
University of Alberta

Temporal Abstraction in Temporal-difference Networks

by

Eddie JR Rafols

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2006

Abstract

The quality of a knowledge representation directly influences an agent’s ability to interact

with an environment. Temporal-di↵erence (TD) networks, a recently introduced knowledge

representation framework, model a world with a set of action-conditional predictions about

sensations. Some key characteristics of TD networks are that they: 1) relate knowledge

to sensations, 2) allow the agent to make predictions about other predictions (composi-

tionality) and 3) provide a means for abstraction. The focus of this thesis is connecting

high-level concepts to data by abstracting over space and time. Spatial abstraction in TD

networks helps with scaling issues by grouping situations with similar sets of predictions

into abstract states. A set of experiments demonstrate the advantages of using the abstract

states as a representation for reinforcement learning. Temporal abstraction is added to TD

networks by extending the framework to predict arbitrarily distant future outcomes. This

extension is based on the options framework, an approach to including temporal abstrac-

tion in reinforcement-learning algorithms. Including options in the TD-network framework

brings about a challenging problem: learning about multiple options from a single stream

of data (also known as o↵-policy learning). The first algorithm for the o↵-policy learning of

predictions about option outcomes is introduced in this thesis.

Acknowledgements

While only my name appears on the cover of this thesis, I could not have written it without

the help of many others. Thanks to Dr. Rich Sutton, my supervisor, who introduced me to

the research found in this thesis and who gave me a new perspective on the idea of artificial

intelligence. I would also like to thank Dr. Michael Bowling and Dr. Petr Musilek for

participating on my thesis committee. Thanks go to Dr. Mark Ring, who took the time to

thoroughly proofread the initial draft of this thesis. Many thanks go to Brian Tanner, Anna

Koop, Cosmin Paduraru and the rest of the RLAI group who provided help and friendship

over the past two years (and who also managed to tolerate me for two years). And finally,

I would like to thank my parents, Eddie and Evangeline Rafols, for all their encouragement

and support. This thesis is a reflection of the love for learning you instilled in me.

Contents

1 Introduction 1

1.1 Predictive Representations . 1

1.2 Temporal-di↵erence Networks . 2

1.3 Abstraction . 5

1.4 Temporal Abstraction in Temporal-di↵erence Networks 7

1.5 O↵-policy Learning . 8

1.6 Outline . 8

2 Related Work 10

2.1 Discrete Dynamical Systems . 10

2.2 Temporal-di↵erence methods . 11

2.3 Grounded Models . 14

2.3.1 Diversity-based Inference . 14

2.3.2 Predictive State Representations . 15

2.3.3 History-Based Representations . 20

2.3.4 Schemas . 21

2.4 Discussion and Conclusions . 21

3 The Predictive Representations Hypothesis 22

3.1 Motivation and Confounding Factors . 23

3.2 Agent and Environment . 24

3.3 Tabular Predictive Representations . 24

3.3.1 Su�cient Statistics . 26

3.3.2 Performance and Generalization . 27

3.3.3 Sarsa(0) with Identically Predictive Classes 29

3.4 Tabular History-based Representations . 29

3.5 Experiment Design . 30

3.6 Results . 31

3.7 Discussion and Conclusions . 36

4 Augmenting Temporal-di↵erence Networks with Options 38

4.1 Temporal-di↵erence Networks . 39

4.2 Options . 40

4.3 Option-conditional TD (OTD) Networks . 41

4.4 Algorithm Derivation . 42

4.4.1 The Forward View . 43

4.4.2 Forward and Backward View Equivalence 44

4.5 OTD Network Experiments . 47

4.5.1 The Environment . 47

4.5.2 The Temporal-di↵erence Network . 49

4.5.3 Error Metric . 50

4.5.4 Parameter Study . 51

4.5.5 Individual Node Error . 51

4.5.6 Maintaining Direction . 56

4.6 Discussion and Conclusions . 57

5 Universal O↵-policy Learning 61

5.1 O↵-policy Learning . 61

5.2 Algorithm Derivation . 63

5.2.1 The Forward View . 64

5.2.2 Restarting an Option During Execution 64

5.2.3 Forward and Backward View Equivalence 66

5.2.4 Convergence . 69

5.3 Tiled Gridworld Experiments . 72

5.3.1 Parameter Study . 73

5.3.2 Individual Predictions . 75

5.3.3 Comparing O↵-policy and On-policy Learning 76

5.4 Discussion and Conclusions . 79

6 Putting It All Together 81

6.1 Learning OTD Networks O↵-policy . 81

6.2 Experiments . 82

6.2.1 Parameter Study . 82

6.2.2 The Concept of Direction, Revisited 84

6.2.3 Di↵erent Behavior Policies . 87

6.3 Discussion and Conclusions . 88

7 Conclusion 90

7.1 Future Work . 90

7.1.1 Representation . 91

7.1.2 Learning . 91

7.1.3 Discovery . 93

7.2 Discussion . 94

Bibliography 95

List of Figures

1.1 An example grid-world and temporal-di↵erence network 3

1.2 Expanding the example grid-world . 6

1.3 An example of an option-conditional TD network 8

2.1 The agent-environment interface . 11

2.2 Sutton and Tanner’s 7-state environment and the two TD networks used to

model it . 13

3.1 Confounding factors and solutions . 23

3.2 Another small example grid-world . 24

3.3 Grouping environmental states into identically predictive classe. 26

3.4 An example cross-shaped grid-world . 27

3.5 An example grid-world with action-selection disagreements 28

3.6 The “o�ce” grid-world used for the navigation task. 30

3.7 The number of unique labels found in each of three state representations. . . 31

3.8 The ”o�ce” grid-world, divided into predictive classes for n = 1. 32

3.9 Learning curves for predictive representations and history-based representations 33

3.10 Sample trajectories for various values of n. 35

4.1 The n-step outcome tree for n = 3 . 44

4.2 The colored grid-world . 48

4.3 The 45-node option-conditional question network 48

4.4 Learning curves for various combinations of ↵ and � with the on-policy OTD

network algorithm . 52

4.5 Learning curves for the Leap nodes. 54

4.6 Learning curves for the F,L, and R nodes. 56

4.7 Learning curves for the Wander node. 56

4.8 A sample 29-step trajectory in the grid world 58

5.1 Restarting during an episode . 65

5.2 Horizontal tilings . 73

5.3 Learning curves for various combinations of ↵ and �. 74

5.4 Learning curves from o↵-policy learning with error bars. 76

5.5 A comparison between on-policy and o↵-policy learning 78

5.6 Learning curves for the on-policy algorithm 79

6.1 Learning curves for various combinations of ↵ and � 84

6.2 Learning curves for � = 0 and � = 1 . 85

6.3 The 29-step trajectory from Chapter 4 revisited 86

6.4 Learning curves with the behavior policies b1 and b2 88

6.5 A comparison between two behavior policies 89

List of Algorithms

1 The on-policy OTD network learning algorithm . 42
2 The o↵-policy learning of option models algorithm . 70
3 The o↵-policy OTD network algorithm . 83

Chapter 1

Introduction

Knowledge representation is a critical issue in the field of artificial intelligence. An artificial-

intelligence agent interacts with an environment. The agent’s understanding of the dynamics

of the world is summarized by its knowledge representation. If the agent is charged with

completing a task in this world, the quality of the knowledge representation can make the

di↵erence between the agent’s success and failure. In this thesis I address a major challenge

of knowledge representation: forming high-level concepts from low-level observations. Just

as a person can form an understanding of the world from their nerve impulses, a learning

agent will, ideally, form a representation of the environment from its own sensations. The

main contribution of this thesis is an approach to knowledge representation that attempts

to bridge the gap between low-level observations and high-level concepts.

1.1 Predictive Representations

Predictive representations are a recent development in knowledge representation that con-

nect knowledge to experience—in this thesis, a sequence of action-observation pairs. Ac-

tions, chosen according to some behavior policy, are taken by the agent, and observations

are emitted by the environment in response.

Predictive representations encapsulate knowledge as predictions about future experi-

ence. Correct predictions about the outcomes of possible interactions with the environment

demonstrate an understanding of the environment. For example, a basketball can be ma-

nipulated in many di↵erent ways and there is a corresponding prediction about the outcome

of each manipulation.

• If I rotate the ball, I expect to observe a certain pattern on the other side of the ball.

• If I bounce the ball, I expect to observe the ball following a certain trajectory.

1

• If I pick up the ball, I expect to observe the ball in my hands (the observation in this

case may be tactile rather than visual as in the previous two manipulations).

Being able to predict what I will observe given many di↵erent interactions is a form of

knowledge about the basketball. In turn, being able to distinguish between an inflated

basketball and a flat basketball involves knowing that the same manipulations (rotating,

bouncing, picking up, etc.) result in di↵erent observations. While the observation for the

two balls may be similar, a dramatically di↵erent observation is expected if the balls are

bounced.

An important characteristic of predictive representations is that the representation is

subjective to the agent—knowledge is represented with respect to the agent’s experience.

This approach to knowledge representation is a departure from knowledge representation

as in expert systems, where knowledge is a set of arbitrary symbols. Learning or verifying

these symbols requires an oracle that can interpret and provide meaning to the symbols.

In contrast, knowledge in a predictive representation is both learnable and verifiable by the

agent because knowledge is represented as quantities that the agent can observe and actions

that the agent can take.

Another important characteristic of predictive representations is that predictions can be

used as state—the current predictions are computed from the previous set of predictions,

and the next set of predictions are computed from the current set of predictions. State,

in a predictive representation, is therefore internal to the agent. This di↵ers from many

other representations in which state is a property of the environment and is not always

observable by the agent. Predictive representations are particularly useful in the absence of

an observable environmental state because rather than attempting to reconstruct the latent

environmental state (which is tough to accomplish from data), the agent can use its actions

and the available observations to represent the environment.

1.2 Temporal-di↵erence Networks

Temporal-di↵erence networks, recently introduced by Sutton and Tanner (2004), represent

knowledge as a set of predictions about future interactions with the world and are thus

predictive representations. The distinguishing feature of TD networks is that they permit a

compositional specification of the quantity being predicted—predictions are made not only

about specific observable quantities, but also about other predictions.

2

RF

F

obs

RF

F

obs

RF

F

obs

time step = 1

t = 2

t = 3

R

F

The agent takes action:

The agent takes action:

21

3

Figure 1.1: This example illustrates an agent in a grid-world that rotates (R) and then steps
forward (F). The labels on the left indicate the time index. The agent’s position is demon-
strated in the second column, while the TD network pictured in the third column illustrates
the predictions made on each time-step. The square represents the current observation; the
square is black if the agent is facing a wall and the square is white if the agent is facing
an empty cell. The nodes of the TD network (circles) represent predictions, and the arrows
indicate the predictive target, conditional on the labeled action. The color of each circle
indicates the correct prediction.

Compositionality can be described in the context of the basketball example. After each

manipulation, new predictions can be made about future manipulations—depending on

whether I pick up a ball with my right hand or my left hand, I may make two di↵erent sets

of predictions about what I will observe if I then bounce the ball.

An example grid world problem and a corresponding temporal-di↵erence network is pic-

tured in Figure 1.1. The agent, represented by a triangle, can be in one of four orientations:

North, South, East, or West. The triangle representing the agent is pointed in the direction

that the agent is facing (e.g., at time step 1 the agent is facing West). On each time step

the agent chooses one of the two actions: step forward (F) or Rotate (R). If the agent is

3

facing a wall (black grid cell), then the step forward action will have no e↵ect; if the agent is

facing an open space (white grid cell), then the step-forward action will advance the agent

one grid cell in the direction it is facing. The rotate action causes the agent to rotate 90�

clockwise while remaining in the same grid cell. The agent observes the color of the grid

cell that it is facing. For example, at time step 1 the agent observes black; at time step 2

the agent observes white (the current observation is represented by the square marked obs

at each time step of Figure 1.1).

An example TD network is pictured to the right of the grid world. The agent’s current

observation is represented by a square while its predictions are represented by circles. The

arrows indicate the quantity being predicted (also called the target of prediction), while the

label on the arrows indicate that the prediction is action-conditional (the agent predicts the

value of the target if a certain action were taken). The targets have a temporal aspect—each

node predicts the value of its target on the next time step.

The prediction of the node labeled 1 can be interpreted as asking the question: “What

will the agent observe if it steps forward?” At time step 1, the circle for Node 1 is filled

with black to indicate that the correct prediction is that the agent will observe a black cell.

Similarly, Node 2 asks the question: “What will the agent observe if it rotates?” At time

step 1, if the rotate action were taken then the agent would be facing a white grid cell so

the circle for Node 2 is filled with white. Node 3 asks: “What will the value of node 1 be

if the agent steps forward?” This question illustrates a compositional prediction (Node 3

is making a prediction about another prediction.) Node 3 asks a question about Node 1;

Node 1 asks a question about the observation. Node 3 is therefore asking a question about

the value of the observation two time steps in the future: “What will the agent observe if it

steps forward, then steps forward again?” This extensive question being asked by node 3 is

the question asked if the chain of compositions is followed from a node until an observation

(the extensive question is thus grounded in the observation). Notice that each node in

the network is framed as a question about future interactions. The three node and one

observation structure in Figure 1.1 is referred to as the question network of this particular

temporal-di↵erence network.

The second row (t = 2) of Figure 1.1 illustrates how the predictions in the TD network

change after the agent rotates. Stepping forward would result in an observation of a white

grid cell; stepping forward twice would result in an observation of a black grid cell; rotating

would result in an observation of a black grid cell as well. The change is reflected in the

4

question network by the color of the node. The third row (t = 3) shows the corresponding

changes after the agent takes the step forward action.

This example only illustrates the question network, which defines the agent’s predictions.

There is also an underlying answer network, which specifies how predictions are updated on

each time step. Chapter 4 provides a formal description of both the question network and

the answer network.

1.3 Abstraction

Abstraction is the process of transforming a base set of objects into a more general set of

abstract objects based on commonalities. A simple example of abstraction is the aggregation

of physically proximal locations into a common group: rooms can be abstracted into houses,

houses can be abstracted into neighborhoods, neighborhoods can be abstracted into cities.

Abstraction becomes increasingly important as the environments being modeled grow

in size and complexity. In a large state space, it its often impractical to treat each state

separately. State abstraction can produce a smaller, abstract state space that captures

underlying regularities in the environment. Returning to the basketball example, a court

can be abstracted into regions (o↵ensive zone, defensive zone, within shooting range, etc.)

rather than considering every single position on the court as a separate location. Also, in a

large state space, the e↵ect of a primitive action may be negligible, but extended sequences

of actions may have perceivable e↵ects in the world. Temporal abstraction can reduce long

sequences of primitive actions into high-level units of action. In the basketball example, a

sequence of low level actions can be abstracted into an extended way of behaving. Temporal

abstraction allows shooting the ball to be modeled as a singular, temporally-extended unit

of action rather than treating each muscle twitch in the shooting motion as a separate unit

of action. Examples of both types of abstraction, spatial and temporal, are found in this

thesis.

In an experience-oriented representation, there are often commonalities between se-

quences of (both past and future) experience. In a predictive representation, state can be

abstracted by grouping situations with similar sets of predictions. Experiments conducted

in Chapter 3 attempt to ascertain the quality of the generalization e↵ected by predictive rep-

resentations. These experiments use the predictions of a TD network to test the predictive

representations hypothesis which holds that representing state as predictions is particularly

5

Figure 1.2: The example grid-world from Figure 1.1 grows larger as the granularity increases.
The larger worlds can be modeled as predictions about temporally extended behaviors, such
as “step forward until a wall is observed” or “with a %50 chance of terminating on each
time-step, step forward until termination”.

good for generalization. TD networks abstract over state, but in the existing framework

they do not abstract over time.

Temporal abstraction, dealt with in detail in this thesis, can be carried out by treat-

ing action sequences of arbitrary lengths as singular units. Modeling small worlds at the

lowest level of interaction (i.e., in terms of single-step actions) is feasible, but it quickly

becomes impractical to model environments at this low level as they grow larger and more

complex. For example, while simple actions may su�ce to model the grid-world presented

in Figure 1.1, suppose each grid-cell is split into four smaller cells. Now imagine that the

granularity of this grid-world is continually increased until the agent is but a speck in a sea

of white grid cells (as suggested by Figure 1.2). Modeling the environments in Figure 1.2 as

single-step predictions requires a larger number of predictions each time the world increases

in size (in each subsequent world, each step-forward action will have to be replaced by two

steps forward). In contrast, the world can be modeled as a set of temporally abstract pre-

dictions about the outcome of temporally extended behaviors. Predictions could be made

about observations arbitrarily distant in the future such as a prediction for the outcome of

stepping forward until hitting a wall or a prediction for the probability of reaching a wall

if always stepping forward, but with a %50 chance of the extended-action’s termination on

each step. These predictions can be made regardless of the size of the world and thus, despite

the fact that the world is increasing in size, a fixed set of temporally extended predictions

could capture the general structure of the environment.

The options framework (Sutton, Precup, & Singh, 1999) abstracts actions into tempo-

6

rally extended action-sequences. An option is defined by its three components:

• a set of situations from which the option can be initiated;

• a behavior policy, which determines how the agent is to act in any given situation;

• a set of situations in which the option may terminate.

The TD-network framework is extended to included options, forming a new temporally ab-

stract modeling algorithm. Chapters 4,5, and 6 deal with combining options with temporal-

di↵erence networks and the associated problem of learning about multiple options from a

single stream of data.

1.4 Temporal Abstraction in Temporal-di↵erence Net-
works

This thesis extends the temporal-di↵erence network framework to accommodate tempo-

rally abstract predictions, and it explores issues that arise when attempting to learn these

long-term predictions. Section 1.2 provided an example of a temporal-di↵erence network,

in which the predictive targets were conditioned on actions. In the extended framework,

targets are conditioned on options. Option-conditional predictions now ask questions of the

general form: “What will the value of the target be if the agent executes the option until

termination?”

Figure 1.3 suggests the increased representational power of an option-conditional TD

(OTD) network. The network is now modeling a situation in the game of basketball. The

observation is whether a basket is scored while the options are Dribble, Shoot, and Pass.

Prediction 1 asks the question: “If I shoot the ball, will I observe a basket?”, prediction 2

asks: “If I pass the ball, will I observe a basket?” Prediction 3 is a compositional prediction

which asks the question: “If I dribble the ball up the court, what will the value of prediction

1 be?”, or in extensive form: “If I dribble the ball up the court, then shoot the ball, will

I observe a basket?” The question network in Figure 1.3 is structurally identical to the

question network in Figure 1.1, but the predictions made in Figure 1.3 are now option-

conditional.

7

1 2

3

PassShoot

Dribble

Basket

Figure 1.3: An example of a temporal-di↵erence network with temporal abstraction. The
network shares the same structure as Figure 1.1, but now the targets are conditioned on
options rather than simple actions.

1.5 O↵-policy Learning

An OTD network may consist of many predictions, each corresponding to an option. As the

agent interacts with the environment, multiple option policies may be similar to the policy

the agent uses to generate actions. Many option policies are similar to the behavior policy.

An e�cient use of data is to update all predictions associated with these options. Learning

about one policy while following a di↵erent policy is known as o↵-policy learning. However,

when combined with temporal-di↵erence methods, o↵-policy learning may not converge to

a solution—predictions may grow without bounds. Chapter 5 explores the general problem

of o↵-policy learning and Chapter 6 studies the problem as it applies to temporal-di↵erence

networks.

1.6 Outline

This thesis progresses as follows. Chapter 2 is a survey of experience-oriented approaches

to learning world models. The survey covers both the predecessors and the contempo-

raries of temporal-di↵erence networks. Chapter 3 explores spatial abstraction and studies

potential advantages of using predictions as state. Experimental results suggest that pre-

dictive representations usefully abstract over state because they generalize well. The work

in Chapter 3 is independent from the following three chapters as it deals with what can be

represented, whereas Chapters 4, 5, and 6 deal with another important issue in knowledge

representation: how a representation is learned. Chapter 4 presents the first algorithm for

the on-policy learning OTD networks. The new algorithm successfully learns a model of

8

a partially observable grid-world environment and the emergence of a learned concept is

demonstrated. Chapter 5 addresses instability that may occur when o↵-policy learning is

combined with function approximation and TD methods. A provably sound algorithm for

the o↵-policy learning of option models is introduced in this chapter. Chapter 6 combines

the research of the previous two chapters into an algorithm for the o↵-policy learning of

OTD networks. Chapters 4, 5, and 6 are related in that the work in each subsequent chap-

ter builds on the previous chapter’s work and the experiments presented in these chapters

were conducted on a common testbed. Chapter 7 summarizes the new algorithms presented

in this thesis, suggests possible future avenues of research related to this thesis and discusses

the implications of the experimental results these algorithms.

9

Chapter 2

Related Work

This chapter is a survey of work related to this thesis. Many algorithms, TD networks

included, model a class of environments known as discrete dynamical systems. We first

present a formal description of discrete dynamical systems and relate them to other sys-

tems. Next, we present a brief description of temporal-di↵erence learning and the temporal-

di↵erence network framework. The last section of this chapter is a description of grounded

representations—representations that are similar to temporal-di↵erence networks in that

they represent knowledge in terms of actions and observations.

2.1 Discrete Dynamical Systems

In this work, algorithms are developed to model discrete dynamical systems (DDS). In these

systems, an agent interacts with an environment by taking actions and receiving observations

(Figure 2.1). At discrete time step t the learning agent is in environmental state s
t

2 S and

selects an action, a
t

2 A. The action provokes a change in the environmental state from

s
t

to s
t+1 according to probability Pat

stst+1
. As a result of the transition, the environment

emits an observation o
t+1 2 O.

The term experience refers to a sequence of interactions between the agent and the envi-

ronment in the form a
i

, o
i

, a
i+1, oi+1, · · · , a

n

, o
n

. History, h
t

, is a specific stream of experi-

ence that spans from the beginning of time to the current time step: a0, o0, a1, o1, · · · , a
t�1,

o
t�1.

If o
t+1 = s

t+1 then the agent observes the environmental state, or Markov state, and the

observation summarizes the entire history. However, in the partially observable case o
t+1

is a discrete symbol or set of symbols which do not uniquely identify the agent’s current

state; that is, the observation may be a single bit of information (as in Chapter 3) or the

10

Agent

Environment

at

ot+1

ot

stst+1

Figure 2.1: The agent-environment interface. At time step t the agent selects action a
t

.
The environment changes state probabilistically from s

t

to s
t+1 depending on the action.

