
Toward Generate-and-Test Algorithms
for Continual Feature Discovery

by

Parash Rahman

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Parash Rahman, 2021

Abstract

The backpropagation algorithm is a fundamental algorithm for training mod-

ern artificial neural networks (ANNs). However, it is known the backpropa-

gation algorithm performs poorly on changing problems. We demonstrate the

backpropagation algorithm can perform poorly on a clear, generic, changing

task. The task is online meaning the agent learns from one sample at a time

from a stream of samples. The task is nonstationary since the sample distri-

bution regularly changes. We call it the generic continual feature discovery

task (GCFD), as it is sufficiently difficult that the backpropagation algorithm

must regularly discover new features to perform well.

We propose an explanation for the poor performance of the backpropaga-

tion algorithm on the GCFD task. The backpropagation algorithm consists

of two phases: initializing an ANN with small random weights, and using

stochastic gradient descent to update the weights with data. It is known that

the initialization step is crucial to the fast discovery of useful features with the

backpropagation algorithm, and a typical initialization step sets the weights to

small, random numbers. We corroborate that the small, random weight initial-

ization step leads to conditions that speed up the discovery of useful features

with the backpropagation algorithm. Then, we show that these conditions are

not maintained during the GCFD task. Without the maintenance of these

conditions, there is little reason to expect the backpropagation algorithm to

quickly discover useful features for new sample distributions.

We demonstrate that the backpropagation algorithm’s performance on the

ii

GCFD task can be significantly improved with generate-and-test algorithms.

The generate-and-test algorithms replace the least useful features of the ANN

with features that have small, random weights. By regularly introducing fea-

tures with small random weights, we restore conditions the backpropagation

algorithm can use to quickly discover useful features for new data distributions.

iii

To my family,

who have kept close despite being far

iv

There is a great deal of pain in life and perhaps the only pain that can be

avoided is the pain that comes from trying to avoid pain.

– R. D. Laing, 1927-1989.

v

Acknowledgements

I am indebted to my supervisors Richard Sutton and Joseph Modayil. Both

have shown great patience during my growth, and both have set valuable

expectations that I will continue to hone. Their dedication to ideas, clarity,

and proper experimentation is inspiring. Each conversation with them was a

blast of awareness that reflected their wisdom and care about research.

I also acknowledge the regulars of Rich’s Representation Group: Rupam

Mahmood, Adam White, Richard Sutton, Amir, Banafshe, Chen, Fernando,

Katya, Matt, Shibhansh. The feedback and discussions inside and outside the

meetings were motivating and helped shape this thesis.

I am grateful to the many that listened to my thoughts and that have

reviewed my writing. Thanks to all my labmates in in the AMII lab and those

in the RLAI lab for unforgettable memories.

Finally, thank you to my parents for hearing me out about my work.

vi

Contents

1 Introduction 1

2 Background 10
2.1 Quick Notation Overview . 10
2.2 Task Taxonomy . 11
2.3 Representations and Features 13
2.4 The Backpropagation Algorithm 15

3 Properties for Fast Feature Discovery 18
3.0.1 Activation Function Derivatives 19
3.0.2 Feature Diversity . 21

3.1 Initial Feature Diversity: Experiment 23
3.2 Initial Feature Diversity: Results 25
3.3 Initial Feature Diversity: Conclusions 27
3.4 Summary of Properties for Fast Learning 27

4 Evaluation for Continual Feature Discovery 29
4.1 Description of the GCFD Task 31
4.2 Evaluation for Continual Feature

Discovery . 33
4.3 Summary . 35

5 Continual Feature Discovery with the Backpropagation Algo-
rithm 37
5.1 Experiment Description . 39
5.2 Results . 42
5.3 Conclusions . 49

6 Continual Feature Discovery with Generate-and-Test Algo-
rithms 53
6.1 Generate-and-Test Algorithms 56
6.2 Experiment Description . 57
6.3 Experiment Results . 58
6.4 Experiment Conclusions . 64

7 Conclusion 69

Bibliography 72

vii

List of Tables

3.1 Optimized step sizes. 25

5.1 Optimized step sizes. 43

viii

List of Figures

1.1 A diagram of a 2-layer ANN. 2

2.1 A plot of some activation functions. 14
2.2 These plots show derivatives of various activation functions. . 17

3.1 These plots show results from investigating how an ANN’s ini-
tial feature diversity affects feature discovery performance. . . 26

5.1 These plots have error curves from subtasks 1, 30, 1,000, and
4,000 for size-15 ANNs. 44

5.2 These plots have error curves from subtasks 1, 30, 1,000, and
4,000 for size-40 ANNs. 45

5.3 The backpropagation algorithm’s average errors at the end of
subtasks on the generic continual feature discovery task. . . . 46

5.4 These plots show average activation function derivative at the
beginning of subtasks with the backpropagation algorithm. . . 47

5.5 These plots show average activation function derivative scaled
by the representation step size at the beginning of subtasks with
the backpropagation algorithm. 48

5.6 These plots show the proportion of calcified features at the be-
ginning of subtasks with the backpropagation algorithm. . . . 49

6.1 These plots show the learning curves on the last subtask with
the backpropagation algorithm and generate-and-test algorithms
(15-feature ANNs). 59

6.2 These plots show the learning curves on the last subtask with
the backpropagation algorithm and generate-and-test algorithms
(40-feature ANNs). 60

6.3 These plots show the errors at the end of subtasks with the
backpropagation algorithm and generate-and-test algorithms. . 61

6.4 These plots show the average activation function derivatives at
the beginning of each subtask when using the backpropagation
algorithm and generate-and-test algorithms. 63

6.5 These plots show the average proportion of calcified features
at the beginning of subtasks when using the backpropagation
algorithm and generate-and-test algorithms. 65

6.6 These plots show how random generate-and-test and partial
random replace perform compared to a fixed-representation ANN. 66

ix

Chapter 1

Introduction

A representation provides intelligent agents with a useful summary of the

agent’s input. A summary of the agent’s input can be used by the agent’s other

functions, which we call output functions. Output functions can serve various

purposes including estimation, prediction, action selection or classification. A

useful representation can summarize the agent’s input in a way that allows

for accurate calculations by the output functions. Output functions can be

considered simpler functions (e.g. linear functions) than the representation

(e.g. a complex nonlinear function). The representation does much of the

difficult calculation needed for an output function’s output.

Representations can be viewed as a composition of smaller functions called

features. A feature takes in input signals and outputs a scalar summary of

these input signals. The input signals for a feature can come from the agent’s

input, the output of other features, or some other source internal to the agent.

The scalar summaries from features are concatenated together or combined in

some way to form the representation’s summary of the agent’s input. A feature

does not need to contribute directly to the representation’s summary of the

agent’s input, but can indirectly contribute by feeding its scalar summary

into other features. Artificial neural networks (ANNs) (see Figure 1.1 for an

example), neatly fall into this described view of representations. ANNs consist

1

of features that together output a vector summary to a simpler output function

called the output layer.

Figure 1.1: A 2-layer artificial neural network with three features
(f1, f2, and f3), two input signals (i1, and i2), and one output function (o).
We focus on discovering useful features for this 2-layer architecture.

Representation learning algorithms can find useful representations that

would otherwise be difficult for humans to handcraft. By considering a repre-

sentation as consisting of features, learning a useful representation is the same

as learning useful features. Generate-and-test algorithms, which are one of the

key algorithm types discussed in this thesis, make the search for useful features

explicit. Generate-and-test algorithms generate potentially useful features to

replace the least useful features in an ANN (as deemed by a heuristic). In the

past, generate-and-test algorithms have been used to learn functions that can

be broken up into parts including representations (Blum and Langley, 1997;

Guyon and Elisseeff, 2003; Mahmood and Sutton, 2013), Boolean functions

(Kaelbling, 1990), and rule-based systems (Booker et al., 1989). The back-

propagation algorithm, another key algorithm investigated in this thesis, can

also be viewed as a generate-and-test algorithm. A modern usage of the back-

propagation algorithm consists of two phases: initializing the ANN features

with small, random weights, and using stochastic gradient descent to update

the ANN weights with samples. The backpropagation algorithm is a generate-

and-test algorithm that initially generates random features, and then regularly

replaces features with incrementally modified versions (Mahmood and Sutton,

2013). The generation and testing steps can be seen as two separate steps

2

important for representation learning: discovery of useful new features, and

retention of useful current features. We refer to a learning algorithm’s ability

to discover useful new features as feature discovery.

There have been successful artificial neural network (ANN) learning algo-

rithms for offline supervised learning tasks, tasks where learning algorithms

are provided all data upfront to train a learner with. The backpropagation

algorithm is a fundamental algorithm for offline supervised learning tasks, and

has been used to train ANNs for the difficult tasks of helicopter flying, im-

age recognition, and playing the game of Go (Ng et al., 2006; Cireşan et al.,

2011; Silver et al., 2016). However, an offline supervised learning task is a

limited problem formulation for learners that regularly receive samples from a

changing sample distribution.

Updating representations regularly to account for changes in the stream of

samples can yield better representations. New samples can hold information

previously unknown or contradictory to past samples, and new samples are

abundant during the operation of the agent (Sutton and Whitehead, 1993).

If the new samples are sufficiently different from past samples, the agent may

need to discover new features to adapt. The ability for a learning algorithm

to discover useful features for new sample distributions is key for adapting

to new situations. We call this ability to find useful features for new sample

distributions continual feature discovery. Continual feature discovery can be

seen as a repeated application of feature discovery, the ability to find useful

features. In this thesis, we investigate algorithms for their continual feature

discovery.

Continual supervised learning tasks are useful for evaluating learning algo-

rithms that must learn new things regularly for good performance. Continual

supervised learning tasks are supervised learning tasks that regularly provide

the learner with new samples where the samples can come from new sample

3

distributions. The number of times the learner is provided new samples is ar-

bitrarily large, and can be considered potentially infinite. Past samples are not

preserved in this task type, but the learner may choose to save copies of the

samples in its memory. Since the sample distribution changes in a continual

supervised learning task, the task is nonstationary.

To make progress on algorithms that scale to arbitrarily long continual

supervised learning tasks, we focus on algorithms that use a bounded amount

of computation for each new sample and that use a bounded amount of mem-

ory. These algorithms are known as strictly-incremental algorithms (Sutton

and Whitehead, 1993). The backpropagation algorithm, described above, is a

strictly-incremental algorithm. To clearly evaluate strictly-incremental algo-

rithms, we use online supervised learning tasks, tasks that provide the learning

algorithm with one sample at a time. Online tasks evaluate performance on

each new sample. Establishing algorithms for online nonstationary supervised

learning tasks can aid learners that learn from a large continuous stream of

samples (e.g. monitoring systems, reinforcement learning systems, or robots).

Our requirement of restricting the learning algorithm to have a bounded mem-

ory disqualifies our consideration of algorithms that depend on an unbounded

memory to perform well. Fahlman and Lebiere (1989) presented the cascade

correlation architecture (CCA) that added new features regularly to learn, but

never removed features. The CCA without modification could potentially use

an arbitrarily large amount of memory in an arbitrarily long, changing task.

Fu et al. (1996) presented a CCA learning algorithm that emphasized a mem-

ory limit that kept the memory usage bounded. In a continual supervised

learning task, the algorithm’s performance after the memory usage has been

reached is more interesting since the learner may operate for an arbitrarily

long amount of time.

Contrary to our use of online supervised learning tasks, many continual

4

supervised learning tasks used in the literature regularly provide the agent

with multiple samples at once (Aljundi et al., 2019), sometimes, providing the

learner with extra information about when the sample distribution changes

(e.g. Whenever the learner receives a new set of samples, it is assumed the new

data comes from a new sample distribution) (Rusu et al., 2016; Kirkpatrick

et al., 2017; Shin et al., 2017; Yoon et al., 2018). Hayes et al. (2018) terms

these tasks incremental-batch tasks. Incremental-batch tasks, like the classical

offline supervised learning tasks, evaluate performance on unseen samples to

test for generalization. Many algorithms proposed for incremental-batch tasks

are not suitable for online supervised learning tasks, since they require extra

knowledge about when the sample distribution changes.

Continual feature discovery can be evaluated separately from another sub-

ject that is often studied in the continual supervised learning literature: catas-

trophic interference. An ANN training with the backpropagation algorithm is

said to experience catastrophic interference when its performance drops sud-

denly and completely on old sample distributions after learning from a new

sample distribution (McCloskey and Cohen, 1989). Since the introduction of

the concept of catastrophic interference, many works have proposed methods

to mitigate the forgetting in ANNs trained with the backpropagation algorithm

(Fahlman and Lebiere, 1989; French, 1999; Aljundi et al., 2017; Kirkpatrick

et al., 2017; Yoon et al., 2018; Golkar et al., 2019; Rajasegaran et al., 2019;

Rolnick et al., 2019). Methods proposed to reduce catastrophic interference

include preventing changes to features that were adapted for past distribution

(Fahlman and Lebiere, 1989; Draelos et al., 2017), reducing the amount of

changes to features that were adapted for past distribution (McCloskey and

Cohen, 1989; Kirkpatrick et al., 2017), and updating features with past sam-

ples (Rolnick et al., 2019). However, Kemker et al. (2017) pointed out many

methods for reducing catastrophic interference reduced the learning speed on

5

new sample distributions showing how these methods prioritize preserving per-

formance on past sample distributions over performance on new sample dis-

tributions. French (1999) noted that the process that focuses on preserving

knowledge about past sample distributions can be considered separately from

the ability to learn from new sample distributions. We embrace this idea,

and restrict our investigation to studying how well a learning algorithm can

discover useful features for new sample distributions.

Our first contribution in this thesis is a task that clearly tests a learning

algorithm’s continual feature discovery: the generic continual feature discov-

ery (GCFD) task (Chapter 4). The GCFD task was inspired by other online

nonstationary supervised learning tasks that regularly change the sample dis-

tribution and that use samples generated from a generic data distribution

(Mermillod et al., 2012; Sutton, 2014; Sahoo et al., 2018). One can abun-

dantly generate samples with a generic process, and the sample generating

process can be transparently tweaked to change what abilities are tested for.

