we see that using h for two stages
and then switching to g is better than using g. Repeating this argument
shpws that using h for n stages and then switching to g is better than
using only g; that is,

E, ["zl WRX), a)| X = :] + CE[V (X)X =] = V(0.
Letting n — o gives
V(i) = V().
Now suppose that V(i) = V(i) for all i. Then, because
R(, h()) + o g Py (h)Vo(j) = Vi(i),
we see from (4.1) (upon substituting V), for V,) that

Vi) = max[RG, @) + a 3. Py@)V, ()]
J

40 1I. DiscCOUNTED DYNAMIC PROGRAMMING

Hence, V, satisfies the optimality equation, and by uniqueness (Propo-
sition 2.3), we conclude that V,, = V. OO

Remark: In terms of operator notation, we have from (4.2) that
’rth = Vg»
and successively applying T, to both sides of the preceding inequality
gives

T, > T W, > 2V,

h" g =

implying (letting n = oo0) that
V, =V,
The preceding result gives us a computational approach to obtaining
the optimal policy when the state space is finite. For instance, let the

statesbe 1,2, . . ., n. The optimal policy can be obtained l?y first chopsing
any stationary policy g. We then compute V, as the unique solution of

the set of equations
Vg(l) = R(” g(’)) +a Z Pij(g(l))Vg(])’ i= 1’ PR
i

Once we have solved this set of n equations inn unknowns.and have thus
obtained V,, we then improve g by defining h as the policy that, whc?n
in state i, selects the action that maximizes R(, a) + « 3.; P; {aV,(j)-
We next solve for V,, and then improve h, and so on. Because there are
only a finite number of possible stationary policies' when th‘e st'ate
space is finite, we shall eventually reach one for Whlch no strict im-
provement is possible. This will be the optimal policy.

5. Solution by Linear Programming

If u is a bounded function on the state space satisfying
u(i) > max[R(i, a) + o), P (a)u())], i>0, .1
a j

then we shall show thatu > V.

5. SOLUTION BY LINEAR PROGRAMMING 41

Proposition 5.1 1If u satisfies (5.1), then
u() = V(@) for alli.

Proof: Consider the usual model with the additional proviso of a
stop action that, if exercised when in state i, earns one a terminal
reward u(i) and ends the problem. Now, (5.1) states that, for any initial
state, stopping immediately is better than doing anything else for one
stage and then stopping. If something else (aside from stopping) is done
at the initial stage, then, also by (5.1), it is better to stop after the initial
stage than it is to do anything else and then stop. Hence, stopping im-
mediately is better than doing anything else for two stages and then
stopping. Repeating this shows that stopping immediately is better than
doing anything for n stages and then stopping. That is, for any policy =,

u(i) = E,[n-stage return| X, = i] + «"E,[u(X,)| X, = i],
and upon letting n — oo, we obtain
u(i) = V. (i),
which implies the result. [

Remark: If we define the operator T mapping bounded functions
on the state space into itself by T = max, T,; that is,

(Tw)(i) = m‘?x[R(i, a) + o), Pi(a)u(j)],

then (5.1) states that u > Ti. Applying T to both sides of this inequality
gives Tu > T?u, so u > T*u. Continuing this gives « > T"u, and letting
n—> oo and using Proposition 3.1, which states that T"u — V, gives the
result.

Because the optimal value function V satisfies the inequality (as it
also satisfies it with equality), it follows from Proposition 5.1 that it is
the smallest function that satisfies (5.1). Hence, letting 8 be such that
0 < B < 1, it follows that V will be the unique solution of the optimiza-
tion problem

m,,in[i ﬂ"u(i)],

i=0

subject to u(i) > max[R(i, a) + «). Pij@u(j)], =0,
a J

42 1I. DiscounTeD DYNAMIC PROGRAMMING

or, equivalently,

min[5 B‘u(i)],

" Li=o

subject to u(i) = R(i,a) + a Y, Pifa)u(j), 20, aed.
J

However, this is a linear programming problem and, at least in the
case of a finite state space, can be solved by a technique known as the
simplex algorithm. In fact, in the case of a finite state space we can let
B = 1 because we only imposed the condition 0 < B < 1 to keep the

objective function finite.

Remark: For finite-state problems we thus have two possible com-
putational approaches. The linear programming solution jus.t presented
and the policy improvement technique of the previous section.

6. Extension to Unbounded Rewards

To ensure that V,(i), defined by
Vn(l) = En[Z R(Xm a,,)a"|Xo = l] s
n=0

is well defined, we have assumed up to now that R(i, a) is bounded. T}}is
can be generalized. For instance, suppose that for each i there exist
numbers B; and a constant k such that, starting in i, the expected reward
at time n — 1 is bounded by Bn*, n > 1. That is, for n > 1, given that

X, =i,
E[|R(X,-1,a,-1)]] < Bin*, for all policies m. 6.1

Under this condition it follows that, conditional on X, =i,

E, [5 R(Xa, a..)a"]

n=0

0

<B; Y o'(n + 1) < oo,

n=0

so V, remains well defined.