An observation o
t+1 is emitted back to the agent.

observation may be a vector of features (as seen in Chapters 4, 5, and 6). The world is

partially observable when the observation is insu�cient to identify the environmental state.

A Markov Decision Processes (MDP) is defined by a set of observable states, a set of

actions, state transition probabilities, and reward probabilities (associated with each state

transition). A partially observable MDP (POMDP) is defined similarly to an MDP, but the

states are not observable; instead, there is a distribution of observations (or feature vectors)

associated with every state. The definition of MDPs and POMDPs are similar to the DDS

paradigm described above, with the exception being that reward is not modeled in a DDS.

Both MDPs and POMDPs generalize to a DDS in which reward is simply treated as an

element in the feature vector, receiving no special distinction from any other observation.

2.2 Temporal-di↵erence methods

TD methods are a class of algorithms that measure predictive error as the di↵erence between

temporally successive predictions (Sutton, 1988). The TD approach to learning contrasts

with Monte Carlo approaches which measure predictive error as the di↵erence between

the current prediction and the final outcome of a behavior. These two classes of learning

algorithms can be viewed as existing on a single continuum. On one end is single-step TD

learning (TD(0)), where the prediction at time t + 1 is used as a predictive target for the

prediction at time t. Monte Carlo algorithms occupy the opposite end of the spectrum, using

the final outcome at time T as the target for the prediction at time t. With TD learning,

predictions can be updated immediately whereas with Monte Carlo learning, predictions

11

cannot be updated until the final outcome is observed. Between Monte Carlo and single-

step TD learning are algorithms that blend predictive targets of di↵erent lengths. A notable

algorithm that bridges TD(0) and Monte Carlo is TD(�), where � an exponential weighting

scheme that combines the predictions at time t + 1, t + 2, . . . , t + n, n T such that lower

values of � place heavier weight on events closer in the future and higher values of � place

heavier weight on more distant outcomes.

TD learning has been used to solve reinforcement learning problems (problems in which

an agent seeks to maximize expected reward, e.g., MDPs). TD agents find optimal policies

in MDPs by learning expected rewards, and selecting the action with the highest expected

reward in each state (Sutton & Barto, 1998). Problems from elevator scheduling (Crites

& Barto, 1996) to learning to play backgammon (Tesauro, 1995) have been framed as

reinforcement-learning problems which can be solved with TD learning.

Temporal-di↵erence methods can predict quantities other than reward. TD methods

have been used to predict state, e↵ectively using TD algorithms to construct a model of

the world (Sutton, 1995). Sutton, Precup, and Singh used temporal di↵erence methods

to model state and reward for options—temporally extended actions (1999). This thesis

presents several algorithms based on the options framework. A formal description of the

framework is provided in Chapter 4.

Temporal-di↵erence Networks

As mentioned in the first chapter, a TD network is actually two conceptually separate

networks: the question network and the answer network. The question network specifies

the targets of learning; the answer network learns and computes predictions. TD networks

permit the compositional specification of learning targets so that predictions can be made

about other predictions.

Each node in a TD network attempts to learn the expected value of its target as specified

by the question network. This target may either be the value of another node on the next

time step or an observation on the next time step. The target relationship is atypical for

TD learning because the target is a di↵erent prediction; in typical TD learning a prediction

targets itself on a future time step.

A gradient-descent learning rule is applied in the answer network to learn a set of weights

that allow the agent to generate predictions from the previous time step’s predictions.

Sutton and Tanner conducted a suite of experiments, using the 7-state environment

12

1 0 0 0 0 0 1

s
1

s
2

s
3

s
4

s
5

s
6

s
7

(a) In the 7-state environment the agent observed either both the value (0 or 1)
and the state label (si) or only the value.

obs

(b) Action unconditional

obs

R L

R L R L

R L R L R L R L

(c) Action conditional

Figure 2.2: The temporal-di↵erence network algorithm learned the correct predictions about
the 7-state environment pictured in (a). Predictions were learned unconditional of ac-
tions (b) and action-conditional (c). (These figures originally appeared in Sutton & Tanner
(2004))

pictured in Figure 2.2a as a testbed for their new algorithm (2004). The agent transitions

between states by choosing either the left (L) or right (R) action. In each state the agent

observes 0 or 1 depending on its current state. In the first set of experiments the agent had

access to a label (si), which uniquely identified each environmental state. The agent learned

predictions for two di↵erent TD networks by training on a sequence generated by a random

walk. The first network, pictured in Figure 2.2b, made predictions about the observation

n steps in the future (by using a chain of n nodes). The second network, pictured in

Figure 2.2c, made all action-conditional predictions of length n and less (predictions about

the observation bit for all action sequences of length n and less). Both networks were shown

to make better predictions than a Monte Carlo algorithm.

A third experiment explored the partially observable case. Instead of state labels, the

agent observed 1’s in the ouside states and 0’s in the interior states (see Figure 2.2a). The

predictions of an action conditional TD network (Figure 2.2c, but with four levels) were

learned from experience and were used to represent state. In these experiments the one-step

error1 approached 0 over time.
1The error was computed by comparing the one-step prediction to the actual value observed on the next

time step.

13

The TD-network framework was extended to increase representational power and data

e�ciency. Two existing extensions to the framework are discussed briefly here (Tanner

presented a detailed description of the original TD network architecture and these extensions

in his thesis (2005)). A third extension, including temporal abstraction in TD networks, is

the subject of this thesis.

Certain worlds, despite being representable, could not be learned with the original TD

network learning algorithm. This learning problem was overcome by modifying the TD

network’s state representation (Tanner & Sutton, 2005b). In the original framework, the TD

network formed its state representation from predictions and observations. In the extended

framework, the representation was augmented with history information in order to assist

learning. The e↵ectiveness of the new algorithm was demonstrated on a 104-state grid

world.

A second extension, TD(�) networks, augmented the TD network learning algorithm by

implementing inter-node eligibility traces (Tanner & Sutton, 2005a). TD(�) networks were

shown to learn correct predictions for worlds with a fraction of the data required by the

original algorithm. Implementing the traces incurred minimal computational overhead.

In this thesis an additional extension generalizes the TD-network framework to incor-

porate temporal abstraction. Rather than making predictions about one-step actions, the

augmented TD-network framework predicts the outcome of extended behaviors.

2.3 Grounded Models

Temporal-di↵erence networks model the world with action-conditional predictions about

observations. The approaches to modeling DDS’s in this section share a common aesthetic

and are thus said to be grounded models. Grounded (or experience-oriented) models are

desirable because they are often easier to learn from data than a latent (or hidden) state

model. Grounded models do not attempt to hypothesize the existence of an underlying envi-

ronmental state, rather state is constructed from and represented as an agent’s observables.

2.3.1 Diversity-based Inference

One of the inspirations for predictive representations was Diversity-based Inference of Finite

Automata, in which the structure of a deterministic finite-state automata was inferred from

data (Rivest & Schapire, 1993). A finite-state automaton can be described as a DDS with

deterministic transitions. Rivest and Schapire introduced the notion of a test: a set of

14

actions followed by an observation (a1, a2, . . . , an

, o
n

). A test succeeds if the agent, starting

from a given state, follows the sequence of actions specified by the test and observes o
n

at the end of the trajectory. The goal of an agent is to construct a perfect model of its

environment—that is, to know every test’s probability of success.

Tests were divided into equivalence classes in which two tests were equivalent if, from

every state in the environment, the two tests made the same predictions as each other.

The equivalence classes over tests were used to construct an update graph: a graph in

which equivalence classes corresponded to a vertices, and actions corresponded to edges.

An agent has a perfect model of a world if it has an update graph and test values from each

equivalence class because the update graph specifies how equivalence classes are connected

by actions and the test values imply that the agent knows the outcome of transitioning

between equivalence classes.

Rivest and Schapire presented algorithms that build the update graph and place the

learner in a state for which the result of all tests is known, thus learning a perfect model of

the environment. Initially, these algorithms required an oracle to determine whether tests

were equivalent, but later algorithms determined test equivalence from data.

Hundt, Panagaden, Pineau, and Precup (2006) developed a theoretical framework for

modeling DDSs (which could be considered an extension of Rivest and Schapire’s work

to stochastic systems). Hundt et al. presented the idea of creating a dual and double-dual

representation of a DDS (or equivalently a POMDP). Their dual representation is to a DSS as

Rivest and Schapire’s update graph is to a finite-state automaton. Tests are generalized into

experiments, a non-empty sequence of tests. As in Rivest and Schapire’s work, equivalence

classes are defined, now over experiments rather than tests, and a structure similar to an

update graph can be constructed. A new set of experiments are defined in the dual which

allows the construction of a double-dual representation, a representation that is equivalent

to the original DDS in its most compact form.

2.3.2 Predictive State Representations

Predictive state representations (PSRs), are a class of predictive models that are based on

the principle that the state of an unknown system can be modeled as a set of predictions

about future interactions with the world. Since their introduction in 2002, PSRs have been

the subject of a considerable amount of research. This section traces chronologically through

the evolution of PSRs, ending with work that combines PSRs and options—most closely

15

resembling the integration of temporal-di↵erence networks and options presented in this

thesis.

In 2002, Littman, Sutton, and Singh introduced PSRs—an approach to modeling dy-

namical systems influenced by Rivest and Schapire’s work (1993). Littman et al. redefined a

test as a sequence of action-observation pairs of the form a0, o0, a1, o1, . . . , an

, o
n

. The value

of a test is the probability that the agent will observe o0, o1, . . . , on

if it takes the actions

a0, a1, . . . , an

(ie. Pr(o
i

= o0, oi+1 = o1, . . . , oi+n

= o
n

; a
i

= a0, ai+1 = a1, . . . , ai+n

= a
n

)).

Littman et al.’s premise was that knowing the value of all possible tests is equivalent to

complete knowledge of the world. They went on to show that the value of all possible tests

could be computed from a set of linearly independent tests—the probability distribution

over all possible futures can be computed from a finite set of tests. Furthermore, they pro-

vide a proof by construction that any finite POMDP can be converted into a linear PSR

where the number of linearly independent tests will be less than or equal to the number of

underlying states in the POMDP model.

Singh, Littman, Jong, Pardoe, and Stone introduced the first learning algorithm for

PSRs (2003). The first use of the term core tests, a set of tests from which all other tests

can be computed (i.e., the linearly independent tests described in the previous paragraph),

is found in this work. Singh et al. observed that in order to update the core tests it was also

necessary to maintain predictions for all the 1-step tests, called extension tests. The values

of core tests are updated by a projection vector learned via a gradient-descent learning rule.

James and Singh presented a second learning algorithm for PSRs (2004). This algorithm

modeled systems with a reset action and, in addition to updating predictions, discovered

a set of core tests. A major contribution of this work was the introduction of the history-

test prediction matrix (which would later be called the system-dynamics matrix), an infinite

matrix whose rows correspond to all possible histories and whose columns correspond to all

possible tests. Elements in the matrix represented the prediction for a test given a history.

The algorithm worked by first considering a sub-matrix of the system-dynamics matrix with

only the one step tests (one action-observation pair). The sub-matrix was populated through

the agent’s interaction with the environment until each test had been sampled a minimum

number of times. The reset action was a key part of this sampling process because it allowed

the agent to return to the null history and thus receive multiple samples for each history-test

combination. The rank of the sub-matrix was then estimated. (The rank is equivalent to the

number of linearly independent tests (i.e. core tests) in the sub-matrix.) A new sub-matrix

16

with all the two step tests was then considered and the sampling process was repeated. The

sub-matrix was expanded on each iteration of the algorithm, increasing the length of tests

by one until the rank of the sub-matrix did not increase between iterations. At this point

the algorithm had found a set of core tests from which all predictions could be computed.

A set of parameters used to keep core tests updated could then be computed from data.

Around the same time as James and Singh’s learning algorithm (2004), Rosencrantz,

Gordon, and Thrun introduced the transformed predictive state representation (TPSR)

algortihm (2004). TPSRs di↵ered from PSRs because they did not seek a minimal set

of core tests. Instead, an agent learned about a large number of tests, which were then

projected to a low-dimensional space. The agent used the transformed predictions in the

low-dimensional space as features in its representation.

On the theory front, Rudary and Singh introduced a formalism for non-linear PSRs

(EPSRs) (2004). The new formalism was based on e-tests, which, like the tests of Rivest

and Schapire (1993), were defined as a sequence of actions followed by an observation.

EPSRs could be exponentially smaller than equivalent POMDP or linear PSR models. In

another paper on PSR theory, Singh, James, and Rudary further formalized the system

dynamics matrix and demonstrated the generality of PSR models (2004). They showed

that while a PSR can model any system representable by a POMDP, there exist systems

that can be modeled by PSRs that cannot be modeled by a POMDP.

Related to PSRs are Observable Operator Models (OOMs) which model a time-series of

observations, generated by an unknown stochastic process as a sequence of operators (Jaeger,

1998; Jaeger, 2000). In Jaeger’s model, the sequence of observations can be interpreted

as a series of actions taken by the unknown process and thus the observations are both

observable quantities and operators. Formally, an OOM is described by a set of matrices

(each corresponding to an observable operator) and a starting vector. The relationship

between OOMs and PSRs is discussed by Singh, James, and Rudary (2004).

Also in 2004, James, Singh and Littman presented an application of PSRs to the control

problem. Two new algorithms were proposed in this work: the PSR incremental pruning

(PSR-IP) algorithm and a Q-learning algorithm for PSRs. The PSR-IP algorithm is a direct

adaptation of a POMDP learning algorithm in which a piecewise-linear value function is

incrementally improved by preserving the best pieces on each iteration (Cassandra, Littman,

& Zhang, 1997). Q-learning with PSRs was carried out by discretizing the continuous-

valued prediction vectors. Multiple tilings, each o↵set by a small amount, were defined over

17

the prediction space, and the index of the tile occupied by the prediction vector in each

overlapping tiling was used as a feature by the Q-learning agent.

Two separate algorithms were introduced in 2005 that allowed PSRs to be learned in the

absence of an action that resets the agent back to a known state. Wolfe, James, and Singh

introduced the su�x-history algorithm that removed the need for a reset action by instead

considering history su�xes as rows in the system-dynamics matrix (2005). For example,

a length 3 history h = a0, o0, a1, o1, a2, o2 could be used to update the rows corresponding

to h, h0 = a1, o1, a2, o2 and h00 = a2, o2. The algorithm considers sub-matrices of system-

dynamics network as in James and Singh (2004), but now the sub-matrix being considered

on iteration n will have all the n-step tests as columns and all the n-length histories as rows.

In addition to removing the need for the reset action, Wolfe et al. implemented the first

temporal-di↵erence approach to learning PSR models.

A reset-free, on-line algorithm for learning PSR models was also introduced by Mc-

Cracken and Bowling (2005). McCracken and Bowling limited the number of histories that

the agent could remember so that the oldest history was forgotten when a new data point

was encountered. A new row corresponding to the latest data point was then added into

the approximated system-dynamics matrix. Regression was performed on the approximated

matrix to extract the parameters of the PSR model. McCracken and Bowling’s also pro-

posed a new approach to discovering core tests. A new matrix was formed by appending the

column corresponding to a non-core test to the approximated the system-dynamics matrix.

If the condition number2 of the new matrix surpasses a particular threshold then the new

test was likely to be linearly independent from the current set of core tests and thus should

be included to the set of core tests.

The memory-PSR (mPSR) model was introduced by James, Wolfe, and Singh in 2005.

They partitioned the system-dynamics matrix according to histories, each partition forming

a sub-matrix with its own set of core tests and parameters. James et al. proved that the

size of the mPSR model was at most the number of partitions times the size of the PSR

model, since in the worst case each partition had as many core tests as the full system;

however, it was often the case that the mPSR model was more compact than the equivalent

PSR model. Another contribution of this work is the identification of landmarks—memories

which completely identify the current state. James and Singh used the mPSR model in

the context of planning—they implemented the mPSR-IP algorithm which was shown to
2The ratio between the largest and smallest singular values of a matrix.

18

outperform both the PSR-IP (mentioned above) and POMDP-IP algorithms in most test

problems (2005).

PSRs and the domains they could model were further formalized in the paper Learning

Predictive Representations from a History, in which the complexity of both the environment

and the agent was defined as the number of core tests needed to represent both the PSR

and the agent’s policy (Wiewiora, 2005). An interesting insight in this work is that actions

and observations in tests can be reversed to form a-tests (a sequence of observations and

actions o0, a1, o1, a2, . . . , on

, a
n+1) and the complexity of an agent’s policy could be defined

by finding the set of core a-tests. A regular form PSR is defined in this work as a PSR with

a minimal set of core tests where each core test is either the empty test or an extension of

a core test. Wiewiora further showed that any PSR can be converted into a regular form

PSR with an equivalent or smaller number of tests.

Another new development in PSR literature was the work of Bowling, McCracken, James,

Neufeld, and Wilkinson (2006). Until this work, PSRs were learned from blind policies—

policies that were independent of the observations (i.e., ⇡(·, a)). All prior PSR learning

algorithms were only guaranteed to learn a correct model if the learning agent followed a

blind policy. Bowling et al. presented a new learning algorithm that allowed the agent to

learn correct predictions even when following a non-blind policy. They also introduced a

new exploration algorithm that took advantage of a non-blind policy to collect data more

e�ciently.

A recently developed o↵shoot of PSRs are Predictive Linear-Gaussian (PLG) models,

first introduced by Rudary, Singh, and Wingate (2005). While PSRs model discrete dynam-

ical systems, PLGs extend predictive representations to uncontrolled domains (no actions)

with continuous observations. PLGs have been extended to use kernel methods (Wingate

& Singh, 2006a), to model systems as a mixture of PLGs (Wingate & Singh, 2006b) and to

incorporate actions into the model (Rudary & Singh, 2006).

PSRs and Options

In 2006, Wolfe and Singh presented Predictive State Representations with Options—the work

in the literature most closely related to this thesis. Wolfe and Singh’s framework combines

options and PSRs by maintaining PSR models at two time-scales: the primitive action time-

scale and the option time-scale. Option tests are defined as a sequence !0o0 . . .!
n

o
n

where

!
i

is an option followed until termination, and o
i

is the observation at termination. The

19

definition of option tests is similar to that of traditional tests except that primitive actions

are replaced by an option’s policy.

Each option has a corresponding system-dynamics matrix (in which each column corre-

sponds to a primitive test) whose entries are updated whenever the option is being executed.

The entries of an option-level system-dynamics matrix (in which each column corresponds

to an option test) are updated after an option terminates. Each system-dynamics matrix

can be modeled by a PSR and thus the previously mentioned PSR learning algorithms could

be implemented to learn the model parameters. The option-level PSR can be learned with

any of the reset-free algorithms described above; the action-level PSRs can be learned with

any algorithm (including those with reset because each option initiation occurs from the

null-history). Wolfe and Singh referred to the algorithm that simultaneously learns the

action-level and option-level PSRs as the Hierarchical PSR (HPSR) algorithm.

The HPSR algorithm was used to model two domains: a 78-state grid-world and a 500-

state grid-world. The 78-state world consisted of 9 rooms connected to a central hallway.

The simple actions available to the agent were the cardinal directions (North, South, East,

and West); the options available to the agent permitted it to move directly between rooms

(60 options provided in all) The 500-state world was a modified version of the Taxi domain

(Dietterich, 1998) in which the agent could move in the four cardinal directions in a world

with 25 grid cells. Four special locations were identified in which a passenger could either

be picked up or dropped o↵. The agent transported passengers between the pick-up point

and the drop-o↵ point. Options were provided for picking up a passenger, dropping o↵ a

passenger and navigating between the special locations (14 in total). In both domains, the

HPSR agent learned a model with low prediction error in less computational time than a

linear PSR agent.

2.3.3 History-Based Representations

Like other models mentioned in this chapter, history-based representations are grounded

in an agent’s actions and observations. The simplest history-based models are Markov-k

models. In a Markovian system, the observation uniquely identifies the agent’s position in

the world; in a Markov-k system, knowledge of the past k action-observation pairs identify

state. A Markov-k model represents state with the past k action-observation pairs.

Variable-length memory models are more sophisticated than Markov-k models in that

di↵erent lengths of history represent di↵erent states. A longer history can be used to rep-

20

resent situations that need a finer grained distinction. Ring (1994) and McCallum (1996)

modeled environments with a combination of variable-length histories and reward signals as

a state representation.

2.3.4 Schemas

Drescher’s schema learning (1991) is another grounded approach to building a predictive

model. The goal of the learning agent is to learn the e↵ects of actions in the world. There

is an underlying assumption that there is regularity in the world—taking certain actions in

certain situations will lead to a specific result—that can be captured by a schema model.

Formally, a schema is composed of three components: a context, an action, and a result.

More plainly, a schema is an action-conditional prediction about the next observations

(result), given that the current observations were in some configuration (context).

To deal with hidden state, schemas can propose synthetic items which are elements that

the agent adds into the observation vector. The value of these new elements is learned by

the agent. If a schema is not reliable for some context, action and result, then the agent

supposes the existence of a synthetic item that can make the schema’s prediction true.

Holmes and Isbell revisited Drescher’s work and extended schemas to handle discrete

observations (2004) (Drescher’s schemas handled only binary observations). The learning

algorithm is also modified to handle stochastic domains. Schemas are shown to achieve a

similar error measure to PSRs on sample domains with much less training data.

2.4 Discussion and Conclusions

This section presented the class of environments that are modeled by TD networks (and the

extended TD networks presented in Chapters 4, 5, and 6). TD networks belong to a larger

class of models called predictive representations in which knowledge is represented as pre-

dictions about possible future experience. In turn, predictive representations belong to the

larger class of experience-oriented models which relate knowledge to an agent’s experience,

both historical and future.

Closely related to TD networks are PSRs; closely related to this thesis are PSRs with

options. This chapter traced through the existing PSR literature from their first appearance

in literature to their latest developments, ending with a description of the HPSR algorithm—

the algorithm that allows an agent to model both action-level and option-level PSRs.

21

Chapter 3

The Predictive Representations
Hypothesis

The experiments in this chapter are designed to test the predictive representations hypoth-

esis, which holds that particularly good generalization will result from representing the

state of the world in terms of predictions about possible future experience.1The abstract

state representation constructed from TD network predictions is a generalization of the en-

vironmental state—states with similar predictions are treated as a single abstract state.

A grid-world navigation problem is used as a milieu for testing the hypothesis. Experi-

ments in this chapter compare the performance of reinforcement learning agents with state

representations constructed from:

• the predictions of a TD network,

• the environmental state,

• history.

