
RLJ | RLC 2024

Reward Centering

Abhishek Naik1,2, Yi Wan3, Manan Tomar1,2, Richard S. Sutton1,2

{abhishek.naik,mtomar,rsutton}@ualberta.ca, yiwan@meta.com
1University of Alberta 2Alberta Machine Intelligence Institute 3Meta AI

Abstract

We show that discounted methods for solving continuing reinforcement learning
problems can perform significantly better if they center their rewards by subtracting
out the rewards’ empirical average. The improvement is substantial at commonly
used discount factors and increases further as the discount factor approaches one.
In addition, we show that if a problem’s rewards are shifted by a constant, then
standard methods perform much worse, whereas methods with reward centering
are una�ected. Estimating the average reward is straightforward in the on-policy
setting; we propose a slightly more sophisticated method for the o�-policy setting.
Reward centering is a general idea, so we expect almost every reinforcement-learning
algorithm to benefit by the addition of reward centering.

Reinforcement learning is a computational approach to learning from interaction, where the goal of a
learning agent is to obtain as much reward as possible (Sutton & Barto, 2018). In many problems of
interest, the stream of interaction between the agent and the environment is continuing and cannot be
naturally separated into disjoint subsequences or episodes. In continuing problems, agents experience
infinitely many rewards, hence a viable way of evaluating performance is to measure the average
reward obtained per step, or the rate of reward, with equal weight given to immediate and delayed
rewards. The discounted-reward formulation o�ers another way to interpret a sum of infinite rewards
by discounting delayed rewards in favor of immediate rewards. The two problem formulations are
typically studied separately, each having a set of solution methods or algorithms.

In this paper, we show that the simple idea of estimating and subtracting the average reward from
the observed rewards can lead to a significant improvement in performance (as in Figure 1) when
using common discounted methods such as actor–critic methods (Barto et al., 1983) or Q-learning
(Watkins & Dayan, 1992). The underlying theory dates back to 1962 with Blackwell’s seminal work
on dynamic programming in discrete Markov decision processes (MDPs). We are still realizing some
of its deeper implications, and we discuss the following two in particular:

Figure 1: Learning curves showing the di�erence in performance of Q-learning with and without
reward centering for di�erent discount factors on the Access-Control Queuing problem (Sutton &
Barto, 1998). Plotted is the average per-step reward obtained by the agent across 50 runs w.r.t. the
number of time steps of interaction. The shaded region denotes one standard error. See Section 4.

1995

RLJ | RLC 2024

1. Mean-centering the rewards removes a state-independent constant (that scales inversely with
1 ≠ “, where “ denotes the discount factor) from the value estimates, enabling the value-
function approximator to focus on the relative di�erences between the states and actions. As
a result, values corresponding to discount factors arbitrarily close to one can be estimated
relatively easily (e.g., without any degradation in performance; see Figure 1).

2. Furthermore, mean-centering the rewards (unsurprisingly) makes standard methods robust
to any constant o�set in the rewards. This can be useful in reinforcement learning applica-
tions in which the reward signal is unknown or changing.

We begin with what reward centering is and why it can be beneficial (Section 1). We then show how
reward centering can be done, starting with the simplest form (within the prediction problem), and
show that it can be highly e�ective when used with discounted-reward temporal di�erence algorithms
(Section 2). The o�-policy setting requires more sophistication; for it we propose another way of
reward centering based on recent advances in the average-reward formulation for reinforcement
learning (Section 3). Next, we present a case study of using reward centering with Q-learning, in
which we (a) propose a convergence result based on recent work by Devraj and Meyn (2021) and
(b) showcase consistent trends across a series of control problems that require tabular, linear, and
non-linear function approximation (Section 4). Finally, we discuss the limitations of the proposed
methods and propose directions of future work (Section 5).

1 Theory of Reward Centering

We formalize the interaction between the agent and the environment by a finite MDP (S, A, R, p),
where S denotes the set of states, A denotes the set of actions, R denotes the set of rewards,
and p : S ◊ R ◊ S ◊ A æ [0, 1] denotes the transition dynamics. At time step t, the agent is
in state St œ S, takes action At œ A using a behavior policy b : A ◊ S æ [0, 1], observes the
next state St+1 œ S and reward Rt+1 œ R according to the transition dynamics p(sÕ, r | s, a) =
Pr(St+1 = sÕ, Rt+1 = r | St = s, At = a). We consider continuing problems, where the agent-
environment interaction goes on ad infinitum. The agent’s goal is to maximize the average reward
obtained over a long time (formally defined in (2)). We consider methods that try to achieve
this goal by estimating the expected discounted sum of rewards from each state for “ œ [0, 1):
v“

fi(s) .= E[
qŒ

t=0 “tRt+1 | St = s, At:Œ ≥ fi], ’s. Here, the discount factor is not part of the problem
but an algorithm parameter (see Naik et al. (2019) or Sutton & Barto’s (2018) Section 10.4 for an
extended discussion on objectives for continuing problems).

Reward centering is a simple idea: subtract the empirical average of the observed rewards from
the rewards. Doing so makes the modified rewards appear mean centered. The e�ect of mean-
centered rewards is well known in the bandit setting. For instance, Sutton and Barto (2018, Section
2.8) demonstrated that estimating and subtracting the average reward from the observed rewards
can significantly improve the rate of learning. Here we show that the benefits extend to the full
reinforcement learning problem and are magnified as the discount factor “ approaches one.

The reason underlying the benefits of reward centering is revealed by the Laurent-series decompo-
sition of the discounted value function. The discounted value function can be decomposed into two
parts, one of which is a constant that does not depend on states or actions and hence is not involved
in, say, action selection. Mathematically, for the tabular discounted value function v“

fi : S æ R of a
policy fi corresponding to a discount factor “:

v“
fi(s) = r(fi)

1 ≠ “
+ ṽfi(s) + e“

fi(s), ’s, (1)

where r(fi) is the state-independent average reward obtained by policy fi and ṽfi(s) is the di�erential
value of state s, each defined for ergodic MDPs (for ease of exposition) as (e.g., Wan et al., 2021):

r(fi) .= lim
næŒ

1
n

n
ÿ

t=1
E

#

Rt | S0, A0:t≠1 ≥ fi
$

, ṽfi(s) .= E
C Œ

ÿ

k=1

!

Rt+k ≠ r(fi)
"

| St = s, At:Œ ≥ fi

D

, (2)

1996

RLJ | RLC 2024

and e“
fi(s) denotes an error term that goes to zero as the discount factor goes to one (Blackwell,

1962: Theorem 4a; also see Puterman’s (1994) Corollary 8.2.4). This decomposition of the state
values also implies a similar decomposition for state–action values.

The Laurent-series decomposition explains how reward centering can help learning in bandit prob-
lems such as the one in Sutton & Barto’s (2018) Figure 2.5. There, the action-value estimates are
initialized to zero and the true values are centered around +4. The actions are selected based on
their relative values, but each action-value estimate must independently learn the same constant o�-
set. Approximation errors in estimating the o�set can easily mask the relative di�erences in actions,
especially if the o�set is large.

In the full reinforcement learning problem, the state-independent o�set can be quite large. For
example, consider the three-state Markov reward process shown Figure 2 (induced by some policy
fi in some MDP). The reward is +3 on transition from state A to state B, and 0 otherwise. The
average reward is r(fi) = 1. The discounted state values for three discount factors are shown in
the table. Note the magnitude of the standard discounted values and especially the jump when the
discount factor is increased. Now consider the discounted values with the constant o�set subtracted
from each state, v“

fi(s) ≠ r(fi)/(1 ≠ “), which we call the centered discounted values. The centered
values are much smaller in magnitude and change only slightly when the discount factor is increased.
The di�erential values are also shown for reference. These trends hold in general: for any problem,
the magnitude of the discounted values increase dramatically as the discount factor approaches one
whereas the centered discounted values change little and approach the di�erential values.

State A B C

Standard
discounted values

“ = 0.8 6.15 3.93 4.92
“ = 0.9 11.07 8.97 9.96
“ = 0.99 101.01 98.99 99.99

Centered
discounted values

“ = 0.8 1.15 -1.07 -0.08
“ = 0.9 1.07 -1.03 -0.04
“ = 0.99 1.01 -1.01 -0.01

Di�erential values 1 -1 0

Figure 2: Comparison of the standard and the centered discounted values on a simple example.

Formally, the centered discounted values are the expected discounted sum of mean-centered rewards:

ṽ“
fi(s) .= E

C Œ
ÿ

t=0
“t

!

Rt+1 ≠ r(fi)
"

| St = s, At:Œ ≥ fi

D

, v“
fi(s) = r(fi)

1 ≠ “
+

ṽ“
fi(s)

˙ ˝¸ ˚

ṽfi(s) + e“
fi(s), ’s, (3)

where “ œ [0, 1]. When “ = 1, the centered discounted values are the same as the di�erential values,
that is, ṽ“

fi(s) = ṽfi(s), ’s. More generally, the centered discounted values are the di�erential values
plus the error terms from the Laurent-series decomposition, as shown on the right above.