6. ExTtENsION T0O UNBOUNDED REWARDS 43

Letting f denote the policy chosen by the optimality equation, then,
as in the proof of Theorem 2.2.,

V(i) = E (n-stage return) + «"E(V(X,)), (6.2)

where these expectations are conditional on X, = i. Now, by condition
(6.1) we have

(-}

| E (VX)) < Ba' Y. o + 1+ j)f

Jj=0
= h S J & (K k=1
=Ba") ol Y, (n + 1)
=0 i=o\!

—+0 as n—* o,
where the limit result follows because, foreach ! =0, 1, ..., k,

o

«(n+ 1)) a*t>0 as n—oo.

ji=0

Hence, we see from (6.2), letting n = oo, that
V(i) = V,(),
s0, as in the bounded case, f is optimal.
Policy improvement remains valid in the sense that the improved

policy is at least as good as the original. That is, if g is a stationary
policy and h is defined so that

R(i, h(D)) + « ? Pi(h())V,(j) = max[R(i, @) + a J; Pi(a)V, ()],

then, exactly as in Proposition 4.1, we have
E,[n-stage return| X, = i] + o"E,[V(X,)| X, = i] = V,(i).
Letting n — oo we obtain, using (6.1),
V(i) = V0.

Hence, h is at least as good as g. However, it is no longer true that
V, = V, implies that h and g are optimal. The reason is that it is not
necessarily true that V is the unique solution of the optimality equation
(in the bounded reward case we could deal with bounded functions, and
we showed that in the bounded case V is the unique bounded solution
of the optimality equation). Of course, if the B; were bounded, then
¥V would also be bounded, so this result would remain true.

44

II. DiSCOUNTED DYNAMIC PROGRAMMING

Remark: The preceding remains true even if we suppose that the

value of k in (6.1) depends on i; that is, if

En(R(Xn—l ’ an-—l)) < Bink(l)a nz 1:

where this expectation is conditional on X, = i.

Problems

1.

Consider a problem in which one is interested in maximizing the
total expected return. However, suppose that at the end of each
time period there is a probability « that the problem ends. Show
that this is equivalent to using an infinite-stage discounted-return
criterion.

Prove the statements given in the technical remark following
Theorem 2.2; that is, show

u<v=Tu<Tp,

and, for bounded u,

n
Tou— V,.

Prove for any bounded ¥, that, in the successive approximation
scheme,

[V.() = V2G)| < o Sljp'Vo(j)]-

A quality control model: Consider a machine that can be in one
of two states; good or bad. Suppose that the machine produces
an item at the beginning of each day. The item produced is either
good (if the machine is good) or bad (if the machine is bad).
Suppose that once the machine is in the bad state, it remains in
that state until it is replaced. However, if it is in the good state at
the beginning of a day, then with probability y it will be in the
bad state at the beginning of the next day.

We further suppose that after the item is produced we have the
option of inspecting the item or not. If the item is inspected and
found to be in the bad state, then the machine is instantaneously
replaced with a good machine at an additional cost R. Also, the

PROBLEMS 45

cost of inspecting an item will be denoted by I, and the cost of
producing a bad item by C.

Suppose that the process is in state P at time ¢ if P is the posterior
probability at ¢ that the machine in use is in the bad state. If the
objective is to minimize the total expected a-discounted cost, set
this up as a Markov decision problem and write the optimality
equation.

Show that V(P), the optimal value function for Problem 4, is an
increasing, concave function of P.

Consider a machine that can be in either of two states, good or
bad. At the beginning of each day, the machine produces items
that are either defective or nondefective. The probability of a
defective item is P, when in the good state and P, when in the
bad state. Once in the bad state, the machine remains in this state
until it is replaced. However, if the machine is in the good state
at the beginning of one day, then with probability y it will be in
the bad state at the beginning of the next day. A decision as to
whether or not to replace the machine must be made each day
after observing the item produced. Let R be the cost of replacing
the machine and let C be the cost incurred whenever a defective
item is produced. Set this problem up as a Markov decision model
and determine the functional equation satisfied by V. Assume
that at time zero there is a known probability that the machine
is in the bad state.

Prove that for Problem 6 there is a P* such that the a-optimal
policy replaces whenever the present probability that the process
is in the bad state is greater than or equal to P*.

We have two coins, a red one and a green one. When flipped, one
lands heads with probability P, and the other with probability
P,. However, we do not know which of the coins is the P, coin.
Suppose that initially we believe that the red coin is the P, coin
with probability p,. Suppose we receive one unit for each head
that appears, and our objective to to maximize our total expected
discounted return.

(a) Determine the optimality equation.

(b) If P, > P,, guess at the optimal policy.

Consider the following inventory problem. At the beginning of
each day the amount of goods on hand is noted and a decision is

46

10.

11. DiscouNTtED DYNAMIC PROGRAMMING

made as to how much to order. The cost for ordering j additional
units is C(j), where

; K+¢ if j>0,
a””{ 0 it j=0.