The GCFD task specifically requires regularly discovering useful features for

good performance. The Syn8 task used by Sahoo et al. (2018) was the most

similar task found in the literature, but it purposely changes the difficulty of

learning new sample distributions in addition to requiring new features to be

discovered. On the other hand, the GCFD task only tests how well learning

algorithms continually discover useful features, where learning useful features

for new sample distributions is approximately as difficult as learning useful

features for all other sample distributions.

Our second contribution in this thesis is investigating the backpropaga-

tion algorithm’s continual feature discovery performance on the GCFD task

(Chapter 5). Sutton (2014) presented A. R. Mahmood’s results showing the

backpropagation algorithm slows down in learning from new sample distribu-

tions as the sample distribution changes. We expand on this result by trying

6

various sized ANNs and multiple activation functions to investigate whether

there is a slowdown in the discovery of useful feature with various ANN archi-

tectures on the GCFD task. Other works that investigate the backpropagation

algorithm’s performance on new sample distributions bring little attention to

this reported fundamental weakness of the backpropagation algorithm. Sa-

hoo et al. (2018) focused on showing that the backpropagation algorithm

slowed down when training deep ANNs on new sample distributions and at-

tributed the slowness to the large depth of the ANNs. In contrast, we highlight

the backpropagation algorithm’s significant feature discovery slowdown with a

shallow 2-layer ANN. Also, we found the SoftSign activation function, a lesser

used activation function function in research and practice, led to significantly

better continual feature discovery performance than the performance with the

more commonly considered tanh, logistic and ReLU activation functions.

We investigated how two properties set by the backpropagation algorithm’s

initialization, the activation function derivatives and the feature diversity,

change over the course of learning. In Chapter 3, we review the empirical evi-

dence of others and ourselves that indicates the activation function derivatives

and the feature diversity affect the learning speed with the backpropagation

algorithm. In Chapter 5, we see how these key properties change when the

backpropagation algorithm is used for the GCFD task. We find these prop-

erties significantly decrease during the learning, which can help explain the

backpropagation algorithm’s poor continual feature discovery.

Finding out the backpropagation algorithm slows in discovering useful fea-

tures for new sample distributions led us to our third contribution: demon-

strating that generate-and-test algorithms can be used to quicken the continual

feature discovery of the backpropagation algorithm (Chapter 6). A generate-

and-test algorithm regularly replaces the least useful features with potentially

useful features. In our case, we wished to regularly replace features that were

7

deemed to be least useful (as deemed by a heuristic) with features that con-

tribute to fast feature discovery with the backpropagation algorithm (features

with small, random weights). As mentioned earlier, the backpropagation algo-

rithm’s feature discovery speed is dependent on its feature weight initialization

step that initializes features with small, random weights. By regularly intro-

ducing features with small, random weights, we found the backpropagation

algorithm discovered useful features quicker when learning from new sample

distributions in the GCFD task. This improvement in feature discovery speed

for new sample distributions shows that generate-and-test algorithms can ben-

efit the continual feature discovery performance of the backpropagation algo-

rithm.

Past works have suggested algorithms similar to generate-and-test algo-

rithms to adapt other learning algorithms from a stationary task to a non-

stationary task. Self-organizing networks are a type of representation that

have units called neurons that should be initialized with high diversity for fast

learning. As a self-organizing network is updated, the diversity amongst the

neurons decreases making it slow for the self-organizing map to adapt to new

sample distributions (Fritzke, 1997). Fritzke (1997) proposed to repeatedly

replace the least useful neurons with random neurons to quickly adapt to new

sample distributions. The need for diversity is recognized for evolutionary algo-

rithms. Evolutionary algorithms are slow to change potential solutions called

genes. Initial diversity among genes can greatly improve the speed in which

evolutionary algorithms find a good solution (Mauldin, 1984). Therefore, it

is recommended for evolutionary algorithms operating on nonstationary tasks

to have an extra step where some genes are killed off to be replaced by fully

random genes (Mauldin, 1984; Moriarty, 1997; Cui et al., 2005). An ANN

that updates with the backpropagation algorithm is yet another learner that

is sensitive to initial conditions of its units (its features). The initial condi-

8

tions that enable quick learning with the backpropagation algorithm include

diversity of the features and high, unstable activation function derivatives. We

show it can be effective to use generate-and-test algorithms to maintain these

conditions.

Continual feature discovery is a useful ability of representation learning

algorithms that expect to learn from new sample distributions. By being

able to discover useful features for accurate estimations, the agent can have

a representation that adapts to new situations. We used the GCFD task to

clearly demonstrate that the backpropagation algorithm can have significantly

poor continual feature discovery. We also showed that the generate-and-test

algorithms can significantly improve the backpropagation algorithm’s contin-

ual feature discovery performance. More work will be needed to establish

generate-and-test algorithms that reliably improve continual feature discov-

ery performance, but this thesis shows that generate-and-test algorithms hold

potential.

9

Chapter 2

Background

The background material in this chapter will go over the concepts needed

for understanding later chapters and the contributions of this thesis. It is

recommended to read Quick Notation Overview section, but the other parts

may be skipped if the reader has a good grasp on the concepts.

First, we discuss some notation conventions used in this thesis. Then,

we discuss different types of supervised learning tasks to present a definition

of online nonstationary supervised learning tasks. We define different parts of

the artificial neural network including the representation, the output layer, and

the features. We then describe how an artificial neural network can be trained

with the backpropagation algorithm for an online nonstationary supervised

learning task.

2.1 Quick Notation Overview

A prerequisite for this thesis includes basic linear algebra and knowledge of a

gradient and a derivative. There are some random variables and basic prob-

ability theory used in the explanations. We use lowercase letters to represent

scalars, bold lowercase letters for vectors, and bold uppercase letters for ma-

trices. The · operator is the dot product operator between two vectors.

10

2.2 Task Taxonomy

In this thesis, we used supervised learning tasks to test the learner’s learning

capabilities. In a supervised learning task, the learner receives samples to

learn from. Each sample contains an input and an associated target. The goal

of the learner is to accurately estimate a sample’s target given the sample’s

input. The learner can use the error between the true target and its estimate

to improve its estimation performance.

Supervised learning tasks require training samples generated with a target

function, the function that maps a sample’s input to the sample’s target. If the

targets are scalars, the task is a regression task. If the targets are a category,

the task is a classification task. In this thesis, we are focused on regression

tasks. How many samples the learner is given at a time, and how often the

learner receives samples, can determine the type of supervised learning task.

Online supervised learning tasks provide the learner with one sample at a

time. The samples are provided to the learner in a sequence. First, the learner

receives the input of a sample; using the sample’s input, the learner estimates

the sample’s target; then, the leaner receives the sample’s true target; with

information on the true target, the learner can perform a learning update; and

the process repeats itself for the next sample. The online supervised learning

task requires an input and a target for each sample. It is a task that reflects

the demands of systems that receive data and feedback frequently. Strictly

incremental learning algorithms, learning algorithms have a constant bound

on the amount of computation used per sample and the amount of memory

used by the learner during its operation (Sutton and Whitehead, 1993), are

suited for online supervised learning tasks when the task can be arbitrarily

long.

Nonstationary supervised learning tasks are supervised learning tasks where

11

the sample distribution changes during the task. Stationary supervised learn-

ing tasks are supervised learning tasks where the sample distribution never

changes. Nonstationary is a general word that refers to a large class of changes.

To narrow down the type of sample distribution changes the learner experi-

ences, the change scheme should be specified. Some nonstationary supervised

learning tasks change the task once for demonstrative purposes (Srivastava

et al., 2013; Goodfellow et al., 2013). Other nonstationary supervised learn-

ing tasks regularly change the distribution throughout the learner’s operation.

How much the distribution changes is also important to specify. The distri-

bution can change gradually over time, abruptly, or both. Elwell and Polikar

(2011) provide a clear review of some nonstationary tasks.

Offline supervised learning tasks are different from their online version. In

the offline supervised learning task, the learner learns from a separate set of

samples than the set the learner is tested on. Offline supervised learning tasks

encourage learners to perform well on unseen data without learning from the

data afterwards (Goodfellow, 2016). It is a task that reflects a system that

does not receive feedback during crucial operating times. The system is not

expected to learn from new samples. Offline supervised learning learning tasks

are not relevant to this thesis, as we are interested in learners that receive

feedback for every sample and can adapt to new samples.

Recent works have constructed a new type of task that has attributes

of both online supervised learning tasks and offline supervised learning tasks.

The tasks are known as online continual learning tasks. The descriptor “online

continual learning” is misleading as the task is not online as defined by past

online learning tasks where the learner receives a single sample at a time

(Sutton and Whitehead, 1993; Hoi et al., 2018). In an online continual learning

task, the learner receives a sequence of sample sets to train on, and each sample

set may be sampled from a different distribution. In between each consecutive

12

pair of training sample sets, the learner is tested for performance on a testing

sample set. The testing sample sets can test the learner on sample distributions

different from the training sample sets. For example, the learner can be tested

for how well it performs on samples from all past sample distributions. The

online continual learning task is not relevant to this thesis, because we are

interested in tasks where the learner receives a stream of samples, not a stream

of sample sets. Also, we are interested in systems that can learn from every

sample it receives.

The experiments in this thesis test strictly incremental algorithms on on-

line, nonstationary supervised learning tasks. The specific target function and

nonstationary changes were determined by what the learner is being tested for.

More details of how and what we test with our task are presented in Chapter

4.

2.3 Representations and Features

On supervised learning tasks, learners can use a representation to make accu-

rate estimates. The representation transforms a sample’s input into a summary

that emphasizes the useful parts for estimation. For example, a system may

be able to recognize an image has a cat in it due to the representation empha-

sizing triangular ears and slit pupils. Traditionally, representations were hand

engineered based on expert knowledge or based on successful general proper-

ties. Human experts may know how to map each input pattern to its target,

but on some tasks, like image recognition, human experts have been unable

to handcraft useful representations. As a result, there has been a growing

demand for learning representations.

There are many types of representations, but we focus on the representation

within an artificial neural network (ANN). An ANN’s representation consists

of a fixed set of features where each feature takes input signals and outputs a

13

scalar summary of the signals. Features in a shallow ANN only take in input

from a sample. Features in a deep ANN can also take in output from other

features. In this thesis, we focus on shallow artificial neural networks.

In a shallow ANN, the number of features N ∈ N is fixed, and the output

of the representation is a vector f ∈ RN . The output of the ith feature fi,

which is also the ith entry of f , is calculated by the following expression:

fi = σ(input ·wi)

where input ∈ Rm is the sample’s input vector, wi ∈ Rm is the ith fea-

ture’s weight vector, and σ is a scalar-to-scalar function called the activation

function. A feature is considered a semilinear function as there is a linear

operation within the activation function that is typically nonlinear. The ac-

tivation function can be almost any function, but common choices include:

tanh, logistic (logistic(x) = 1
1+e−x), ReLU (ReLU(x) = max(0, x)), and Soft-

Sign (SoftSign(x) = x
1+|x|). The functions are shown in Figure 2.1. Properly

setting each feature’s weight vector is crucial for useful representations.

−10 −5 5 10

−1

1

2

3

logistic

tanh

ReLU

SoftSign

x

σ(x)

Figure 2.1: A few activation functions are shown.

The output layer of an artificial neural network uses the feature output

vector f to make the final estimate. With useful features, the representation’s

14

output f is sufficiently descriptive and a linear function over f can yield accu-

rate estimates. The output layer is this linear function, and it can be learned

or fixed. The estimation output by the learner is retrieved from the feature

outputs with the following expression:

estimate = wo0 +
N∑
i=1

fiw
o
i

where woi for all 1 ≤ i ≤ N are the output weights and wo0 is the output bias.

A feature’s output weight is the woi that multiplies the feature’s output fi.

2.4 The Backpropagation Algorithm

One way to learn the weights of an artificial neural network is with the back-

propagation algorithm. In this procedure, there are two phases: initializing

the features with small weights and using samples to adjust the weights with

stochastic gradient descent. First we will define the stochastic gradient descent

steps and then review why the initialization step is important.

The algorithm for updating the weights with the gradient for each sample

is known as stochastic gradient descent. For each sample, the gradient of the

sample’s error with respect to the weights is calculated. The gradient reveals

how to change the weights to steeply increase the error if the weights were to be

modified by an infinitesimally small amount. To approximately decrease the

error with the gradient, a small-scaled weight update is made in the opposite

direction of the gradient.

For a shallow ANN, and a mean squared error between the estimate and a

sample’s target, (target− estimate)2, stochastic gradient descent updates the

ith feature’s weight vector wi with the second update derived from the first:

wi ← wi + α
∂(target− estimate)2

∂wi

wi ← wi + 2α(target− estimate)woi
dσ(wi · input)
d(wi · input)

input

15

where α ∈ R+ is the step-size parameter. To update the output layer weights,

stochastic gradient descent uses the following two updates:

woi ← woi + 2αo(target− estimate)fi for 1 ≤ i ≤ N

wo0 ← wo0 + 2αo(target− estimate)

where αo ∈ R+ is a step-size parameter that must be chosen.

The performance of stochastic gradient descent is heavily dependent on

the step-size parameters. For large step sizes, the weights can change rapidly

but cause poor generalization among nearby samples. Small step sizes can

make learning slow. It is typical to either sweep over some possible step

sizes to determine a decent step-size parameter or use a step-size adaptation

algorithm that dynamically changes the step-size parameter with experience.

Step-size adaptation algorithms are beyond the scope of this thesis, but are

another direction of research that attempts to account for nonstationary tasks

(Sutton, 1992; Schraudolph 1999; Veeriah et al., 2017; Jacobsen et al., 2019).