A large portion of current predictive representation research explores representation ac-

quisition (Singh, Littman, Jong, Pardoe, & Stone, 2003; Sutton & Tanner, 2004; James &

Singh, 2004). However, employing predictive representations in control problems is begin-

ning to be explored as well (James, Singh, & Littman, 2004; James & Singh, 2005). In

this chapter, a TD network’s predictions are used as a state representation for a reinforce-

ment learning task. The prediction-based reinforcement learning agent is shown to learn a

near-optimal solution to the navigation problem with less training than the other agents.
1Portions of this chapter originally appeared in the proceedings of the 2005 International Joint Conference

on Artificial Intelligence (Rafols, Ring, Sutton, & Tanner, 2005), however the majority of this chapter is
original work.

22

Confounding Factor Solution
• Representation acquisition • An oracle provides predictions
• Function Approximation • Tabular predictive representations
• Environment Complexity • Deterministic transitions and

observations in the grid world

Figure 3.1: The three main confounding factors and the corresponding solutions.

3.1 Motivation and Confounding Factors

A good generalization captures underlying regularities of the environment, increases an

agent’s ability to receive reward, and accelerates learning. Good generalization often occurs

when situations that require a similar response are grouped together because learning in

one situation will transfer to all other situations in the group. TD networks are expected

to usefully generalize the state space because situations in which action sequences lead to

similar outcomes will have similar representations.

There are several confounding factors that make the predictive representations hypoth-

esis resistant to testing. In order to test the hypothesis as directly as possible, steps were

taken to control for these confounding factors:

• Evaluating the quality of a representation is di�cult when an agent tries to simulta-

neously accomplish a task in the environment and learn a TD network’s predictions.

Rather than learning the predictions, an oracle provides the agent with correct pre-

dictions.

• The predictions of a TD network are generally used as the features of a function ap-

proximator, bringing up issues in function approximation. To control for this, a tabular

state representation is constructed from the TD network’s predictions (Section 3.3).

• Stochasticity in an environment’s dynamics may lead to a large amount of variance

in what an agent learns. This issue is controlled for by conducting experiments on an

environment with deterministic transitions and observations.

Figure 3.1 summarizes possible confounding factors and the solutions that control for these

factors.

23

Obs = 0

(a)

F

Obs = 1

(b)

R

Obs = 0

(c)

L

Obs = 1

(d)

Figure 3.2: A small example grid-world. From its initial position (a), the agent can take
one of three actions: step forward (b), rotate 90� right (c), or rotate 90� left (d). The agent
observes a 1 if is immediately facing a black grid cell and a 0 otherwise. In Figure a) the
agent’s observation is 0. In b), c), and d), the observation is 1, 0, and 1, respectively.

3.2 Agent and Environment

Throughout this work experiments are conducted in a grid world with an egocentric agent—

all actions taken and observations received are in relation to the direction that the agent is

facing. The agent observes a single bit, indicating whether the agent is facing a wall (black

grid-cell). The actions available to the agent are: step forward one grid cell (F), rotate 90�

right (R), and rotate 90� left (L). Figure 3.2 illustrates the physics of the world. If the

agent is facing open space (i.e., the observation is 0), the step forward action moves the

agent one grid-cell in its direction; if the agent is facing a wall (i.e., the observation is 1),

the step-forward action has no e↵ect. The rotate actions spin the agent either 90� clockwise

(R) or 90� counter-clockwise (L). As mentioned in Figure 3.1, all actions are deterministic.

Throughout this thesis, a unique labeling assigned to each combination of grid cell and

direction will be referred to as the agent’s environmental state. Typically, the agent does

not observe the environmental state. Rather, the agent observes a feature vector in each

environmental state.

3.3 Tabular Predictive Representations

As described in Figure 3.1, there is a need to control for representation acquisition and

function approximation. The construction of identically predictive classes removes these

two potentially confounding factors from consideration. In the following section, we explain

how a TD network’s predictions are converted into a tabular representation.

24

A test of length m is defined as a sequence of actions a1a2 . . . a
m

followed by a sin-

gle observation. The action-conditional TD network pictured in Figure 2.2c exhaustively

enumerates all tests of length n (where n is the number of levels in the network).

This TD network structure is used to specify the agent’s predictions. In total, there are

N =
P

n

i=1 |a|i = |a|n+1 � 1 tests where |a| is the number of actions available to the agent

(as specified in Section 3.2, |a| = 3 in our experiments).

A configuration is the set of all predictions in the TD network at a specific time step.

Because each test has a binary outcome (the agent either will or will not observe a wall at

the end of a test), there are 2N possible configurations. If two environmental states cannot

be distinguished by any of the N tests, then the configuration is identical in both states, and

these states are said to be identically predictive for the n-level TD network. Environmental

states can thus be grouped into c classes in which each class contains all states with identical

configurations. The classes are labeled 1 through c and the agent observes the class label of

the environmental state that it occupies.

Other researchers have presented work in which predictions were used to define classes.

Rivest & Schapire similarly defined a set of equivalence classes for n = 1 (1994); Hundt,

Panagaden, Pineau, & Precup generalized the equivalence classes to be over sequences of

tests (2006).

A graphical representation of the process of identifying identically predictive classes is

shown in Figure 3.3. This example shows the predictive classes for n = 1 when the agent is

facing North. Each grid cell in the environmental state has a unique label (s1 to s8). The

three middle columns of the table contain all one-step predictions at each environmental

state. Certain states are identically predictive since all three predictions are the same. The

identically predictive states are all given the same class label, c1 to c5.

In general, as the length of tests (n) increases, both the number of tests (N) and the

number of identically predictive classes (c) increases. There are fewer states per class on

average and thus the agent’s representation of its environment becomes more expressive.

Despite the fact that the number of configurations grows exponentially with n, the number

of classes tends to increase quite slowly in environments with even a moderate amount of

regularity.

In the limit, c will no longer increase for any value of n, meaning that no additional

prediction can distinguish between the environmental states belonging to a predictive class.

It is at this point that the identically predictive classes represent a su�cient statistic.

25

Environmental States

Identically Predictive Classes
(n = 1)

s2

s5

s6

s7

s8

s1 s3 s4

c2

c4

c5

c5

c5

c1 c2 c3

Environmental

State

Predictions (n = 1) Predictive

ClassL F R

s1 1 1 0 c1

s2 0 1 0 c2

s3 0 1 0 c2

s4 0 1 1 c3

s5 1 1 1 c4

s6 1 0 1 c5

s7 1 0 1 c5

s8 1 0 1 c5

Agent Direction:

Figure 3.3: Grouping environmental states into identically predictive classes. The leftmost
column of the table contains the unique labelings of the environmental states (s1, . . . , s8).
The middle three columns show the predictions for the rotate-left, step-forward, and rotate-
right actions. The rightmost column shows the predictive class that each environmental
state falls into (c1, . . . , c5). Notice that all environmental states in a predictive class have
an identical set of predictions.

3.3.1 Su�cient Statistics

If the su�cient statistic has C classes then it is impossible for any test to distinguish between

the environmental states belonging to any predictive class (and therefore, new predictive

classes cannot be formed). If additional predictions could be used to distinguish a new

class, this would imply that the representation with C classes is not a su�cient statistic

since further distinction is possible.

The environmental state represents a su�cient statistic for the environment, but this

representation is not necessarily a minimal su�cient statistic. Consider Figure 3.4 for ex-

ample. The grid world consists of 17 grid cells, with four possible agent orientations in

each cell. There are this 68 environmental states, and knowledge of the environmental state

summarizes all past history (and therefore the environmental state is a su�cient statistic).

An egocentric agent, as described in Section 3.2, will be unable to distinguish between the

four arms of the cross as all predictions (even those of infinite length) will be identical for

each arm given the large amount of symmetry in the environment. The agent will be able

to identify at most 17 distinct predictive classes: a class for each of the four di↵erent ori-

entations in each of an arm’s four grid cells and one class for the center square which is

26

Figure 3.4: An example cross-shaped grid-world in which the predictive representation is
aliased. There are four orientations for each grid cell meaning that there are 68 distinct
environmental states. A predictive representation will identify (at most) 17 identically
predictive classes.

identically predictive regardless of orientation.

An advantage of representing state with predictions is evident if the agent is tasked

with learning a path to the center square of Figure 3.4 (marked by the x). An agent with

a predictive representation would learn to solve the task more quickly that an agent that

observes the environmental state because there are fewer unique classes than environmental

states (17 predictive classes vs. 68 environmental states).

3.3.2 Performance and Generalization

The performance of a reinforcement-learning agent in an episodic task can be quantified by

the total amount of reward received per episode (the reward received between starting the

task and reaching the goal). In the limit, as the amount of training time goes to infinity, an

agent with access to the environmental state can learn an optimal policy. However, as envi-

ronments grow arbitrarily large, learning an optimal (or even near-optimal) policy becomes

impractical because the agent must learn the value of every action in every environmental

state. A representation that generalizes well can reduce the size of the state space and

accelerate learning.

As a generalization is broadened and the amount of state abstraction is increased, asymp-

totic performance is traded for speed of learning. As discussed in the previous section, as

the length of tests n increases, more predictive classes c are distinguished and there are

thus fewer environmental states in each predictive class. With shorter tests, there are fewer

classes to learn about, but there is a risk of a situation where multiple environmental states

within the class disagree on the optimal action. Consider the situation where the x is not

27

x

Figure 3.5: Disagreements on optimal action selection may occur in this grid-world because
the grid cells within the dotted box will be grouped into a single identically predictive
class if we only consider the 1-step tests. Depending on the agent’s environmental state,
the optimal action may be any of three possible actions. A more expressive representation
would minimize action selection disagreements.

placed in the center cell of Figure 3.4, but rather in the middle of one of the arms. Because

the agent cannot distinguish between any of the arms, the agent will have trouble learning

a path to the x.

More concretely, consider two states s1 and s2 grouped into a single predictive class.

It may be optimal to rotate right in s1, but the optimal action may be to step forward

in s2; however, because the two environmental states belong to the same predictive class,

the agent will be forced to make a suboptimal action selection in either s1 or s2. In the

worst case, the disagreement may be so severe that the agent is unable to find a reasonable

policy. An example of this situation is shown in Figure 3.5. If the agent represents the world

predictively with 1-step tests, all interior squares appear identical. However, depending on

the agent’s environmental state, the optimal action may be any of the three possible actions:

step forward, rotate right or rotate left. All environmental states inside the dotted square

appear the same to the agent and thus a single action must be mapped to the abstract state.

Given a more expressive representation, the agent would be able to distinguish its position

(by the number of step-forward actions taken before a wall is observed) and direction (by

the number of rotations needed to be facing the notched wall).

An ideal tabular predictive representation will balance between learning rate and asymp-

totic performance. Thus, a value of n that has a small number of classes c, but also minimizes

the number of policy-related disagreements is desirable.

28

3.3.3 Sarsa(0) with Identically Predictive Classes

All agents in this chapter were trained using the reinforcement-learning algorithm known as

episodic tabular Sarsa(0) (Sutton & Barto, 1998). In the traditional Markov case—where

the agent directly observes the environmental state—an action-value function is learned over

the space of environmental states and actions. In this algorithm, the estimated value Q(s, a)

of each experienced state–action pair s, a is updated based on the immediate reward r and

the estimated value of the next state-action pair; i.e,

�Q(s, a) = ↵[r + Q(s0, a0)�Q(s, a)],

where ↵ is a learning-rate parameter.

Episodic tabular Sarsa(0) is implemented over the predictions by mapping environmental

states to their corresponding identically predictive classes, as described in Section 3.3. The

function C(·) provides this mapping, and the resulting classes are then treated by the Sarsa

agent as though they were environmental states:

�Q(C(s), a) = ↵[r + Q(C(s0), a0)�Q(C(s), a)] (3.1)

Because no distinction is made between the states within a class, the learning that occurs

in one environmental state applies to all states mapped to the same class.

3.4 Tabular History-based Representations

An approach to state representation related to predictive representations are history-based

representations. Both representations relate the agent’s location to sensations. Predictive

representations identify state according to where the agent could go; history-based rep-

resentations identify state according to where the agent has been. Fixed-length history

approaches can easily be expressed in tabular form by labeling each k-length history. Tab-

ular history-based representations are implemented as a point of comparison for tabular

predictive representations.

As in Section 3.3.3, episodic tabular Sarsa(0) is implemented over the history-based

representation. The function H(·) provides a mapping from each di↵erent k-length history

to its label and these labels are treated by the Sarsa agent as though they were environmental

states:

�Q(H(o0, . . . ,ak

, o
k

), a) =

↵[r + Q(H(o1, . . . , ak+1, ok+1), a0)�Q(H(o0, . . . , ak

, o
k

), a)] (3.2)

29

G

Figure 3.6: The “o�ce” grid-world used for the navigation task. The agent starts an episode
in one of the six top rooms (grey squares), and finishes in the square marked G.

3.5 Experiment Design

The predictive representations hypothesis was tested in the grid world shown in Figure 3.6.

The environment was designed to resemble a typical o�ce layout, and the task can be likened

to finding the shortest path to the staircase. Many regularities exist in this environment

(similar structure of rooms, uniform hallway width), thus representations that generalize

well should allow their respective agents to exploit these regularities.

The dynamics of the agent and the environment are as described in Section 3.2. The

rewards for the task are +1 for reaching the goal state (marked by G) and �1 on all other

time steps. The environment has a total of 1696 states (424 grid cells and four orientations

in each cell). The task is episodic; the agent is transported to a randomly chosen starting

position in one of the top six rooms (the shaded cells) upon reaching the goal. Upon restart,

the agent’s action values are reset, and learning begins from scratch. On average, there are

42.2 steps along the optimal path from start to goal.

Actions were chosen according to an ✏-greedy policy: with probability 1 � ✏ the agent

chooses the action with the highest expected reward, and with probability ✏ the agent

chooses the action randomly. ✏ was set to 0.1 and ↵ was set to 0.25—typical values for Sarsa

agents carrying out episodic tasks in deterministic environments.

The experiments compared the performance of reinforcement-learning agents with three

di↵erent state representations:

30

Unique % Environmental
Agent Labels States
Markov - 1696 100%
Predictive n

2 67 3.9%
3 185 10.7
4 308 17.8
5 416 24.1
6 497 28.8
7 568 32.9

Fixed-History k
2 50 2.9%
3 205 11.9
4 790 45.7
5 2,938 170.0
6 10,660 616.9

Figure 3.7: The number of unique labels found in each of three state representations. n is
the number of levels in the TD Network used to specify the predictions. k is the number of
action-observation pairs in each history. The number of unique labels for the fixed-history
representation is the number of di↵erent unique histories that appeared over the course of
training. The amount of aggregation is the percentage of unique labels as compared to the
number of environmental states.

• Markov state representation,

• tabular predictive representation (formed from the predictions of an n-level TD Net-

work),

• tabular history-based representation (of length k).

The environmental-state agent observed the unique labeling of each environmental state;

the predictive agent observed the predictive class label; the history-based agent observed

the label associated with its k-step history. The number of unique labels for each di↵erent

representation is shown in Figure 3.7. The amount of state aggregation that occurs in each

method is shown in terms of the ratio of unique observations to environmental states.

An example of the classes identified from the predictions of a 1-level TD network is

displayed in Figure 3.8 for when the agent is facing North. (Experiments were not conducted

for n = 1, but the figure illustrates that each rooms share a common predictive structure)

3.6 Results

Performance results for agents with the three representations in Figure 3.7 are graphed in

Figure 3.9. The data points used to generate the learning curves were the average number of

steps per episode over the previous 10 episodes. The curves were averaged over 10,000 trials,

31

Agent Direction:

Figure 3.8: An illustration of the “o�ce layout” grid-world divided into predictive classes
for n = 1 when the agent is facing North. When n = 1, there are 7 identically predictive
classes identified (out of 8 possible configurations). The classes are denoted by the di↵erent
levels of shading.

each trial lasting 1,000 episodes. Over the course of 1,000 episodes, the environmental-state

agent showed a smooth, steadily improving curve, which by the 1, 000th episode is performing

very close to optimal.

Figure 3.9a shows the learning rates for history-based representations with k = 2, 3, 4,

5, and 6 as compared to the learning rate of the agent that was provided with the envi-

ronmental state. As k increased, the learning rate of the history-based agents decreased,

but the asymptotic performance improved—a clear demonstration of the trade-o↵ between

representation expressiveness and learning speed. The number of histories increased (ex-

ponentially) with k, which negatively impacted learning speed but positively impacted the

final results of learning.

Figure 3.9b shows the learning rates for predictive representations with n = 2, 3, 4, 5, 6,

and 7 as compared to the learning rate of the agent that was provided with the environmental

state. The results looked promising for predictive representations. They allowed both

speedy learning and convergence to a good policy. In general, the results for the identically

predictive representations were similar to those for the fixed-history representations in that

convergence speed decreased and convergence quality increased as n increased. However,

in contrast to the fixed-history representation, the number of identically predictive classes

increased quite slowly with n (cf. Figure 3.7) and the generalization benefit of the predictive

classes was clear. The representation e↵ectively aggregated similar states, allowing the agent

32

42.2

k = 6
k = 5

k = 4
k =3k = 2

Environmental
State

St
ep

s

Episodes
(a) History-based representation performance graph.

42.2

n = 2n = 4
n = 5
n = 6
n = 7 n = 3

Environmental
State

St
ep

s

Episodes
(b) Predictive representation performance graph.

Figure 3.9: Performance graphs for a) history-based representations and b) predictive repre-
sentations for various values of k and n as compared to performance with the environmental
state. Notice that the scale on both axes are logarithmic.

33

to converge to near-optimal solutions.

In the n = 2 and n = 3 cases there was no improvement in learning speed, indicat-

ing there may be a maximum degree of state aggregation beyond which learning speed is

not improved—an expected result as discussed in Section 3.3.2. The result for n = 7 is

particularly interesting because early in learning (the first 100 episodes) the agent learned

more quickly than in the n = 5 and n = 6 cases. However, learning plateaud for several

hundred episodes before eventually surpassing all other values of n for the best asymptotic

performance.

It can be argued that predictive representations fared better than history-based ap-

proaches due to the preprocessing used to create the identically predictive classes or that

the naive approach to tabular histories could be improved upon. Both of these statements

are true, but such arguments are tangential to the main purpose of the experiments: testing

the predictive representations hypothesis. The crux of the experiments was testing whether

predictive representations provide good generalization, and the experiments give credence

to belief that they do indeed. For multiple values of n, predictive representations are shown

to aggregate environmental states into predictive classes in such a way that learning is dra-

matically accelerated, while still finding reasonable solutions to the navigation task. The

experiments with history-based representations show that beneficial generalization is not

a property of experience-oriented representations in general, but a property of predictive

representations.

Another possible objection to using predictive representations is that one could use a

hand-coded mapping of states to classes or use some sort of heuristic for aggregating states

into classes. These are both possible approaches to abstracting over state, but both ap-

proaches imply knowledge about the underlying state space and require external knowledge

to be injected into the state representation. A key feature of predictive representations is

that all knowledge can be acquired and verified by the agent itself. While, in our experi-

ments, the predictions were provided by an oracle, ultimately it is hoped that the agent can

learn the predictions from experience. The tabular predictive representation introduced in

this chapter is based on the existence of environmental states that can be mapped to pre-

dictive classes. If the predictions were learned from data, then such a mapping would not

need to exist. Instead, the generalization would appear naturally as a property of predictive

representations—configurations of predictions would represent state and the existence of an

underlying environmental state need not be considered.

34

(a) n = 3 (b) n = 4

(c) n = 5 (d) n = 6

Figure 3.10: Sample trajectories for various values of n.

Sample Routes

Four paths found by prediction-based agents (for n = 3, 4, 5, and 6) are shown in Figure 3.10.

The agent was tested after a training run of 1,000 episodes. These representative routes

were generated by the greedy policy—beginning from a fixed starting state, the action with

the highest expected reward was selected in each predictive class along the path. (Note that

the “greedy” path may vary dramatically between training runs for a fixed n.)

For n = 3, the agent appeared to have di�culty exiting the initial room and wasted

many steps trying to find the exit. Once the exit was found, the agent took a direct path

to the goal. The start of this path likely demonstrates a case where disagreements about

the optimal action occurred (cf. Section 3.3.2) However, the hallway states were coarsely

generalized allowing a straightforward path through the hall and to the goal.

When n = 4, the agent exited the room much more easily, but followed a less direct route

upon reaching the hallway. Compared to n = 3, there were likely enough di↵erent predictive

classes in the room to allow the agent to exit in a small number of steps. In the hallway,

there was a visible perturbation when the agent was in line with each “doorway” (the single

grid cell separating each room from the hallway). These grid cells evidently belonged to

35

common predictive classes as the agent followed the same sub-path at each doorway.

For n = 5, the agent exited the room easily and followed a relatively straight path through

the hallway. However, the agent twisted twice upon exiting the room. With additional

episodes the agent would likely learn to continue straight through rather than spinning.

Finally, in the n = 6 case, the agent found a direct route to the goal, the only mistake

was a series of three left turns instead of a single right turn when approaching the goal. This

error would also likely disappear with additional training. The mistakes made in the n = 5

and n = 6 cases demonstrate that, as n increased, the number of predictive classes grew,

and thus more experience was necessary to fully learn the optimal action in each situation.

3.7 Discussion and Conclusions

The work in this chapter makes an initial attempt to demonstrate that representing the

world in terms of prediction about possible future experience results in particularly good

generalization. While the claim is broad and there are many possible confounding factors,

this initial work lends weight to the possibility of a yes answer. In the presented experiments,

tabular predictive representations were shown to generalize the environmental state space

in such a way that the agent was able to learn a reasonable policy for a navigation task

much more quickly than if provided with the environmental state.

As mentioned in Section 3.3.2, in certain environments there are possible goal locations

for which a predictive representation-based agent would be unable to learn a reasonable

policy. What would happen if the goal in Figure 3.4 were placed in the middle of one of the

arms? Because all arms of the environment appear identical in a predictive representation,

the agent would not be able to define a policy that consistently navigates the agent directly

to the goal. This problem could be overcome by treating reward like all other observations

and including it as part of the predictive state. A value function (learned by a reinforcement-

learning agent) is a prediction of long-term future reward if actions are selected optimally.

Treating reward as an observation allows an agent to make other predictions about expected

reward such as predicting expected reward conditional on a specific sequence of actions.