Reward centering thus enables capturing all the information within the discounted value function via
two components: (1) the constant average reward and (2) the centered discounted value function.
Such a decomposition can be immensely valuable: (a) As “ æ 1, the discounted values tend to
explode but the centered discounted values remain small and tractable. (b) If the problems’ rewards
are shifted by a constant c, then the magnitude of the discounted values increases by c/(1 ≠ “),
but the centered discounted values are unchanged because the average reward increases by c. These
e�ects are demonstrated in the following sections.

Reward centering also enables the design of algorithms in which the discount factor (an algorithm
parameter) can be changed within the lifetime of a learning agent. This is usually ine�cient or
ine�ective with standard discounted algorithms because their uncentered values can change massively
(Figure 2). In contrast, centered values may change little, and the changes become minuscule as the
discount factor approaches 1. We discuss this exciting direction in the final section.

To obtain these potential benefits, we need to estimate the average reward from data. In the next
section we show that even the simplest method can be quite e�ective.

1997

RLJ | RLC 2024

2 Simple Reward Centering

The simplest way to estimate the average reward is to maintain a running average of the rewards
observed so far. That is, if R̄t œ R denotes the estimate of the average reward after t time steps,
then R̄t =

qt
k=1 Rk. More generally, the estimate can be updated with a step-size parameter —t:

R̄t+1
.= R̄t + —t(Rt+1 ≠ R̄t). (4)

This update leads to an unbiased estimate of the average reward R̄t ¥ r(fi), for the policy fi
generating the data, if the step sizes follow standard conditions (Robbins & Monro, 1951).

Simple centering (4) can be used with almost any reinforcement learning algorithm. For example, it
can be combined with conventional temporal-di�erence (TD) learning (see Sutton, 1988a) to learn
a state-value function estimate Ṽ “ : S æ R by updating, on transition from t to t + 1:

Ṽ “
t+1(St)

.= Ṽ “
t (St) + –t

#

(Rt+1 ≠ R̄t) + “Ṽ “
t (St+1) ≠ Ṽ “

t (St)
$

, (5)

with Ṽ “
t+1(s) .= Ṽ “

t (s), ’s ”= St, where –t > 0 is a step-size parameter.

We used four algorithmic variations of (5) di�ering only in the definition of R̄t in our first set of
experiments. One algorithm used R̄t = 0, ’t, and thus involves no reward centering. The second
algorithm used the best possible estimate of the average reward: R̄t = r(fi), ’t; we call this oracle
centering. The third algorithm used simple reward centering as in (4). The fourth algorithm used a
more sophisticated kind of reward centering which we discuss in the next section.

The environment was an MDP with seven states in a row with two actions in each state. The right
action from the rightmost state leads to the middle state with a reward of +7 and the left action
from the leftmost state leads to the middle state with a reward of +1; all other transitions have
zero rewards. The target policy takes both actions in each state with equal probability, that is,
fi(left|·) = fi(right|·) = 0.5. The average reward corresponding to this policy is r(fi) = 0.25.

Our first experiment applied the four algorithms to the seven-state MDP with two discount factors,
“ = 0.9 and 0.99. All algorithms were run with a range of values for the step-size parameters –. The
algorithms that learned to center were run with di�erent values of ÷, where — = ÷– (without loss
of generality). Each parameter setting for each algorithm was run for 50,000 time steps, and then
repeated for 50 runs. The full experimental details are in Appendix C. As a measure of performance
at time t, we used the root-mean-squared value error (RMSVE; see Sutton & Barto, 2018, Section
9.2) between Ṽ “

t and ṽ“
fi for the centered algorithms, and between Ṽ “

t and v“
fi for the algorithm

without centering. There was no separate training and testing period.

Learning curves for this experiment and each value of “ are shown in the first column of Figure
3. For all algorithms, we show only curves for the – value that was best for TD-learning without
reward centering. For the centering methods, the curve shown is for the best choice of ÷ from a
coarse search over a broad range. Each solid point represents the RMSVE averaged over the 50
independent runs; the shaded region shows one standard error.

First note that the learning curves start much lower when the rewards are centered by an oracle;
for the other algorithms, the first error is of the order r(fi)/(1 ≠ “). TD-learning without centering
(blue) eventually reached the same error rate as the oracle-centered algorithm (orange), as expected.
Learning the average reward and subtracting it (green) indeed helps reduce the RMSVE much faster
compared to when there is no centering. However, the eventual error rate is slightly higher, which is
expected because the average-reward estimate is changing over time, leading to more variance in the
updates compared to the uncentered or oracle-centered version. Similar trends hold for the larger
discount factor (lower left), with the uncentered approach appearing much slower in comparison
(note the di�erence in axes’ scales). In both cases, we verified that the average-reward estimate
across the runs was around 0.25.

These experiments show that the simple reward-centering technique can be quite e�ective in the
on-policy setting, and the e�ect is more pronounced for larger discount factors.

1998

RLJ | RLC 2024

Figure 3: Learning curves demonstrating the performance of TD-learning with and without reward
centering on one on-policy problem and two o�-policy problems.

Limitations in the O�-policy Setting: (4) leads to an unbiased estimate of the behavior pol-
icy’s average reward, which means that in the o�-policy setting the average-reward estimate R̄ will
converge to r(b), not r(fi). Adding an importance-sampling ratio to the update is not enough to
guarantee convergence to r(fi) because importance sampling only corrects the mismatch in action
distributions, not the mismatch in the resulting state distributions.

Let us consider the e�ect of an inaccurate estimate of the average reward. First, note that the
centered discounted value function also satisfies a recursive Bellman equation:

ṽ“(s) =
ÿ

a

fi(a|s)
ÿ

sÕ,r

p(sÕ, r | s, a)
#

r ≠ r̄ + “ṽ“(sÕ)
$

, or, ṽ“ = rfi ≠ r̄1 + “Pfiṽ“ , (6)

where, ṽ“ denotes a vector in R|S|, rfi is the vector of the expected one-step reward from each
state, r̄ is a scalar variable, 1 is a vector of all ones, and Pfi is the state-to-state transition matrix
induced by the policy fi. It is easy to verify that the solution tuples (ṽ“ , r̄) of (6) are of the form
!

ṽ“
fi + c1, r(fi) ≠ c(1 ≠ “)

"

, ’c œ R, where ṽ“
fi denotes the centered di�erential value function (3)

corresponding to policy fi and discount factor “. Equivalently, we can write the family of solutions
as

!

ṽ“
fi + k

1≠“ 1, r(fi) ≠ k
"

, ’k œ R, which shows that if the average-reward estimate is o� by k, then
the centered discounted values each have a constant o�set of k/(1 ≠ “). This is undesirable. The
primary motivation of reward centering is to eliminate the potentially large o�set from the estimates.
So we desire a way to estimate the target policy’s average reward while behaving according to a
di�erent behavior policy.

However, note that an inaccurate estimation of the average reward is not a deal-breaker: standard
algorithms that do not center the rewards can be perceived as using a fixed inaccurate estimate of
the average reward (zero), yet they are guaranteed to converge to the true values of the target policy
in the tabular case. So the issue is less about convergence and more about the rate of learning.
Estimating the average reward accurately may yield better sample-complexity bounds when using
standard methods than simply estimating the uncentered values (e.g., the bounds for Q-learning
involve powers of 1/(1 ≠ “) (Qu & Wierman, 2020; Wainwright, 2019; Even-Dar et al., 2003)). We
also saw in Figure 3 that when the rewards are centered by an oracle, the rate of learning is much
higher compared to when there is no centering.

In summary, the e�ectiveness of reward centering increases with the accuracy of the average-reward
estimate. Thus, even the simple method of reward centering (4) can be highly e�ective when the
average reward of the behavior policy is close to that of the target policy. This may be true when the

1999

RLJ | RLC 2024

two policies are similar, like a greedy target policy and an ‘-greedy behavior policy with a relatively
small value of ‘. However, the benefits of reward centering in terms of rate of learning may reduce
and even disappear as the di�erence in the two policies increases. In the following section, we present
a subtly advanced approach to estimate the average reward more accurately in the o�-policy setting.

3 Value-based Reward Centering

We drew inspiration from the average-reward formulation of reinforcement learning, where estimating
the average reward in the o�-policy setting is a pertinent problem. In particular, Wan et al. (2021)
recently showed that using the temporal-di�erence (TD) error (instead of the conventional error in
(4)) leads to an unbiased estimate of the reward rate in the tabular o�-policy setting. It turns out
that this idea from the average-reward formulation is quite e�ective even in the discounted-reward
formulation, which is the focus of this paper. We show that if the behavior policy takes all the
actions that the target policy does (the exact distribution over actions may di�er arbitrarily), then
we get a good approximation of the average reward of the target policy using the TD error:

Ṽ “
t+1(St)

.= Ṽ “
t (St) + –t flt ”t, (7)

R̄t+1
.= R̄t + ÷ –t flt ”t, (8)

where, ”t
.= (Rt+1 ≠ R̄t) + “Ṽ “

t (St+1) ≠ Ṽ “
t (St) is the TD error and flt

.= fi(At|St)/b(At|St) is the
importance-sampling ratio. Since this centering approach involves values in addition to the reward,
we call it value-based centering. Unlike with simple centering, the convergence of the average-reward
estimate and the value estimates is now interdependent. We present a convergence result in the next
section for the control problem.