Note that in a 2-layer ANN, the features are updated independently from

one another. These independent updates can be problematic if the weights are

not initialized properly. If the feature vectors are initialized to be the same

vector and the output weights are initialized uniformly, the features will all

change in exactly the same way for each sample. By the end of the updates,

all the features will be the same, and there was no point in having multiple

features to begin with. Beginning with random weights is one way to begin

with feature diversity and ensure the independent updates are less likely to

result in a uniform feature set (Rumelhart et al., 1986).

Also note that the gradient update of the feature weights is scaled by

the activation function’s derivative ∂σ(wi·input)
∂wi·input . For activation functions like

the tanh function and the logistic function, the largest derivative is when the

function’s input is near zero. The derivative exponentially decreases to zero

16

when the magnitude of the function’s input is large. To ensure the activation

function derivatives begins large and unstable, the initial feature weights begin

small for tanh and logistic activation functions (LeCun et al., 1998). Why the

activation function derivatives begin high and unstable is discussed in the next

chapter. The derivatives of the ReLU, logisitic and tanh activation functions

are shown in Figure 2.2.

−10 −5 5 10

0.2

0.4

0.6

0.8

x

d tanh(x)
dx

−10 −5 5 10

0.2

x

dlogistic(x)
dx

−10 −5 5 10

0.2

0.4

0.6

0.8

1

x

dReLU(x)
dx

−10 −5 5 10

0.2

0.4

0.6

0.8

x

dSoftSign(x)
dx

Figure 2.2: The derivatives of the tanh, logistic, ReLU, and SoftSign activation
functions.

17

Chapter 3

Properties for Fast Feature
Discovery

In this thesis, we investigate algorithms and their continual feature discovery

performance. Algorithms for continual feature discovery should discover useful

features for all new sample distributions the learner encounters. One of the al-

gorithms we focus on is the backpropagation algorithm. The backpropagation

algorithm consists of two phases: initialize the features with small, random

weights, and use data to update the weights with stochastic gradient descent.

Two artificial neural network (ANN) properties set by the initialization step of

the backpropagation algorithm are: high, unstable activation function deriva-

tives, and diverse features. This chapter is dedicated to investigating whether

the ANN properties set by the initialization step affect how fast the backprop-

agation algorithm discovers useful features for a single sample distribution.

These ANN properties will be referred to in Chapter 5, to determine how they

change during a task where the learner must estimate targets from a sequence

of sample distributions.

The backpropagation algorithm discovers useful features by first generat-

ing random features, and then gradually changing the weights of the features

according to the estimation error. Features are considered useful when they

yield low estimation error. The estimation error at the end of a stationary su-

18

pervised learning task is a measure for the utility of features discovered with

the limited amount of samples. Therefore, the error at the end of the task can

also be viewed as a measure for how fast the learner discovered useful features

where low error indicates fast discovery.

3.0.1 Activation Function Derivatives

The activation function derivative affects the speed of feature discovery with

the backpropagation algorithm, because it scales how much the feature weights

change with the stochastic gradient descent update. The activation function

derivative is affected by the choice of the activation function and the input

into the feature. More information about various activation functions can be

found in the background (Chapter 2).

When using the backpropagation algorithm, it is frequently recommended

to use activation functions such as tanh, logistic, or ReLU, and to initialize the

feature weights with small numbers (Rumelhart et al., 1986; Glorot and Ben-

gio, 2010; He et al., 2015). By using these activation functions and initializing

the feature weights small, these works promote initializing ANNs with high,

unstable activation function derivatives. When the input is zero, the derivative

of a squashing function, like logistic, tanh, or SoftSign, is at its highest. When

the input is near zero, the derivative is unstable for the mentioned squashing

functions, because the derivative rapidly decreases for nearby points. The in-

stability of the logistic activation function derivatives was empirically shown

by Fahlman (1988). He showed the logistic activation function derivatives of

many features became close to zero during learning. When the input to a

ReLU is near zero, it is an unstable point since the derivative can change from

1 to 0 or from 0 to 1 if the weights are shifted by a small amount. Douglas

and Yu (2018) empirically showed and theoretically discussed the tendency of

ReLUs to die, which means the ReLU features remain with zero activation

19

function derivative for all input.

Empirically, it has been shown that beginning with high, unstable activa-

tion function derivatives leads to better performance with the backpropagation

algorithm. Thimm and Feisler (1997), demonstrated that large initial weights

for logistic features (and therefore small, stable logistic activation function

derivatives) led to higher error at the end of learning. He et al. (2015) care-

fully scaled the initial ReLU feature weights while keeping the weights small

to quicken the discovery of useful features. This means the input for the

ReLU activation functions would be near zero where the activation function

derivatives can be high, but unstable.

There have been proposed solutions to ensure derivatives of activation func-

tions do not become too small during a supervised learning task (Fahlman,

1988; Duch et al., 1997; LeCun, 1998; Ng et al., 2003; Ioffe and Szegdy, 2014).

Fahlman (1988) showed simply adding 0.1 to the activation function deriva-

tive can speed up learning. For deep ANNs, Ioffe and Szegdy (2014) proposed

centering and scaling the inputs of features to keep the activation function out-

put centered around zero, and hence have high, unstable activation function

derivatives. However, it is not well established whether strategies that improve

feature discovery on stationary supervised learning tasks are useful for non-

stationary supervised learning tasks. For example, Ng et al. (2003) proposed

decaying the weights of the features to keep squashing activation functions

from saturating, but Kirkpatrick et al. (2017) showed weight decay strategies

can perform poorly on nonstationary supervised learning tasks. More work

needs to be done to understand how to modify the activation function deriva-

tives to reliably improve the speed of feature discovery and the accuracy of

the discovered features.

It is worth noting the step sizes of the backpropagation algorithm can

also scale the amount the feature weights change due to stochastic gradient

20

descent updates. The step sizes are fixed for the backpropagation algorithm,

but there have been proposed step-size adaptation algorithms that change the

step sizes during learning (Sutton, 1992; Schraudolph 1999; Veeriah et al.,

2017; Jacobsen et al., 2019). In this thesis, though, we perform a search over

a set of possible fixed step sizes to determine them for each experiment. Since

both the step sizes and the activation function derivatives scale how much a

feature’s weights change, it would be worth looking into whether one can be

absorbed into the other. In our later experiment results (Chapter 5 and 6),

we note how the product of a feature’s step size and it’s activation function

derivative change during learning. The product gives a better sense of how

fast the feature weights change and therefore how fast the features can be

transformed into newly discovered features.

3.0.2 Feature Diversity

Feature diversity is another ANN property that is set at the initialization step

and is considered important for fast feature discovery with the backpropaga-

tion algorithm. The level of feature diversity in an ANN is determined by the

level of difference amongst the features and the number of features. An ANN

with many varied features has high feature diversity. An ANN with few similar

features has a low amount of feature diversity. However, the kind of feature

diversity that is useful for quickly discovering useful features with the back-

propagation algorithm cannot include features that change too slowly since

these features are not useful for discovering new features quickly. When we

talk about feature diversity, we are talking about the diversity of features with

relatively high, unstable activation function derivatives across the sample in-

put space, since we discussed earlier how these features can lead to discovering

useful features quickly.

One common way to generate diverse features is by randomly generating

21

features. Rumelhart et al. (1986) viewed initializing features with random

weights as a way of “breaking symmetry” between features so that the features

did not end up uniform after being updated with stochastic gradient descent.

Blumenfeld et al. (2020) empirically showed that symmetry breaking did not

have to occur at the beginning of learning, but can instead occur throughout

learning by injecting random noise. We investigate feature diversity through

random initialization as not only a way for breaking symmetry, but also as a

way to discover useful features quicker.

Work relating to how the diversity of features affects the backpropagation

algorithm’s speed of discovering useful features mainly came in the form of

non-random initialization schemes. One non-random initialization scheme ini-

tializes features so they activate at different parts of the input space (Nguyen

and Widrow, 1990). The scheme worked well with the backpropagation algo-

rithm, and the feature discovery performance improved when more features

were used. Another non-random initialization scheme uses random sample

inputs and initializes each feature to activate for one of the sample inputs

(Denoeux and Lengellé, 1993). This scheme allows the backpropagation algo-

rithm to use information from the data stream to account for different parts

of the input space.

Mahmood (2017) conjectured that randomly setting feature weights can

spread ANN features across the feature space and make useful features easier

to discover for feature search algorithms. We conjecture that the random

spread of features can lead to faster feature discovery with the backpropagation

algorithm in a similar way to the above-mentioned initialization scheme of

Nguyen and Widrow (1990). In the following experiment, we investigated

whether the similarity of randomly initialized features affects the quality of

discovered features. We also look at whether the number of features affects

the speed that useful features are discovered.

22

3.1 Initial Feature Diversity: Experiment

In this experiment, we investigated the effect of initial feature diversity on the

backpropagation algorithm’s ability to quickly discover useful features. The

backpropagation will use a limited amount of samples and the error of the

discovered features will determine the feature discovery performance. The

exact scheme used for generating similar random features is described below.

The Task. All tested learners were evaluated on an online stationary

supervised learning task. The task provides the learner with a 1000 samples.

Each sample contains a vector input and a scalar target. The input vectors

of the samples are randomly sampled size-5 binary vectors, and each sample’s

scalar target is the dot product of a fixed target vector and the sample’s input.

The fixed target vector is a size-5 vector randomly initialized with -1 and 1

elements. Given a sample’s input, the learner estimates the sample’s target.

The mean squared error between the learner’s estimate and the target was

noted for each sample.

The Learners. Multiple artificial neural networks (ANNs) were evalu-

ated on the online stationary supervised learning task. To remove the effect of

nonlinear activation functions on the feature discovery performance, the fea-

tures were linear (i.e. the features had an identity activation function). Each

ANN had m ∈ {1, 2, 5, 10} features. The feature weights were represented by

a matrix F ∈ Rm×5, where 5 is the size of the input vector. The learner also

had output weights o ∈ Rm and a bias ob ∈ R that were used to calculate

an estimate. For a given sample with input i ∈ {0, 1}5, the estimate e was

calculated with the following expression:

e = Fi · o + ob.

Every sample, the ANN weights and bias were updated with a stochastic

gradient descent update to decrease the squared error. The feature weight

23

update had a step-size parameter αr ∈ R+. The output weights and the

output bias were updated with a step-size parameter αo ∈ R+. The parameters

were swept over the sets αr ∈ {0.0, 0.00125, 0.0025, 0.005, 0.01, 0.02, 0.04, 0.08,

0.16, 0.32, 0.64, 1.28, 2.56} and αo ∈ {0.00125/m, 0.0025/m, 0.005/m, 0.01/m,

0.02/m, 0.04/m, 0.08/m, 0.16/m, 0.32/m, 0.64/m, 1.28/m}. The results used

the step sizes with the smallest error on the 1000th sample averaged over 100

independent runs.

The features were initialized with a similarity score s where s was drawn

from {0.0, 0.25, 0.5, 0.75, 1.0}. The similarity score controlled the initial feature

diversity of the features. A similarity score of zero meant there was a lot of

diversity among features, and a similarity score of one meant all feature weight

vectors are equal to each another. Each column of F was randomly generated

independently with a multivariate normal distribution with the covariance

matrix C ∈ Rm×m. The diagonal entries of C were equal 0.01, and all other

entries of C were equal to 0.01s. The initial 0.01 variance was chosen, because

other small values for the variance did not make a difference in the results.

Note, generating features with a similarity score of zero is how it is typically

done in practice where feature weights are generated independently from one

another. Therefore, in practice, the features are initialized with the most

diversity they can have according to our initialization scheme.

For each combination of ANN size m and similarity s, we ran the learner

for 1000 steps on the stationary supervised learning task. The results were

averaged over 100 independent runs. We expected ANNs with more features

to have lower error at the end of 1000 samples and ANNs with higher initial

feature diversity to have lower error at the end of 1000 samples.

24

3.2 Initial Feature Diversity: Results

The parameter tuning with the backpropagation algorithm for different m-

sized ANNs and initial similarity scores s resulted in the following step sizes

(Table 3.1).

s
m

1 2 5 10

0.0
αo = 0.16

αr = 0.00125
αo = 0.01/2
αr = 0.04

αo = 0.01/5
αr = 0.64

αo = 0.01/10
αr = 1.28

0.25 -
αo = 0.005/2
αr = 0.04

αo = 0.005/5
αr = 0.32

αo = 0.02/10
αr = 0.32

0.5 -
αo = 0.005/2
αr = 0.04

αo = 0.005/5
αr = 0.16

αo = 0.08/10
αr = 0.04

0.75 -
αo = 0.16/2
αr = 0.0025

αo = 0.005/5
αr = 0.16

αo = 0.01/10
αr = 0.16

1.0 -
αo = 0.01/2
αr = 0.02

αo = 0.08/5
αr = 0.01

αo = 0.01/10
αr = 0.16

Table 3.1: Optimized step sizes.

The step size that is in bold is the only step size that was an extreme of

the non-zero values in the search range. However, the error did not change

much with some larger step sizes that were not extreme values.

The ANNs with multiple features had a low mean squared error at the

end of the task when the initial similarity score was less than one (i.e. when

the features did not begin uniform) (Figure 3.1). When the initial similarity

score was one (i.e. the features began uniform) the mean squared error at the

end of the task was similarly high across the ANN sizes. The learners had

the lowest mean squared error at the end when the initial similarity score was

zero compared to when the initial similarity score was higher. Generally, the

higher the initial similarity score, the higher the error at the end of the task.

With the 2-feature ANN, the initial similarity score was correlated with

the error at the end of the task (Figure 3.1). However, with initial similarity

25

Figure 3.1: The plots show the mean squared errors over 1000 samples for
different initial similarity scores s and different ANN sizes. The light-colored
bars represent one standard error determined by 100 independent runs (plotted
every 100th sample). Since the backpropagation algorithm parameters were
optimized for the last step, we focus on the error at the end of the task. ANNs
that had more features and had more initial feature diversity tended to have
lower error on the 1000th sample.

scores 0.25, 0.5, and 0.75, there was little difference in error at the end. An

initial similarity score of 0.0 led to zero error at the end when the ANN had 5

features or 10 features. An initial similarity score 0.25 led to zero error at the

end when the ANN had 10 features. When the initial similarity score was 0.5

or 0.75, there was little difference in error from when the ANN had 5 features

or 10 features.