The “o�ceworld” layout presented in this chapter is much larger in scale than any envi-

ronment for which a predictive representation has been learned. The motivation behind most

of this thesis is the desire to learn a representation for worlds the size of the “o�ceworld”

and larger. Predictive representations have been demonstrated to usefully abstract the state

36

space—learning is accelerated by learning a policy over identically predictive classes. State

abstraction is important when scaling to larger environments, but abstracting over time

is equally important. In the following chapters, the incorporation of temporal abstraction

increases the representational power of the TD-network framework.

37

Chapter 4

Augmenting
Temporal-di↵erence Networks
with Options

This chapter presents the first1 on-policy learning algorithm for option-conditional TD net-

works (OTD networks). This algorithm serves as a basis for the algorithms introduced in

Chapters 5 and 6; these algorithms are the primary contribution of my thesis. Temporal

abstraction is incorporated into TD-networks by extending the existing framework (Sutton

& Tanner, 2004) to make long-term predictions. The inclusion of temporal abstraction is

based on the options framework (Sutton, Precup, & Singh, 1999), an approach to temporal

abstraction developed for reinforcement learning. Rather than conditioning predictions on

actions which span a single time-step, predictions are conditioned on an option’s policy and

its termination condition. The agent learns predictions by following option policies until

termination.

The chapter begins with a formal definition of both the TD-network framework and the

options framework. This is followed by a description of the OTD network algorithm and

a derivation that demonstrates that the forward and backward views of the new algorithm

are equivalent. The chapter finishes with the presentation of experiments that suggest the

correctness of the new algorithm.
1This chapter is based on work that appeared in the Proceedings of Advances in Neural Information

Processing Systems 18 (Sutton, Rafols, & Koop, 2005). However, the algorithm introduced in this chapter
is unique because it is strictly on-policy and thus the work found in this chapter is original.

38

4.1 Temporal-di↵erence Networks

The previous overviews of TD networks (Section 1.2 and Section 2.2) are high-level descrip-

tions and do not delve into the internal workings of the framework. This section presents a

formal description of the TD network learning algorithm.

Temporal-di↵erence networks are composed of a set of predictive nodes that are inter-

connected by two conceptually separate networks: the question network and the answer

network. On each time step, t, the network makes n predictions: y
t

= (y0
t

· · · yn

t

)> 2 Rn.

The question network is specified by targets, z, and conditions, c. A prediction, yi

t

is

the action-conditional expected value of a target:

yi

t

= E
⇡

[zi

t+1|ci

t+1], (4.1)

where ⇡ is the policy being followed (the behavior policy), zi

t+1 is the quantity being pre-

dicted and ci

t+1 indicates upon which action(s) the prediction is conditional. The target

indicates what a node predicts—either an observation (o 2 O) or the value of another pre-

diction (yi where 0 i n). The target is thus a mapping zi : O⇥Rn ! R, and is defined

as:

zi

t

= zi(o
t+1, ỹt+1).2 (4.2)

The condition ci 2 [0, 1], indicates to what extent the action taken at time t matches the

action(s) on which prediction yi is conditioned (typically, ci

t

is a binary variable).

The answer network learns the predictions which are computed as a function, u, of the

past action, a
t�1, the latest observation, o

t

, the predictions from the previous time step,

y
t�1, and a modifiable parameter vector, ✓

t

.

y
t

= u(y
t�1, at�1, ot

,✓
t

). (4.3)

Generally, u is a function which applies an operator � to the linear combination of the

parameter vector, ✓
t

and the feature vector, �
t

:

y
t

= �(✓>
t

�
t

), (4.4)

where � has been either the vector form of the identity function or the S-shaped logistic

function �(s) = 1
1+e

�s in existing TD network literature (Sutton & Tanner, 2004; Tanner

2Due to issues with timing, the target is a function of the observation, ot and ỹt+1 (formally defined in
Equation 4.20). For clarity, the intermediate predictions can be thought of as yt+1.

39

& Sutton, 2005a; Tanner & Sutton, 2005b; Tanner, 2005). The feature vector at time

step t, �
t

, is constructed by a function � that maps the predictions from the previous

time-step, the last action, and the current observation to an m-dimensional set of features

(� : Rn ⇥A⇥O ! Rm):

�
t

= �(y
t�1, at�1, ot

). (4.5)

A gradient descent learning rule is used to update the weights in order to minimize the

prediction error (zi

t

� yi

t

):

✓ij

t+1 = ✓ij

t

+ ↵(zi

t

� yi

t

)ci

t

@yi

t

@✓ij

t

, (4.6)

where ↵ is a positive step-size parameter.

All predictions in the framework described in this section are conditioned on actions

that span a single time-step. Predictions about events k steps in the future can be made by

chaining together k predictive nodes (see Section 2.2); however, it is not possible to model

sequences of arbitrary length.

4.2 Options

The option framework (Sutton, Precup, & Singh, 1999) is an approach to representing tem-

porally abstract knowledge in reinforcement learning algorithms. Options—a generalization

of actions—consists of three components: an initiation set, a policy, and a termination con-

dition. The initiation set, I ⇢ S, indicates the states from which the option can begin. The

policy, ⇡ : S ⇥ A ! [0, 1], specifies the probability of selecting a given action in a given

state. The termination condition, �(s) : S ! [0, 1], is the probability that the option will

terminate in any given state. The definition of options presented here is for MDPs, but can

be generalized to partially observable environments by defining the three option components

over histories rather than states.

Options are used in reinforcement learning to predict expected reward and expected

state upon termination. Precup et. al demonstrate that a reinforcement-learning agent can

interrupt an option during execution if a di↵erent action or option would result in higher

reward. Non-terminating executions of an option can still be used to improve the predictions

that it makes. In this chapter, options are always followed until termination; in Chapter 5,

learning from incomplete trajectories is incorporated into our algorithm.

40

4.3 Option-conditional TD (OTD) Networks

Options are integrated into the temporal-di↵erence network framework as a means for rep-

resenting temporally abstract predictions. In the OTD-network framework introduced in

this thesis, the answer network is modified to include termination conditions � and an n⇥m

eligibility trace matrix E.

As with TD networks (Section 4.1), predictions in an OTD network are computed as

specified in Equation 4.3 and the feature vector is constructed according to Equation 4.5.

Targets are defined as in Equation 4.2, but conditions are now based on options rather

than on actions. The condition at time t, ci

t

= ci(a
t

,yt), is a binary variable that indicates

whether an option is being followed. Learning is conducted on-policy: ci

t

= 1 from t =

l, . . . , T , where l is the time step at which option i (the option corresponding to prediction

yi) is initiated and T is the time step at which the option terminates (according to the

termination condition �i). If option i is not being followed, then ci

t

= 0. With on-policy

learning, updates are only permitted when an option is followed until termination. If option

i has been initiated, but the agent ceases to choose actions from the option’s policy, ⇡i,

then the agent is said to have diverged, and any weights updated by the agent since option

initiation are reverted to their pre-initation values.

A termination function �i : O ⇥Rn ! [0, 1] is defined as �i

t

= �i(o
t

,y
t�1). If �i

t

= 1

the option terminates at time t. It is also possible that 0 < �i

t

< 1, indicating that the

option randomly terminates with probability �i

t

on time step t. The value of �i

t

has a part

in determining the prediction error as it trades responsibility between node i’s target, zi

t

and the node’s own prediction on the next time step ỹi

t

:

�i

t

= �i

t+1z
i

t+1 + (1� �i

t+1)ỹ
i

t+1 � yi

t

. (4.7)

An eligibility trace matrix, E
t

, keeps track of active inputs throughout the course of an

option’s execution. Individual components of the matrix, eij

t

, are updated according to:

eij

t

= �(1� �i

t

)eij

t�1 +
@yi

t

@✓ij

t

. (4.8)

On each time step traces are decayed by a factor of 0 � 1. When �i

t

= 1 (when option

i terminates), the previous traces disappear, thus immediately beginning a new trace.

Elements of the n⇥m weight matrix ✓
t

are updated according to:

✓ij

t+1 = ✓ij

t

+ ↵�i

t

ci

t

eij

t

(4.9)

41

where ↵ is a positive step-size parameter. As with TD networks, the weights are updated

in the direction of the prediction error gradient. Note that if an option policy is not being

followed (ci

t

= 0), then the weights do not change.

The order of computation is:

y
t

a
t

c
t

E
t

o
t+1 �

t+1 ỹ
t+1 �

t+1 z
t+1 �

t

✓
t+1 y

t+1. (4.10)

Pseudocode can be found in Algorithm 1.

Algorithm 1 The on-policy OTD network learning algorithm.
1: Initialize y0,E0,✓0,�0

2: for t = 1, 2, . . .

3: Take action a
t

; receive observation o
t+1

4: Compute conditions: c
t

= c(a
t

,yt)

5: Update trace matrix: E
t

= c
t

(�(1� �
t

)E
t�1 +r✓t

y
t

)

6: Construct feature vector: �
t+1 = �(y

t

, a
t

, o
t+1)

7: Compute interim predictions: ỹ
t+1 = u(�

t+1,✓t

)

8: Check for termination: �
t+1 = �(o

t+1,yt

)

9: Update target values: z
t

= z(o
t+1, ỹt+1)

10: Compute error: �
t

= �
t+1zt+1 + (1� �

t+1)ỹt+1 � y
t

(multiplications are component-wise)

11: Update weights: ✓
t+1 = ✓

t

+ ↵�
t

E
t

12: Update predictions: y
t+1 = u(�

t+1,✓t+1)

13: end for

4.4 Algorithm Derivation

The equations in the previous section were obtained by deriving a backwards view algorithm

from a forward view algorithm that is defined in this section.

An option model—the expected value of some target quantity upon an option’s termina-

tion—is being learned for each prediction. The quantity being predicted upon termination,

z
T

, is called the outcome of the option. As with TD-networks, the expected value of the

outcome is generally approximated as a linear combination of the features �
t

:

y
t

= E[z
T

|⇡,�] ⇡ ✓>
t

�
t

. (4.11)

The option is assumed to terminate in finite time according to � at time T .

42

Note that in this section the superscript i is dropped and the algorithm derivation is

conducted with respect to a single prediction, though the derivation generalizes to multiple

predictions.

4.4.1 The Forward View

The forward view of an algorithm is a theoretical entity, relying on an oracle to provide the

value of z
t+n

, the target n steps in the future. Let Z(n)
t

be the n-step outcome, defined

(recursively) as:

Z(n)
t

= �
t+1zt+1 + (1� �

t+1)Z
(n�1)
t+1 , (4.12)

where the base case is Z(0)
t

= y
t

. This equation says that for an outcome Z(n)
t

, if the option

terminates at time t + 1, the quantity z
t+1 is used as a target, but if the option does not

terminate at time t + 1, the latest prediction, y
t

, is used as a target. The equation can be

better understood by unrolling the recursion for small values of n.

Z(1)
t

= �
t+1zt+1 + (1� �

t+1)yt+1

Z(2)
t

= �
t+1zt+1 + (1� �

t+1)(�t+2zt+2 + (1� �
t+2)yt+2)

Z(3)
t

= �
t+1zt+1 + (1� �

t+1)(�t+2zt+2 + (1� �
t+2)(�t+3zt+3 + (1� �

t+3)yt+3)
...

The forward view equations have a clear interpretation in the case where �
t

is binary.

For the 1-step outcome (Z(1)
t

), the value �
t+1 determines whether the outcome is the target

z
t+1 or the latest prediction y

t+1. For the 2-step outcome (Z(2)
t

), if the option terminates

at time t + 1, then the target at this time step, z
t+1, is used as the outcome. If the option

does not terminate at time t+1, then the outcome is a value from time-step t+2. �
t+2 now

determines whether the target z
t+2 or the latest prediction y

t+2 is used as an outcome. A

similar pattern is followed for the 3-step outcome (graphically represented in Figure 4.1).

A �-outcome combines the n-step outcomes:

Z�

t

= (1� �)
1
X

n=1

�n�1Z(n)
t

. (4.13)

The �-return is an exponentially-weighted average of all future n-step returns, putting more

weight on lower values of n, and consequently on outcomes closer to the current time step

t.

43

Z
(3)

t

z t+2

β = 0t+1

β = 1t+2 β = 0t+2

z t+3 y t+3

β = 1t+3 β = 0t+3

z t+1

β = 1t+1

Figure 4.1: A graphical representation of the n-step outcome for n = 3. The possible
outcomes are z

t+1, z
t+2, z

t+3, or y
t+3 depending on the values of �

t+1, �
t+2, and �

t+3.

Finally, the weight update in the direction of the error gradient is

�✓
t+1 = ↵(Z�

t

� y
t

)r
✓

y
t

. (4.14)

where ↵ is a positive step-size parameter. The sum of weight updates over the course of an

option’s execution is thus:

�✓ =
T

X

t=0

↵(Z�

t

� y
t

)r
✓

y
t

. (4.15)

4.4.2 Forward and Backward View Equivalence

The preceding forward definition of temporal-di↵erence networks with options is used to de-

rive an algorithm with incremental updates (the backward-view algorithm). It is convenient

to express the error term (Z�

t

� y
t

) from the forward view in a di↵erent form:

Z�

t

� y
t

=� y
t

+ (1� �)�0
�

�
t+1zt+1 + (1� �

t+1)yt+1

�

+ (1� �)�1
�

�
t+1zt+1 + (1� �

t+1)[�t+2zt+2 + (1� �
t+2)yt+2]

�

+ (1� �)�2
�

�
t+1zt+1 + (1� �

t+1)[�t+2zt+2 + (1� �
t+2)

(�
t+3zt+3 + (1� �

t+3)yt+3)]
�

+ · · ·

44

=� y
t

+ �0
�

�
t+1zt+1 + (1� �

t+1)yt+1 � �[�
t+1zt+1 + (1� �

t+1)yt+1

⇤�

+ �1
�

�
t+1zt+1 + (1� �

t+1)[�t+2zt+2 + (1� �
t+2)yt+2]

� �[�
t+1zt+1 + (1� �

t+1)(�t+2zt+2 + (1� �
t+2)yt+2)]

�

+ �2
�

�
t+1zt+1 + (1� �

t+1)
⇥

�
t+2zt+2 + (1� �

t+2)�

(�
t+3zt+3 + (1� �

t+3)yt+3)
⇤

� �
⇥

�
t+1zt+1 + (1� �

t+1)(�t+2zt+2 + (1� �
t+2)

[�
t+3zt+3 + (1� �

t+3)yt+3])
⇤�

+ · · ·

= �0(�
t+1zt+1 + (1� �

t+1)yt+1 � y
t

)

+ �1(�
t+1zt+1 + (1� �

t+1)[�t+2zt+2 + (1� �
t+2)yt+2]

� [�
t+1zt+1 + (1� �

t+1)yt+1])

+ �2
�

�
t+1zt+1 + (1� �

t+1)[�t+2zt+2 + (1� �
t+2)

(�
t+3zt+3 + (1� �

t+3)yt+3)]

� [�
t+1zt+1 + (1� �

t+1)(�t+2zt+2 + (1� �
t+2)yt+2)]

�

+ · · ·

=�0(Z(1)
t

� y
t

)+

�1(Z(1)
t+1 � y

t+1)(1� �
t+1)+

�2(Z(1)
t+2 � y

t+2)(1� �
t+1)(1� �

t+2)

+ · · ·

=
1
X

i=t

�i�t�
i

i

Y

j=t+1

(1� �
j

) (4.16)

where

�
i

=(Z(1)
i

� y
i

)

=�
i+1zi+1 + (1� �

i+1yi+1)� y
i

(4.17)

The forward and the backward views are equivalent because both views have the same

sum of updates over the course of an option’s execution (shown next). Only considered are

updates from option initiation at time-step 0 until option termination at time T . Equa-

45

tion 4.16 is therefore a finite sum:

1
X

i=t

�i�t�
i

i

Y

j=t+1

(1� �
j

) =
T

X

i=t

�i�t�
i

i

Y

j=t+1

(1� �
j

).

Elements in the summation for i > T are not considered because the post-termination value

for the product
Q

i

j=t+1(1� �
j

) is 0.

In the sum of weight updates (Equation 4.15), the error term (Z�

t

� y
t

) can be replaced

by Equation 4.16 and the summation property

N

X

i=0

N

X

j=i

a
ji

=
N

X

i=0

i

X

j=0

a
ij

is used to re-express the sum of updates:

T

X

t=0

↵(Z�

t

� y
t

)r
✓

y
t

=
T

X

t=0

↵

✓

T

X

i=t

�i�t�
i

i

Y

j=t+1

(1� �
j

)
◆

r
✓

y
t

=
T

X

t=0

↵�
t

t

X

i=0

�t�ir
✓

y
i

t

Y

j=i+1

(1� �
j

)

=
T

X

t=0

↵�
t

e
t

(4.18)

where e
t

=
t

X

i=0

�t�ir
✓

y
i

t

Y

j=i+1

(1� �
j

).

The condition variable c
t

does not appear in the derivation because c
t

= 1 for 0 t T

during on-policy learning and therefore,

T

X

t=0

↵�
t

e
t

=
T

X

t=0

↵�
t

c
t

e
t

The next step in deriving a backwards view for the OTD network algorithm is to define

e
t

incrementally. Equation 4.8 can be shown to be correct via induction.

Theorem 4.4.1

e
t

=
t

X

i=0

�t�ir
✓

y
i

t

Y

j=i+1

(1� �
j

) = �(1� �
t

)e
t�1 +r

✓

y
t

(4.19)

e0 = r
✓

y0

Proof The bases case are equivalent by definition:

e0 =
0

X

i=0

�0�ir
✓

y
i

0
Y

j=i+1

(1� �
j

) = r
✓

y0

46

Next, assuming that Equation 4.19 is true for e
t

:

e
t+1 = �(1� �

t+1)et

+r
✓

y
t+1

= �(1� �
t+1)

0

@

t

X

i=0

�t�ir
✓

y
i

t

Y

j=i+1

(1� �
j

)

1

A +r
✓

y
t+1 Equation 4.19

=
t

X

i=0

⇣

�(t+1)�ir
✓

y
i

t+1
Y

j=i+1

(1� �
j

)
⌘

+r
✓

y
t+1 c

n

X

i

a =
n

X

i

ca

=
t+1
X

i=0

�t�ir
✓

y
i

t

Y

j=i+1

(1� �
j

) �(t+1)�(t+1)r
✓

y
t+1

t+1
Y

j=(t+1)+1

(1� �
j

) = r
✓

y
t+1

Finally, the quantity ỹ
t+1 must be defined. The prediction on the next time-step, y

t+1,

is not yet available for computing �
t

so ỹ
t+1 serves as an approximation:

ỹ
t+1 = ✓>

t

�
t+1. (4.20)

Thus the TD error is computed as:

�
t

= �
t+1zt+1 + (1� �

t+1)ỹt+1 � y
t

. (4.21)

4.5 OTD Network Experiments

This section begins with the presentation of an example grid world and the corresponding

OTD network that will be used as a running example throughout this thesis. The error

metric used throughout the rest of this thesis is also described in this section. In addition,

results of the on-policy OTD network algorithm in the example grid world are presented.

4.5.1 The Environment

The grid-world in Figure 4.2 will serve as a running example for the rest of this thesis.

The agent can occupy any of the 36 white grid cells and can be in any of the four cardinal

directions (North, South, East, or West)—a total of 144 environmental states. However, the

agent does not directly observe its environmental state. Instead, it observes a six-element bit

vector, where each bit corresponds to a color (blue, green, orange, red, yellow, and white).

The color of the that the agent is facing determines which bit is set to 1; all other bits will

have a value of 0. As described in Section 3.2, the agent has three actions available: step

forward (F), rotate 90� right (R), and rotate 90� left (L).

47

O

G

Y
B

R

Observation vector:

Blue Green Orange Red Yellow White

[0 0 0 0 0 1]

Figure 4.2: The grid-world environment (left) is used for discussion and experiments
throughout the rest of this thesis. In each of the 36 white grid cells the agent can be
in one of four orientations (facing North, South, East, West). There are therefore 144 en-
vironmental states. The agent (denoted by the triangle) can step forward (F), rotate 90�
right (R), or rotate 90� left (L). The agent receives a 6-element bit vector (right) as an
observation. The bit corresponding to the color of the grid cell (blue (B), green (G), orange
(O), yellow (Y), red (R), or white (W)) that the agent is immediately facing will have a
value of 1, while all other bits will be set to 0.

RL

Leap

LeapLeap

Red Blue

L

F

R

Wander

1

2

3

4 5

6 7

8 9

Green Orange Yellow

Figure 4.3: An illustration of the question network used in the experiments in this section.
The nine-node structure is repeated five times, one for each non-white color (Red, Blue,
Green, Orange, Yellow). The predictions are for the outcomes of: 1) Rotate Left, 2) Step
Forward, 3) Rotate Right, 4) Wander, 5) Leap, 6) Rotate Left then Leap, 7) Rotate Right
then Leap, 8) Leap, Rotate Left, then Leap, and 9) Leap, Rotate Right, then Leap. The
Wander and Leap options are described in detail in the text. All 45 nodes in the TD
network are interconnected by the answer network.

48

4.5.2 The Temporal-di↵erence Network

The temporal-di↵erence network used in the experiments is shown in Figure 4.3. While

there is a combination of simple actions and options as conditions, for simplicity all nodes

are considered option-conditional because options are a generalization of simple actions.

The actions F, R, and L can be expressed as options that:

• can be initiated in any state (I = S);

• have a policy that always chooses the associated action (p(·, F) = 1, p(·, R) = 1, and

p(·, L) = 1);

• always terminate after a single time-step (�(s) = 1.0,8s 2 S).

Nodes 1, 2, and 3 represent single-step predictions about step forward, rotate right, and

rotate left. These nodes correspond to the three questions: “If I step forward, will the red

observation bit be 1?”, “If I rotate right, will the red observation bit be 1?”, and “If I rotate

left, will the red observation bit be 1?” Node 4 predicts the outcome of the Wander option,

whose policy is to choose all actions with equal probability and whose termination condition

is �(o
t

= white) = 0.5 and �(o
t

6= white) = 1.0 (50% chance of termination if the agent is

facing a white grid cell an 100% chance of termination if the agent is facing a colored grid

cell). Node 5 predicts the outcome of the Leap option, whose policy is to always take the

step forward action (p(·, F) = 1) and whose termination condition is �(o
t

= white) = 0.0

and �(o
t

6= white) = 1.0. This node asks the question: “If I step forward until I see a wall,

will the wall be red?” Nodes 6 and 7 are compositions of the Leap option with rotate left

and rotate right. These nodes predict the value of Node 5 if the agent were to rotate right

or rotate left. Extensively, Nodes 6 and 7 predict the value of the observation bit if the

agent were to rotate left or rotate right then follow the Leap option until termination, thus

asking the question “If I rotate right(left) then follow the Leap option until termination,

will the red observation bit be 1?” Similarly, Nodes 8 and 9 make predictions about other

predictions. They predict the values of Nodes 6 and 7 if the Leap option were to be

followed until termination. The extensive question asked by these nodes is: “If I follow the

Leap option until termination, rotate right(left) then, again, follow the Leap option until

termination, will the red observation bit be 1?”