The first column of Figure 3 shows plots for value-based centering in the on-policy problem from
the previous section, where the target policy picks both actions with equal probability. Value-based
centering (red) appears as good as simple centering (green) in terms of the rate of learning and
asymptotic error. The other two columns show plots for two o�-policy experiments with behavior
policies [b1(left|·), b1(right|·)] = [0.7, 0.3], [b2(left|·), b2(right|·)] = [0.3, 0.7]. The two di�erent be-
havior policies are symmetric but resulted in di�erent trends. Corresponding to b1, we saw that
value-based centering resulted in a lower RMSVE faster than simple centering for both values of
“, and the final error rate was roughly the same. As expected, the simple approach estimated the
average reward incorrectly and hence the learned values were relatively larger than with value-based
centering (but not as large as when there was no centering). The results with b2 were more interest-
ing. The RMSVE reduced rapidly at first with simple centering, then rose sharply, and then reduced
again. This is because the average-reward estimate was initialized to zero and it converged to around
0.5 (because b2 skews the agent’s state distribution towards the more-rewarding right side). When
the estimate passed the true value of 0.25, the RMSVE was quite low, however, the estimate quickly
climbed to 0.5, resulting in the peak in RMSVE. Eventually the value estimates settled to values
corresponding to an average-reward estimate of around 0.5. In contrast, the average-reward estimate
was much closer to the true value when using value-based centering, resulting in a smoother learning
curve. The e�ects were amplified with the larger discount factor (bottom row).

Overall, we observed that reward centering can improve the rate of learning of discounted-reward
prediction algorithms such as TD-learning, especially for large discount factors. While the simple
way to center rewards is quite e�ective, value-based reward centering is better suited for general
o�-policy problems. Next, we consider reward centering within the control setting.

4 Case Study: Q-learning with Reward Centering

In this section, we examine the e�ects of reward centering when used alongside the Q-learning
algorithm (Watkins & Dayan, 1992). In particular, we first present a convergence result based on
recent work by Devraj and Meyn (2021). Next, using various control problems, we empirically study
the e�ects of reward centering on tabular, linear, and non-linear variants of Q-learning.

2000

RLJ | RLC 2024

Theory: The prevalence of Q-learning can be largely attributed to it being an o�-policy algorithm:
in the tabular case, it is guaranteed to converge to the value function of optimal policy while
collecting data from an arbitrary behavior policy—even a random policy. Given its o�-policy nature,
we augment Q-learning with value-based reward centering. Since we use tabular, linear, and non-
linear versions of this algorithm, we present a general form of its updates. At each time step, given
an observation, the agent converts it into a feature vector xt œ Rd, selects an action At, observes
the reward signal Rt+1 and the next observation, which it converts into xt+1, and so on. In the
tabular case, xt is a one-hot vector of the size of the state space; in the linear case, xt may be
a tile-coding representation; in the non-linear case, xt is the output of the last non-linear layer of
an artificial neural network. In each case, the agent linearly combines the feature vector with an
action-specific weight vector wa œ Rd, ’a to obtain the action-value estimate q̂. At time step t,
with the knowledge of transition (xt, At, Rt+1, xt+1), Q-learning with value-based reward centering
updates the average-reward estimate and the per-action weights:

wAt
t+1

.= wAt
t + –t ”t Òwt q̂(xt, At), (9)

R̄t+1
.= R̄t + ÷ –t ”t, (10)

where, ”t
.= Rt+1 ≠ R̄t + “ max

a
(wa

t)€xt+1 ≠ (wAt
t)€xt.

The full pseudocode for all algorithms is in Appendix A. We present the informal convergence-
theorem statement here; the full theorem statement, proof, and analysis are in Appendix B.

Theorem 1. If the Markov chain induced by the stationary behavior policy is irreducible and a per-
state–action step size is reduced appropriately, tabular Q-learning with value-based reward centering
(9–10) converges almost surely: Qt and R̄t converge to a particular solution (q̃“ , r̄) of the following
Bellman equations:

q̃“(s, a) =
ÿ

sÕ,r

p(sÕ, r | s, a)
!

r ≠ r̄ + “ max
aÕ

q̃“(sÕ, aÕ)
"

. (11)

The convergence proof is a consequence of important recent work by Devraj and Meyn (2021), who
showed that subtracting a quantity from the rewards in Q-learning can result in a significantly
better sample-complexity bound. Depending on the quantity subtracted, there is a whole family
of Q-learning variants that converge almost surely in the tabular case to Q̃“

Œ = q“
ú ≠ k/(1 ≠ “)1,

where Q̃“
Œ denotes the vector of asymptotic value estimates, q“

ú denotes the discounted action-value
function of the optimal policy fiú

“ corresponding to the discount factor “, and k depends on q“
ú and

two algorithm parameters µ and Ÿ. Recall that the standard (uncentered) discounted value function
q“

ú has a state–action-independent o�set of r(fiú
“)/(1 ≠ “). Relative Q-learning can remove k/(1 ≠ “)

of it. This is very promising. Devraj and Meyn left the choice of µ and Ÿ as open questions. We show
that Q-learning with value-based centering can be seen as an instance of their algorithm family with
particular choices of µ and Ÿ. We further show (in Appendix B) that these choices can significantly
reduce the state-independent o�set. The equivalence enabled us to use their theoretical machinery
to show almost-sure convergence and inherit strong variance-reduction properties.

Experiments: We present results of Q-learning with and without centering on a set of control
problems with tabular, linear, and non-linear function approximation (see Appendix A for the pseu-
docode). The problems are primarily from CSuite (Zhao et al., 2022). The repository specifies each
problem in detail; we provide high-level descriptions here. We start the assessment in a tabular
problem and then proceed to problems that require function approximation.

The Access-Control Queuing problem (Sutton & Barto, 2018) is a continuing problem in which the
agent manages the access of incoming jobs to a set of servers. A job arrives at the front of the queue
with one of four priorities with equal probability, and the agent has to decide at each time step
whether to accept or reject the job based on the number of free servers left. If a job is accepted,
the agent gets a positive reward proportional to the job’s priority ({1, 2, 4, 8}); if rejected, the job
is removed from the queue and the agent gets zero reward. At each time step, occupied servers get
free with a certain probability, and the agent can observe the number of servers that are currently
free as well as the priority of the job at the front of the queue.

2001

RLJ | RLC 2024

Figure 1 shows the results of standard Q-learning (without centering) and Q-learning with value-
based centering. For Q-learning, the curves correspond to the step-size parameters that resulted in
the fastest learning over the training period (quantified by the area under the learning curve). For
Q-learning with centering, they correspond to the best step-size parameters for a fixed value of ÷
(shown in grey in the figure); this does not always mean the best (–, ÷) pair but that is okay since
the results were robust to the choice of ÷. Throughout this section we followed this same practice
of picking hyperparameters to plot learning curves.

The performance of Q-learning with centering did not degrade when the discount factor was close to
one, unlike when there was no centering. For each discount factor, the performance with centering
matched or exceeded that of the standard uncentered method. To verify if centering indeed helped
remove the potentially large state-independent term, we checked the magnitude of the learned values.

Table 1: Magnitude of learned val-
ues

“
Without
centering

With
centering

0.5 4.78 0.17
0.8 12.95 0.17
0.9 26.57 0.12
0.99 267.91 0.42
0.999 1434.47 0.51

One way is to compute the magnitude across all state-action
pairs. However, this approach typically leads to a poor ap-
proximation of the magnitude of learned values because many
states (especially ones with low true values) may not occur fre-
quently in the agent’s ‘-greedy interactions with the environ-
ment and hence their estimated values may stay close to their
initialization. Instead, we checked the values of states that ac-
tually occur in the agent’s stream of experience, in particular
the maximum action value (used to choose the argmax action)
of the last 10% states that occurred during training. Table 1
shows these values for the parameters corresponding to Figure
1’s learning curves. As “ increased, the magnitude of learned values increased sharply with standard
Q-learning but remained small with reward centering (as expected from the theory in Section 1).

These trends were quite general across the range of parameter values tested. Figure 4 shows the
performance sensitivity to the methods’ parameters. In particular, the x-axis denotes the step-size
parameter – and the y-axis denotes the average reward obtained during the entire training period
(which reflects the rate of learning). For both methods, the di�erent curves correspond to di�erent
discount factors. The three plots on the right correspond to di�erent values of the centering step-
size parameter ÷. We saw the performance of Q-learning without centering deteriorated with large
discount factors for a broad range of the step-size parameter –. In contrast, with centering, the
performance did not degrade; in fact, it improved all the way till “ = 1 for a wide range of ÷ values.
In addition, its performance was not sensitive to the choice of ÷.

We also observed the rate of learning of the standard Q-learning algorithm is significantly a�ected
by a constant shift in the problems’ rewards. Note that adding a constant to all the rewards does not
change the ordering of the policies according to the total-reward or the average-reward criterion in
continuing problems. Figure 5 shows the behaviors of Q-learning with and without centering when
applied to five problem variants with one of {≠8, ≠4, 0, 4, 8} added to all the rewards. To compare
the resulting rate of rewards across the problems, the plots are shifted post-hoc (for instance, in the
problem variant where the rewards were shifted by 8, after training, the same number was subtracted
from all the rewards that the agent obtained). The behavior of Q-learning without centering was
substantially di�erent on all the problem variants. Q-learning with centering, unsurprisingly, results

Figure 4: Parameter studies showing the sensitivity of the algorithms’ performance to their param-
eters on the Access-Control problem. The error bars indicate one standard error, which at times is
less than the width of the lines.