26

3.3 Initial Feature Diversity: Conclusions

From our results, we found ANNs discover a more useful set of features when

the ANN has more features. We consider the error on the 1000th step a re-

flection of the usefulness of features discovered with the limited amount of

samples. To discover useful features quickly, it is important to ensure the

ANN begins with diverse features. With many features, a little initial feature

diversity can significantly improve the usefulness of the discovered features.

This experiment used a small task, but from it we can see the initial fea-

ture diversity can affect the feature discovery performance. With an ANN with

many features, the diversity among features can be low and the backpropa-

gation algorithm can still discover a useful set of features quickly. However,

if there are fewer features available to learn with, the backpropagation al-

gorithm will require more initial diversity to discover useful features quickly.

It is also important to note, the kind of initial feature diversity we are con-

sidering involves features with small random weights. This is a specific kind

of diversity that is abundantly available at the beginning of a task with the

backpropagation algorithm, but may not be as available during the course of

learning.

3.4 Summary of Properties for Fast Learning

This chapter discussed two initial conditions that are important for the fast

discovery of useful features with the backpropagation algorithm: high, unsta-

ble activation function derivatives and high feature diversity. High, unstable

activation function derivatives have been empirically shown by past work to

lead to fast feature discovery with the backpropagation algorithm. We empir-

ically demonstrated the diversity of random features can affect how fast the

backpropagation algorithm discovers useful features where more diversity can

27

lead to better performance. This result is relevant to past work with non-

random feature initialization strategies that also set a specific kind of feature

diversity for faster discovery of useful features.

On a stationary supervised learning task, the backpropagation algorithm

does not need to maintain these conditions for decent feature discovery perfor-

mance. Once the network discovers useful features it does not need to change

them, and these factors cease to be relevant. On a nonstationary supervised

learning task, it may be important to maintain these conditions for learning

from new sample distributions.

In Chapter 5, we revisit these properties for the fast discovery of useful

features on the generic continual feature discovery task introduced in the next

chapter. These factors will be measured to check whether they are main-

tained by the backpropagation algorithm throughout the learner’s operation

and whether the backpropagation algorithm’s continual feature discovery per-

formance is poor without them.

28

Chapter 4

Evaluation for Continual
Feature Discovery

This thesis investigates how effective artificial neural network (ANN) learn-

ing algorithms are for discovering useful features for new sample distributions.

We call the ability of a learner to discover useful features for all new sam-

ple distributions continual feature discovery, and continual feature discovery

is an important ability for learners that expect to encounter arbitrarily many

changes during a task. A contribution of this thesis is the generic continual

feature discovery (GCFD) task that can be used to evaluate the continual

feature discovery performance of an algorithm. This chapter is dedicated to

describing the GCFD task. In later chapters, we use the GCFD task to eval-

uate the continual feature discovery performance of different ANN learning

algorithms. Specifically, we test the backpropagation algorithm and generate-

and-test algorithms for their continual feature discovery performance in two

major experiments.

The GCFD task is an online nonstationary supervised learning task, but

it differs from other online nonstationary supervised learning tasks that were

used to test ANN learning algorithms. We sought out a generic regression task

that tested for continual feature discovery and that could be learned with a

fixed-size ANN. One task that is closely related is the GEOFF (GEneric Online

29

Feature Finding) challenge (Sutton, 2014). In the GEOFF challenge, the

target function is a randomly initialized ANN, and the nonstationary aspect

of the task comes from the regular change of the output weights of the target

function. Since the feature weights of the target function never change, it is not

necessary for the learner to continually discover useful features and it suffices

to discover useful features once and update the output weights to account for

future changes (Veeriah et al., 2017). In our task we also use an ANN target

function, but regularly change all the weights so the learner must continually

discover useful features. Sahoo et al. (2018) used a similar generic task where

the features and number of features of the deep ANN target function change

after a fixed interval of samples. The number of features in the target function

changes to challenge the learning ANN to use more features to account for

the changes. To test for a more basic form of continual feature discovery, we

sought a task that can be learned with a fixed-size ANN. Also, the generic

task used by Sahoo et al. (2018) was a classification task while we sought

out a regression task. Another generic regression task we came across tested

1-layer ANNs (Mart́ınez-Rego et al., 2011). The regression task that tested

the 1-layer ANNs were simple, since 1-layer ANNs only use input signals as

features and these features are not learned. Since the task does not challenge

the learner to discover features, the task is not suitable as a continual feature

discovery task.

There are many classification datasets that are used for testing ANNs on

nonstationary supervised learning tasks (Hayes et al., 2018). Image classi-

fication datasets are commonly used to test learners, because some image

classification tasks are difficult to learn without a sophisticated function ap-

proximator like an ANN. However, some image classification tasks, like the

MNIST dataset and CIFAR10 dataset, are easy to learn with an ANN and

provide impressive looking results that may not scale to more complex do-

30

mains (Kemker et al., 2017). Real-world datasets can provide variety to check

if the methods that work on a generic task work with real-world data, but a

generic dataset can give more control in what the task tests for. To make the

difficulty of our task more explicit and ensure we are evaluating a learner’s

continual feature discovery performance, we opt for a generic task where the

target function’s structure is explicit.

4.1 Description of the GCFD Task

The generic continual feature discovery (GCFD) task tests a learner’s continual

feature discovery, which is the learner’s ability to discover useful features for

all new sample distributions it encounters. To test for a learner’s ability to

learn useful features, we use an online nonstationary supervised learning task.

The GCFD task is online, because we are interested in strictly incremental

learning algorithms in this thesis, and strictly incremental learning algorithms

process one sample at a time. Also, an online task measures the performance

on each sample, which provides a useful measure of how quickly the learner is

learning from its experience.

The nonstationary aspect of the task is the regular abrupt change in the

sample distribution. The sample distribution changes every λ ∈ N steps. The

abrupt change clearly marks when the sample distribution changes for the

researcher, although the learner is not explicitly notified of the change.

Each sample contains an input and a scalar target. The input is always a

randomly sampled m-sized binary vector. The 2-layer artificial neural network

target function itself contains n features known as target features. Given the

tth sample’s input, inputt, the sample’s target, targett, is calculated with the

following expression:

targett =
n∑
i=1

(woi σi(wi · inputt))

31

where wi ∈ Rm is the input weight vector of the ith target feature, woi ∈ R is

the ith target feature’s output weight, and σi is a binary activation function.

All the target function weights are randomly initialized as -1 or 1 with equal

probability, and

σi(x) =

{
0, x < βi = (# of -1’s in wi) + νm
1, x ≥ βi.

Each feature that uses the above σ activation function is known as a linear

threshold unit (LTU), and ν ∈ [0, 1] is a settable parameter (Sutton and

Whitehead, 1993). Since the inputs are binary and the network’s weights are

-1 and 1, the LTU outputs 1 when ν proportion of the -1 and 1 pattern of the

LTU’s feature weight vector corresponds to the 0 and 1 pattern of the input

vector.

To calculate the probability that an LTU outputs 1 given a random binary

input vector, we use a Binomial random variable B(m, 0.5) with m trials (i.e.

the size of the input and LTU vectors) and 0.5 probability of a trial being

successful (i.e. a given entry corresponds). The P (B(m, 0.5) ≥ dνme) is the

probability an LTU is equal to 1 with a random binary input vector. The

ceiling operator is used, because we are working with discrete values and the

binomial distribution is discrete. We set ν to 0.6 whenever the GCFD task is

used. This is an acceptable choice for our experiments, because we use input

binary vectors of size 7 making the probability a target feature outputs one

P (B(7, 0.5) ≥ 0.6 ∗ 7) ≈ 0.227. With two target features, this makes the

probability at least one LTU outputs one for a random binary input vector

approximately 1 − (1 − 0.227)2 = 0.40. If the target features output one too

infrequently (e.g. the target features only output 0) or too frequently (e.g. the

target features only output 1), the task can become trivial.

We divide the GCFD task into subtasks. A subtask of the GCFD task

is an interval of λ ∈ N samples where the sample distribution is unchanged.

32

The learner is never explicitly notified when the subtask switches out or the

regularity of the switches. In the literature, it is common to find what we

call “subtasks” called “tasks” (Farquhar and Gal, 2018; Diaz-Rodriguez et al.,

2018). We deviate from this nomenclature since we consider the GCFD task

a single task with a changing sample distribution.

The task challenges the learner to quickly discover useful features for each

new sample distribution. At the beginning of each subtask, the learner’s esti-

mation error is expected to shoot up as the learner is unprepared for this new

subtask. If the interval λ is long enough for the learner to see every sample in

the subtask interval, the learner can ideally discover features that account for

each of the samples and end the subtask with zero error. This task does not

include noise or other forms of irreducible error, so zero error can be achieved

by discovering the proper features. If one included noise to the targets, the

irreducible error of the noise would be the error threshold that indicates the

learner discovered useful features for a subtask. More details about how to

evaluate the learner and ensure the learner is being tested for continual feature

discovery will be discussed in the next section.

4.2 Evaluation for Continual Feature

Discovery

Averaging the error of the last n ∈ N samples of a subtask is a measure for

how useful the discovered features were for accurate estimations. A high error

means the discovered features were less useful for estimation than features

that lead to a low estimation error. For more challenging subtasks, the target

function can be made more complex and the interval λ can be made shorter.

Another metric for how useful the discovered features are for a subtask is

the average error of all steps in the subtask. This metric weights the perfor-

mance of features that were discovered early in a subtask just as much as the

33

performance of features that were discovered later. This is a valid metric to

consider, but we only measure the error at the end of the subtask to focus on

how useful the features discovered by the end of the λ interval are.

To judge a feature learning algorithm on its continual feature discovery

performance, we look at how consistently the algorithm had low error at the

end of each subtask. An algorithm well-suited for continual feature discovery

can discover useful features for all sample distributions. If a feature discovery

algorithm has high error at the end of all subtasks, it indicates the algorithm

may not be suited for continual feature discovery, since it did not find as

useful features for the subtasks. The error at the end of early subtasks is more

of an indication of how initial conditions set by the algorithm affect early

performance. As an algorithm for continual learning can expect to experience

arbitrarily many sample distributions, we are more focused on improving the

performance on all later subtasks. As subtasks are not expected to vary in

difficulty, we aim for continual feature discovery algorithms that consistently

perform well on all later subtasks. It is recommended to run learners on

the GCFD task for many subtasks to get a better view of the long term

performance.

Whether a GCFD task is difficult enough is relative to the capacity of the

learner. We wish to avoid a learner that can memorize a representation of

all the possible target features and no longer needs to learn new features. At

the same time, the learner should have enough memory capacity to be able to

represent useful features for each subtask.

To ensure the learner is challenged to learn new features on each new

subtask, the size of the sample input i ∈ N should be large. The sample input

size determines how many unique target features are available for a subtask’s

target function. Let t be the number of features in the target function. The

number of unique target features with -1 and 1 weights is 2i and the number of

34

unique target functions is (2i)t = 2ti where t is the number of target features in

the target function. Note, the number of possible subtasks is much higher than

the number of target features making it unlikely the learner will encounter the

same subtask frequently.

However, the learner may frequently encounter a recently experienced tar-

get feature. Keeping the probability a feature appears low disincentivizes

memorization for good performance. A calculation can be done to determine

how often a target feature will show up on subsequent subtasks. (2
i−1
2i

)t is

the probability a feature does not appear in a subtask’s target function which

makes 1− (2
i−1
2i

)t the probability the feature does appear in a subtask’s target

function. In our experiments, we set i = 7 and t = 2 making the probability

a given feature appears ∼ 0.016.

Given the probability a feature appears p, we can calculate the expected

number of subtasks before a feature reappears. If we consider the probability of

a target feature from the current subtask reappearing in a subsequent subtask

to be equal to p, then, in expectation, the target feature will reappear on the

1
p

th
subtask after. This is because we consider the target feature reappearance

a Benoulli process: X1, X2, X3, ..., where Xi, i ∈ N, is a random variable equal

to one if the target feature reappears on the ith subtask after (P (Xi = 1) = p).

Xi is equal to zero otherwise (P (Xi = 0) = 1−p). For such a Bernoulli process,

the expected earliest i when Xi = 1 is i = 1/p. So, for our experiments, where

p ∼ 0.016, target features are expected to reappear every ∼ 64 subtasks.

4.3 Summary

In this chapter we introduced and defined the generic continual feature discov-

ery (GCFD) task that will be used to challenge learning algorithms on their

ability to continually discover useful features. We consider continual feature

discovery important for learners that can always expect to encounter new ex-

35

periences. The GCFD task should be challenging enough that the learner is

expected to discover new features for each new subtask. However, each subtask

should not require more memory capacity than the learner has. We consider

a learner excellent for continual feature discovery when the learner has low

average estimation error at the end of all later subtasks.

The GCFD task will be used to test the continual feature discovery perfor-

mance of artificial neural networks (ANNs) learning with the backpropagation

algorithm and with generate-and-test algorithms. The results and explana-

tions of these experiments constitute the other main contributions of our in-

vestigations into continual feature discovery algorithms.

36

Chapter 5

Continual Feature Discovery
with the Backpropagation
Algorithm

In this thesis we are interested in algorithms for continual feature discovery,

which is an algorithm’s ability to discover useful features for each new sam-

ple distribution. This chapter investigates the backpropagation algorithm for

continual feature discovery. The generic continual feature discovery (GCFD)

task (Chapter 4) was used to evaluate the backpropagation algorithm’s abil-

ity to discover useful features for all new sample distributions. The artificial

neural network (ANN) properties known to affect the feature discovery perfor-

mance (Chapter 3), the activation function derivatives and feature diversity,

were measured to investigate how they change over the course of learning.