The order is assumed to be immediately filled. After the order has
been filled, the daily demand for the product occurs. The demand
will be j with probability P;, j = 0. If the demand exceeds the
present supply, then a penalty cost of A per unit of unmet demand
is incurred. It is also assumed that, if the demand exceeds the
supply, then the additional demand is backlogged and is filled
when additional inventory becomes available (this can be repre-
sented as negative inventory). In addition there is an inventory
holding cost of h for each item of remaining inventory at the end
of a period.

The objective is to minimize the total expected discounted cost
over an infinite time horizon when « is the discount factor.
(a) Set this up as a Markov decision process and write the

optimality equation.

Consider now a single-period version of the preceding problem.

Let

© J
Lj)=A Y (k=)Pc+h Y (j—RP,
k=j k=0

denote the expected penalty and holding costs if we order to
bring inventory up to j.
(b) Show that L(j) is convex. That is, L(j + 1) — L(j) is non-
decreasing in j. ‘
(c) Show that the optimal policy when the initial inventory is i
is to order
S—i if i<s,
0 if i>s,

where S is the value that minimizes ¢j + L{j) and sis such that
cs + L(s) = K + ¢S + L(S).
Assume that an individual has an initial capital of S, units. At
the beginning of time period n, n > 0, the individual has S, units
that must be allocated: consuming C, units, investing I, units at
a sure rate that will return rI, by the beginning of the next period,
and investing J, units in a risky venture that will return Z,J,

ProBLEMS 47

1.

12.

13.

upits. by the next period, where Z, is a random variable having

dlstnbutiqn F. Of course, C, + 1, + J, = S,. The utility is in

c.ons‘umptlon, and consuming c leads to a utility u(c). The objec-
tive is to maximize the expectation of "2 , «"u(C,).

(a) Set this up as a dynamic programming problem. Give the
optimality equation.

(b) Ifu(c) = c’, 0 < B < 1, show that the optimal policy allo-
cates a fixed proportion of one’s current fortune to the three
alternatives. Show also, in this case, that V(s) = Ku(s) for
some constant K.

(c) qupose that u is a concave function. If E[Z] < r, do you
think that no money would be allocated to the risky venture?
If so, prove it.

Consider a problem with states 0, 1, and 2 possible actions having

rewards

R(0,1) =1,
R(0,2) =2,

and transition probabilities

[Poo(l) Poo(2)] _ [% %]

Pio(l) Pio(2) 33

Let o = %: Starting with V, = 0, use successive approximations
to approximate V by V3. Then show that the policy obtained by
maximizing R(i, a) + a X; P;;(a)V(j) is the optimal policy.

Now let f* be the policy that chooses action 1 in both states 0
and 1. Show that this improvement of policy f is the optimal
policy.

Let V, and ¥, denote the return functions for stationary policies
f and 9 Fespectively. Let h be the policy that chooses actions
to maximize R(i, a) + a X; P;(a) max[V(j), V,(j)]. Show that
V(i) = max[V (i), V,(i)] for all i.

Let f and g be stationary policies with return functions V, and
V,. Define the policy h by

g(i) it V(i) < V,3).
Show that V(i) = max[V,(i), V,(i)] for all i.

R(1,1) =0,
R(1,2) =0,

48 II. DiscoUNTED DYNAMIC PROGRAMMING

References

1. Bertsckas, D., Dynamic Programming and Stochastic Control. Academic Press, New
York, 1976.

2. Blackwell, D., “Discounted dynamic programming,” Ann. Math. Statist. 36, 226-235,
1965.

3. Derman, C., *“On optimal replacement rules when changes of state are Markovian.."
In Mathematical Optimization Techniques, R. Bellman (ed.). University of California
Press, Berkeley, California, 1963.

4. Derman, C., Finite State Markovian Decision Processes. Academic Press, New York,
1970.

S. Lippman, S., “On dynamic programming with unbounded rewards,” Management

Sci. 21, 1225-1233, 1975.

Minimizing Costs—
Negative Dynamic Programming

1. Introduction and Some
Theoretical Results

In this chapter we again assume a countable state space (which, unless
otherwise mentioned, will be taken to be the set of nonnegative integers)
and a finite action space. However, we now suppose that if action a is
taken when in state i, then an expected nonnegative cost C(i,a),
C(i,a) 2 0, is incurred. The objective is to minimize the total expected
cost incurred. Because this is equivalent to the total expected return
for a problem having a reward function R(i,a) [= —C(j, a)] that is
nonpositive, we say that we are in the negative case.
For any policy =, let

o

Vn(l) = En[C(anan)IXO = ']
(V]

h=

Because C(i,a) = 0, V,(i) is well defined, though possibly infinite.
Thus we no longer assume a discount factor, and we no longer require
the one-stage costs to be bounded. Also, let

V(@) = i?;f V. (i),

and call the policy n* optimal if
V(i) = Vi), i>0.
49