2002

RLJ | RLC 2024

Figure 5: Learning curves on slight variants of the Access-Control Queuing problem with all the
rewards shifted by a constant integer. The y-axis is shifted to compare learning curves for all the
variants on the same scale. More details in-text.

in similar behavior. We verified that the average-reward estimate indeed learns the average reward
for every variant quickly. These trends were also consistent across values of the step-size parameters
(the parameter studies are in Appendix C).

We observed similar trends on other continuing problems with linear and one with non-linear function
approximation. In PuckWorld, the agent has to take a puck-like object to randomly changing goal
positions in a square rink. At each time step, the agent observes six real numbers—the puck’s
position and velocity and the goal position in x and y directions—and gets a reward proportional
to the negative distance to the goal. In Pendulum, the agent has to control the torque at the base
of a one-link pendulum to take and maintain it in an upright position. At each time step, the
agent observes three real numbers—the sine and cosine of the pendulum’s angle w.r.t. the direction
of gravity, and the pendulum’s angular velocity—and gets a reward proportional to the negative
angular distance of the pendulum from the upright position. In Catch, the agent moves a crate in
the bottom row of a 2D pixel grid to catch falling fruits. For this problem, there are two kinds of
observation vectors available to an agent: a 3D real vector containing the x coordinate of the crate
and the (x, y) coordinates of the lowermost fruit; a 50D binary vector which is the flattened version
of the entire pixel grid. The agent gets a +1 reward on successfully catching a fruit, ≠1 on dropping
one, and 0 otherwise. All the problems are continuing; there are no resets.

(a) PuckWorld (b) Pendulum

(c) Catch

Figure 6: Learning curves with and without centering corresponding to di�erent values of “ on
di�erent problems. In the bottom row, the two plots on the right correspond to a variant of the
Catch problem where all the rewards shifted by ≠2.

2003

RLJ | RLC 2024

We used linear function approximation with tile-coded features for PuckWorld and the variant of
Catch in which the agent observes the 3D real-valued features. For Pendulum and the variant
of Catch with the 50D binary features, we used non-linear function approximation using artificial
neural networks (Mnih et al.’s (2015) DQN). The complete experimental details are in Appendix C.

The trends were similar to those observed with Access-Control Queuing. In PuckWorld and Pendu-
lum (top row of Figure 6), without centering, performance first improved as the discount factor “
increased and then degraded. However, with centering, the performance did not degrade for large
values of “. In Catch with linear function approximation (bottom row of Figure 6), the leftmost plot
shows that the performance without centering was good even for large discount factors. However, it
varied significantly when the problem rewards were shifted up or down by a constant; the third plot
from the left demonstrates this for a shift of ≠2. On the other hand, with centering, the performance
was good for all discount factors and una�ected by any shifts in the rewards.

These trends are further supplemented by the two plots on the left of Figure 7, which shows the
sensitivity of the algorithms to variants of the Catch problem with rewards shifted by a constant.
On the x-axis is the e�ective step size for the linear function approximators and on the y-axis is the
reward rate averaged over the entire training period. As before, the y-axis is adjusted to compare
the performance on all the problem variants at the same scale. We observed that the performance
without reward centering was problem-dependent, whereas with centering, the rate of learning was
roughly the same regardless of the problem variant. The two plots on the right of Figure 7 show
that the trends were similar with non-linear function approximation.

Figure 7: Parameter studies showing the sensitivity of the algorithms to their step-size parameter
and to variants of the Catch problem, using both linear and non-linear function approximation.

Through these experiments, we observed that reward centering can improve the performance of
tabular, linear, and non-linear variants of the Q-learning algorithm on various problems. The im-
provement in the rate of learning is larger for discount factors close to 1. Furthermore, there is an
improvement in the robustness of the algorithms to shifts in the problems’ rewards. The parameter
studies in this section indicate that the benefits of reward centering are quite robust to the choice of
its parameter ÷. Appendix C contains additional learning curves and parameter studies that further
reinforce the trends observed in this section.

5 Discussion, Limitations, and Future Work

Reward centering can improve the data e�ciency and robustness of almost any algorithm for contin-
uing reinforcement learning. Here we have shown improvements for algorithms that learn state-value
functions and action-value functions, and for algorithms that are tabular or use linear or non-linear
function approximation.1 We expect reward centering would also improve the performance of al-
gorithms that learn no value function at all, such as REINFORCE (Williams, 1992) when applied
to continuing problems with eligibility traces, but this has yet to be shown. Many algorithms that
were designed for the average-reward criterion already include a form of reward centering, either
simple centering (e.g., Tsitsiklis & Van Roy, 1999) or value-based centering (Wan et al., 2021); it is

1As a further example, in preliminary experiments in Appendix C we found reward centering to increase the data
e�ciency and robustness of Schulman et al.’s (2017) PPO algorithm on continuing versions of several of Todorov et
al.’s (2012) Mujoco problems.

2004

RLJ | RLC 2024

experience with these earlier un-discounted algorithms that led us to explore the utility of reward
centering for discounted algorithms. Also expected, but yet to be shown, are the benefits of reward
centering with other reinforcement-learning algorithms, including value-based algorithms such as
Sarsa (Rummery & Niranjan, 1994), and various o�ine, actor–critic, and model-based algorithms.

Reward centering is not directly applicable to episodic problems. In these problems the objective
is to maximize the sum of rewards only up until the end of an episode; the notion of long-term
average reward is undefined and the Laurent-series decomposition (with a state-independent term)
no longer holds. Moreover, if reward centering were naively applied to an episodic problem, then
it may alter the problem rather than facilitate finding the solution. This is because—unlike in
continuing problems—subtracting a constant from all the rewards may change an episodic problem.
For example, consider a gridworld where the reward is ≠1 on every step until episode termination
upon reaching a goal state. An optimal policy—one that maximizes the total reward per episode—is
one that reaches the goal state as soon as possible. However, if the rewards were centered, then
the modified rewards would all be zero, and all policies would be equally optimal. The problem
would be fundamentally altered by the algorithm that centers (or in general shifts) rewards! The
closest thing to reward centering in episodic problems may be the return baseline in policy-gradient
methods (e.g., see Sutton & Barto, 2018, Section 13.4), but that may vary from state to state, so
the analogy is not really that close.2

Reward centering may seem similar to, but is di�erent from, a value-function unit with a bias weight
(a weight for an input that is always 1). First, the bias weight converges asymptotically to a value
that depends on all the other inputs to the value-function unit and that is not in general r(fi)/(1≠“).
Second, because the learning of the bias weight interacts with learning all the other weights, we will
not obtain the same data e�ciency advantages as with reward centering. Reward centering is more
akin to the specially learned bias weight in Sutton’s (1988b) NADALINE linear unit. We note that
reward centering is also di�erent from but similar in style to methods for adapting the scale of the
rewards (e.g., van Hasselt et al., 2016; Pohlen et al., 2018; Schaul et al., 2021), and the two kinds of
methods can potentially be used together.

The e�ects of reward centering on the variance of value estimates is complex. On one hand, reward
centering can increase variance because the average-reward estimate changes over time. The simple
centering method is particularly susceptible to this in the o�-policy setting (e.g., see Figure 3).
On the other hand, value-based centering in particular can reduce variance due to state-dependent
reward changes (cf. Sutton & Barto, 2018, Exercise 10.8). In all cases, optimization techniques could
be used to e�ciently adapt the step-size parameter of the average-reward estimate (Degris et al.,
2024).

Perhaps the most exciting direction for extending reward centering is into new reinforcement learning
algorithms that adapt their discount-rate parameter over time. Without reward centering, this would
incur huge costs in learning time as the discounted values change by large amounts even for small
changes in “ ¥ 1. Most of these changes are due to the state-independent term r(fi)/(1 ≠ “) which,
with reward centering, can be adapted instantly to the new value of “ using the existing estimate of
r(fi). Concretely, consider the agent has estimated the average reward R̄ and the centered discounted
value function ṽ“ to some level of accuracy. With just this information, the agent can form an
estimate of the standard discounted value function corresponding to another discount factor “Õ via
R̄/(1 ≠ “Õ) + ṽ“ . This is an estimate, of course, but it can be improved quickly with a few samples
of experience. In contrast, with standard methods, it would take comparatively longer to raise the
estimates to the new mean value and adapt the relative values. Hence, with reward centering, we
can imagine e�cient methods that adapt their discount factors over time: a low discount rate to
learn quickly amidst a lot of uncertainty—like in the beginning of training—and when the world
is more predictable, a higher discount rate to estimate the policy that maximizes the total reward
obtained by the agent.

2In continuing problems, reward centering has orthogonal benefits to the baseline or the advantage function in
policy-gradient methods. We discuss these and further connections to the literature in Appendix D.

2005

RLJ | RLC 2024

Acknowledgments

The authors gratefully acknowledge funding from NSERC, DeepMind, and the pan-Canadian AI
program administered by CIFAR. We thank Huizhen Yu, Arsalan Sharifnassab, Khurram Javed,
and other members of the RLAI lab for discussions that helped improve the quality and clarity
of the paper. We are also grateful for the computing resources provided by the Digital Research
Alliance of Canada.