Demonstrating and explaining the continual feature discovery performance of

the backpropagation algorithm is the main focus of this chapter and is one of

the contributions of this thesis.

The backpropagation algorithm is known to perform poorly for nonsta-

tionary tasks beyond online supervised learning tasks (Choy et al., 2002). The

two main limitations are based on two different performance metrics: the esti-

mation accuracy on past sample distributions after learning from new sample

distributions (retention), and the estimation accuracy on new sample distribu-

37

tions (integration) (Mahmood, 2017). There is a trade-off between retention

and integration with a fixed-memory agent. The trade-off arises because some

memory must be dedicated to retention and some must be dedicated to inte-

gration. By studying integration and retention separately, the trade-off can be

made explicit by the fixed memory allocated for each ability (French, 1999).

In this thesis, we focus on integration by looking at how quickly algorithms

discover useful features for new sample distributions.

There have been similar works that investigate the learning performance

of the backpropagation algorithm on online nonstationary supervised learning

tasks. One work investigated the backpropagation algorithm’s performance

when training deep artificial neural networks (ANNs) on an online nonsta-

tionary supervised learning task (Sahoo et al., 2018). They demonstrated

that the backpropagation algorithm ends with higher error on new, difficult

sample distributions and attributed the performance decrease to some known

issues when training deep ANNs. They noted these issues are known to arise

when training deep ANNs on stationary supervised learning tasks and these

issues were expected to show up on online nonstationary supervised learning

tasks. The authors did not discuss any poor performance from training shal-

low ANNs with the backpropagation algorithm. Our experiments are used to

investigate whether shallow ANNs can also have poor performance with the

backpropagation algorithm.

Mart́ınez-Rego et al. (2011) demonstrated the poor performance of a 1-

layer ANN learning with a modified backpropagation algorithm (1-layer back-

prop) on online nonstationary supervised learning tasks. For their regression

tasks, the 1-layer ANNs were linear and did not have learnable features. The

input signals were mapped directly to the estimate. They showed that the

ANNs with the 1-layer backprop had higher errors on new sample distribu-

tions and increasing errors on gradually changing distributions. The work is

38

somewhat relevant to our research as the 1-layer ANN is like the output layer

of our experiment’s 2-layer ANNs. However, we emphasize algorithms that

discover useful features instead of ones that use fixed features.

We measured two factors known to affect the speed of discovering useful

features: the activation function derivatives and the feature diversity. Recall,

both high, unstable activation function derivatives and high feature diversity

are important for quick discovery of useful features with the backpropagation

algorithm (Chapter 3). If these properties are lost during learning, when

the agent encounters new sample distributions, the speed at which the agent

discovers useful features for new sample distributions may decrease.

Fahlman (1988) found the activation function derivatives can decrease over

time with the backpropagation algorithm. We investigate whether a similar de-

crease occurs on an online nonstationary supervised learning task. Fahlman’s

(1988) fix for the lowered activation function derivatives was to add 0.1 to the

activation function’s derivative so it was never below 0.1. To investigate what

happens when the activation function derivative does not become low quickly,

we tested an activation function that takes more iterations than sigmoid ac-

tivation functions to near 0.0 known as SoftSign (Elliott, 1993; Glorot and

Bengio, 2010).

5.1 Experiment Description

In this experiment, we investigate the backpropagation algorithm’s ability to

continually discover useful features. Each new sample distribution will provide

the learner with a limited amount of samples. To be fit for continual feature

discovery, the backpropagation algorithm must discover useful features for each

sample distribution.

The Task. To test the backpropagation algorithm for continual feature

discovery, we used the generic continual feature discovery (GCFD) task from

39

Chapter 4. The specific version of the task we used has size-7 inputs, two

target features, 15,000 samples per subtask, and 4,000 subtasks (60 million

samples). The size-7 input means there are 128 input configurations possible.

The learner is provided each input configuration ∼117 times in expectation

per subtask.

The Learners. The learners were 2-layer artificial neural networks (ANNs)

updated with the backpropagation algorithm. The ANN structure and the

backpropagation algorithm are outlined in the Background chapter. We tested

ANNs of different sizes and activation functions. Each ANN had N features

where N was either 15 or 40. Each ANN also had logistic, tanh, ReLU, or

SoftSign activation functions. ReLU, logistic, and tanh activation functions

are common in research and practice, but the SoftSign is considered less often

(Nwankpa et al., 2018). Each combination of the number of features and acti-

vation function was tested. Note, the number of features in the learning ANN

was large compared to the two target features in the target function giving

the agent ample memory resources to represent useful features. To select the

representation step size αr and the output layer step size αo for the backprop-

agation algorithm, we chose the best performing step sizes on a shorter GCFD

task. The shorter GCFD task has 30 subtasks (450,000 samples) but all other

properties the same as the longer GCFD task. For each learner, we used the

step sizes that had the lowest average error over the last 1,000 samples and

over 20 independent runs on the shorter GCFD task. We used this shorter task

to use less computation in the step-size parameter search, while still choosing

step sizes that can perform well on some distribution changes. Also, there is

no set operation time in a continual supervised learning task, so the goal was

not to optimize the step size for the specific 4,000th subtask. The step-size

parameter search was over the following possibilities.

40

• αo: {0.00625/N, 0.0125/N, 0.025/N, 0.05/N, 0.1/N, 0.2/N, 0.4/N, 0.8/N,

1.6/N, 3.2/N}

• αr: {0.0, 0.0015625, 0.003125, 0.00625, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8,

1.6, 3.2}

We focused on one aspect of feature diversity: the number of features the

backpropagation algorithm can update reasonably quick. This measure of

diversity is relevant to our challenge of continual feature discovery since the

backpropagation algorithm discovers features by changing the weights of the

features. Also, we and others have found the backpropagation algorithm is

quicker to discover a useful set of features when the ANN has more features

(Mahmood and Sutton, 2013; Chapter 4). To be a feature that is reasonably

quick to update, the product of the feature’s activation function derivative and

the representation step size should be reasonably high across the sample input

distribution. We call a feature calcified if the average mentioned product across

the input distribution is less than 0.0001. We consider the number of features

that are not calcified to be a measure of diversity. Fewer calcified features

means the agent has more features to adjust weights of at a moderate or fast

speed. We measured the proportion of calcified features at the beginning of

each subtask.

Other metrics of feature diversity such as the correlation or covariance be-

tween feature outputs are often discussed to reduce the problem of overfitting,

poor performance on samples the agent has not learned with (Srivastava et al.,

2014; Cogswell, 2016). These metrics of feature diversity are yet to be shown

as relevant for feature discovery. During learning, the ANNs weights can en-

large and vary in magnitude. Two features may have low correlation, but also

small activation function derivatives and step sizes, making these features slow

to learn with. By measuring the proportion of features that are calcified, we

41

are conservatively measuring how many features are slow to learn with and

therefore should not be considered the kind of feature diversity that leads to

fast discovery of useful features.

For each ANN and its tuned backpropagation algorithm, results were gath-

ered for 50 independent runs on the 4000-subtask GCFD task. Each ANN

learning with the backpropagation algorithm was compared to the performance

of a fixed representation version that had the representation step size αr set to

zero. The results included the average error on the last 1000 samples of each

subtask, mean squared errors for some subtasks (subtasks 1, 30, 100, 1000, and

4000), the average activation function derivative at the beginning of subtasks,

and the proportion of calcified features at the beginning of subtasks.

The experiments showed whether the backpropagation algorithm could be

used to train the ANNs to have low error at the end of each subtask on the

GCFD task. Having low errors would indicate the backpropagation algorithm

discovered useful features. We call the average error of the last 1,000 samples

of a subtask the subtask final error (SFE). The results also showed whether the

the backpropagation algorithm maintained high, unstable activation function

derivatives and a low proportion of calcified features at the beginning of each

subtask. From these results, we determine if the backpropagation algorithm

is suitable for continual feature discovery, and if the properties that promote

fast feature discovery are maintained throughout learning.

5.2 Results

We refer to the ANNs that update with the backpropagation algorithm by their

activation function (e.g. ReLU ANNs) and explicitly note if we are referring

to the fixed representation version.

The chosen step sizes used for the backpropagation fell between the ex-

tremes of the search ranges. The step sizes that were set for each activation

42

function and size are listed in Table 5.1. Larger and smaller step sizes than

the chosen step sizes resulted in higher error.

activation function (15 features) logistic tanh ReLU SoftSign
αr 0.2 0.025 0.05 0.1
αo 0.4/15 0.2/15 0.05/15 0.8/15

activation function (40 features) logistic tanh ReLU SoftSign
αr 1.6 0.2 0.0125 0.2
αo 0.2/40 0.4/40 0.4/40 0.8/40

Table 5.1: Optimized step sizes.

For each ANN, the rate the mean squared errors decreased differed across

subtasks. All ANNs except the size-15 ReLU ANN had lower mean squared

errors at the end of the 30th subtask, the subtask the step-size parameters

were optimized for, compared to those at the end of the first subtask (Figures

5.1 and 5.2). For all ANNs, the mean squared error decrease on the 1,000th

subtask was similar to the mean squared error decrease on 4,000th subtask.

With the exception of the SoftSign ANNs, there were noticeably higher errors

throughout the 1000th and 4000th subtasks compared to the earlier subtasks

that had lower errors throughout.

The fixed representation ANNs had SFEs around 0.15 or greater for each

subtask (Figure 5.3).

The SFEs of the ReLU ANNs significantly increased over subtasks (Figure

5.3). On early subtasks, the ReLU ANNs had SFEs significantly lower than

the fixed representation ANNs’. However, after a few hundred subtasks, the

ReLU ANNs had higher SFEs than those with the fixed representation ANNs.

The SFEs of the ReLU ANNs were approximately between 0.3 and 0.4 for all

later subtasks.

The logistic and tanh ANNs had SFEs that increased over subtasks, but

were significantly lower than the SFEs of the ReLU ANNs on later subtasks

43

Figure 5.1: These are the average mean squared errors (MSEs) from selected
subtasks. The results are for size-15 ANNs, while Figure 5.2 has results for
the size-40 ANNs. Each black bar represents one standard error determined
by 50 runs, and they are plotted every 500 subtasks. Except with the SoftSign
ANN, later subtasks tended to have noticeably higher MSEs across samples
compared to the MSEs on earlier subtasks.

(Figure 5.3). The logistic and tanh ANNs’ SFEs were similar or slightly lower

than the SFEs of the fixed representation ANNs. On earlier subtasks, the

SFEs of the logistic and tanh ANNs were significantly lower than the SFEs of

the fixed representation ANNs. Then, the SFEs increased significantly within

a few hundred subtasks. On later subtasks, the 40-feature logistic and tanh

ANNs had lower SFEs than those of their respective 15-feature versions.

The SoftSign ANNs had a less significant increase in the SFEs over subtasks

44

Figure 5.2: These are the average mean squared errors (MSEs) from selected
subtasks for size-40 ANNs. Each black bar represents one standard error
determined by 50 runs, and they are plotted every 500 subtasks. The results
here are similar to the results for size-15 ANNs in Figure 5.1. However, there
were noticeably lower errors on early subtasks with the size-40 ANNs than
with the size-15 ANNs.

than the other ANNs (Figure 5.3). There was an increase in SFEs over subtasks

with the SoftSign ANNs, but the SFEs on later subtasks remained around or

lower than 0.05. The 40-feature SoftSign ANN had lower SFEs than the SFEs

of the 15-feature SoftSign ANN.

The average activation function derivative at the beginning of subtasks de-

creased for all ANNs (Figure 5.4). The decrease was most significant with the

ReLU ANNs where the average activation function derivative at the beginning

45

Figure 5.3: The left plots show results for 15-feature ANNs, and the right plots
show results for 40-feature ANNs on the GCFD task. The top left of each row
shows the activation function for the ANN. The subtask final error (SFE) is
the average error of the last 1000 samples of a subtask. The dark-colored bars
represent one standard error over 50 independent runs and are shown every
100 subtasks. The fixed representation typically had SFEs around or greater
than 0.15 for all subtasks. The SFEs increased over subtasks for all ANNs
trained with the backpropagation algorithm.

46

of a subtask became zero for all subtasks after a few hundred subtasks. A zero

average activation function derivative means all the ReLU features were out-

putting zero, and only the output bias weight was being updated. The average

activation function derivative at the beginning of the subtasks decreased by

an order of magnitude for the the logistic and tanh ANNs. The average acti-

vation function derivative at the beginning of subtasks decreased the least for

the SoftSign ANNs.

Figure 5.4: These plots show the average activation function derivative at the
beginning of subtasks on the GCFD task. The top plot is a semilog plot that
is log scaled for all points above 10−4 and is linearly scaled for all points below.
Each curve represents a different ANN. The light-colored bars represent one
standard error over 50 runs, and they are plotted every 100 subtasks. The
activation function derivative at the beginning of subtasks decreased rapidly
over subtasks, but stabilized after some subtasks. The average ReLU derivative
went down to 0 and never recovered.

For the SoftSign, tanh, and logistic ANNs, the average activation function

derivative multiplied by the representation step size was similar or higher with

40-feature ANNs than with 15-feature ANNs (Figure 5.5). However, with these

47

activation functions, the average activation function derivative at the begin-

ning of subtasks were higher for 15-feature ANNs than for 40-feature ANNs

(Figure 5.4). This showed the higher step sizes picked during the parameter

search for the 40-feature ANNs made the product between activation function

derivative and the step size more comparable between differently sized ANNs

of the same activation function.

Figure 5.5: These plots show the average activation function derivative mul-
tiplied by the representation step size at the beginning of subtasks on the
generic continual feature discovery task. The presentation is similar to Figure
5.4. The product of the activation function derivative and the step size was
higher or similar for the 40-feature ANNs than their 15-feature versions. The
ReLU ANNs are exceptions to this observation.