As suggested by Figure 4.3, the nine-node structure is repeated five times (once for each

non-white bit). In total, there are 45 predictions being made on each time step.

49

The agent constructs a 156-element feature vector for use as a representation. The

feature vector �
t

, is constructed from the agent’s last predictions, current observations and

past action. This feature vector has 156 elements, divided into three groups of 52-elements

each—one group for each of the three actions. The first element of a 52-element group is a

bias term, which is always 1. The next six elements are the agent’s 6-bit observation (o
t

).

The remaining 45 elements are the 45 TD network predictions from the previous time step

(y
t�1). If the action taken (a

t

) was the step-forward action, then the values for the first

52-element section are filled in as described above, while the other 104 elements are assigned

values of 0. If the rotate-right action was taken, then only the middle 52 elements (elements

53-104) are filled in, and if the rotate-left action was taken, then only the last 52 elements

(elements 105-156) are filled in.

Predictions are computed as the dot product of the parameter vector ✓
t

and the feature

vector �
t

, subject to some function � (Equation 4.4). In all the experiments throughout

this thesis, � is a bounded identity function. For each node i:

�i(x) =

8

<

:

0 if x < 0
x if 0 x 1
1 if x > 0

The values of ✓0, E0, and y0 were always initialized to 0.

4.5.3 Error Metric

The quality of the predictions made by the OTD network was measured by comparing the

predictions to values generated by an oracle. At each environmental state, each node’s

sequence of options was simulated in order to determine the correct prediction. The pre-

dictions corresponding to Nodes 1-3 and 5-9 (see Figure 4.3) were determined by following

each sequence once (because the environment is deterministic). However, for Node 4, ten

thousand Wander trajectories were generated and the average outcome was used as the

oracle value.

On each time step t, the squared error was calculated for each node i:

error2(i, t) = (y(i, t)� y⇤(i, t))2, (4.22)

where y⇤(i, t) is the oracle value3. The root mean square error of each node (RMSE(i))

was recorded every N steps:

RMSE(i) =

s

P

N

j=0 error2(i, t + j)
N

. (4.23)

3The notation has been altered slightly for the purposes of clarity. Previously in this chapter y

i
t was used

to denote the prediction of node i at time t.

50

Network error is defined as:

network error =
P45

i=0 RMSE(i)
45

, (4.24)

the average error of the network’s 45 predictions.

4.5.4 Parameter Study

We tested the OTD network algorithm for all combinations of ↵ = {0.01, 0.05, 0.1} and

� = {0, 0.25, 0.5, 0.75, 1}. All learning was performed on-policy; only nodes whose policies

matched the current behavior were updated. Simple actions were expressed as options as

described in Section 4.5.1 and the agent could choose from five options: step forward, rotate

right, rotate left, Leap, and Wander. When an option terminated (options were always

followed until termination), the agent chose a new option. Options were randomly chosen

according to the following distribution:

• Step forward: % 50

• Rotate right: % 20

• Rotate left: % 20

• Leap: % 5

• Wander: % 5

Results of the experiments are shown in Figure 4.4. The curves pictured in the graphs

are network errors averaged over 10 runs of 250,000 steps (N = 10, 000) for each parameter

setting. In all experiments the speed of learning improved as � approached 1. At the end

of training, the average network error was similar for ↵ = 0.01 and ↵ = 0.05, both of which

were better than the average network error for ↵ = 0.1. The best combination of learning

rate and post-training network error was ↵ = 0.05 and � = 1.0.

When training continued beyond the 250,000 steps, the network error continued to de-

crease slowly over time. However, it is important to note that the average network error

will never reach zero because certain predictions cannot be made perfectly.

4.5.5 Individual Node Error

For some nodes, it is possible to completely eliminate prediction error. An example of this

is the prediction of Node 5 in Figure 4.3, the prediction of whether the red observation bit

51

alpha = 0.05

0.05

0.3

0 250000
Steps

N
e
tw

o
r
k
 E

r
r
o

r

alpha = 0.01

0.05

0.3

0 250000
Steps

N
e
tw

o
r
k
 E

r
r
o

r

alpha = 0.1

0.05

0.3

0 250000
Steps

N
e
tw

o
r
k
 E

r
r
o

r

λ = 0

λ = 0.5

λ = 0.25

λ = 0.75

λ = 1

λ = 0
λ = 0.5

λ = 0.25
λ = 0.75

λ = 1

λ = 0

λ = 0.5

λ = 0.25

λ = 0.75

λ = 1

Figure 4.4: Experimental results with the on-policy OTD network algorithm for all combi-
nations of ↵ = {0.01, 0.05, 0.1} and � = {0, 0.25, 0.5, 0.75, 1}. The curves are network errors
averaged over 10 runs of 250,000 steps for each parameter setting. See Section 4.5.3 for a
description of how average network error was calculated.

52

will be 1 if the Leap option is taken until termination. The result of learning is that the

agent maintains an internal concept of direction and thus if the agent is facing the direction

of the red wall, then the prediction for Node 5 will be 1. Node 5’s prediction will be 0 if

the agent is facing any other direction. These values match the oracle values and prediction

error quickly drops to 0 (see Figure 4.5).

However, certain predictions cannot be made perfectly. When facing west, the Leap op-

tion could result in either observing the blue bit or observing the green bit depending on

which row the agent is in. Despite the fact that the agent can maintain an internal repre-

sentation of direction, none of the predictions can help distinguish which row or column it is

in. Instead of making a binary prediction about the outcome of the Leap option, the agent

predicts an intermediate value between 0 and 1—the value corresponding to the probability

that either the blue bit or the green bit will be observed.

Prediction errors of the Leap nodes is the subject of Figure 4.5. These curves graph

node errors for the nodes predicting red, blue, and green observations bits conditioned on

the action sequences shown. The curves are averages over 30 runs of 100,000 steps with the

parameter settings ↵ = 0.05 and � = 1.

The prediction error for the Leap nodes quickly drops to 0 for the red observation

bit, but not for the blue and green observation bits. Though these nodes show gradual

improvement over the course of training, prediction error remains. The prediction errors

for the orange and yellow observation bits (not pictured) follow a curve very similar to the

red’s error curve.

As a result of the prediction error in the blue and green Leap nodes, Nodes 6 and 7 of

Figure 4.3 also err in their predictions of blue and green. The error is propagated from Node

5 (Leap) to Nodes 6 and 7 (R-Leap and L-Leap) because Nodes 6 and 7 make predictions

about the value of Node 5. If the prediction of Node 5 has an error, Nodes 6 and 7 use this

erroneous value as a target. The individual node errors for the predictions of L-Leap and

R-Leap are displayed in Figure 4.5. Again, the prediction error for the red observation bit

quickly drops to 0 while the predictions for blue and green contain error.

There is a noticeable di↵erence between the prediction errors for L-Leap and R-Leap.

The prediction errors for the blue and green observations are much lower for L-Leap. This

is likely due to the placement of the green grid cell in the environment (cf. Figure 4.2).

When facing North, the agent learns that the observation of the orange bit informs the

agent that the sequence L-Leap will lead to an observation of green. When facing South,

53

Leap

0

0.4

10000 100000Steps

N
o

d
e
 E

r
r
o

r

L-Leap

0

0.4

10000 100000
Steps

N
o

d
e
 E

r
r
o

r

R-Leap

0

0.4

10000 100000
Steps

N
o

d
e
 E

r
r
o

r

Leap-L-Leap

0

0.4

10000 100000
Steps

N
o

d
e
 E

r
r
o

r

Leap-R-Leap

0

0.4

10000 100000
Steps

N
o

d
e
 E

r
r
o

r

Red

Green

Blue

Red

Green

Blue

Red

Green

Blue

Red

Green

Blue

Red

Green
Blue

Figure 4.5: Individual errors for the Leap nodes averaged over 30 runs of 100,000 steps
(N = 10, 000). The values were learned with the parameter settings, ↵ = 0.05 and � = 1.
The curves are for the predictions about the red, blue, and green observation bits. The
predictions related to the red observation bit can be made perfectly while the probabilistic
predictions about blue and green improve, but do not reach 0.

54

neither the observations nor the predictions in the network provide provide the information

necessary to distinguish whether R-Leap would lead to observing green or blue.

The error is lower for the predictions of the sequences Leap-L-Leap and Leap-R-Leap

(Nodes 8 and 9 of Figure 4.3) then for the predictions for L-Leap and R-Leap. Nodes 8 and

9’s sequence of options e↵ectively localizes the agent in a specific corner and orientation,

removing any ambiguity about the agent’s location. The first Leap option takes the agent to

the wall it is facing, the agent then rotates either right or left, then the second Leap option

takes the agent into a corner. The prediction error for these nodes is found in Figure 4.5.

Though the graphs in this figure stop after 100,000 steps, if the graph were to be extend

further, the prediction error would continue to approach 0.

The agent cannot always make the correct single-step predictions (Nodes 1, 2, and 3).

For instance, when predicting the outcome of the step-forward action, the agent has an

internal concept of direction from the predictions made by the Leap nodes, but none of the

predictions indicate the agent’s distance from the wall. From the middle of the grid world

and facing the red wall, the agent’s prediction that the step-forward action will result in

an observation of red is between 0 and 1. With each subsequent step forward, the agent

continues to predict that with some probability red will be observed. Eventually the agent

collides with the colored grid cell and at that point it predicts red with complete certainty.

The agent cannot make perfect predictions, because in the error measurement, the oracle

value for F will be a binary value. Any prediction between 0 and 1 will result in prediction

error. Therefore, none of the predictions for the simple actions (Nodes 1, 2, and 3 of

Figure 4.3 for all di↵erent colors) can be made perfectly at all times. Predicting without

error is only possible in specific situations. For example, when the agent is immediately

facing a colored grid cell, the agent correctly predicts that the step-forward action will

result in an observation of the same color. The prediction errors for the red, blue, and green

observation bits for the F, L, and R actions are shown in Figure 4.6. These graphs show

a marginal improvement in the quality of the predictions early in training, but very little

change thereafter.

There is also substantial error in the predictions of the outcome of the Wander option.

The presence of error may be related to the issue described for the R-Leap and the L-

Leap nodes: the predictions do not provide su�cient information for the agent to determine

its exact position in the environment. The agent’s predictions are compared to oracle values

which were computed for each environmental state. The agent cannot distinguish its position

55

F

0

0.4

10000 100000
Steps

N
o

d
e
 E

r
r
o

r

L

0

0.4

10000 100000
Steps

N
o

d
e
 E

r
r
o

r

R

0

0.4

10000 100000
Steps

N
o

d
e
 E

r
r
o

r

Red

Green

Blue

Red

Green

Blue

Red

Green

Blue

Figure 4.6: Individual node errors for the F,L, and R nodes averaged over 30 runs of 100,000
steps. The values were learned with the parameter settings ↵ = 0.05 and � = 1. The curves
are for the predictions about the red, blue, and green observation bits. The agent learns
early in training, but none of the predictions can be made perfectly at all times.

Wander

0

0.4

10000 100000Steps

N
o

d
e
 E

r
r
o

r

Red

Green

Blue

Figure 4.7: Individual node errors for the Wander node averaged over 30 runs of 100,000
steps. The values were learned with the parameter settings ↵ = 0.05 and � = 1. The
curves are for the predictions about the red, blue, and green observation bits. There is a
slight improvement in prediction, but the outcome of the Wander option cannot be learned
perfectly.

due to the state abstraction performed by the OTD network. When facing each direction,

states are abstracted into groups of the states that face North, South, East, or West. Because

the agent cannot distinguish its exact position, the predictions for Wander will di↵er from

the oracle values. Also, the agent’s predictions can be close to the oracle value, but any

di↵erence, however minimal, will contribute error to the system. The prediction error for the

red, blue, and green observation bits is shown in Figure 4.7. Over time, there is a gradual,

but minimal improvement.

4.5.6 Maintaining Direction

One goal of this research is to connect sensations to high-level concepts. An example of

a concept learned from data in the grid-world experiments is that of direction—a concept

56

that clearly emerges (the agent uses its own predictions to keep track of the direction that

it is facing).

The concept of direction is demonstrated in Figure 4.8. After 250,000 steps of training,

the agent was manually maneuvered into the position shown at time t = 1. The agent was

then spun clockwise (R) for six full rotations from time t = 1 to t = 25. The predictions were

recorded for the nodes corresponding to Leap and Leap-L-Leap. These predictions appear

as bar diagrams in the figure. As the agent rotates the correct predictions are maintained

even though the only information received from the environment is the activation of the white

observation bit. In fact, the agent could continue to spin clockwise (or counterclockwise)

indefinitely and the predictions would remain correct because the network’s predictions from

the current step determine the predictions on the next time step.

Of particular interest is the prediction for Leap at t = 4, which is non-zero for both blue

and green. As discussed in the Section 4.5.5, the agent cannot know exactly which row it

is in. Rather, the agent knows that with some probability executing the Leap option until

termination will result in an observation of blue and with a lesser probability, the option’s

execution until termination will result in an observation of green. The actual prediction

values are close to 5
6 for blue and 1

6 for green. This ratio corresponds to the six possible

rows in which the agent could be located.

The predictions in the rightmost column (predictions about the sequence Leap-L-Leap)

are correct in all cases. There is no need to make probabilistic predictions about the green

and blue observations because the sequence always moves the agent into one of the corners.

There is therefore no ambiguity as to the agent’s row or column.

For time steps t = 26, . . . , 29 the agent is manually maneuvered to the top of the en-

vironment by forcing it to take three steps forward and rotate left. At this point, because

the agent observed orange at t = 28 (identifying that it is in the top row), it can make cor-

rect predictions about the green bit on the subsequent step. At t = 29 the agent correctly

predicts that if the Leap option were to be executed, green would be observed (and blue

would not be observed).

4.6 Discussion and Conclusions

In this chapter we have investigated the first on-policy algorithm for learning OTD networks.

A forward-view algorithm was re-expressed as an incremental algorithm; the incremental

57

O Y R B G O Y R B G

O Y R B G O Y R B G

O Y R B G O Y R B G

O Y R B G O Y R B G

O Y R B G O Y R B G

O Y R B G O Y R B G

O Y R B G O Y R B G

O

G

Y
B

R

O

G

Y
B

R

O

G

Y
B

R

O

G

Y
B

R

O

G

Y
B

R

O

G

Y
B

R

O

G

Y
B

R

Leap
Leap, L,

Leap
1

stt

1

2

3

4

5

25

29

Figure 4.8: A sample 29-step trajectory in the grid world. From t = 1 until t = 25 the
agent is rotated clockwise. From t = 26 to t = 29 the agent takes 3 step-forward actions
and one rotate-left action. The first column is the relative time step (after 250,000 steps of
training). The second column is an illustration of the agent’s location in the world. The
third and fourth columns are the node predictions for the Leap option and the sequence of
options Leap-L-Leap. The bar chart indicates the magnitude of the prediction for orange
(O), yellow (Y), red (R), blue (B), and green (G).

58

algorithm was used to learn predictions for an OTD network in a grid-world. While certain

predictions, which do not depend on knowing the agent’s exact position in the grid world,

can be learned perfectly, others cannot, but in all cases prediction error decreases over time.

Finally, an agent is shown to learn the concept of direction in the grid world.

In the presented experiments, temporal abstraction allows concepts, such as the concept

of direction, to be learned. But is it not true that the example grid world could be modeled

as a series of single time-step transitions? It is indeed possible to make an accurate model

by chaining together multiple step-forward predictions instead of using the Leap option.

However, by using the Leap option the OTD network is not constrained to any particular

environment size. Given a world that has the same color structure as the grid world of

Figure 4.2, an OTD network with the exact same structure as Figure 4.3 can be used to

model the world, regardless of the world’s size. A TD network, on the other hand, would

need additional predictions to model the growing world. Limited experiments show that by

incrementally expanding the size of the grid world4, an agent can make correct long-term

prediction in worlds as large as 100x100 with the same OTD network used in the experiments

in Section 4.5.

Questions also surround the robustness of the OTD network learning algorithm in the

presence of stochasticity. Experiments were performed with a probability of “slipping” when

the forward action is selected (with some probability the step-forward action had no e↵ect).

The Leap option continued to make the correct predictions in this case, though training

times increased as the slipping probability increased. The agent was able to make correct

predictions because the agent was still executing the Leap option to termination regardless

of the slip. The temporally-abstract nature of the Leap option leads the option to cope

with forward-slippage.

A slipping probability was then incorporated in the rotate actions. In this case, the

concept of direction (as in Section 4.5.6) was still present, but the possibility of slipping was

incorporated in the predictions. As the agent was continuously rotated, predictions became

less and less certain for the Leap node since there was a probability that the agent slipped

during the rotation. Eventually, after enough rotations, the agent’s predictions became

inaccurate. From then on, correct predictions could not be made until the agent ran into

a colored wall and was thus able to re-orient itself. What the agent learns in the presence
4Incremental expansion is used to accelerate learning. Because the growing worlds maintain a similar

structure, the predictions learned in an OTD network can be used as initial values for training in a larger
world.

59

of slippage is akin to how a person would deal with being blindfolded and spun in circles.

At some point, the person would lose track of the direction that they are facing. Upon

removing the blindfold, the person would be able to regain their bearings.

60

Chapter 5

Universal O↵-policy Learning

This chapter explores the issue of learning multiple option outcomes from a single stream

of experience. In the previous chapter predictions were learned by executing an option’s

policy from initiation until termination. The downside to this on-policy learning strategy

is that the agent can only learn about one option at a time—the one whose policy is being

followed. A more e�cient use of data is to simultaneously learn about all policies that are in

any way similar to the agent’s behavior. Learning about a policy other than the one being

followed is known as o↵-policy learning. However, o↵-policy learning introduces potential

instabilities when combined with function approximation and temporal-di↵erence methods

(Baird, 1995). Precup, Sutton and Dasgupta presented the first provably sound algorithm

for o↵-policy temporal-di↵erence learning with linear function approximation (2001). In

their algorithm, potential instabilities were counteracted by using importance-sampling cor-

rections to condition the weight updates. The work of Precup et al. is extended in this

thesis to the o↵-policy learning of option models. In order to directly study o↵-policy learn-

ing, a TD network’s question network is used to specify the predictions, but the predictions

are not used as state. Instead, the agent observes a feature vector which is emitted by the

environmental state.

5.1 O↵-policy Learning

The outcome of a single option can be learned by repeatedly following the option’s pol-

icy until termination, but how should the outcomes of multiple options be learned? One

possibility is to choose an option to learn about and follow the corresponding policy until

termination; a better alternative is to choose a behavior policy and learn about all options

with similar policies. As the number of options increases, or as the time until termination

61

increases, the former, on-policy learning, becomes less practical because the amount of data

becomes small in proportion to the number of outcomes that the agent is trying to predict.

It is generally more e�cient to learn about multiple ways of behaving from a single stream

of data.

Consider an agent trained in an on-policy manner: options are chosen, then followed

until termination. With an on-policy algorithm the agent learns only about the option it is

following; with an o↵-policy learning algorithm, the agent follows one option’s policy, learns

about that option, but also learns about every option with a similar policy. In this training

scheme, o↵-policy learning evidently allows the agent to use data more e�ciently.

O↵-policy learning is an issue of interest in the reinforcement-learning community. For

example, Q-Learning is an o↵-policy algorithm (Watkins, 1989) in which the agent learns

about the optimal policy while following an ✏-greedy policy (the agent chooses a random

action with probability ✏ and chooses the optimal action otherwise). While there have been

many successes with Q-learning, examples exist demonstrating that it can diverge when

combined with function approximation (Baird, 1995). This instability is a general issue

when o↵-policy learning is combined with function approximation and TD methods. Precup,

Sutton and Dasgupta introduced the first provably sound o↵-policy algorithm for temporal-

di↵erence learning with linear function approximation (2001). The algorithm incorporated

importance-sampling corrections to condition weight updates. Their new o↵-policy TD(�)

algorithm was shown to have the same expected updates as the on-policy TD(�) algorithm—

an algorithm that was guaranteed to converge when using linear function approximation

(Bertsekas & Tsitsiklis, 1996). In this thesis, the Precup et al’s o↵-policy algorithm is used

as a basis for a new o↵-policy algorithm for the learning of option models. The new algorithm

provably to makes the same expected updates as the on-policy algorithm for learning option

models.

It is important to note that in this chapter a temporal-di↵erence network is used to

specify predictions, but the predictions are not used as a state representation. This impor-

tant distinction is made in order to study o↵-policy learning separately from OTD-network

learning. A possible complication with using the predictions of a TD network as a state

representation is that these predictions are learned. For a given environmental state, the

agent may receive a completely di↵erent set of features depending on the amount of train-

ing conducted by the agent. Theoretical guarantees have not been made for the case where

predictions are used as state. O↵-policy learning with non-stationary features (learned

62

predictions) is revisited in Chapter 6.

An agent predicts the outcome of following a target policy, ⇡(·, ·) until termination and ac-

tions are chosen according to a behavior policy, b(·, ·). In on-policy learning, ⇡(s, a) = b(s, a),

8 s, a; in o↵-policy learning, 9s, a such that ⇡(s, a) 6= b(s, a). An importance sampling factor

⇢(s, a) = ⇡(s,a)
b(s,a) corrects for the di↵erence in the frequency of action selection between the

target policy and the behavior policy.

Intuitively, the importance-sampling factor leads to large weight updates when the agent

chooses an action that is commonly chosen by the target policy but rarely chosen by the

behavior policy. Conversely, an action that is rarely selected by the target policy but

frequently selected by the behavior policy results in smaller weight updates. Importance-

sampling corrections have been used to successfully address the issue of o↵-policy learning in

several papers (Precup, Sutton, & Singh, 2000; Precup, Sutton, & Dasgupta, 2001; Precup,

Sutton, Paduraru, Koop, & Singh, 2005).