References

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike Elements That Can Solve
Di�cult Learning Control Problems. IEEE Transactions on Systems, Man, and Cybernetics.

Blackwell, D. (1962). Discrete Dynamic Programming. The Annals of Mathematical Statistics.
Borkar, V., & Meyn, S. (2000). The ODE Method for Convergence of Stochastic Approximation

and Reinforcement Learning. SIAM Journal on Control and Optimization.
Degris, T., Javed, K., Sharifnassab, A., Liu, Y., & Sutton, R. S. (2024). Step-size Optimization for

Continual Learning. ArXiv:2401.17401.
Devraj, A., & Meyn, S. (2021). Q-learning with Uniformly Bounded Variance. IEEE Transactions

on Automatic Control. Also ArXiv:2002.10301.
Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L., & Madry, A. (2019).

Implementation Matters in Deep RL: A Case Study on PPO and TRPO. International Conference
on Learning Representations.

Even-Dar, E., Mansour, Y., & Bartlett, P. (2003). Learning Rates for Q-learning. Journal of
Machine Learning Research.

Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. ArXiv:1412.6980.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,

Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-Level Control
Through Deep Reinforcement Learning. Nature.

Naik, A., Shari�, R., Yasui, N., Yao, H., & Sutton, R. S. (2019). Discounted Reinforcement Learn-
ing Is Not an Optimization Problem. Optimization Foundations for Reinforcement Learning
Workshop at the Conference on Neural Information Processing Systems. Also ArXiv:1910.02140.

Ng, A., Harada, D., & Russell, S. (1999). Policy Invariance Under Reward Transformations: Theory
and Application to Reward Shaping. International Conference on Machine Learning.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E. Z., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). PyTorch:
An Imperative Style, High-Performance Deep Learning Library. Advances in Neural Information
Processing Systems.

Pohlen, T., Piot, B., Hester, T., Azar, M. G., Horgan, D., Budden, D., Barth-Maron, G., van
Hasselt, H., Quan, J., Ve�erík, M., Hessel, M., Munos, R., & Pietquin, O. (2018). Observe and
Look Further: Achieving Consistent Performance on Atari. ArXiv:1805.11593.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons.

Qu, G., & Wierman, A. (2020). Finite-Time Analysis of Asynchronous Stochastic Approximation
and Q-learning. Conference on Learning Theory.

2006

RLJ | RLC 2024

Robbins, H., & Monro, S. (1951). A Stochastic Approximation Method. The Annals of Mathematical
Statistics.

Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning Using Connectionist Systems. Techni-
cal Report, Engineering Department, Cambridge University.

Schaul, T., Ostrovski, G., Kemaev, I., & Borsa, D. (2021). Return-Based Scaling: Yet Another
Normalisation Trick for Deep RL. ArXiv:2105.05347.

Schneckenreither, M. (2020). Average Reward Adjusted Discounted Reinforcement Learning: Near-
Blackwell-Optimal Policies for Real-World Applications. ArXiv:2004.00857.

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2016). High-Dimensional Contin-
uous Control Using Generalized Advantage Estimation. International Conference on Learning
Representations.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy Opti-
mization Algorithms. ArXiv:1707.06347.

Singh, S., Jaakkola, T., & Jordan, M. (1994) Learning Without State-Estimation in Partially Ob-
servable Markovian Decision Processes. Machine Learning Proceedings.

Sun, H., Han, L., Yang, R., Ma, X., Guo, J., & Zhou, B. (2022). Exploit Reward Shifting in
Value-Based Deep-RL: Optimistic Curiosity-Based Exploration and Conservative Exploitation
via Linear Reward Shaping. Advances in Neural Information Processing Systems.

Sutton, R. S. (1988a). Learning to Predict by the Methods of Temporal Di�erence. Machine
Learning (important erratum p. 377).

Sutton, R. S. (1988b). NADALINE: A Normalized Adaptive Linear Element That Learns E�ciently.
GTE Laboratories Technical Report.

Sutton, R. S., & Barto, A. G. (1998, 2018). Reinforcement Learning: An Introduction. First and
second editions. MIT Press.

Todorov, E., Erez, T., & Tassa, Y. (2012). MuJoCo: A Physics Engine for Model-Based Control.
International Conference on Robotics and Automation.

Tsitsiklis, J. N., & Van Roy, B. (1999). Average Cost Temporal-Di�erence Learning. Automatica.
Tsitsiklis, J. N., & Van Roy, B. (2002). On Average Versus Discounted Reward Temporal-Di�erence

Learning. Machine Learning.
Van Hasselt, H., Guez, A., Hessel, M., Mnih, V., & Silver, D. (2016). Learning Values Across Many

Orders of Magnitude. Advances in Neural Information Processing Systems.
Wainwright, M. J. (2019). Stochastic Approximation With Cone-Contractive Operators: Sharp

¸Œ-Bounds for Q-learning. ArXiv:1905.06265.
Wan, Y., Naik, A., & Sutton, R. S. (2021). Learning and Planning in Average-Reward Markov

Decision Processes. International Conference on Machine Learning.
Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning.
Williams, R. J. (1992). Simple Statistical Gradient-Following Algorithms for Connectionist Rein-

forcement Learning. Machine Learning.
Zhao, R., Abbas, Z., Szepesvári, D., Naik, A., Holland, Z., Tanner, B., & White, A. (2022). CSuite:

Continuing Environments for Reinforcement Learning, Github: google-deepmind/csuite

2007

RLJ | RLC 2024

A Pseudocode

In this section we present the pseudocode for value-based reward-centering added to the tabular,
linear, and non-linear variants of Q-learning.

Algorithm 1: Tabular Q-learning with value-based reward centering
Input: The behavior policy b (e.g., ‘-greedy)
Algorithm parameters: discount factor “, step-size parameters –, ÷

1 Initialize Q(s, a) ’s, a; R̄ arbitrarily (e.g., to zero)
2 Obtain initial S
3 for all time steps do
4 Take action A according to b, observe R, SÕ

5 ” = R ≠ R̄ + “ maxa Q(SÕ, a) ≠ Q(S, A)
6 Q(S, A) = Q(S, A) + – ”

7 R̄ = R̄ + ÷ – ”
8 S = SÕ

9 end

Algorithm 2: Linear Q-learning with value-based reward centering
Input: The behavior policy b (e.g., ‘-greedy)
Algorithm parameters: discount factor “, step-size parameters –, ÷

1 Initialize wa œ Rd ’a, R̄ arbitrarily (e.g., to zero)
2 Obtain initial observation x
3 for all time steps do
4 Take action A according to b, observe R, xÕ

5 ” = R ≠ R̄ + “ maxa w€
a xÕ ≠ wAx

6 wA = wA + – ” x
7 R̄ = R̄ + ÷ – ”
8 x = xÕ

9 end

Algorithm 3: (Non-linear) DQN with value-based reward centering
Input: The behavior policy b (e.g., ‘-greedy)
Algorithm parameters: discount factor “, step-size parameters –, ÷

1 Initialize value network, target network; initialize R̄ arbitrarily (e.g., to zero)
2 Obtain initial observation x
3 for all time steps do
4 Take action A according to b, observe R, xÕ

5 Store tuple (x, A, R, xÕ) in the experience bu�er
6 if time to update estimates then
7 Sample a minibatch of transitions (x, A, R, xÕ)b

8 For every i-th transition: ”i = Ri ≠ R̄ + “ maxa q̂(xÕ
i, a) ≠ q̂(xi, Ai)

9 Perform a semi-gradient update of the value-network parameters with the ”2 loss
10 R̄ = R̄ + ÷ – mean(”)
11 Update the target network occasionally
12 end
13 x = xÕ

14 end

We recommend two small but useful optimizations to these general pseudocodes in Appendix C.
The python code can be found at github.com/abhisheknaik96/continuing-rl-exps.

2008

RLJ | RLC 2024

B Theoretical Details

This section presents (a) the complete convergence result for Q-learning with value-based centering
using Devraj and Meyn’s (2021) analysis, and (b) quantifies the reduction in constant state–action-
independent o�set in the value estimates.
Suppose the agent’s interaction with the MDP follows a stationary behavior policy b œ �. Let
St, At denote the state-action pair occurring at time step t, followed by the reward Rt+1 and next
state St+1. Let ‹t(s, a) denote the number of times a state-action pair (s, a) has occurred up to and
including time step t. The update rules of Q-learning with value-based centering are:

Qt+1(St, At)
.= Qt(St, At) + –‹t(St,At) ”t, (12)

R̄t+1
.= R̄t + ÷ –‹t(St,At) ”t, (13)

where, ”t
.= Rt+1 ≠ R̄t + “ max

aÕ
Qt(St+1, aÕ) ≠ Qt(St, At), (14)

÷ > 0, and –n = c/(n + d) where c, d > 0 for all n Ø 1.3

Theorem 1. (Formal) If the joint process {St, At} induced by the stationary behavior policy is an
irreducible Markov chain, that is, starting from every state-action pair, there is a non-zero probability
of transitioning to any other state-action pair in a finite number of steps, then (Qt, R̄t) in tabular
Q-learning with value-based centering (12–14) converges to a solution of (q̄“ , r̄) in (11).