The proportion of calcified features at the beginning of subtasks increased

for all ANNs except for the SoftSign ANNs (Figure 5.6). The SoftSign ANNs

had no calcified features at the beginning of each subtask. The ReLU ANNs

had only calcified features at beginning of all later subtasks. The tanh and

logistic activation function ANNs had an increase in calcified features at the

beginning of early subtask, but the increase was far less dramatic than the

48

increase with the ReLU ANNs. Even though the product of the average ac-

tivation function derivative and step size at the beginning of subtasks were

comparable between the differently sized tanh and logistic ANNs, the propor-

tion of calcified features at the beginning of subtasks, which uses the product

to determine if a feature is calcified, was higher for the 40-feature versions.

Figure 5.6: These plots show the average proportion of calcified features at
the beginning of every 50th subtask for different ANNs. The light-colored
bars represent one standard error determined by 50 independent runs. The
proportion of calcified features at the beginning of subtasks increased for all
the ANNs except for the SoftSign ANNs that had zero calcified features at the
beginning of each subtask.

5.3 Conclusions

All the ANNs learning with the backpropagation algorithm were capable of

discovering useful feature quickly on early subtasks of the GCFD task, but

depending on the activation function, the ANNs experienced different levels

of feature discovery slowdown on new sample distributions. The subtask final

error on a subtask is a measure of how quickly the ANN discovered useful

features for the subtask. The ReLU ANNs had the most severe slowdown;

the logistic and tanh ANNs had a significant slowdown, but not as significant

as that of the ReLU ANNs; and the SoftSign ANNs had the least amount of

slowdown.

From the mean squared error curves, we see the feature discovery stagnated

early on in the 1,000th and 4,000th tasks for the logistic, tanh, and ReLU

49

ANNs. The mean squared error did not decrease much after the initial samples

showing how the feature discovery stagnated in finding useful features.

Using the backpropagation algorithm to train ReLU ANNs can lead to no

discovery of useful feature for new sample distributions. Since the average

activation function derivative was zero at the beginning of later subtasks, the

ReLU ANNs could no longer update its features, and all the features were

outputting zero. Essentially, the representation consisted of only the bias unit.

The subtask final error significantly exceeded the fixed representation ANNs

making the backpropagation algorithm a detriment to the feature discovery

performance of ReLU ANNs.

For the logistic and tanh ANNs, the speed feature discovery decreased over

subtasks. On later subtasks, the subtask final errors of the logistic and tanh

ANNs were close to the subtask final errors of the fixed random representations.

Having subtask final errors close to those of the fixed representation indicates

the discovery of useful features is slow. However, for the logistic and tanh

ANNs, there was still some level of useful features discovered on later subtasks.

The SoftSign ANNs had the lowest amount of slowdown when discover-

ing useful features for new sample distributions. There was still an evident

slowdown since the subtask final errors increased over subtasks, but the sub-

task final errors were much lower than those with the fixed representation

ANNs. Also, the SoftSign ANN had no calcified features at the beginning of

each subtasks meaning it maintained diversity according to our loose measure

of diversity. To see whether the feature diversity changes with the SoftSign

ANNs may require a tighter measure of diversity.

Early performance can deceive one into thinking an algorithm is suitable for

a task that requires continual learning when it may not be. The ANN learning

performance on early GCFD subtasks was not reflective of how fast the ANNs

learned on later subtasks. All the ANNs learnt quickly on early subtasks,

50

but the decrease in the speed of feature discovery was rapid. Within the

first 1000 subtasks, the subtask final errors increased to a higher amount that

was sustained over the rest of the subtasks. In a task that requires continual

learning, the initial performance is fleeting compared to the performance on

later parts of the learner’s long operation.

The choice of activation function had a large impact on the backpropaga-

tion algorithm’s ability to discover useful features for new sample distributions.

Activation functions that have sharper drops in the activation function deriva-

tive over their domain (ReLU, tanh, and logistic) led to more slowdown than

with the SoftSign activation function, which has a shallower change in acti-

vation function derivative over its domain. ReLU ANNs had especially large

slowdown as they did not recover from all their features being calcified and

zeroed out.

Overall, the backpropagation algorithm can have poor continual feature

discovery. From our experiments, the performance is more clear with the

tanh, logistic, and ReLU ANNs. The SoftSign ANNs had less of a slowdown

in discovering useful features for new sample distributions, but still experienced

some form of slowdown.

Feature diversity, in terms of number of features the ANN has, did affect

the continual feature discovery performance. With logistic, tanh and SoftSign

activation functions, ANNs with more features had lower SFEs than those

from ANNs with fewer features. Whether the increase in calcified features at

the beginning of subtasks further slowed down the discovery of useful features

on later subtasks is not clear. However, how fast features can be adjusted (as

represented by the product of the average activation function derivative and

the step size) at the beginning of subtasks significantly decreased over subtasks

with all ANNs. This decrease would greatly affect the performance on later

subtasks.

51

In the next chapter, we seek to improve the backpropagation algorithm’s

continual feature discovery performance by introducing features with small,

random weights during the learner’s operation. These introduced features are

expected to introduce ANN conditions known to improve feature discovery

speed: feature diversity and high, unstable activation function derivatives.

52

Chapter 6

Continual Feature Discovery
with Generate-and-Test
Algorithms

In this thesis, we are focused on investigating algorithms for continual feature

discovery. After determining the backpropagation algorithm can be poor at

discovering useful features for new sample distributions (Chapter 5), in this

chapter, we propose the use of generate-and-test algorithms to improve the

backpropagation algorithm’s continual feature discovery performance. Investi-

gating whether generate-and-test algorithms can improve the backpropagation

algorithm’s continual feature discovery performance is one of the contributions

in this thesis.

Generate-and-test algorithms work by replacing the least useful parts of a

function with potentially more useful parts. They have been used for a va-

riety of purposes including for learning Boolean functions (Kaelbling, 1990)

and for learning rule-based systems (Booker et al., 1989). For representations,

generate-and-test algorithms replace the least useful features of a representa-

tion with newly generated features. A feature’s utility is relative to the task.

For continual feature discovery, useful features contribute to accurate esti-

mates on new sample distributions or expedite the discovery of useful features

for new sample distributions.

53

When it comes to learning on online supervised learning tasks, there have

been few strictly incremental generate-and-test algorithms. The strictly incre-

mental generate-and-test algorithms we use are based on those proposed by

Mahmood and Sutton (2013). They showed the backpropagation algorithm’s

performance can be improved with generate-and-test algorithms on an online

stationary supervised learning task.

We investigate whether generate-and-test algorithms can improve the back-

propagation algorithm’s performance on the generic continual feature discovery

(GCFD) task described in Chapter 4. The reason we used generate-and-test

algorithms with the backpropagation algorithm is because the backpropaga-

tion algorithm’s feature discovery performance is sensitive to properties of the

ANN that are not maintained during learning (Chapter 5). ANNs that up-

date with the backpropagation algorithm and are initialized with both high,

unstable activation function derivatives and high feature diversity can discover

useful features quickly for a single sample distribution (Chapter 3). To care-

fully reintroduce distinct features that have high, unstable activation function

derivatives, we used generate-and-test algorithms.

Recall, we measure feature diversity based on the proportion of calcified

features (Chapter 5). A feature is considered calcified if the average activa-

tion function derivative multiplied by the representation step size over the

input distribution is lower than 0.0001. A feature that is calcified will slowly

transform with the stochastic gradient descent updates of the backpropagation

algorithm. More calcified features implies there are fewer features to update

quickly to discover new features with. The number of non-calcified features is

an upper bound measure for the amount of feature diversity that is useful for

quick feature discovery.

There have been efforts to improve the backpropagation algorithm’s per-

formance on online supervised learning tasks. Step-size adaptation algorithms

54

assign a step size to each ANN weight and change them during learning (Sut-

ton, 1992; Kingma and Ba, 2015; Jacobsen et al., 2019). Stochastic Meta

Descent is an example of a step size adaptation algorithm that can be used to

preserve useful features and learn new features (Veeriah et al., 2017).

Other efforts for improving the backpropagation algorithm include chang-

ing the architecture of the ANN online. There have been networks that grow

one feature at a time (Fahlman and Lebiere, 1990; Fu et al., 1996; Draelos et

al., 2017). By freezing the weights of other features, the network ensures old

features are not overwritten. Growing a network may improve continual fea-

ture discovery as it also introduces new, distinct features that can begin with

high, unstable activation function derivatives (Fu et al., 1996). For contin-

ual feature discovery, generate-and-test algorithms are more appropriate than

ANNs that grow, since generate-and-test algorithms do not increase memory

usage. Also, unlike many of these mentioned works, we do not investigate

the algorithm’s performance on past distributions, because the performance

on new distributions is more relevant for continual feature discovery.

Other works have gone in the opposite direction of adding features by re-

moving weights. Pruning methods are used to learn a sparser ANN structure

(Pérez-Sánchez, 2018; Evci et al., 2019). One pruning method removes the

weights with the least magnitude and randomly makes new connections to

learn a sparse ANN structure (Evci et al., 2019). These techniques are moti-

vated by results that show a fully-connected ANN can have many weights that

are dispensable and do not contribute to the final performance (Frankle and

Carbin, 2019). We hold a similar philosophy to these pruning methods, and we

investigate whether there are dispensable features in an ANN during learning

that can be replaced with potentially useful features. Unlike generate-and-test

algorithms, pruning an ANN structure operates on individual weights, not in-

dividual features. Also, our goal is not to reduce the number of connections

55

in the network, but to use the feature capacity effectively.

6.1 Generate-and-Test Algorithms

In this section, we define the generate-and-test algorithms we used in our

experiments. The algorithms are based on the generate-and-test algorithms

presented by Mahmood and Sutton (2013). Generate-and-test algorithms can

update feature weights every sample. They have a replacement-rate parameter

ρ that must be set. The replacement rate ρ ∈ [0, 1] is the proportion of features

to replace each update. The features that are to be replaced are those that

have the least utility according to the tester. The features that replace the

least utility features are generated by the generator. If ρN < 1, where N is

the number of features in the ANN, ρN is the probability of replacing one

feature on an update. In our experiments, we set ρ to 0.0001. This ρ was not

tuned and was chosen, because it is an infrequent replacement rate. With 15

features, a ρ of 0.0001 means 3 features are expected to be replaced over 2,000

samples.

The generator of our generate-and-test algorithms generates features with

weights sampled from a normal distribution with a variance of 0.01. The

variance of 0.01 is the same variance we use to initialize the random feature

weights of an ANN with the backpropagation algorithm. By regularly inject-

ing features with small, random weights, we conjectured the backpropagation

algorithm can quickly adapt these new features for new sample distributions.

The two generate-and-test algorithms we study are random generate and

test and partial random replace. They differ in their testers. Random gener-

ate and test determines the utility of a feature by the magnitude of its output

weight. This heuristic prefers retaining features with high absolute output

weights since these features contribute more magnitude to an estimate when

activated (Mahmood and Sutton, 2013). Partial random replace’s tester treats

56

all features as equally useful, and hence, it always randomly chooses the fea-

tures to replace. Partial random replace is a baseline testing algorithm that

we used to test random generate and test’s tester.

To prevent newly generated features from being replaced before learning an

output weight, one can set an age parameter that notes the number of samples

a feature must update with before being considered for replacement. As our

replacement rate ρ is very infrequent, we set the age parameter to zero.

Both generate-and-test algorithms are computationally cheap. To generate

features is cheap, and to find the lowest ρN output weight magnitudes of N

features in random generate and test can be done with O(N) computation.

6.2 Experiment Description

We investigated whether the generate-and-test algorithms can improve the

continual feature discovery performance of the backpropagation algorithm.

The Task. To evaluate continual feature discovery, we used the same

generic continual feature discovery (GCFD) task from the preceding chapter.

In this task, the target function has 2 target features, the inputs are size-

7 binary vectors, each subtask lasts for 15,000 samples, and there are 4,000

subtasks in sequence.

The Agents. Multiple ANN architectures were examined. Each archi-

tecture had either 15 or 40 features, and each had tanh, logistic, ReLU, or

SoftSign activation functions. These are the same ANNs tested in the previ-

ous chapter.

We compared five different algorithms: the backpropagation algorithm on

its own (BP); the backpropagation algorithm with partial random replace

(BP+PRR); the backpropagation algorithm with random generate and test

(BP+RGT); partial random replace on its own (PRR); and random generate

and test on its own (RGT). The learning algorithms that include the backprop-

57

agation algorithm used the tuned step-size parameters from the experiment in

Chapter 5. The generate and test update is applied after the backpropagation

algorithm’s update for each sample.

For each combination of learning algorithm and ANN, the average error

of the last 1000 samples in each of the 4000 subtasks was measured. We call

the average error of the last 1000 samples of a subtask the subtask final error

(SFE). The SFE is a measure of the usefulness of the features discovered for a

sample distribution with a limited number of samples. An algorithm that has a

low SFE on all subtasks has excellent continual feature discovery performance

on the task, since it can discover useful features for new sample distributions.

We expected the performance of RGT and PRR to be similar to the perfor-

mance of a fixed random representation, because the generate-and-test algo-

rithms on their own perform infrequent updates. We expected ANNs trained

with BP+RGT and BP+PRR to have a lower SFEs on later subtasks com-

pared to those trained with BP, because of the above mentioned potential

interaction between the backpropagation algorithm and the generate-and-test

algorithms. We expected BP+RGT to perform better than BP+PRR since

BP+PRR has no heuristic for judging a feature’s utility and may discard useful

features more frequently.

6.3 Experiment Results

The mean squared errors were typically lower on the last subtask when BP+PRR

or BP+RGT was used instead of BP (Figures 6.1 and 6.2). The mean squared

errors over subtasks formed a curve that tended to be thinner and lower when

BP+RGT or BP+PRR was used instead of BP for a given ANN. However,

with the SoftSign ANNs, BP+PRR resulted in higher mean squared errors

compared to those from when BP was used instead.