5.2 Algorithm Derivation

This section presents the derivation of an incremental update rule for the o↵-policy learning

of option models—similar to the derivation found in Section 4.4. A forward view for the

o↵-policy learning of option models is defined, then a backward view with the same expected

updates is derived. As in Chapter 4, the agent attempts to learn the expected value of the

outcome of an option (Equation 4.11). Unlike Chapter 4, the o↵-policy algorithm presented

in this chapter has the following characteristics:

• An importance sampling correction ⇢
t

accounts for di↵erences between the behavior

policy and the target policy;

• The condition c
t

is removed from the weight update equation;

•
t

accumulates importance-sampling corrections and accounts for the possibility that

the option could be initiated at multiple states over the course of its single execution;

• The feature vector � is emitted by the environment rather than being constructed by

the agent.

63

5.2.1 The Forward View

As in Section 4.4.1 an oracle provides future targets z
t+1, zt+2, . . . , zt+n

. These targets

define the n-step outcomes:

Z̄(n)
t

= ⇢
t

(�
t+1zt+1 + (1� �

t+1)Z̄
(n�1)
t+1) (5.1)

where ⇢
t

is the importance-sampling correction at time t and the base case is Z̄(0)
t

= y
t

.

Equation 5.1 is similar to the forward view defined in Equation 4.12—the key di↵erence

being the inclusion of the importance sampling correction ⇢
t

. The extensive form of each

n-step outcome is:

Z̄(1)
t

= ⇢
t

(�
t+1zt+1 + (1� �

t+1)yt+1)

Z̄(2)
t

= ⇢
t

�

�
t+1zt+1 + (1� �

t+1)[⇢t+1(�t+2zt+2 + (1� �
t+2)yt+2)]

�

Z̄(3)
t

= ⇢
t

⇣

�
t+1zt+1 + (1� �

t+1)
⇥

⇢
t+1

�

�
t+2zt+2 + (1� �

t+2)

[⇢
t+2(�t+3zt+3 + (1� �

t+3)yt+3)]
�⇤

⌘

...

As in Section 4.4, the n-step outcomes are blended to from the lambda outcome:

Z̄�

t

= (1� �)
1
X

n=1

�n�1Z̄(n)
t

, (5.2)

and the weight updates made over the course of an option’s execution is:

�✓̄ =
T

X

t=0

↵(Z̄�

t

� y
t

)r
✓

y
t

t

, (5.3)

where the quantity
t

keeps track of the product of importance-sampling corrections over

the course of an option’s execution.
t

is necessary because the agent must correct for the

ratio between the entire sequence of actions being taken under the target policy and the

sequence of actions being taken under the behavior policy.
t

is defined as:

t

=
t

X

i=0

g
i

t�1
Y

j=i

⇢
j

t

Y

j=i+1

(1� �
j

), (5.4)

in which the value g
i

incorporates restarts into the equation.

5.2.2 Restarting an Option During Execution

Over the course of an option’s execution, the agent may pass through multiple states that

belong to the option’s initiation set, I. It is thus possible that an option could be initiated

64

a)

b)

c)

d)

e)

Figure 5.1: While facing east, an agent attempting to predict the outcome of stepping
forward until reaching a wall can initiate the option from any of the dotted states in (a).
If the agent starts in the leftmost state, then the trajectory followed in (b) passes through
states in which the option could be initiated. The quantity g

i

in Equation 5.4 can account
for the initiation in each state in the option’s initiation set.

from any of these states. Figure 5.1 demonstrates a situation in which an agent may pass

through multiple states from an option’s initiation set. Suppose the agent is facing East and

is learning a prediction for stepping forward until reaching the wall. In Figure 5.1a, the dots

identify the states in which the option can be initiated. If the agent begins in the leftmost

state, then Figure 5.1b shows a trajectory that follows the option policy until termination.

Over the course of this trajectory, the option could be initiated from each visited state , and

from each possible initial state, the option would be followed until termination (Figures 5.1c-

5.1e).

The quantity g
i

in Equation 5.4 allows restarts to be included in the forward-view equa-

tions. A possible setting for g
i

is to let g0 = 1 and g
t

= 0,8t � 1. This is the case when

an option is initiated only at the beginning of its execution. An agent that follows the

trajectory in Figure 5.1b assigns credit to each state in the trajectory.

Another possible setting is to let g
i

= 1 for all states in the option’s initiation set. The

weight updates would then account for the possibility of starting from each of state in the

initiation set. In the example, an agent that follows the trajectory in Figure 5.1b assigns

credits for states along the trajectory, but also assigns additional credit to the states in the

trajectories shown in Figure 5.1c, Figure 5.1d, and Figure 5.1e. Thus, the state adjacent

to the wall receives credit for four visits while the leftmost state receives credit for a single

visit. In the experiments in both this chapter and Chapter 6, g
i

= 1 whenever the option

can be initiated.

65

Dealing with restarts during the execution of an option was originally introduced in

Precup, Sutton, & Dasgupta (2001) where it is shown that for some distribution of starting

states, the algorithm with restarts will have the same updates as the algorithm without

restarts.

5.2.3 Forward and Backward View Equivalence

The backwards view of the o↵-policy algorithm for learning option models begins with the

re-expression of the error term from Equation 5.3:

Z̄�

t

� y
t

= �y
t

+ (1� �)�0Z̄(1)
t

+ (1� �)�1Z̄(2)
t

+ (1� �)�2Z̄(3)
t

+ . . .

= �y
t

+ (1� �)�0[⇢
t

(�
t+1zt+1 + (1� �

t+1)yt+1)]

+ (1� �)�1
⇥

⇢
t

�

�
t+1zt+1 + (1� �

t+1)[⇢t+1(�t+2zt+2 + (1� �
t+2)yt+2)]

�⇤

+ (1� �)�2
h

⇢
t

⇣

�
t+1zt+1 + (1� �

t+1)
⇥

⇢
t+1

�

�
t+2zt+2 + (1� �

t+2)

[⇢
t+2(�t+3zt+3 + (1� �

t+3)yt+3)]
�⇤

⌘i

+ · · ·

= �y
t

+ �0[⇢
t

(�
t+1zt+1 + (1� �

t+1)yt+1)� �⇢
t

(�
t+1zt+1 + (1� �

t+1)yt+1)]

+ �1
⇥

⇢
t

�

�
t+1zt+1 + (1� �

t+1)[⇢t+1(�t+2zt+2 + (1� �
t+2)yt+2)]

�

� �⇢
t

�

�
t+1zt+1 + (1� �

t+1)[⇢t+1(�t+2zt+2 + (1� �
t+2)yt+2)]

�⇤

+ �2
h

⇢
t

⇣

�
t+1zt+1 + (1� �

t+1)
⇥

⇢
t+1

�

�
t+2zt+2 + (1� �

t+2)

[⇢
t+2(�t+3zt+3 + (1� �

t+3)yt+3)]
�⇤

⌘

� �⇢
t

⇣

�
t+1zt+1 + (1� �

t+1)
⇥

⇢
t+1

�

�
t+2zt+2 + (1� �

t+2)

[⇢
t+2(�t+3zt+3 + (1� �

t+3)yt+3)]
�⇤

⌘i

+ · · ·

66

= �0[⇢
t

(�
t+1zt+1 + (1� �

t+1)yt+1 � y
t

]

+ �1
⇥

⇢
t

�

�
t+1zt+1 + (1� �

t+1)[⇢t+1(�t+2zt+2 + (1� �
t+2)yt+2)]

�

� ⇢
t

�

�
t+1zt+1 + (1� �

t+1)yt+1

�⇤

+ �2

⇢
t

⇣

�
t+1zt+1 + (1� �

t+1)
⇥

⇢
t+1

�

�
t+2zt+2 + (1� �

t+2)[⇢t+2

(�
t+3zt+3 + (1� �

t+3)yt+3)]
�⇤

⌘

� ⇢
t

⇣

�
t+1zt+1 + (1� �

t+1)
⇥

⇢
t+1

�

�
t+2zt+2 + (1� �

t+2)yt+2

�⇤

⌘

�

+ · · ·

= �0(Z̄(1)
t

� y
t

)

+ �1(Z̄(1)
t+1 � y

t+1)⇢t

(1� �
t+1)

+ �2(Z̄(1)
t+2 � y

t+2)⇢t

⇢
t+1(1� �

t+1)(1� �
t+2)

+ · · ·

=
1
X

i=t

�i�t�
i

i�1
Y

j=t

⇢
j

i

Y

j=t+1

(1� �
j

)

where

�
i

= (Z̄(1)
i

� y
i

)

= ⇢
i

(�
i+1zi+1 + (1� �

i+1)yi+1)� y
i

The new definition of the error term Z̄�

t

�y
t

is substituted into the sum of weight updates

(Equation 5.3):

T

X

t=0

↵(Z̄�

t

� y
t

)r
✓

y
t

t

=
T

X

t=0

↵r
✓

y
t

t

T

X

i=t

�i�t�
i

i�1
Y

j=t

⇢
j

i

Y

j=t+1

(1� �
j

)

=
T

X

t=0

↵�
t

t

X

i=0

�t�ir
✓

y
i

i

t�1
Y

j=i

⇢
j

t

Y

j=i+1

(1� �
j

)

=
T

X

t=0

↵�
t

e
t

where e
t

=
t

X

i=0

�t�ir
✓

y
i

i

t�1
Y

j=i

⇢
j

t

Y

j=i+1

(1� �
j

) (5.5)

It can be demonstrated that the recursive definitions of
t

and e
t

(shown next) are

equivalent to Equation 5.4 and Equation 5.5, respectively. The recursive definitions of
t

67

and e
t

are:

0 = g0

t

= ⇢
t�1t�1(1� �

t

) + g
t

(5.6)

e0 = r
✓

y00

e
t

= �(1� �
t

)⇢
t�1et�1 +

t

r
✓

y
t

(5.7)

where the value of g0 is generally 1 (see Section 5.2.2 for an explanation). The recursive

definitions are shown to be equivalent to the forward equations via induction.

Theorem 5.2.1

t

=
t

X

i=0

g
i

t�1
Y

j=i

⇢
j

t

Y

j=i+1

(1� �
j

) = ⇢
t�1t�1(1� �

t

) + g
t

(5.8)

k0 = g0

Proof The bases case are equivalent by definition:

0 =
0

X

i=0

g
i

�1
Y

j=i

⇢
j

0
Y

j=i+1

(1� �
j

) = g0.

(If the initial index of a product is larger than the upper bound then the term is omitted

from the equation.)

Next, assuming that Equation 5.8 is true for
t

:

t+1 = ⇢

t

t

(1� �
t+1) + g

t+1

= ⇢
t

✓

t

X

i=0

g
i

t�1
Y

j=i

⇢
j

t

Y

j=i+1

(1� �
j

)
◆

(1� �
t+1) + g

t+1 Equation 5.8

=
✓

t

X

i=0

g
i

t

Y

j=i

⇢
j

t+1
Y

j=i+1

(1� �
j

)
◆

+ g
t+1 c

n

X

i

a =
n

X

i

ca

=
t+1
X

i=0

g
i

t

Y

j=i

⇢
j

t+1
Y

j=i+1

(1� �
j

) g
t+1

t

Y

j=t+1

⇢
j

t+1
Y

j=(t+1)+1

(1� �
j

) = g
t+1

Theorem 5.2.2

e
t

=
t

X

i=0

�t�ir
✓

y
i

i

t�1
Y

j=i

⇢
j

t

Y

j=i+1

(1� �
j

) = �(1� �
t

)⇢
t�1et�1 +

t

r
✓

y
t

(5.9)

e0 = r
✓

y00

68

Proof The bases case are equivalent by definition:

e0 =
0

X

i=0

�0�ir
✓

y
i

i

0�1
Y

j=i

⇢
j

0
Y

j=i+1

(1� �
j

) = r
✓

y00.

Next, assuming that Equation 5.9 is true for e
t

:

e
t+1 = �(1� �

t+1)⇢t

e
t

+
t+1r✓

y
t+1

= �(1� �
t+1)⇢t

✓

t

X

i=0

�t�ir
✓

y
i

i

t�1
Y

j=i

⇢
j

t

Y

j=i+1

(1� �
j

)
◆

+
t+1r✓

y
t+1 Equation 5.9

=
✓

t

X

i=0

�(t+1)�ir
✓

y
i

i

t

Y

j=i

⇢
j

t+1
Y

j=i+1

(1� �
j

)
◆

+
t+1r✓

y
t+1 c

n

X

i

a =
n

X

i

ca

=
t+1
X

i=0

�(t+1)�ir
✓

y
i

i

t

Y

j=i

⇢
j

t+1
Y

j=i+1

(1� �
j

) �(t+1)�(t+1)r
✓

y
t+1t+1

t

Y

j=t+1

⇢
j

t+1
Y

j=(t+1)+1

(1� �
j

) =
t+1r✓

y
t+1

As in Chapter 4, we do not have y
t+1 when computing �

t

. Instead, ỹ
t+1 (Equation 4.20)

is used as an approximation of the prediction on the next time step. The temporal-di↵erence

error, �
t

is therefore calculated as

�
t

= ⇢
t

(�
t+1zt+1 + (1� �

t+1)ỹt+1)� y
t

. (5.10)

The last di↵erence between the on-policy algorithm presented in Chapter 4 and the o↵-

policy algorithm of this chapter is the manner in which the weight vector ✓
t

is updated.

The condition variable c
t

is not used in the o↵-policy learning algorithm; thus the weight

update can be described on an element-by-element basis as:

✓ij

t+1 = ✓ij

t

+ ↵�i

t

eij

t

. (5.11)

The order of computation is as follows:

y
t

t

e
t

a
t

⇢
t

�
t+1 ỹ

t+1 �
t+1 z

t+1 �
t

✓
t+1 y

t+1 (5.12)

Pseudocode for implementing this algorithm can be found in Algorithm 2.

5.2.4 Convergence

A proof developed by Precup, Sutton, Paduraru, Koop & Singh (2005) is adapted to show

that the on-policy algorithm (Chapter 4) and o↵-policy algorithm (Chapter 5) share the

same expected updates.

69

Algorithm 2 The universal o↵-policy learning algorithm.
1: Initialize y0,E0,✓0,�0,0,⇢0

2: for t = 1, 2, . . .

3: Take action a
t

; receive feature vector �
t+1

4: Update product of importance sampling corrections:
t

= ⇢
t�1t�1(1� �

t

) + g
t

5: Compute importance sampling corrections: ⇢
t

= ⇢(a
t

)

6: Update trace matrix: E
t

= �(1� �
t

)⇢
t�1Et�1 +

t

r✓t
y

t

7: Compute interim predictions: ỹ
t+1 = u(�

t+1,✓t

)

8: Check for termination: �
t+1 = �(o

t+1,yt

)

9: Update target values: z
t

= z(o
t+1, ỹt+1)

10: Compute error: �
t

= ⇢(�
t+1zt+1 + (1� �

t+1)ỹt+1)� y
t

(multiplications are component-wise)

11: Update weights: ✓
t+1 = ✓

t

+ ↵�
t

E
t

12: Update predictions: y
t+1 = u(�

t+1,✓t+1)

13: end for

Before the o↵-policy algorithm is discussed, the on-policy algorithm must be shown

to converge. In the on-policy algorithm introduced in Chapter 4, predictions were used

as a features for the representation; in this chapter, the algorithm is modified to use the

stationary feature-vector which is generated as a function of the environmental state (�
t

=

�(s
t

)). The convergence result of Bertsekas and Tsitsiklis (1996, p. 309) for episodic

TD(�) with linear function approximation can be directly applied to the modified on-policy

algorithm. The option model being learned is a special case of episodic TD(�) where:

• the option’s initiation at t = 0 corresponds to the initiation of an episode;

• the option terminates at t = T (�(s
T

) = 1.0), corresponding to the termination of an

episode;

• the reward r
t

= 0,8t < T and r
T

= z
T

.

Next, to apply Precup et al.’s proof it must first be shown that the expected values of

the n-step outcomes are equivalent under both the target policy and the behavior policy.

Theorem 5.2.3 For any initial state s,

E
b

[Z̄(n)
t

|s] = E
⇡

[Z(n)
t

|s],8n. (5.13)

70

Proof The bases case holds by definition:

Z̄(0)
t

= Z(0)
t

= y
t

.

Next, assuming that Equation 5.13 is true for n� 1:

E
b

[Z̄(n)
t

|s] =
X

a

b(s, a)
X

s

0

Pa

ss

0⇢(s, a)

�(s0)z
t+1 + (1� �(s0))E

b

[Z̄(n�1)
t+1 |s]

�

Equation 5.1

=
X

a

X

s

0

Pa

ss

0b(s, a)
⇡(s, a)
b(s, a)

�(s0)z
t+1 + (1� �(s0))E

b

[Z̄(n�1)
t+1 |s]

�

Definition of ⇢(s, a)

=
X

a

⇡(s, a)
X

s

0

Pa

ss

0

�(s0)z
t+1 + (1� �(s0))E

b

[Z̄(n�1)
t+1 |s]

�

c
n

X

i

a =
n

X

i

ca

= E
⇡

[Z(n)
t

|s] Equation 5.1

Equation 5.13 implies that E
b

[Z̄�

t

|s] = E
⇡

[Z�

t

|s]. Having established the equivalence of

the �-returns, the proof by Precup, et al. can be directly applied to show that the expected

values of the weight updates are identical between the on-policy and o↵-policy algorithms:

E
b

[�✓̄
t

|s0] = E
⇡

[�✓
t

|s0], (5.14)

where the option is initiated in the same state s0 for both the on-policy and o↵-policy

algorithms.

In a limited set of experiments, an on-policy learning agent was shown empirically to have

the same expected weight updates as an o↵-policy learning agent. For the on-policy agent,

weight changes were accumulated over the course of a Leap option’s execution according to

Equation 4.15. The total update was equivalent to the expected weight update because the

environment was deterministic. The o↵-policy agent learned the expected value of the total

weight update (Equation 5.3) for the Leap option by following 50,000 di↵erent trajectories

generated from the behavior policy b = {p(·, F) = 0.5, p(·, L) = 0.25, p(·, R) = 0.25}. Each

trajectory lasted until the agent either terminated (reached the wall) or diverged (took an

action other than F). The o↵-policy agent did not learn about restarting during a trajectory

(g0 = 1, g
t

= 0,8t � 1).

At the initiation of an option both agents were placed in the same environmental state

in the grid world (Figure 4.2), � was fixed at 1.0, and all weights (and thus predictions)

were initialized to 0. The experiment was repeated for multiple starting state and both

agents had the same expected weight updates for each starting state. These experiments

71

suggest that Equation 5.14 holds, but experimentation in stochastic environments would be

of interest.

However, while the on-policy algorithm and the o↵-policy algorithm have the same ex-

pected sum of updates, a problem exists with the variance of the updates. A condition for

the convergence of the on-policy algorithm (and thus for the o↵-policy algorithm as well)

is that the variance must be bounded. When learning about option outcomes, if an option

can be guaranteed to terminate in a finite amount time, then the variance will be bounded

because the weight update will be computed from a finite number of bounded quantities.

However, the product of importance-sampling corrections is accumulated in , which can

become large over the course of an option’s execution. For instance, suppose an action, a, is

twice as likely to be taken under the target policy as compared to the behavior policy. The

product of importance-sampling corrections doubles every time a is selected by the behavior

policy. Because the corrections accumulate over time, the total importance-sampling correc-

tion grows exponentially in the number of times that a is selected over the course of a single

option’s execution. In the experiments presented in Section 5.3, a small step-size parameter,

↵, is used to counteract the large variance. This is not an entirely satisfactory solution to

the problem of large variance, and other possible solutions are discussed in Section 7.1.2.

5.3 Tiled Gridworld Experiments

This section presents results from experiments conducted in the grid world of Figure 4.2 (the

grid world can also be seen in Figure 5.2). There is one di↵erence between the grid world

in this section and the one from the previous chapter, and that is the agent’s observation

vector. In this section, the environment emits a 41-element binary feature vector. As before,

the first bit is a bias term, and the next six bits correspond to the six possible colors that

the agent can observe. The next four elements, however, correspond to compass directions,

where the bit corresponding to the agent’s current direction will have a value of 1 and

the other three will be 0. The final 30 elements indicate the agent’s position among a set

of horizontal and vertical tilings that have been overlaid on the environment. Figure 5.2

illustrates the horizontal tilings: two of width 2 and three of width 3. There is an element

in the feature vector corresponding to each of the 15 horizontal tiles. If the agent is in a

tile, then the corresponding bit has a value of 1, otherwise the bit is 0. Vertical tilings are

constructed similarly to the horizontal tiles, but rotated 90�.

72

O

G

Y
B

R

O

G

Y
B

R

O

G

Y
B

R

O

G

Y
B

R

O

G

Y
B

R

1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Figure 5.2: Features are obtained by partitioning the the grid world from Figure 4.2 in five
di↵erent tilings. Two tilings are of width 2 and three tilings are of width 3. For each of the
five tilings, the agent will be located in one tile and the feature corresponding to that tile
will have a value of 1 while the other feature(s) will be 0. For the agent position pictured in
this figure, the following tiles will be active: 3, 7, 9, 13, and 15. A similar set of five vertical
tilings exists as well.

The feature vector corresponding to the agent’s position in Figure 5.2 is thus

n

1
|{z}

bias

1 0 0 0 0 0
| {z }

color

0 1 0 0
| {z }

direction

0 0 1 0 0 0 1 0 1 0 0 0 1 0 1
| {z }

horizontal tilings

0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
| {z }

vertical tilings

o

where the active bit in the color selection denotes an observation of white, the active bit in

the direction section indicates that the agent is facing East, and the active bits in the tilings

correspond to the tiles in which the agent is located.

A question network identical to the one pictured in Figure 4.3 defines the agent’s predic-

tions. There are five connected components, each identical in structure, but asking questions

about a di↵erent color. Each connected component consists of the prediction of an observa-

tion bit after one of the following nine action sequences: F, L, R, Leap, L-Leap, R-Leap,

Leap-L-Leap, Leap-R-Leap, and Wander.

5.3.1 Parameter Study

The first set of experiments were designed to determine the best parameter settings for ↵

and �. In these experiments, the agent used the o↵-policy learning algorithm presented in

Section 5.2.3 to learn the answers to the questions specified by the OTD network (Figure 4.3).