Proof. We first show that Q-learning with value-based centering is a member of the large family of
Devraj and Meyn’s (2021) Relative Q-learning algorithms with particular choices of µ and Ÿ. This
allows us to utilize their convergence results.
The general Relative Q-learning algorithm updates its tabular estimates Q̃“ : S ◊ A æ R at time
step t using (St, At, Rt+1, St+1) as (in our notation):

Q̃“
t+1(St, At)

.= Q̃“
t (St, At) + –t

#

Rt+1 ≠ f(Q̃“
t) + “ max

aÕ
Q̃“

t (St+1, aÕ) ≠ Q̃“
t (St, At)

$

, (15)

where, f(Q̃“
t) .= Ÿ

q

s,a µ(s, a)Q̃“
t (s, a), Ÿ > 0 is a scalar, and µ : S ◊A æ [0, 1] is a probability mass

function.
Now note that updating both the average-reward and value estimates using the TD error (12 and
13) results in:

R̄t ≠ R̄0 = ÷
1

ÿ

s,a

Qt(s, a) ≠
ÿ

s,a

Q0(s, a)
2

.

To simplify the analysis, we can assume R̄0 = 0 and Q0 = 0 without loss of generality. As a result,
R̄t = ÷

q

s,a Q̃“
t (s, a). We can then combine the updates (9–10) in the tabular case to:

Q̃“
t+1(St, At)

.= Q̃“
t (St, At) + –t

!

Rt+1 ≠ ÷
ÿ

s,a

Q̃“
t (s, a) + max

aÕ
Q̃“

t (St+1, aÕ) ≠ Q̃“
t (St, At)

"

. (16)

Comparing (15) and (16), we can see that Q-learning with value-based reward centering is an instance
of Relative Q-learning with:

µ(s, a) = 1
|S||A| ’s, a, and Ÿ = ÷|S||A|.

3Devraj and Meyn (2021) considered the step-size sequence 1/n in their algorithm but it can be easily verified that
–n = c/(n + d) also satisfies the step-size condition required by Borkar and Meyn’s (2000) seminal result (that was
used by Devraj & Meyn (2021) to show the convergence of their algorithm).

2009

RLJ | RLC 2024

Devraj and Meyn’s (2021) convergence result then applies. That is,

Q̃“
t æ Q̃“

Œ
.= q“

ú ≠ Ÿ

1 ≠ “ + Ÿ
µ€q“

ú 1

= q“
ú ≠ ÷

1 ≠ “ + ÷|S||A|
ÿ

s,a

q“
ú (s, a)1. (17)

Hence,

R̄t æ R̄Œ
.= ÷

ÿ

s,a

q“
ú (s, a) ≠ ÷2|S||A|

1 ≠ “ + ÷|S||A|
ÿ

s,a

q“
ú (s, a)

= ÷(1 ≠ “)
1 ≠ “ + ÷|S||A|

ÿ

s,a

q“
ú (s, a). (18)

We will now verify that (Q̃“
Œ, R̄Œ) satisfy the Bellman equations (11). Recall that the solutions

of the Bellman equation are of the form
!

q̃“
ú + k

1≠“ 1, r(fiú
“) ≠ k

"

. Since q̃“
ú = q“

ú ≠ r(fiú
“)

1≠“ , we can
re-write the solution class in terms of the discounted value function:

!

q“
ú + (k≠r(fiú

“))
1≠“ 1, r(fiú

“) ≠ k
"

,
or

!

q“
ú ≠ d

1≠“ 1, d
"

. For d = ÷(1≠“)
1≠“+÷|S||A|

q

s,a q“
ú (s, a), we can see that (Q̃“

Œ, R̄Œ) is a solution tuple
of the Bellman equations.

We can now characterize how close R̄Œ is to r(fiú
“). In general the expression for R̄Œ (18) is cryptic.

However, a special case can shed some light. We know that the average of the discounted value
function for a policy w.r.t. that policy’s steady-state distribution is:

q

s,a dfi(s, a)q“
fi(s, a) = r(fi)

1≠“ .
Now suppose the steady-state distribution over state–action pairs is constant—1/(|S||A|), ’s, a. For
that policy, 1

|S||A|
q

s,a q“
fi(s, a) = r(fi)

1≠“ . Substituting this in (18), we get:

R̄Œ = ÷|S||A|
1 ≠ “ + ÷|S||A|r(fiú

“). (19)

We can see that R̄Œ approaches the true reward rate from below when ÷|S||A| >> 1 ≠ “, which can
be true in many problems of interest that have large state (and action) spaces. That being said,
note that this insight comes from a special case. More generally, the convergence point of R̄Œ (and
hence Q̃“

Œ) is hard to interpret, which is a shortcoming we wish to resolve in future work. However,
(19) can serve as a rule of thumb.
We end this section with a property of the centered discounted values.

Lemma 1. The centered discounted values ṽ“
fi are on average zero when weighted by the on-policy

distribution dfi induced by the policy fi:

d€
fi ṽ“

fi = 0. (20)

Proof. The proof is trivial after using the property that d€
fi v“

fi = r(fi)/(1 ≠ “) (see Sutton & Barto’s
(2018) Section 10.4 or Singh et al.’s (1994) Section 5.3). Since ṽ“

fi = v“
fi ≠ r(fi)/(1 ≠ “)1 (from (3)),

d€
fi ṽ“

fi = 0.

2010

RLJ | RLC 2024

C Experimental Details

Prediction ‘TD-learning with rewards centered by an oracle’ refers to a version of TD-learning with
centering in which the average-reward estimate is fixed to the (somehow) known average reward of the
target policy. In other words, the true average reward is known from the beginning and is subtracted
from the observed rewards at each time step. This algorithm is a good baseline because its rate
of learning is likely the theoretical best among all TD-based prediction algorithms (in stationary
problems where the average reward of the fixed target policy does not change with time).
Each algorithm was run on the random-walk problem for 50,000 steps and repeated 50 times each.
The step size – was decayed by 0.99999 at each step. The values estimates for all variants and the
average-reward estimate for TD-with-centering were initialized to zero.
We tested – œ {0.01, 0.02, 0.04, 0.08, 0.16, 0.32} and picked the one which resulted in the lowest av-
erage RMSVE across the training period for standard uncentered approach (– = 0.04 for “ = 0.9
and – = 0.08 for “ = 0.99). Corresponding to these step sizes, we tested the centering approaches’
parameter ÷ within a coarse range of {1/640, 1/160, 1/40, 1/10} and picked one based on the afore-
mentioned criteria. As mentioned earlier, this does not result in the best choice of –, ÷ for the
centering approaches, which is okay; we made sure the baselines are tuned appropriately.
Control Table 2 contains a list of all the hyperparameters tested that are common across all the
domains: “, –, ÷. Note that setting ÷ = 0 and initializing the average-reward estimate to zero, Q-
learning with reward centering behaves exactly like standard Q-learning. For each set of parameters,
the algorithms were run for N steps and repeated R times. The (N, R) tuples for each problem were:
Access-Control Queuing: (80k, 50); PuckWorld: (300k, 20), Pendulum: (100k, 15); Catch (linear):
(20k, 50); Catch (non-linear): (80k, 15). For generating variants of the problems, we shifted the
rewards by a range of numbers roughly proportional to the scale of rewards in the original problem:
Access-Control Queuing and PuckWorld: {-8, -4, 0, 4, 8}; Pendulum: {-12, -6, 0, 6, 12}; Catch: {-4,
-2, 0, 2, 4}.
The agent’s behavior policy was always ‘-greedy with fixed ‘ = 0.1. For all the experiments, the
average-reward estimate was initialized to zero. The value-estimation weights were initialized to zero
in the tabular and linear experiments; the weights were initialized to small values around zero in the
non-linear experiments (the default initialization in PyTorch (Paszke et al., 2019)). For the linear
experiments we used 16 tiles of size 4 ◊ 4 ◊ 4 for Catch and 32 tiles of size 4 ◊ 4 ◊ 4 ◊ 4 ◊ 4 ◊ 4 for
PuckWorld. These numbers and sizes were not specifically optimized for any problem or algorithm.
We set commonly used values for the various parameters of the deep RL (non-linear) experiments:
the batch size was 64, the value-network and reward-rate parameters were updated every 32 steps,

Table 2: List of hyperparameters tested for each domain

“ – ÷

Access-Control Queuing
(tabular)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[1/128, 1/64, 1/32,
1/16, 1/8, 1/4, 1/2, 1]

[0, 1/256, 1/64,
1/16, 1/4, 1]

PuckWorld
(linear)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[0.01, 0.1, 0.3, 0.5,
0.7, 0.9, 1.0, 1.1]

[0, 1/256, 1/64,
1/16, 1/4, 1]

Catch
(linear)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[1/128, 1/64, 1/32,
1/16, 1/8, 1/4, 1/2, 1]

[0, 1/256, 1/64,
1/16, 1/4, 1]

Catch
(non-linear)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[1/512, 1/256, 1/128,
1/64, 1/32, 1/16, 1/8]

[0, 1, 2,
4, 8, 16]

Pendulum
(non-linear)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[1/512, 1/256, 1/128,
1/64, 1/32, 1/16, 1/8]

[0, 1, 2,
4, 8, 16]

2011

RLJ | RLC 2024

the target network was updated every 128 steps, the experience bu�er size was 10,000. Apart for
the main step-size parameter, the default parameters (set by PyTorch) were used for the Adam
optimizer (Kingma & Ba, 2014).
Centering in the non-linear setting (that is, with DQN) in its current form requires a large value
of ÷ compared to the the tabular or linear versions. The reason is how a minibatch is used in the
implementation of this deep RL algorithm. In line 10 of Algorithm 3, the mean of the TD errors of
the minibatch of transitions is taken. The mean can make the overall gradient for the reward-rate
update very small, so a large value of ÷ can be used.
In our implementations we added two simple optimizations:

1. Make the average-reward estimate completely independent of its initialization: this can be
done using the unbiased constant step-size trick (see Sutton & Barto’s (2018) Exercise 2.7).