For almost all ANNs, the SFEs on later substasks were higher with BP

58

Figure 6.1: The mean squared errors on the last subtask for each size-15 ANN
is shown here. The black bars represent one standard error determined by
50 independent runs, and they are plotted every 500 subtasks. ANNs trained
with BP+RGT or BP+PRR tended to have lower error than BP in most cases.

than with BP combined with a generate-and-test algorithm (Figure 6.3). The

exceptions to this trend involved the SoftSign ANNs. Across all subtasks, the

SoftSign ANNs trained with BP+PRR had higher SFEs than the SFEs from

when they were trained with BP.

For four ANNs, the SFEs on later subtasks with BP+RGT were higher

than or similar to the SFEs on later subtasks with BP+PRR: the 40-feature

logistic ANN, the 40-feature tanh ANN, and both ReLU ANNs (Figure 6.3).

This result was surprising as BP+PRR has a simpler tester than BP+RGT’s.

59

Figure 6.2: The mean squared errors on the last subtask for each size-40 ANN
is shown here, and are formatted like Figure 6.1.

With the other ANNs, BP+RGT had lower SFEs than the SFEs when trained

with BP+PRR.

On later subtasks, the ReLU ANNs had high SFEs compared to the SFEs

from ANNs with other activation functions. The ReLU ANNs trained with

BP+RGT had lower SFEs than when trained with BP, but the SFEs were

around 0.15, which is close to the SFEs of the fixed-representation ReLU ANN

tested in Chapter 5. In contrast, the other ANNs had SFEs around 0.05 or

lower when trained with BP+RGT. With BP+PRR, though, the ReLU ANNs

had SFEs comparable to the 15-feature ANNs that used BP+PRR (∼ 0.1).

60

Figure 6.3: These plots illustrate the performance of the different learning
algorithms on different ANNs. The dark bars represent one standard error de-
termined by 50 independent runs, and they are plotted every 100 subtasks. An
ANN trained with BP combined with a generate-and-test algorithm typically
had lower SFEs than those of the ANN trained with BP. The only exception
to this observation, is when the SoftSign ANNs were trained with BP+PRR
and the SFEs exceeded those from when they trained with BP.

61

For a given learning algorithm and activation function, the SFEs on later

subtasks were typically smaller or similar with more features (Figure 6.3).

There were three exceptions to this trend with the tanh, logistic, and ReLU

ANNs that used BP+RGT. On later subtasks, their 40-feature versions had

higher SFEs than the SFEs of their 15-feature versions.

The ANNs trained with BP+PRR had relatively stable SFEs over subtasks

compared to the SFEs of ANNs trained with BP or BP+RGT (Figure 6.3).

With all activation functions, BP+PRR typically had SFEs less than or around

0.1. ANNs that used BP or BP+RGT had lower SFEs on early subtasks

compared to their SFEs on later subtasks. The increase in SFEs occurred over

early subtasks, and the SFEs on later subtasks were relatively stable.

For a given ANN, using either BP+PRR or BP+RGT yielded higher av-

erage activation function derivatives at the beginning of subtasks (Figure 6.4)

than those from when BP was used. BP+PRR consistently had the highest

average activation function derivatives at the beginning of subtasks.

The change in the SFEs over subtasks had a similar pattern to the change in

the average activation function derivative at the beginning of subtasks (Figure

6.4). For most ANNs that used BP+RGT, the average activation function

derivative at the beginning of subtasks began high but then decreased sharply.

The decrease was steep over early subtasks and then flattened out over later

subtasks. This change in average activation function derivatives was analogous

to how the SFEs when using BP+RGT increased quickly over early subtasks

and become more stable over later subtasks. For the 40-feature tanh ANN

that used BP+RGT, in particular, the average activation function derivative

decreases at a shallower rate, and this shallower pattern resembles the learner’s

shallower increase in SFEs over subtasks. Both the increase in the SFEs over

subtasks and the decrease in the average activation function derivative at the

beginning of subtasks were not as steep with BP+RGT as with BP. The stable

62

Figure 6.4: Each curve represents an ANN architecture and a learning algo-
rithm. The third row has a semilog plot that is log-scaled above 10−4 and
linear-scaled below. The light-colored bars represent one standard error de-
termined by 50 independent runs and are plotted every 100 subtasks. ANNs
trained with BP and a generate-and-test algorithm had higher average activa-
tion function derivatives than when they were trained with BP.

63

SFEs over subtasks with BP+PRR reflected the relatively uniform activation

function derivatives at the beginning of subtasks with BP+PRR.

ANNs that used BP+PRR or BP+RGT typically had fewer calcified fea-

tures at the beginning of subtasks than when they used BP (Figure 6.5).

SoftSign ANNs had zero calcified features at the beginning of subtasks regard-

less of the learning algorithm. With the 15-feature tanh and logistic ANNs,

BP+RGT had almost zero calcified features at the beginning of subtasks un-

like when BP was used. With other ANNs, the proportion of calcified features

at the beginning of subtasks with BP+RGT was relatively large compared to

the near zero proportion of calcified features at the beginning of subtasks that

resulted when BP+PRR was used.

The average activation function derivative at the beginning of subtasks

and the proportion of calcified features at the beginning of subtasks when a

learning algorithm was used, did not predict whether a learning algorithm had

lower or higher SFEs than another learning algorithm. The ranking of algo-

rithms from highest average activation function derivatives at the beginning of

subtasks to lowest was: BP+PRR, BP+RGT, and BP (Figure 6.4). The rank-

ing of algorithms from highest proportion of calcified features to lowest was:

BP, BP+RGT, BP+PRR (Figure 6.5). However, when it comes to ranking

learning algorithms based on their SFEs, the algorithms had different rankings

depending on the size and the activation function of the ANN.

Finally, we note the ANNs that trained with random generate and test on

its own (RGT) and partial random replace on its own (PRR) had SFEs near

or higher than those of the fixed-representation ANNs (Figure 6.6).

6.4 Experiment Conclusions

More useful sets of features were discovered on later subtasks with the back-

propagation algorithm combined with a generate-and-test algorithm than with

64

Figure 6.5: These plots show the average proportion of calcified features at the
beginning of every 50th subtask. The light-colored bars represent one standard
error determined by 50 independent runs. The SoftSign ANNs (not shown)
had zero calcified features at the beginning of every subtask with each learning
algorithm. Fewer calcified features were present at the beginning of subtasks
when BP was combined with a generate-and-test algorithm than when BP was
used.

the backpropagation algorithm alone. For all ANNs, the SFEs on later sub-

tasks were lower with BP+RGT than with BP. Also, for most of the ANNs,

the SFEs on later subtasks were lower with BP+PRR than with BP. However,

when the SoftSign ANNs were trained with BP+PRR the SFEs across sub-

tasks were higher compared to the SFEs when the SoftSign ANNs were trained

with BP. Therefore, we still must be careful when choosing a generate-and-test

algorithm to improve the feature discovery performance of the backpropaga-

tion algorithm, but they can be worth using for the quicker discovery of useful

65

Figure 6.6: These plots illustrate the performance of an ANN updated with
RGT (orange), a fixed-representation ANN (grey), and an ANN updated with
PRR (purple) on the GCFD task. The results are for a size-15 logistic ANN.
The dark-colored bars represent one standard error determined by 50 runs, and
they are plotted every 100 subtasks. PRR tended to have higher SFEs than the
other two, and RGT appeared to have similar SFEs to the fixed-representation
ANN’s. For other ANNs (not shown), RGT and PRR had similar or higher
SFEs than those of the fixed representation.

features.

The interaction between the generate-and-test algorithms and the back-

propagation algorithm was the reason for the fast discovery of useful features.

On their own, the generate-and-test algorithms performed similarly to a fixed-

representation ANN. This implies that when a generate-and-test algorithm was

combined with the backpropagation algorithm, the additive effects of the indi-

vidual algorithms were not as crucial to the faster discovery of useful features

as the interaction between the two learning algorithms.

Using the generate-and-test algorithms alongside the backpropagation algo-

rithm led to higher activation function derivatives and fewer calcified features

for many of the ANNs. Both having fewer calcified features and having high,

unstable activation functions are known to be beneficial to feature discovery

performance. However, how an algorithm increases the activation function

derivatives and decreases the proportion of calcified features may come with

the slower discovery of useful features as it did for the SoftSign ANNs that

used BP+PRR instead of BP. These properties can be beneficial to discovering

66

useful features if introduced carefully.

Using a suitable tester can lead to better continual feature discovery per-

formance. For many ANNs, updating with BP+RGT, which discriminates

based on a feature’s utility, led to lower SFEs than those from updating

with BP+PRR, which does not consider a feature’s utility. This indicates

that BP+RGT can discover more useful features than BP+PRR for many

ANNs. However, for the ReLU ANNs, BP+RGT led to higher SFEs than when

BP+PRR was used. So, for ReLU ANNs, the BP+RGT may not be appro-

priate for good continual feature discovery performance. Also, the 40-feature

logistic ANN and 40-feature tanh ANN had higher SFEs with BP+RGT than

the SFEs from when BP+PRR was used with their 15-feature versions. This

indicates that either the backpropagation algorithm parameters were poor for

continual feature discovery with the 40-feature versions or the generate and

test parameters of BP+RGT algorithm could be tweaked for better perfor-

mance on the 40-feature ANNs. Accounting for the activation type and size

of the network when choosing to use a generate-and-test algorithm can lead

to better continual feature discovery performance.

Overall, the discovery of useful features for new sample distributions with

the backpropagation algorithm was improved with generate-and-test algo-

rithms. This shows that generate-and-test algorithms can have significant

benefits for continual feature discovery performance.

More work with generate-and-test algorithms can potentially yield better

continual feature discovery algorithms. The generate-and-test algorithms we

tested updated infrequently, were computationally cheap, and were untuned.

Yet, the performance gains to the backpropagation algorithm were significant.

The partial random replace algorithm was simple, but improved the backprop-

agation algorithm’s discovery of useful features with all ANNs except with the

SoftSign ANNs. As mentioned above, finding suitable testers is an impor-

67

tant part of the performance improvement from generate-and-test algorithms.

BP+PRR had a consistency in performance across the sequence of subtasks

that may be desirable for future feature discovery algorithms.

This brings us to the end of the major results of this thesis. In this chapter,

we demonstrated how simple and computationally cheap generate-and-test al-

gorithms can improve the backpropagation algorithm’s continual feature dis-

covery performance. By showing how effective generate-and-test algorithms

can be for continual feature discovery, we hope to have contributed to the

research into agents that continually learn.

68

Chapter 7

Conclusion

Continual feature discovery is an important aspect of continual learning. An

agent that continually learns may need to learn from complex sample distri-

butions throughout the it’s operation. To empower the agent to learn from

these distributions, we can ensure it can discover useful features for all sample

distributions it encounters.

In this thesis, we motivated the use of the generate-and-test algorithms for

better performance in a continual feature discovery task. First, we introduced

the generic continual feature discovery task that tests a learner’s ability to dis-

cover new features for new sample distributions. Then, we demonstrated that

the backpropagation algorithm, an algorithm renowned for its feature discov-

ery on tasks where the sample distribution does not change, can perform poorly

on tasks with changing sample distributions. We explained that the poor

continual feature discovery performance can be attributed to the backprop-

agation algorithm’s sensitivity to initial conditions that are not maintained

throughout the backpropagation algorithm’s updates. Then, with two simple

generate-and-test algorithms, we showed the backpropagation algorithm can

benefit greatly from the synergy between it and generate-and-test algorithms.

The investigated generate-and-test algorithms were not tuned and were

relatively unsophisticated yet they contributed a large performance improve-

69

ment to the backpropagation algorithm’s continual feature discovery. The

algorithms generated random features, because features with small, random

weights are known to be useful for fast learning with the backpropagation algo-

rithm. Potentially, a more useful generator can be proposed to handle various

data distributions. The tester of the generate-and-test algorithm could also

become more sophisticated and take into account other statistics to improve

performance.

More work can be done with the artificial neural network’s (ANN’s) struc-

ture. From our work, it appears the issues with the backpropagation algo-

rithm stemmed from the choice in activation function and how the activation

function derivative changed over samples. A better understanding of the ac-

tivation functions could yield a better understanding of the backpropagation

algorithm’s limitations in continually discovering useful features. SoftSign, a

relatively uncommon choice for an activation function, showed itself as a useful

activation function for continual feature discovery with the backpropagation

algorithm. The feature discovery with SoftSign activation functions did not

slow as much as when the ANN had other activation functions, although, there

was still some slowdown.

Further research with other representations can establish better algorithms

and principles for the continual discovery of useful features. Continual feature

discovery algorithms should eventually account for more sophisticated repre-

sentations and data streams. In the generic continual feature discovery task,

the input distribution never changed, and this assumption does not hold for

agents that continually learn in general. Continual feature discovery with

other types of features such as recurrent features or convolutional features

would help establish the generality of the principles of continual feature dis-

covery algorithms. It would be interesting to investigate whether these other

feature types that can be updated with the backpropagation algorithm can

70

also benefit from generate-and-test algorithms for continual feature discovery

tasks.

71

References

Aljundi, R., Belilovsky, E., Tuytelaars, T., Charlin, L., Caccia, M., Lin, M.,
Page-Caccia, L. (2019). Online Continual Learning with Maximal Inter-
fered Retrieval. In Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc,
F., Fox, E., Garnett, R., (Eds.), Advances in Neural Information Process-
ing Systems 32, pp. 11849–11860. Curran Associates, Inc.

Aljundi, R., Kelchtermans, K., Tuytelaars, T. (2019). Task-Free Continual
Learning. In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 11254–11263, Long Beach, CA,
USA. IEEE, Inc.

Blum, A. L., Langley, P. (1997). Selection of Relevant Features and Examples
in Machine Learning. Artificial Intelligence 97 (1), pp. 245–271. Elsevier.