The behavior policy was: step forward with p = 0.5, rotate right with p = 0.25, and rotate

left with p = 0.25. Figure 5.3 displays the network errors averaged over 10 runs of 500,000

73

0.04

0.3

0 250000 500000

Steps

N
e
tw

o
r
k
 E

r
r
o

r

λ = 0

α = 0.05

α = 0.01

α = 0.005

α = 0.001

0.04

0.3

0 250000 500000

Steps

N
e
tw

o
r
k
 E

r
r
o

r

λ = 0.5

α = 0.05

α = 0.01

α = 0.005

α = 0.001

0.04

0.3

0 250000 500000

Steps

N
e
tw

o
r
k
 E

r
r
o

r

λ = 1.0

α = 0.05

α = 0.01

α = 0.005

α = 0.001

Figure 5.3: Learning curves for ↵ = {0.001, 0.005, 0.01, 0.05} and � = {0, 0.5, 1.0}. The
agent reaches a lower network error for smaller values of ↵ and �. Not pictured are the
results for � = {0.25, 0.75, 0.9} which follow the same trend. The pictured learning curves
are averaged over 10 runs.

steps (network error is calculated as in Section 4.5.3). Experiments were conducted with all

combinations of ↵ = {0.001, 0.005, 0.01, 0.05} and � = {0, 0.25, 0.5, 0.75, 0.9, 1}. (Results in

Figure 5.3 are only displayed for � = {0, 0.5, 1.0} as they are su�cient to demonstrate the

trend of the results.)

The algorithm performed best for small values of �; after 500,000 steps the lowest average

network error was achieved for every value of ↵ with � = 0. This is an interesting trend

because it is the opposite of the results from Chapter 4 where performance improved as �

increased toward 1. A possible reason for this observed trend is that the variance of the

weight updates is likely lower for smaller values of � because the magnitude of elements in

74

the trace vector (whose updates are defined by Equation 5.7) were smaller as well.

Smaller values of ↵ performed better as well, with ↵ = 0.001 reaching the lowest average

network error for all values of �. Other settings of ↵ learned more quickly initially, but

they were eventually surpassed by ↵ = 0.001. The slow start for ↵ = 0.001 is most likely

due to the small changes that are made on each step. While agents with larger values of

↵ can make big corrections early in training, the ↵ = 0.001 agent makes small changes;

however, the agents with larger step-sizes are eventually unable to make appropriate fine-

tuning corrections later in training, leading ↵ = 0.001 to perform better in the long run.

For the rest of the o↵-policy learning experiments presented in this chapter, the best

combination of parameters among these initial experiments (↵ = 0.001 and � = 0) is used.

5.3.2 Individual Predictions

In the next set of experiments, node errors were averaged over 30 runs of 1,000,000 time steps

and individual predictions were studied in further detail as shown in Figure 5.4. The four

nodes presented are the error curves of the predictions for whether the orange observation

bit will be active following: Leap, L-Leap, F, and Wander.

Most evident in Figure 5.4 is the large variance in the Leap and L-Leap predictions.

There is a large performance improvement early in training (approximately the first 100,000

steps), then the error curve is quite erratic (though it decreases perceivably over time). In a

limited experiment, when the algorithm was run for 10 million steps, the error did appear to

continue to decrease as a trend, but there was still a large amount of fluctuation between data

points. The most plausible cause of the fluctuations is the importance sampling corrections.

These corrections accumulate in over the course of an option’s execution. This explanation

is consistent with the lower variance in the F and Wander predictions: the F node makes

a one-step prediction and thus importance sampling corrections did not have the chance to

grow any larger than the value of ⇢(·, F). The low variance of the Wander prediction was

likely due to the combination three factors:

1. There were few time steps between initiation and termination (typical execution

lengths are 2 or 3 time steps).

2. The importance sampling corrections were small. The Wander policy was p(·, F) = 1
3 ,

p(·, L) = 1
3 , p(·, R) = 1

3 while the behavior policy is p(·, F) = 1
2 , p(·, L) = 1

4 , p(·, R) =

1
4 , thus ⇢ is never larger than 4

3 . In conjunction with the short option executions,

75

Leap

0

0.1

0.2

0.3

0 250000 500000 750000 1000000

Steps

E
r
r
o
r

L-Leap

0

0.1

0.2

0.3

0 250000 500000 750000 1000000

Steps

E
r
r
o
r

F

0

0.1

0.2

0.3

0 250000 500000 750000 1000000

Steps

E
r
r
o
r

Wander

0

0.1

0.2

0.3

0 250000 500000 750000 1000000

Steps

E
r
r
o
r

Figure 5.4: The agent was trained with the o↵-policy learning algorithm for 30 runs of one
million time steps. The average node error is the thick line while the thin vertical lines span
+/� one standard deviation. There is a large amount of variation in the error of nodes that
make a Leap prediction.

remained small and thus the variance was small as well.

3. There was a small error on most time steps. Typically, the correct prediction (cf.

Section 4.5.3) is 0 nearly everywhere. Predictions rose above 0 only when the agent

was within one or two steps of the orange wall because of the short option executions.

Error was consistently low over the courses of training because the predictions were

initialized to 0.

5.3.3 Comparing O↵-policy and On-policy Learning

The performance of the o↵-policy learning algorithm and the on-policy learning algorithm

introduced in Section 4.4.2 were compared. Both algorithms received the 41-element feature

76

vector described in Section 5.3 as input. For the on-policy learning algorithm, the learning

rate of ↵ = 0.05 (the best learning rate from the experiments in Chapter 4) was used.

Because di↵erent values of � can cause convergence to di↵erent values, the parameter � was

fixed at 0 for both algorithms.

A single training policy (and thus the same set of trajectories) was used by both the on-

policy and o↵-policy learning agents in order to control for the e↵ect of the policy. Actions

were selected five steps in advance and on each step an oracle simulated executing the

five steps. If, in the simulation, the actions caused the agent to take the Leap option to

termination, then the on-policy agent could learn about the Leap option.

However, in the on-policy algorithm, the agent could only learn about one option at a

time. Therefore, when the oracle indicated that the agent would execute the Leap option

until termination, the agent chose randomly between whether it would learn about Leap,

or it would learn about stepping forward. In this situation, the agent learned about the

Leap option 10% of the time and learned about the prediction for stepping forward the

other 90% of the time. The Wander node was removed from the OTD network because it

was unclear how to determine whether the Wander option was being followed from forward

simulation.

The results of the comparison between the o↵-policy and on-policy learning algorithms

are found in Figure 5.5. The learning curves depict the average error of 30 runs of one

million steps each. A random number generator (used in the action selection) was seeded

to the same value for the o↵-policy and on-policy algorithms leading to the exact same

sequences of actions being taken during the training of the o↵-policy agent and the on-

policy agent. The results, though not entirely unexpected, were somewhat disappointing

because the o↵-policy agent learned more slowly than the on-policy agent (indicating that

the o↵-policy learning algorithm was less data-e�cient). In terms of total network error,

the on-policy algorithm learned a nearly perfect representation as its error neared 0, while

the o↵-policy algorithm still had substantial predictive error at the end of training. Not

only did the on-policy algorithm converge to a better solution, but the solution was learned

more quickly than in the o↵-policy case.

The average error of the Leap predictions was studied separately with the expectation

that the o↵-policy algorithm used data more e�ciently for this prediction because the algo-

rithm learned from both non-terminating and terminating option executions. However, the

error curves for the Leap predictions are similar to the error curves from the entire network

77

Average Error of All Nodes

0

0.1

0.2

0.3

0 500000 1000000

Steps

E
r
r
o

r

Off-Policy

On-Policy

Average Error of Leap Nodes

0

0.1

0.2

0.3

0 500000 1000000

Steps

E
r
r
o

r

Off-Policy

On-Policy

Figure 5.5: A comparison between on-policy and o↵-policy learning. The results are aver-
aged over 30 runs of one million steps each. The learning rate for the o↵-policy algorithm
was ↵ = 0.001 while the learning rate for the on-policy algorithm was ↵ = 0.05. For both
algorithms, � was fixed at 0.

(Figure 5.5). As with the average network error, the on-policy algorithm converges to a

better solution and does so more quickly than the o↵-policy algorithm for the Leap nodes.

Part of this di↵erence can be attributed to the large variance of the o↵-policy algorithm.

Figure 5.6 displays individual node errors with error bars of one standard deviation for

the on-policy algorithm. These node errors (like those presented in Figure 5.4) pertain

to predictions about the activation of the orange observation bit following Leap, L-Leap,

or F (the Wander prediction was omitted for reasons previously mentioned). Unlike the

node errors of the o↵-policy algorithm, these node errors have low variance. There is a

limited amount of variance early in learning (most visible at the elbow of the Leap and L-

Leap graphs), but the variance quickly becomes negligible as the prediction error drops to

0. The variance in the F prediction is so small that the error bars are nearly imperceptible at

any point in the graph. While the on-policy agent learns consistently, there is large variance

between the quality of the models learned by the o↵-policy agent.

78

Leap

0

0.2

0.4

0 250000

Steps

E
r
r
o
r

(a)

L - Leap

0

0.2

0.4

0 250000

Steps

E
r
r
o

r

(b)

F

0

0.1

0 250000

Steps

E
r
r
o
r

(c)

Figure 5.6: Individual Node errors for the on-policy algorithm with error bars of one stan-
dard deviation. In all cases variance decreases over time and eventually becomes almost
imperceptible. Notice that these graphs stop at time step 250,000. Notice also that the
x-axis in (c) is of a smaller scale than in (a) and (b).

5.4 Discussion and Conclusions

This chapter introduced the first algorithm for the o↵-policy learning of option models and

proved it to have the same expected updates as the on-policy learning algorithm. The algo-

rithm was obtained by deriving an incremental update rule from a forward-view algorithm.

Importance-sampling corrections were introduced to account for the di↵erence between the

behavior policy and the target policy. Experimental results demonstrated that prediction

error in the grid world originally introduced in Chapter 4 decreases over time.

However, the product of importance-sampling corrections may become large, leading to

a large amount of variance in the updates—the prediction error fluctuated over the course of

79

multiple training runs. The o↵-policy learning algorithm performed poorly in comparison to

the on-policy algorithm presented in Chapter 4, even when both algorithms were provided

with the same experience.

The problems with variance are by no means a reason to discount o↵-policy learning. If

the o↵-policy algorithm can be extended to control the growth of the importance-sampling

corrections, and thus reduce the magnitude of weight updates, then data could perhaps

be used more e�ciently (possibly more so than the on-policy algorithm). Controlling the

empirical variance would result in an improved learning rate for the o↵-policy algorithm,

and convergence would still be guaranteed. A possible extension to the o↵-policy algorithm

is the implementation of recognizers (Precup et al., 2005) which have been shown to reduce

the variance of importance-sampling corrections.

Despite the negative results encountered in the experiments, o↵-policy learning is im-

portant because an agent receives only a single stream of data and this data must be used

to learn as much as possible about the environment. As options take longer to terminate,

the probability of executing an option until termination decreases. An agent that learns o↵-

policy can learn from these non-terminating trajectories whereas an on-policy agent would

learn nothing. O↵-policy learning is a critical issue for learning agents and requires further

study.

80

Chapter 6

Putting It All Together

This chapter investigates the intersection of the topics covered in the previous two chapters:

learning an OTD network and learning o↵-policy. The o↵-policy learning of a TD network

is complicated by the non-stationary nature of the feature vector. This non-stationarity

stems from the fact that the agent is attempting to learn its own state representation. In

the previous chapter the agent’s observation was assumed to be a feature vector drawn

from a stationary distribution. But this assumption is not valid when the feature vector

is constructed from learned predictions. The predictive feature-vector at an environmental

state may vary depending on how much experience the agent has in the world, how the agent

arrived at the state, and how the learning parameters have been initialized. The predictive

state is meant to be a su�cient statistic once learned, but throughout the learning process

can be potentially inaccurate. In this chapter, empirical results suggest that an o↵-policy

agent can learn the predictions specified by an OTD network despite the lack of theoretical

guarantees.

6.1 Learning OTD Networks O↵-policy

Chapter 4 presented an on-policy algorithm learning for option-conditional TD networks;

Chapter 5 presented an o↵-policy algorithm for learning option models. These two algo-

rithms are combined into the first o↵-policy algorithm for learning OTD networks.

The o↵-policy learning algorithm from the previous chapter only needs a minor adjust-

ment in order to be applied to OTD network learning. In particular, the feature vector �
t

in Chapter 5 was produced as a function of the agent’s environmental state. In this chapter,

�
t

is constructed as in Equation 4.5; that is, �
t

is constructed from the agent’s predictions,

y
t�1, the last action taken, a

t�1, and the current observation o
t

. In general, �
t

can be

81

constructed from any arbitrary function over these values.

While a linear function approximator is typically used to compute the predictions, a

common procedure in the field of machine learning is to use a set of non-linear features in

the linear approximator (e.g., the action-conditional approach described in Section 4.5.2).

Action-conditional feature-vector construction is but one approach to adding non-linear

features to a TD network; other conceivable approaches are to take the logical AND or the

logical OR of predictions or to use a thresholding function to discriminate between values

of a continuous-valued feature. These approaches are merely suggestions and many other

approaches to feature construction exist.

The o↵-policy algorithm for learning OTD networks is a combination of the previous

algorithms and computes values in the following order:

1.
t

update: Equation 5.6

2. Trace (E
t

) update: Equation 5.7

3. �
t+1 update: Equation 4.5

4. ỹ
t+1 update: Equation 4.20

5. �
t

update: Equation 5.10

6. Weight (✓
t+1) update: Equation 5.11

7. Prediction (y
t+1) update: Equation 4.3

Pseudocode for implementing the algorithm can be found in Algorithm 3.

6.2 Experiments

As in the previous two chapters, this chapter’s learning algorithm was tested in the colored

grid-world (Figure 4.2) using the 45 node question network illustrated in Figure 4.3 along

with action-conditional feature-vector construction (as described in Section 4.5.2).

6.2.1 Parameter Study

Figure 6.1 shows an initial examination of the learning parameters: all combinations of

↵ = {0.0005, 0.001, 0.005, 0.01} and � = {0, 0.5, 1.0}. The results were averaged over 10

runs of 500,000 steps for each parameter combination. The vertical axis of the graphs

represents the network error (cf. Section 4.5.3). In all cases the error descended over time.

82

Algorithm 3 The o↵-policy OTD network algorithm.
1: Initialize y0,E0,✓0,�0,0,⇢0

2: for t = 1, 2, . . .

3: Take action a
t

; receive feature vector �
t+1

4: Update product of importance sampling corrections:
t

= ⇢
t�1t�1(1� �

t

) + g
t

5: Compute importance sampling corrections: ⇢
t

= ⇢(a
t

)

6: Update trace matrix: E
t

= �(1� �
t

)⇢
t�1Et�1 +

t

r✓t
y

t

7: Construct feature vector: �
t+1 = �(y

t

, a
t

, o
t+1)

8: Compute interim predictions: ỹ
t+1 = u(�

t+1,✓t

)

9: Check for termination: �
t+1 = �(o

t+1,yt

)

10: Update target values: z
t

= z(o
t+1, ỹt+1)

11: Compute error: �
t

= ⇢(�
t+1zt+1 + (1� �

t+1)ỹt+1)� y
t

(multiplications are component-wise)

12: Update weights: ✓
t+1 = ✓

t

+ ↵�
t

E
t

13: Update predictions: y
t+1 = u(�

t+1,✓t+1)

14: end for

The lowest errors were achieved when ↵ = 0.001 (as in the parameter study of Section 5.3.1).

Error decreased most rapidly for � = 1, but all three settings of � resulted in similar error

values after 500,000 steps. Only for ↵ = 0.01 was there a clear trend visible among the

values of � (error decreases as � increases). For ↵ = 0.001, it was unclear whether � = 0

or � = 1.0 is the better parameter setting. While � = 1.0 learns more quickly than � = 0,

our results from the previous chapter suggest that a higher value of � is related to higher

variance. Further experiments (Figure 6.2) helped distinguish between the two settings of

�.

The learning curves in Figure 6.2 are the result of 30 runs of one million steps each.

The solid black line is the network error, averaged over the 30 runs, and the grey lines

show +/� one standard deviation. As expected, the variance was lower when � = 0. The

weight updates were smaller for � = 0 because the trace update equation for � = 0 (cf.

Equation 5.7) only contains a single-step trace (and not a trace over the entire trajectory).

A lower error was also achieved for � = 0, though the di↵erence was not statistically

significant.

83

= 0.0005

0.05

0.15

0.25

0.35

0 250000 500000

Steps

E
r
r
o

r

 = 0

 = 0.5

 = 1.0

α

λ

λ

λ

= 0.001

0.05

0.15

0.25

0.35

0 250000 500000

Steps

E
r
r
o

r

 = 0

 = 0.5

 = 1.0

α

λ

λ

λ

= 0.005

0.05

0.15

0.25

0.35

0 250000 500000

Steps

E
r
r
o

r

 = 0

 = 0.5

 = 1.0

α

λ

λ

λ

= 0.01

0.05

0.15

0.25

0.35

0 250000 500000

Steps

E
r
r
o

r

 = 0

 = 0.5

 = 1.0

α

λ

λ

λ

Figure 6.1: Learning curves for various combinations of ↵ = {0.0005, 0.001, 0.005, 0.01} and
� = {0, 0.5, 1.0}. These curves were generated by running the o↵-policy OTD network for
10 runs of 500,000 steps each. The best learning rate is generally achieved when � = 1 and
the errors are lowest for ↵ = 0.001. It is di�cult to distinguish whether any value of � leads
to a better solution after 500,000 steps because there is a large amount of fluctuation in the
average error.

6.2.2 The Concept of Direction, Revisited

Section 4.5.6 presented an example of a trained agent that could keep track of its direction for

an indefinite amount of time, computing its next set of predictions from current predictions.

The agent was trained on policy, and when manually steered through the environment, was

demonstrated to make the correct predictions (cf. Figure 4.8).

As a demonstration of the correctness of the o↵-policy learning algorithm, the agent

was steered through Section 4.5.6’s 29-step sequence of actions (six complete clockwise

rotations, three steps forward and a counter-clockwise rotation). The predictions made by

the manually controlled agent after 1 million training steps are shown in Figure 6.3.

84

= 0

0.05

0.3

0 500000 1000000

Steps

E
r
r
o

r

λ = 1.0

0.05

0.3

0 500000 1000000

Steps

E
r
r
o

r

λ

Figure 6.2: Learning curves for � = 0 and � = 1 (both with ↵ = 0.001). The graphs show
the node error averaged over 30 runs of one million steps (solid black line) and one standard
deviation in either direction (grey lines). � = 0 has both a lower variance and a lower final
error.

As before, the agent correctly maintains direction, as seen by the predictions for the

Leap node. The agent keeps track of which color it would see if it were to step forward

until reaching a wall. However, on time step 4, there is a di↵erence between the on-policy and

o↵-policy agents’ Leap predictions. The on-policy agent predicted blue with a probability

of roughly 5
6 and green with a probability of roughly 1

6 . The o↵-policy agent no longer

predicted seeing green, but still predicted seeing blue with a probability still roughly 5
6 .

This may have been the result of the sequence of actions prior to reaching the state at t = 1.

The agent’s predictions were reverted to those at t = 1 and the agent was manually stepped

forward once, and rotated left once. The prediction for Leap was then the same 5
6 : 16 ratio

observed in the on-policy experiments. The action-conditional feature-vector construction

causes the past action to impact the computation of the agent’s predictions and therefore

it is possible that the absence of a green prediction is a result of the preceeding rotate-right

action.

A second strange result was the presence of a prediction for blue if the sequence Leap-

L-Leap is followed when the agent is facing North (time steps 1, 5, and 25). This sequence

will always navigate the agent into the upper left corner of the world, and upon reaching

the corner the agent will always be facing the green cell (the agent should thus only predict

green). It is possible that the prediction of blue was a result of learning from non-terminating

executions of the Leap option (the agent initiated the Leap option, but diverged before

85

O

G

Y
B

R

O

G

Y
B

R

O

G

Y
B

R

O

G

Y
B

R

O

G

Y
B

R

O

G

Y
B

R

O

G

Y
B

R

Leap
Leap, L,

Leap
1

stt

1

2

3

4

5

25

29

O Y R B G O Y R B G

O Y R B G O Y R B G

O Y R B G O Y R B G

O Y R B G O Y R B G

O Y R B G O Y R B G

O Y R B G O Y R B G

O Y R B G O Y R B G

Figure 6.3: The agent learns a compass with the o↵-policy learning algorithm. After one
million steps of training, the agent was manually guided through a 29-step sequence of
actions, recording the predictions made at each time step (the same sequence of actions
taken in the on-policy experiment in Figure 4.5.6) The first column contains the relative
time index, the second column indicates the agent’s position in the world, and the last
two columns indicate the value of the Leap and L-Leap predictions for each of the five
color-observation bits.

86

the termination condition was satisfied). When facing West, the target for Leap can be

either blue or green depending on the agent’s row. The prediction for L-Leap targets the

Leap prediction and thus L-Leap may also predict blue or green. In turn, the prediction

for Leap-L-Leap targets the L-Leap prediction, and because the first Leap option in the

sequence may not always be followed until termination the targeted L-Leap prediction can

be either blue or green, leading the Leap-L-Leap node to predict both blue and green.

In general, the predictions are very similar between the on-policy and o↵-policy algo-

rithms and the agent clearly demonstrates the ability to track its direction when trained

with the o↵-policy algorithm. After training, an agent could spin in the middle of the

environment for an arbitrary amount of time, all the while tracking its current direction.

The concept of direction is learned despite the fact that the agent is learning o↵-policy and

never explicitly chooses to follow any of the options that it is learning about. The current

direction (and more generally, all current predictions) is (are) maintained as a function of

previous predictions, all of which are learned from experience in the world.

6.2.3 Di↵erent Behavior Policies

The final experiment in this chapter tested the o↵-policy learning algorithm with behavior

policies other than b0 = {p(·, F) = 1
2 , p(·, R) = 1

4 , p(·, L) = 1
4}, which was used in all

o↵-policy experiments so far (learning curves for an agent trained with b0 are shown in

Figure 6.2). Figure 6.4 presents the network error and errors bars as shown for two new

policies. In these experiments ↵ = 0.001 and � = 0. The error curves for the new behavior

policies b1 = {p(·, F) = 0.55, p(·, R) = 0.3, p(·, L) = 0.15} and b2 = {p(·, F) = 1
3 , p(·, R) =

1
3 , p(·, L) = 1

3} are shown in Figures 6.4a and 6.4b.