2. Propagate the changes to the average-reward estimate faster: this can be done by first
computing the TD error, then updating the reward-rate estimate, then recomputing the TD
error with the new reward-rate estimate, and finally updating the value estimate(s).

These optimizations did not a�ect the overall trends in the results but provided a small yet noticeable
improvement for a tiny computational cost, hence we recommend using them.
For the experiments involving a shift in the problem rewards, the rewards obtained on each problem
variant are not directly comparable. For intuition, imagine the first four rewards in the original
problem be 2,0,3,1. In a variant of the problem with 5 added to all the rewards, the first four
rewards may now appear to be 7,5,8,4. An agent solving the latter problem might trivially appear
better than one solving the former problem even though its fourth reward was relatively lower. To
compare them meaningfully, from the rewards obtained by an agent, we can subtract the constant
that was added in the first place to all the problem’s rewards. That is, we can shift the rewards back
to make fair comparisons across problem variants. This is what we did when presenting the results
of the shifting experiments; this is explicitly denoted by the word “shifted” in the y-axis label.
Figures 8–14 supplement the main trends shown in the main text: the e�ectiveness of centering
increases as the discount factor approaches 1; with reward centering, the algorithms are more robust
to any constant shifts in the rewards; the performance of reward centering is quite robust to the
choice of the parameter ÷.

Figure 8: Parameter studies showing the sensitivity of the two algorithms’ performance on variants
of the Access-Control Queuing domain. The error bars indicate one standard error, which at times is
less than the width of the lines. Far left: Without centering, the performance of Q-learning di�ered
significantly on the di�erent variants over a broad range of the step-size parameter –. Center to
right: With centering, the performance was about the same across the problem variants, and was
quite robust to the choice of its parameter ÷. All the curves correspond to “ = 0.9; the trends were
consistent across other discount factors.

We also report preliminary results of PPO (Schulman et al., 2017) with and without centering.
We chose to test these on the classic Mujoco problems (Todorov et al., 2012). Mujoco domains
are typically implemented as episodic problems; we converted them to continuing problems by (a)
setting the episode-truncation parameter to a very large number, and (b) if applicable, resetting the

2012

RLJ | RLC 2024

Figure 9: Learning curves for Q-learning with and without centering on variants of the PuckWorld
problem when “ = 0.99. The performance without centering was di�erent on each variant while
that with centering was roughly the same. Reward centering also resulted in much faster learning.
These trends were consistent across values of “.

Figure 10: Parameter studies showing the sensitivity of the algorithms’ performance to their pa-
rameters on the PuckWorld domain. Far left: Without centering, Q-learning’s performance was
relatively poor for a large range of –. Center to right: For each discount factor, the performance of
Q-learning with centering was better across a broad range of –.

Figure 11: Parameter studies showing the sensitivity of the algorithms’ performance to variants of
the PuckWorld domain. The error bars indicate one standard error, which at times is less than the
width of the lines. Far left: Without centering, the performance of Q-learning di�ered significantly
on the di�erent variants over a broad range of the step-size parameter –. Center to right: With
centering, the performance was about the same across the problem variants, and was quite robust
to the choice of its parameter ÷. All the curves correspond to “ = 0.99; the trends were consistent
across other discount factors.

2013

RLJ | RLC 2024

Figure 12: Learning curves for Q-learning with and without centering on variants of the Pendulum
problem when “ = 0.8. The performance without centering was di�erent on each variant while that
with centering was roughly the same. Reward centering also resulted in much faster learning. These
trends were consistent across values of “.

Figure 13: Parameter studies showing the sensitivity of the algorithms’ performance to their pa-
rameters on the Pendulum domain. “ = 0.5 was too small to solve this problem. Far left: The
performance of DQN su�ered for discount factors larger than 0.9. Center to right: For each discount
factor, the performance of DQN with centering was better across a broad range of –. Additionally,
the performance was not too sensitive to the parameter ÷.

Figure 14: Parameter studies showing the sensitivity of the algorithms’ performance with “ = 0.8 to
variants of the Pendulum problem. Far left: Without centering, the performance of DQN di�ered
significantly on the di�erent variants. Center to right: With centering, the performance of DQN
was about the same across the problem variants across a large range of the step size –, and was also
quite robust to the choice of ÷.

2014

RLJ | RLC 2024

Figure 15: Learning curves for PPO with and without centering on continuing versions of six Mujoco
domains. The solid lines and the shaded region denote the mean and one standard error over 10
independent runs.

domain to a starting state with a large negative reward if the agent enters an unrecoverable state.
We used value-based centering (10), where ”t corresponds to the advantage estimates computed by
standard PPO.
Figure 15 shows the learning curves for PPO with and without centering. The y-axis shows the
average reward obtained the agent over the last 1000 time steps. As with all the other experiments in
this paper, the evaluation is online—there are no separate training or testing periods. A careful study
will take more time due to the large number of hyperparameters; in our preliminary experiments with
10 runs each, we found that centering results in a slight improvement on all the problems, with the
most pronounced improvements on the Humanoid problem. The step sizes corresponding to average-
reward estimate for the di�erent domains are: Hopper: 1E-4, HalfCheetah: 1E-3, Walker2D: 2E-5,
Swimmer: 5E-5, Humanoid: 1E-2, Ant: 1E-4.

D Connections to Related Approaches

Concurrently with Devraj and Meyn (2021), Schneckenreither (2020) realized the Laurent series
decomposition suggests that an explicit estimate of the average reward can completely remove the
o�set. So they proposed an algorithm which to estimate and subtract the average reward, with
two important di�erences: (a) the average-reward estimate is updated only after non-exploratory
actions, and (b) the algorithm has two discount factors to aim for the strongest optimality cri-
terion—Blackwell optimality. Schneckenreither did not provide any convergence result for their
algorithm. However, they analyzed that if the algorithm converged to the desired fixed point, then
the resulting policy would be (Blackwell-)optimal. Wan et al. (2021) pointed out the average-reward
estimate can be updated at every time step, including ones with exploratory actions, and showed
almost-sure convergence of their algorithms. Combining those insights with Devraj and Meyn’s, we
show the convergence of Q-learning with value-based reward centering.
Reward centering and the advantage function have orthogonal benefits. The advantage function
benefits the actor by reducing the variance of the updates in the policy space (Sutton & Barto,
2018; Schulman et al., 2016). On the other hand, reward centering benefits the critic’s or baseline’s
estimation by eliminating the need to estimate the large state-independent constant o�set. Both
the quantities involved in the advantage function—a“

fi(s, a) = q“
fi(s, a) ≠ v“

fi(s) ’s, a—have the large
state-independent o�set r(fi)/(1 ≠ “). The net e�ect of the o�set is zero when they are subtracted.
But the key point is that both the state- and action-value estimates include the large o�set. Reward

2015

RLJ | RLC 2024

centering removes the need to estimate the large o�set for both the state- and action-value function,
which simplifies the critic-estimation problem. The actor update is left unchanged with reward
centering because the advantage function itself remains unchanged: ã“

fi(s, a) = q̃“
fi(s, a) ≠ ṽ“

fi(s),
because q̃“

fi(s, a) = q“
fi(s, a)≠r(fi)/(1≠“) and ṽ“

fi(s) = v“
fi(s)≠r(fi)/(1≠“). Hence, we expect reward

centering to benefit all the algorithms that estimate values, which include all actor-critic methods
that involve advantage estimation.
Dividing all the rewards with a (potentially changing) scalar number is typically referred to as
reward scaling (see, e.g., Engstrom et al., 2020). Just like reward centering, reward scaling does
not change the ordering of policies in a continuing problem. Scaling reduces the spread of the re-
wards, centering brings them close to zero, both of which can be favorable to complex function
approximators such as artificial neural networks that are used for value estimation starting from
a close-to-zero initialization. The popular stable_baselines3 repository scales (and clips4) the re-
wards by a running estimate of the variance of the discounted returns (github.com/DLR-RM/stable-
baselines3/blob/master/stable_baselines3/common/vec_env/vec_normalize.py#L256). Mean-
centering the rewards as well would be beneficial for continuing domains. Note that the mechanism
of computing the mean and variance is more complicated in the o�-policy setting than the on-policy
setting. Our TD-error-based technique is likely part of the final solution for the o�-policy set-
ting. Simply maintaining a running estimate of the variance (as in the stable_baselines’ approach)
introduces a bias. As mentioned earlier, Schaul et al.’s (2021) technique is a good starting point.
Reward centering can be seen as reward shaping (Ng et al., 1999) with a constant state-independent
potential function: �(s) = r(fi)/(1 ≠ “) ’s. Their Theorem 1 then reiterates that reward centering
does not change the optimal policy of the problem. A possible drawback of reward shaping is that
fully specifying the potential-based shaping function can be tricky, especially for problems with large
state spaces. In the case of reward centering this is relatively easy: the potential function is constant
across the entire state space, and we know how to learn the average reward reliably from data.
Finally, we note that the idea of shifting rewards has been explored in episodic problems. Sun et
al.’s (2022) experiments show that subtracting a suitable constant from all the rewards can help
in some episodic problems. However, we do not expect shifting or centering to help in general in
episodic problems: shifting all the rewards by a constant does not change a continuing problem, but
can change episodic problems (e.g., the gridworld example from the final section of the main text).