Blumenfeld, Y., Gilboa, D., Soudry, D. (2020). Beyond Signal Propagation:
Is Feature Diversity Necessary in Deep Neural Network Initialization? In
Proceedings of the Thirty-Seventh International Conference on Machine
Learning, pp. 6910–6919. JMLR.

Booker, L. B., Goldberg, D. E., Holland, J. H. (1989). Classifier Systems and
Genetic Algorithms. Artificial Intelligence 40 (1), pp. 235—282. Elsevier.

Choy, M. C., Srinivasan, D., Cheu, R. L. (2002). Hybrid Cooperative Agents
with Online Reinforcement Learning for Traffic Control. In 2002 IEEE
International Conference on Fuzzy Systems, pp. 1015–1020. IEEE Inc.

Cireşan, D. C., Meier U., Masci, J., Gambardella, L. M., Schmidhuber, J.
(2011). Flexible, High Performance Convolutional Neural Networks for Im-
age Classification. In Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI-11), pp. 1237–1242. AAAI
Press.

Cogswell, M., Ahmed, F., Girshick, R. B., Zitnick, C. L., Batra, D. (2016).
Reducing Overfitting in Deep Networks by Decorrelating Representations.
In International Conference on Learning Representations (ICLR 2016).

Cui X., Hardin, C. T., Ragade, R. K., Potok, T. E., Elmaghraby, A. S. (2005).
Tracking Non-Stationary Optimal Solution by Particle Swarm Optimizer.
Proceedings of the 6th ACIS International Conference on Software Engi-
neering, Artificial Intelligence, Networking and Parallel/Distributed Com-

72

puting (SNPD 2005), pp. 133–138. IEEE Inc.

Denoeux, T., Lengellé R. (1993). Initializing Back Propagation Networks with
Prototypes. Neural Networks 6 (3), pp. 351–363. Elsevier.

Diaz-Rodriguez, N., Lomonaco, V., Filliat, D., Maltoni, D. (2018). Don’t For-
get, There is more than Forgetting: New Metrics For Continual Learning.
In Continual Learning Workshop at NeurIPS.

Douglas, S. C., Yu, J. (2018). Why RELU Units Sometimes Die: Analysis of
Single-Unit Error Backpropagation in Neural Networks. In 52nd Asilomar
Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA,
pp. 864–868.

Draelos, T. J., Miner, N. E., Lamb, C. C., Cox, J. A., Vineyard, C. M.,
Carlson, K. D., Severa, W. M., James, C. D., Aimone, J. B. (2017).
Neurogenesis Deep Learning: Extending Deep Networks to Accommodate
New Classes. In 2017 International Joint Conference on Neural Networks
(IJCNN). IEEE Inc.

Duch, W., Adamczak, R., Jankowski, N. (1997). Initialization and Optimiza-
tion of Multilayered Perceptrons. In Third Conference on Neural Networks
and Their Applications.

Elliott, D. L. (1993). A Better Activation Function for Artifical Neural Net-
works. ISR Technical Report TR 93-8. University of Maryland.

Elwell, R., Polikar, R. (2011). Incremental Learning of Concept Drift in Non-
stationary Environments. IEEE Transactions on Neural Networks 22, pp.
1517–1531. IEEE, Inc.

Evci, U., Gale, T., Menick, J., Castro, P. S., Elsen, E. (2019). Rigging the
Lottery: Making All Tickets Winners. Preprint. arxiv.org/abs/1911.11134

Fahlman, S. E. (1988). An Empirical Study of Learning Speed in Back-Propagation
Networks. Technical Report CMU-CS-88-162. Carnegie-Mellon University.

Fahlman, S. E., Lebiere, C. (1989). The Cascade-Correlation Learning Archi-
tecture. In Advances in Neural Information Processing Systems II. Morgan
Kaufmann, San Mateo.

Farquhar, S., Gal, Y. (2018). Towards Robust Evaluations of Continual Learn-
ing. Preprint. arxiv.org/abs/1805.09733

Frankle, J., Carbin, M. (2019). The Lottery Ticket Hypothesis: Finding

73

Sparse, Trainable Neural Networks. In International Conference on Learn-
ing Representations (ICLR 2019).

French, R. (1999). Catastrophic Forgetting in Connectionist Networks. In
Trends in Cognitive Sciences 3 (4), pp. 128–135. Cell Press.

Fritzke, B. (1997). A Self-Organizing Network That Can Follow Non-Stationary
Distributions. ICANN ’97: Proceedings of the 7th International Conference
on Artificial Neural Networks, pp. 613–618. Springer Berlin, Heidelberg.

Fu, L., Hsu, H., Principe, J. (1996). Incremental Backpropagation Learning
Networks. IEEE Transactions on Neural Networks 7, pp. 757–761.

Glorot, X., Yoshua, B. (2010). Understanding the Difficulty of Training Deep
Feedforward Neural Networks. In Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 249–256.
PMLR.

Golkar, S., Kagan, M., and Cho, K. (2019). Continual Learning via Neural
Pruning. Preprint. arxiv.org/abs/1903.04476

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., Bengio, Y. (2013). An
Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neu-
ral Networks. In Proceedings of International Conference on Learning Rep-
resentations (ICLR 2014).

Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. MIT Press.

Guyon, I., Elisseeff, A. (2003). An Introduction to Variable and Feature Se-
lection. Journal of Machine Learning Research 3, pp. 1157–1182.

Hayes, T. L., Kemker, R., Cahill, N. D., Kanan, C. (2018). New Metrics
and Experimental Paradigms for Continual Learning. In Proceedings of
the 2015 IEEE International Conference on Computer Vision (ICCV), pp.
2112–2113. IEEE Inc.

He, K., Zhang X., Ren, S., Sun, J. (2015). Delving Deep Into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification. In Pro-
ceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), pp. 1026–1034. IEEE Inc.

Hoi, S. C., Sahoo, D., Lu, J., Zhao, P. (2018). Online Learning: A Compre-
hensive Survey. Preprint. arxiv.org/abs/1802.02871

Ioffe, S., Szegedy, C. (2014). Batch Normalization: Accelerating Deep Network

74

Training by Reducing Internal Covariate Shift. Preprint. arxiv.org/abs/1502.03167v3

Jacobsen, A., Schlegel, M., Linke, C., Degris, T., White, A., White, M.
(2019). Meta-Descent for Online, Continual Prediction. In Proceedings of
the AAAI Conference on Artificial Intelligence 33, pp. 3943–3950. AAAI
Press.

Kaelbling, L. P. (1990). Learning in Embedded Systems. Dissertation. Stan-
ford University.

Kemker R., Abitino A., McClure M., Kanan, C. (2017). Measuring Catas-
trophic Forgetting in Neural Networks. In Proceedings of the AAAI Con-
ference on Artificial Intelligence 32, pp. 3390–3398. AAAI Press.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A. A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hass-
abis, D., Clopath, C., Kumaran, D., Hadsell, R. (2017). Overcoming catas-
trophic forgetting in neural networks. Proceedings of the National Academy
of Sciences 114 (13), pp. 3521–3526. National Academy of Sciences.

Kingma, D. P., Ba, J. (2015). Adam: A Method for Stochastic Optimization.
In 3rd International Conference on Learning Representations, San Diego,
CA, USA.

LeCun, Y., Bottou L., Orr, G. B., Klauss-Robert, M. (1998). Efficient Back-
Prop. In Neural networks: Tricks of the trade, pp. 9–48. Springer Berlin,
Heidelberg.

Mahmood, A. R., Sutton, R. S. (2013). Representation Search through Gen-
erate and Test. In AAAI Workshop: Learning Rich Representations from
Low-Level Sensors.

Mahmood, A. R. (2017). Incremental Off-policy Reinforcement Learning Al-
gorithms. PhD thesis. University of Alberta.

Mart́ınez-Rego, D., Pérez-Sánchez, B., Fontenla-Romero, O., Alonso-Betanzos,
A. (2011). A Robust Incremental Learning Method for Non-Stationary En-
vironments. Neurocomputing 74 (11), pp. 1800–1808. Elsevier.

Mauldin, M. L. (1984). Maintaining Diversity in Genetic Search. Proceedings
of the Fourth National Conference on Artificial Intelligence, pp. 247–250.
AAAI Press.

McCloskey, M., Cohen, N. J. (1989). Catastrophic Interference in Connection-
ist Networks: The Sequential Learning Problem. In G. H. Bower (Eds.),

75

Psychology of Learning and Motivation 24, pp. 109–165. Academic Press.

Mermillod, M., Bonin, P., Méot, A., Ferrand, L., Paindavoine, M. (2012).
Computational Evidence That Frequency Trajectory Theory Does Not Op-
pose But Emerges From Age-of-Acquisition Theory. In Cognitive Science
36, pp. 1499–1531.

Moriarty, D. E. (1997). Symbiotic Evolution of Neural Networks in Sequential
Decision Tasks. Dissertation. University of Texas at Austin.

Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger,
E., Liang, E. (2006). Autonomous Inverted Helicopter Flight via Rein-
forcement Learning. In Experimental Robotics IX, pp. 363–372. Springer
Berlin, Heidelberg.

Ng, S. C., Cheung, C. C., Leung, S. H., Luk A. (2003). Fast Convergence for
Backpropagation Network with Magnified Gradient Function. In Proceed-
ings of the International Joint Conference on Neural Networks, 2003, pp.
1903–1908.

Nguyen, D., Widrow, B. (1990). Improving the Learning Speed of 2-layer
Neural Networks by Choosing Initial Values of the Adaptive Weights. In
1990 International Joint Conference on Neural Networks (IJCNN). IEEE,
Inc.

Nwankpa, C., Ijomah, W., Gachagan, A., Marshall, S. (2018). Activation
Functions: Comparison of Trends in Practice and Research for Deep Learn-
ing. Preprint. arxiv.org/abs/1811.03378

Pérez-Sánchez, B., Fontenla-Romero, O., Guijarro-Berdiñas, B. (2018). A Re-
view of Adaptive Online Learning for Artificial Neural Networks. Artificial
Intelligence Review 49, pp. 281–299.

Rajasegaran, J., Hayat, M., Khan, S. H., Khan, F. S., Shao, L. (2019). Ran-
dom Path Selection for Continual Learning. In Proceedings of Advances
in Neural Information Processing Systems 32, pp. 12669–12679. Curran
Associates, Inc.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T. P., Wayne, G. (2019). Expe-
rience Replay for Continual Learning. In Proceedings of Advances in Neural
Information Processing Systems 32, pp. 350–360. Curran Associates, Inc.

Rumelhart, D. E., Hinton G. E., Williams, R. J. (1986). Learning Represen-
tations by Back-propagating Errors. In Nature 323, pp. 533–536.

76

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., Pascanu, R., Hadsell, R. (2016). Progressive Neural
Networks. Preprint. arxiv.org/abs/1606.04671

Sahoo, D., Pham, Q., Lu, J., Hoi, S. C. H. (2018). Online Deep Learning:
Learning Deep Neural Networks on the Fly. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence (IJCAI-
18), pp. 2660–2666. AAAI Press.

Schraudolph, N. N. (1999). Local Gain Adaptation in Stochastic Gradient
Descent. In 9th International Conference on Artificial Neural Networks:
ICANN ’99, pp. 569–574.

Shin, H., and Lee, J. K., Kim, J., Kim, J. (2017). Continual Learning with
Deep Generative Replay. In Advances in Neural Information Processing
Systems 30, pp. 2990–2999. Curran Associates, Inc.

Srivastava, R. K., Masci, J., Kazerounian, S., Gomez, F., Schmidhuber, J.
(2013). Compete to Compute. Advances in Neural Information Processing
Systems 26, pp. 2310–2318. Curran Associates, Inc.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.
(2014). Dropout: A Simple Way to Prevent Neural Networks from Overfit-
ting. Journal of Machine Learning Research 15 (56), pp. 1929–1958. JMLR.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M.,
Dieleman, S., Grewe1, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lil-
licrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D. (2016).
Mastering the Game of Go with Deep Neural Networks and Tree Search.
In Nature 529, pp. 484–489.

Sutton, R. S. (1992). Adapting Bias by Gradient Descent: An Incremental
Version of Delta-Bar-Delta. In Proceeding of Tenth National Conference
on Artificial Intelligence AAAI-92, pp. 171–176. AAAI Press.

Sutton, R. S., Whitehead, S. D. (1993). Online Learning with Random Rep-
resentations. In Proceedings of the Tenth International Conference on Ma-
chine Learning, pp. 314–321. Morgan Kaufmann.

Sutton, R. S. (2014). Myths of Representation Learning. Conference presen-
tation. ICLR 2014, Banff, Canada. iclr.cc/archive/2014/

Thimm, G., Fiesler, E. (1997). High-Order and Multilayer Perceptron Initial-
ization. IEEE Transactions on Neural Networks, 8 (2), pp. 349–359. IEEE,

77

Inc.

Veeriah, V., Zhang, S., Sutton, R. S. (2017). Crossprop: Learning Repre-
sentations by Stochastic Meta-Gradient Descent in Neural Networks. In
European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML-PKDD).

Yoon, J., Yang, E., Lee, J., Hwang, S. J. (2018). Lifelong Learning with
Dynamically Expandable Networks. In 8th International Conference on
Learning Representations.

78

	Introduction
	Background
	Quick Notation Overview
	Task Taxonomy
	Representations and Features
	The Backpropagation Algorithm

	Properties for Fast Feature Discovery
	Activation Function Derivatives
	Feature Diversity

	Initial Feature Diversity: Experiment
	Initial Feature Diversity: Results
	Initial Feature Diversity: Conclusions
	Summary of Properties for Fast Learning

	Evaluation for Continual Feature Discovery
	Description of the GCFD Task
	Evaluation for Continual Feature Discovery
	Summary

	Continual Feature Discovery with the Backpropagation Algorithm
	Experiment Description
	Results
	Conclusions

	Continual Feature Discovery with Generate-and-Test Algorithms
	Generate-and-Test Algorithms
	Experiment Description
	Experiment Results
	Experiment Conclusions

	Conclusion
	Bibliography