With all three behavior policies, the error dropped quickly at first before learning slowed,

but continued to improve steadily. The lowest error and lowest variance occurred with b1

as the behavior policy, a policy where an imbalance existed between the probabilities of

rotating right and rotating left. There are large fluctuations between data points along the

error curve for b2; in comparison, the error curve for b1 is much smoother.

Part of the reason for the algorithm’s poorer performance for b2 may be that most ac-

tions were rotations—the agent had a lower probability of executing the Leap option until

termination and thus received less data about terminating sequences. Depending on the

initial state, an agent required up to five step-forward actions to execute the Leap op-

tion until termination. The probability of executing Leap under b0 was thus as low as

87

0.05

0.3

0 500000 1000000

Steps

E
r
r
o
r

(a) b1

0.05

0.3

0 500000 1000000

Steps

E
r
r
o
r

(b) b2

Figure 6.4: Experiments with the behavior policies b1 and b2 (see text). The results are
averaged over 30 runs of one million steps each. The thick line is the average error of the
30 runs while the grey lines mark +/� one standard deviation.

(P
b0(·, F))5 = (1

2)5 = 0.03125; the probability of executing Leap under b2 was as low as

(P
b1(·, F))5 = (1

3)5 = 0.00412 (almost an order of magnitude lower than b0).

The b0 policy was originally chosen to both promote the execution of the Leap option

until termination and promote the exploration of the the grid world’s interior cells. b2, the

uniform random policy, may cause the agent to spend most of its time in the middle of the

grid world where very little can be learned.

Figure 6.5 shows a comparison between the error curves of the L-Leap and R-Leap nodes

for the policies b0 and b1. This experiment investigates whether the imbalance between

rotate right and rotate left had any e↵ect on learning. In both cases, the learning rates and

errors are approximately the same for both behavior policies.

6.3 Discussion and Conclusions

In this chapter, the o↵-policy learning algorithm derived in Chapter 5 was applied to OTD

network learning. Experimental results indicated that the agent could learn a model of the

previously introduced colored grid-world. The di↵erence between the algorithm presented

in this chapter and the algorithm from Chapter 5 is that the predictions generated by the

OTD network were used as features for the new algorithm. Though using predictions as

features causes features to be non-stationary, the agent still learned a set of weights that

enabled it to make accurate predictions. The agent was also demonstrated to maintain the

88

L-Leap

0

0.15

0.3

0.45

0 500000 1000000
Steps

E
r
r
o
r

L-Leap(b0)

L-Leap(b1)b
1

b
0

R-Leap

0

0.15

0.3

0.45

0 500000 1000000
Steps

E
r
r
o
r

R-Leap(b0)

R-Leap(b1)b
1

b
0

Figure 6.5: Learning rates for the L-Leap and the R-Leap nodes using the behavior policies
b0 and b1 (see text) was compared. The error curves are very similar for both behavior
policies, indicating that importance sampling corrects for the di↵erence between policies.

same concept of direction as the on-policy agent from Chapter 4. The agent also learned

predictions when trained with three di↵erent behavior policies

However, experiments were not conducted for behavior policies with extreme action selec-

tion probabilities (very small or very large probabilities of selecting certain actions) because

this would lead to large importance-sampling corrections and thus exacerbate the variance

of weight updates. In theory, even the most extreme importance-sampling corrections would

not be problematic given a small enough step-size and an infinite amount of training, but

in practice, the amount of training the agent can receive is bounded and determining an

appropriate step-size may be a tedious process. A more sophisticated algorithm that can

automatically tune step-sizes or bound the magnitude of importance-sampling corrections

could potentially control for extreme action-selection probabilities.

In the experiment in Section 6.2.2 the absence of certain predictions and the presence

of others was especially conspicuous. Possible reasons were suggested to account for the

errors, but another reason, tied to the issue of variance, is also plausible. Due to the

variance between training runs, it was possible that the prediction error was an artifact of

the specific training run. The agent was retrained on one million di↵erent steps of data

and the prediction error for the Leap-L-Leap node was no longer present. Again, whether

this second training run is representative of learning comes into question, but the di↵erence

between training runs clearly demonstrates the o↵-policy algorithm’s problem with variance.

89

Chapter 7

Conclusion

The primary contribution of this thesis is the OTD-network learning algorithm that included

temporal abstraction in TD networks by incorporating the options framework. The inclusion

of options allowed high-level, temporally-abstract concepts to be learned from data (actions

and observations). Introduced in this thesis were algorithms for:

• the on-policy learning of option-conditional temporal-di↵erence (OTD) networks (Chap-

ter 4)

• the o↵-policy learning of option models (Chapter 5)

• the o↵-policy learning of OTD networks (Chapter 6)

The problem of o↵-policy learning, in which an agent learns about multiple options from a

single stream of data, was studied in detail in Chapters 5 and 6. The algorithms introduced

in these chapters incorporated importance-sampling corrections. Another contribution of

this work was a test of the predictive representations hypothesis in which TD networks were

demonstrated to perform useful state abstraction (Chapter 3).

7.1 Future Work

As discussed in Chapter 1, what can be represented and how a representation is learned are

studied in this thesis. In addition to representation and learning, I believe that there is a

third issue (not treated in this thesis)—discovery—that deserves consideration. Discovery

can be described as learning what to learn. In a TD network or an OTD network, the problem

of discovery is the problem of learning the structure of the question network. Future research

on the topics of representation, learning, and discovery (and how the issues are interrelated)

are discussed in this section.

90

7.1.1 Representation

Chapter 3 explored the representational power of a TD network. In the experiments, a

reinforcement learning agent’s state representation was constructed from a TD network’s

predictions. The results of learning were promising and deserved further exploration.

Figure 3.1 discussed the confounding factors and the corresponding steps taken to control

for them. Future experiments could be broadened in scope and allow the presence of certain

confounding factors. For example, experiments could be conducted in stochastic environ-

ments. However, an oracle would not predict binary values in these environments. Instead,

there may be a probability associated with receiving an observation at the end of a test.

The predictions could be represented in a tabular form or could be used as inputs for a func-

tion approximator. Tabular predictive classes could be constructed from continuous-valued

predictions by defining a soft notion of equivalence—configurations within some distance of

each other (according to some metric) could be grouped into a class. On the other hand,

continuous-valued predictions could be used directly as features (reinforcement-learning al-

gorithms, such as Sarsa(�) and Q-Learning, can be used with function approximation (Sut-

ton & Barto, 1998)).

Removing the need for oracle-generated predictions is also a potential direction for this

research—combining the study of representation and learning. Experiments could be de-

signed to test the simultaneous learning of the predictions and learning of a solution to

a reinforcement learning problem. Concurrently learning both a set of predictions and a

solution to a task is di�cult because the predictions serve as the agent’s state. Because the

predictions are learned, the state representation is constantly changing, potentially causing

problems with the learning task.

7.1.2 Learning

Section 3.3.2 identified a trade between asymptotic performance and speed of learning, but

must it be a trade? Are the two mutually exclusive? Both issues, as they apply to TD

network learning, are worthy of further study and the hope is that an algorithm exists that

learns predictions accurately, and learns them quickly.

Controlling Variance

As seen in Chapters 5 and 6, a problem existed with the variance between training runs

because of the magnitude of weight updates. A proposed reason for the large weight changes

91

is the exponential growth of , the product of importance sampling corrections.

The experiments in Chapters 5 and 6 attempted to deal with potentially large values of
t

by using a small step-size; however, a better solution may be to incorporate an approach that

adapts step-sizes over the course of training (Sutton, 1992). Another possible solution to the

problem of large variance is to simply bound , e↵ectively bounding the magnitude of weight

changes. Rather than bounding , another possible approach is to control its magnitude by

dividing by
max

, the largest value of encountered during training. Finally, the recognizer

framework introduced by Precup et al. (2005) touches on reducing the variance of o↵-policy

learning. Defining option policies as recognizers may result in lower variance in the weight

updates.

An Empirical Demonstration of Weight Update Equivalence

An interesting result would be a thorough empirical test of Equation 5.14 which states that

over the course of an option, the on-policy algorithm and o↵-policy algorithms have the

same expected updates. This equation holds when the agent’s observation is a stationary

feature vector (as in Chapter 5).

Section 5.2.4 discussed a small experiment for which Equation 5.14 held; however, the

experimental world was deterministic and the target policy chose the same action on every

time step (Leap). A more thorough set of experimental tests could help to suggest that

the theoretical result holds in practice. These tests could be conducted in a world with

stochastic transitions and the agent would learn about a more sophisticated option (such as

Wander).

Fast Learning

In our experiments, agents generally received several hundred thousand steps of training.

To make the presented algorithms attractive for use with real-world data, algorithms need

to use data more e�ciently because real-world data is often more expensive to acquire.

O↵-policy learning is meant to help accelerate learning, but there are also other meth-

ods for improving learning rates. Tanner and Sutton introduced a TD-network learning

algorithm with inter-node traces which greatly reduced the amount of data needed to learn

environments (2005). Inter-node traces could likely be incorporated in the OTD network

algorithm as well.

Another approach to accelerating learning is the possible decorrelation of inputs. There

92

may be redundant nodes in a TD network which, if detected, could be removed, reducing

the size of the feature vector and thus helping to accelerate learning. It may be possible

to conduct something like principal component analysis on the predictions to reduce the

dimensionality of the representation.

Finally, the agent was always trained with a random policy in this work: the on-policy

agent selected randomly between options, and the o↵-policy agent selected randomly be-

tween simple actions. A directed exploration strategy would likely improve the agent’s learn-

ing speed—behavior during training could be chosen to accomplish goals tied to knowledge

acquisition. Rather than choosing actions and options randomly, the agent could choose

a behavior policy that would, for example, explore unknown regions of the state space, or

constrain the agent to a region of the state space until predictions were made perfectly in

the region.

7.1.3 Discovery

An important step forward for temporal-di↵erence networks is the development of a discov-

ery algorithm. Currently, question networks are specified in advance (for both TD networks

and OTD networks), but an agent would ideally add and remove predictions from the ques-

tion network over the course of learning.

Predictions could be added in many ways. In a TD network, a simple discovery algo-

rithm could be developed by incrementally increasing the number of levels in the question

network until the predictions are a su�cient statistic (reminiscent of James and Singh’s

PSR discovery algorithm (2004)). Another possibility is a generate-and-test approach in

which a new prediction is added, then after some training the prediction is retained only

if it provides useful information (prediction has low error, the inclusion of the prediction

decreases total network error, etc.). A genetic algorithm could even be used to address

the discovery problem. Multiple TD networks with randomly generated question networks

could be trained, and the question networks would be combined based on fitness (network

error), then training would start anew.

Discovery in an OTD network could be conducted by option “sculpting”—beginning

with a very general option (perhaps similar to the Wander option), a specific prediction

could be made by modifying the option over the course of training. This process could begin

by identifying a desired outcome then learning a policy and termination condition for which

the desired outcome is likely to be observed.

93

The discovery problem for TD networks and OTD networks is largely unexplored, any

progress along this line of research would be welcome.

7.2 Discussion

This thesis is a small step towards addressing a grand challenge of knowledge representation:

learning high-level concepts from low-level observables. Connecting concepts with data is

critical in the development of autonomous systems because knowledge is represented in a

form that is accessible to the agent. Predictive representations, and more specifically option-

conditional temporal-di↵erence networks, address the grand challenge by learning models in

which predictions are related to concepts.

A key result of the experiments presented in this thesis is the emergence of the concept of

direction. After training, an agent moved into the middle of space kept track of its direction

when spun in circles. This is an important result because the concept is not constrained by

history—the agent can be spun for an indefinite amount of time and the agent will never lose

track of direction. Also, as the agent is spun, the agent’s observation provides no directional

information, indicating that the agent is updating its predictions from previous predictions.

Abstraction, over both state and time, is what allows the concepts to be represented.

Spatial abstraction generalizes the environmental state by grouping situations with similar

sets of predictions; temporal abstraction allows sequences of actions to be treated as single

units. The concept of direction involves both types of abstraction: the agent knows the

direction it is facing because it can predict the outcome of a temporally-abstract sequence

of actions, and this prediction is computed from features of its current abstract state (the

current set of predictions).

Steps made towards developing an o↵-policy learning algorithm are also significant. In

the real-world there is no such thing as multiple runs, there is only a single stream of

experience and all learning stems from this experience. This demonstrates the need for

o↵-policy learning—there are many outcomes to learn about, but only a single stream of

data. The o↵-policy algorithm successfully learns the outcomes of temporally-extended

behaviors in two cases: when a set of features are observed by the agent, and perhaps more

interestingly when features are constructed from predictions. It is in the second case that

the agent benefits from both abstraction and o↵-policy learning, and it is this case that will

allow agents to model larger and more complex worlds.

94

Bibliography

[Baird, 1995] Baird, L. C. (1995). Residual algorithms: Reinforcement learning with func-
tion approximation. In Proceedings of the Twelfth International Conference on Machine
Learning, pages 30–37.

[Bertsekas and Tsitsiklis, 1996] Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-dynamic
Programming. Athena Scientific, Belmont, MA.

[Bowling et al., 2006] Bowling, M., McCracken, P., James, M., Neufeld, J., and Wilkinson,
D. (2006). Learning predictive state representations using non-blind policies. In Proceed-
ings of the Twenty-Third International Conference on Machine Learning (ICML), pages
129–136.

[Cassandra et al., 1997] Cassandra, A., Littman, M. L., and Zhang, N. L. (1997). Incre-
mental pruning: A simple, fast, exact algorithm for partially observable Markov decision
processes. In Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial
Intelligence, pages 54–61.

[Crites and Barto, 1996] Crites, R. H. and Barto, A. G. (1996). Improving elevator per-
formance using reinforcement learning. In Advances in Neural Information Processing
Systems 8, pages 1017–1023.

[Dietterich, 1998] Dietterich, T. G. (1998). The MAXQ method for hierarchical reinforce-
ment learning. In Proceedings of the Fifteenth International Conference on Machine
Learning, pages 118–126.

[Drescher, 1991] Drescher, G. (1991). Made-up Minds: A Constructivist Approach to Arti-
ficial Intelligence. MIT Press.

[Holmes and Isbell Jr., 2004] Holmes, M. P. and Isbell Jr., C. L. (2004). Schema learn-
ing: Experience-based construction of predictive action models. In Advances in Neural
Information Processing Systems 17, pages 585–592.

[Hundt et al., 2006] Hundt, C., Panagaden, P., Pineau, J., and Precup, D. (2006). Repre-
senting systems with hidden state. In Proceedings of the Twenty-First National Conference
on Artificial Intelligence, pages 368–374.

[Jaeger, 1998] Jaeger, H. (1998). A short introduction to observable operator models for
stochastic processes. In Proceedings of the 1998 Cybernetics and Systems conference,
volume 1, pages 38–43.

[Jaeger, 2000] Jaeger, H. (2000). Observable operator models for discrete stochastic time
series. Neural Computation, 12(6):1371–1398.

[James and Singh, 2004] James, M. R. and Singh, S. (2004). Learning and discovery of
predictive state representations in dynamical systems with reset. In Proceedings of the
Twenty-First International Conference on Machine Learning (ICML), pages 417–424.

[James and Singh, 2005] James, M. R. and Singh, S. (2005). Planning in models that com-
bine memory with predictive representations of state. In Proceedings of the Twentieth
National Conference on Artificial Intelligence (AAAI), pages 987–992.

[James et al., 2004] James, M. R., Singh, S., and Littman, M. L. (2004). Planning with
predictive state representations. In Proceedings of the 2004 International Conference on
Machine Learning and Applications (ICMLA), pages 304–311.

95

[James et al., 2005] James, M. R., Wolfe, B., and Singh, S. (2005). Combining memory
and landmarks with predictive state representations. In Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, pages 734–739.

[Littman et al., 2002] Littman, M. L., Sutton, R. S., and Singh, S. (2002). Predictive rep-
resentations of state. In Advances in Neural Information Processing Systems 14, pages
1555–1561. MIT Press.

[McCallum, 1996] McCallum, A. K. (1996). Reinforcement Learning with Selective Per-
ception and Hidden State. PhD thesis, Department of Computer Science, University of
Rochester, Rochester, New York.

[McCracken and Bowling, 2005] McCracken, P. and Bowling, M. (2005). Online discovery
and learning of predictive state representation. In Advances in Neural Information Pro-
cessing Systems 18, pages 875–882.

[Mitchell, 2003] Mitchell, M. W. (2003). Using Markov-k memory for problems with hidden-
state. In MLMTA, pages 242–248. CSREA Press.

[Precup et al., 2001] Precup, D., Sutton, R. S., and Dasgupta, S. (2001). O↵-policy
temporal-di↵erence learning with function approximation. In Proceedings of the Eigh-
teenth International Conference on Machine Learning, pages 417–424.

[Precup et al., 2005] Precup, D., Sutton, R. S., Paduraru, C., Koop, A. J., and Singh, S.
(2005). O↵-policy learning with recognizers. In Advances in Neural Information Process-
ing Systems 18, pages 1097–1104.

[Precup et al., 2000] Precup, D., Sutton, R. S., and Singh, S. (2000). Eligibility traces
for o↵-policy evaluation. In Proceedings of the Seventeenth International Conference on
Machine Learning, pages 759–766.

[Rafols et al., 2005] Rafols, E. J., Ring, M. B., Sutton, R. S., and Tanner, B. (2005). Using
predictive representations to improve generalization in reinforcement learning. In Pro-
ceedings of the Nineteenth International Joint Conference on Artificial Intelligence, pages
835–840.

[Ring, 1994] Ring, M. B. (1994). Continual Learning in Reinforcement Environments. PhD
thesis, University of Texas at Austin, Austin, Texas 78712.

[Rivest and Schapire, 1994] Rivest, R. L. and Schapire, R. E. (1994). Diversity-based infer-
ence of finite automata. J. ACM, 41(3):555–589.

[Rosencrantz et al., 2004] Rosencrantz, M., Gordon, G., and Thrun, S. (2004). Learning low
dimensional predictive representations. In Proceedings of the Twenty-First International
Conference on Machine Learning (ICML), pages 88–95.

[Rudary and Singh, 2004] Rudary, M. R. and Singh, S. (2004). A nonlinear predictive state
representation. In Advances in Neural Information Processing Systems 16, pages 855–862.

[Rudary and Singh, 2006] Rudary, M. R. and Singh, S. (2006). Predictive linear-gaussian
models of controlled stochastic dynamical systems. In Proceedings of the Twenty-Third
International Conference on Machine Learning (ICML), pages 777–784.

[Rudary et al., 2005] Rudary, M. R., Singh, S., and Wingate, D. (2005). Predictive linear-
gaussian models of stochastic dynamical systems. In Uncertainty in Artificial Intelligence:
Proceedings of the Twenty-First Conference, pages 777 – 784.

[Singh et al., 2004] Singh, S., James, M. R., and Rudary, M. R. (2004). Predictive state rep-
resentations: A new theory for modeling dynamical systems. In Uncertainty in Artificial
Intelligence: Proceedings of the Twentieth Conference, pages 512–519.

[Singh et al., 2003] Singh, S., Littman, M., Jong, N., Pardoe, D., and Stone, P. (2003).
Learning predictive state representations. In Proceedings of the Twentieth International
Conference on Machine Learning (ICML), pages 712–719.

[Sutton, 1988] Sutton, R. S. (1988). Learning to predict by the methods of temporal di↵er-
ences. Machine Learning, 3:9–44.

96

[Sutton, 1992] Sutton, R. S. (1992). Adapting bias by gradient descent: An incremental
version of delta-bar-delta. In The Tenth National Conference on Artificial INtelligence,
pages 171–176.

[Sutton, 1995] Sutton, R. S. (1995). TD models: Modeling the world at a mixture of time
scales. In Proceedings of the Twelfth International Conference on Machine Learning,
pages 531–539.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning:
An Introduction. MIT Press, Cambridge, MA.

[Sutton et al., 1999] Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial
Intelligence, 112:181–211.

[Sutton et al., 2005] Sutton, R. S., Rafols, E. J., and Koop, A. J. (2005). Temporal ab-
straction in temporal-di↵erence networks. In Advances in Neural Information Processing
Systems 18, pages 1313–1320.

[Sutton and Tanner, 2004] Sutton, R. S. and Tanner, B. (2004). Temporal-di↵erence net-
works. In Advances in Neural Information Processing Systems 17, pages 1377–1384.

[Tanner and Sutton, 2005a] Tanner, B. and Sutton, R. S. (2005a). TD(�) networks:
Temporal-di↵erence networks with eligibility traces. In Proceedings of the Twenty-Second
International Conference on Machine Learning (ICML), pages 889–896.

[Tanner and Sutton, 2005b] Tanner, B. and Sutton, R. S. (2005b). Temporal-di↵erence
networks with history. In Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, pages 865–870.

[Tanner, 2005] Tanner, B. T. (2005). Temporal-di↵erence Networks. PhD thesis, Depart-
ment of Computer Science, University of Alberta, Edmonton, Alberta.

[Tesauro, 1995] Tesauro, G. (1995). Temporal di↵erence learning and TD-gammon. Com-
munications of the ACM, 38(3):58–68.

[Watkins, 1989] Watkins, C. (1989). Learning from Delayed Rewards. PhD thesis, University
of Cambridge, England.

[Wiewiora, 2005] Wiewiora, E. (2005). Learning predictive representations from a his-
tory. In Proceedings of the Twenty-Second International Conference on Machine Learning
(ICML), pages 964–971.

[Wingate and Singh, 2006a] Wingate, D. and Singh, S. (2006a). Kernel predictive linear
gaussian models for nonlinear stochastic dynamical systems. In Proceedings of the Twenty-
Third International Conference on Machine Learning (ICML), pages 1017–1024.

[Wingate and Singh, 2006b] Wingate, D. and Singh, S. (2006b). Mixtures of predictive
linear gaussian models for nonlinear stochastic dynamical systems. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence, pages 524–529.

[Wolfe et al., 2005] Wolfe, B., James, M. R., and Singh, S. (2005). Learning predictive state
representations in dynamical systems without reset. In Proceedings of the Twenty-Second
International Conference on Machine Learning (ICML), pages 88–95.

[Wolfe and Singh, 2006] Wolfe, B. and Singh, S. (2006). Predictive state representations
with options. In Proceedings of the Twenty-Third International Conference on Machine
Learning (ICML), pages 1025–1032.

97