4Reward clipping in general changes the problem. Blinding the agent from large rewards can impose a performance
ceiling or make some games impossible to solve (Schaul et al.’s (2021) Section 4.3 discusses this in the context of Atari
problems).

2016

	Cover
	Title Page
	Editorial Board
	Preface
	Program Committee
	Senior Area Chairs
	Senior Reviewers
	Technical Reviewers
	Student Volunteers
	Table of Contents
	Co-Learning Empirical Games & World Models
	Improving Thompson Sampling via Information Relaxation for Budgeted Multi-armed Bandits
	Graph Neural Thompson Sampling
	JoinGym: An Efficient Join Order Selection Environment
	An Open-Loop Baseline for Reinforcement Learning Locomotion Tasks
	Online Planning in POMDPs with State-Requests
	A Recipe for Unbounded Data Augmentation in Visual Reinforcement Learning
	BetaZero: Belief-State Planning for Long-Horizon POMDPs using Learned Approximations
	Non-adaptive Online Finetuning for Offline Reinforcement Learning
	Guided Data Augmentation for Offline Reinforcement Learning and Imitation Learning
	Towards Principled, Practical Policy Gradient for Bandits and Tabular MDPs
	Unifying Model-Based and Model-Free Reinforcement Learning with Equivalent Policy Sets
	The Role of Inherent Bellman Error in Offline Reinforcement Learning with Linear Function Approximation
	Learning Action-based Representations Using Invariance
	Cyclicity-Regularized Coordination Graphs
	Assigning Credit with Partial Reward Decoupling in Multi-Agent Proximal Policy Optimization
	OCAtari: Object-Centric Atari 2600 Reinforcement Learning Environments
	SplAgger: Split Aggregation for Meta-Reinforcement Learning
	A Tighter Convergence Proof of Reverse Experience Replay
	Learning to Optimize for Reinforcement Learning
	Multi-view Disentanglement for Reinforcement Learning with Multiple Cameras
	Planning to Go Out-of-Distribution in Offline-to-Online Reinforcement Learning
	Surprise-Adaptive Intrinsic Motivation for Unsupervised Reinforcement Learning
	Mitigating the Curse of Horizon in Monte-Carlo Returns
	A Simple Mixture Policy Parameterization for Improving Sample Efficiency of CVaR Optimization
	ROIL: Robust Offline Imitation Learning without Trajectories
	Harnessing Discrete Representations for Continual Reinforcement Learning
	Three Dogmas of Reinforcement Learning
	Policy Gradient with Active Importance Sampling
	The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough
	Physics-Informed Model and Hybrid Planning for Efficient Dyna-Style Reinforcement Learning
	Trust-based Consensus in Multi-Agent Reinforcement Learning Systems
	Bidirectional-Reachable Hierarchical Reinforcement Learning with Mutually Responsive Policies
	Informed POMDP: Leveraging Additional Information in Model-Based RL
	An Optimal Tightness Bound for the Simulation Lemma
	Best Response Shaping
	A Provably Efficient Option-Based Algorithm for both High-Level and Low-Level Learning
	SwiftTD: A Fast and Robust Algorithm for Temporal Difference Learning
	The Cliff of Overcommitment with Policy Gradient Step Sizes
	Multistep Inverse Is Not All You Need
	Contextualized Hybrid Ensemble Q-learning: Learning Fast with Control Priors
	Sequential Decision-Making for Inline Text Autocomplete
	Exploring Uncertainty in Distributional Reinforcement Learning
	Robotic Manipulation Datasets for Offline Compositional Reinforcement Learning
	Dissecting Deep RL with High Update Ratios: Combatting Value Divergence
	Demystifying the Recency Heuristic in Temporal-Difference Learning
	On the consistency of hyper-parameter selection in value-based deep reinforcement learning
	Value Internalization: Learning and Generalizing from Social Reward
	Mixture of Experts in a Mixture of RL settings
	Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning
	On Welfare-Centric Fair Reinforcement Learning
	Inverse Reinforcement Learning with Multiple Planning Horizons
	Constant Stepsize Q-learning: Distributional Convergence, Bias and Extrapolation
	More Efficient Randomized Exploration for Reinforcement Learning via Approximate Sampling
	Reinforcement Learning from Human Feedback without Reward Inference: Model-Free Algorithm and Instance-Dependent Analysis
	A Natural Extension To Online Algorithms For Hybrid RL With Limited Coverage
	Tiered Reward: Designing Rewards for Specification and Fast Learning of Desired Behavior
	Enabling Intelligent Interactions between an Agent and an LLM: A Reinforcement Learning Approach
	An Idiosyncrasy of Time-discretization in Reinforcement Learning
	Dreaming of Many Worlds: Learning Contextual World Models aids Zero-Shot Generalization
	Policy Gradient Algorithms with Monte Carlo Tree Learning for Non-Markov Decision Processes
	Offline Diversity Maximization under Imitation Constraints
	Zero-shot cross-modal transfer of Reinforcement Learning policies through a Global Workspace
	Stabilizing Extreme Q-learning by Maclaurin Expansion
	Combining Automated Optimisation of Hyperparameters and Reward Shape
	Sample Complexity of Offline Distributionally Robust Linear Markov Decision Processes
	PASTA: Pretrained Action-State Transformer Agents
	Cost Aware Best Arm Identification
	ICU-Sepsis: A Benchmark MDP Built from Real Medical Data
	When does Self-Prediction help? Understanding Auxiliary Tasks in Reinforcement Learning
	ROER: Regularized Optimal Experience Replay
	Combining Reconstruction and Contrastive Methods for Multimodal Representations in RL
	RL for Consistency Models: Reward Guided Text-to-Image Generation with Fast Inference
	A Super-human Vision-based Reinforcement Learning Agent for Autonomous Racing in Gran Turismo
	Bad Habits: Policy Confounding and Out-of-Trajectory Generalization in RL
	Learning Abstract World Models for Value-preserving Planning with Options
	Verification-Guided Shielding for Deep Reinforcement Learning
	Learning Discrete World Models for Heuristic Search
	Distributionally Robust Constrained Reinforcement Learning under Strong Duality
	Representation Alignment from Human Feedback for Cross-Embodiment Reward Learning from Mixed-Quality Demonstrations
	Revisiting Sparse Rewards for Goal-Reaching Reinforcement Learning
	Policy-Guided Diffusion
	Agent-Centric Human Demonstrations Train World Models
	Can Differentiable Decision Trees Enable Interpretable Reward Learning from Human Feedback?
	Imitation Learning from Observation through Optimal Transport
	Light-weight Probing of Unsupervised Representations for Reinforcement Learning
	Quantifying Interaction Level Between Agents Helps Cost-efficient Generalization in Multi-agent Reinforcement Learning
	Shield Decomposition for Safe Reinforcement Learning in General Partially Observable Multi-Agent Environments
	Reward Centering
	MultiHyRL: Robust Hybrid RL for Obstacle Avoidance against Adversarial Attacks on the Observation Space
	Investigating the Interplay of Prioritized Replay and Generalization
	Towards General Negotiation Strategies with End-to-End Reinforcement Learning
	PID Accelerated Temporal Difference Algorithms
	States as goal-directed concepts: an epistemic approach to state-representation learning
	Posterior Sampling for Continuing Environments
	Reinforcement Learning from Delayed Observations via World Models
	Offline Reinforcement Learning from Datasets with Structured Non-Stationarity
	Resource Usage Evaluation of Discrete Model-Free Deep Reinforcement Learning Algorithms
	D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning
	Weight Clipping for Deep Continual and Reinforcement Learning
	A Batch Sequential Halving Algorithm without Performance Degradation
	Causal Contextual Bandits with Adaptive Context
	Policy Architectures for Compositional Generalization in Control
	Semi-Supervised One Shot Imitation Learning
	Cross-environment Hyperparameter Tuning for Reinforcement Learning
	Human-compatible driving agents through data-regularized self-play reinforcement learning
	Inception: Efficiently Computable Misinformation Attacks on Markov Games
	Learning to Navigate in Mazes with Novel Layouts using Abstract Top-down Maps
	Boosting Soft Q-Learning by Bounding
	Bandits with Multimodal Structure
	Bounding-Box Inference for Error-Aware Model-Based Reinforcement Learning
	Non-stationary Bandits and Meta-Learning with a Small Set of Optimal Arms
	Optimizing Rewards while meeting -regular Constraints

