Scalable Online State Construction
using Recurrent Networks

Khurram Javed Haseeb Shah
Department of Computing Science Department of Computing Science
University of Alberta University of Alberta
Edmonton, AB, Canada Edmonton, AB, Canada
kjaved@ualberta.ca hshahl@ualberta.ca

Rich Sutton
Department of Computing Science
University of Alberta
Edmonton, AB, Canada
rsutton@ualberta.ca

Martha White
Department of Computing Science
University of Alberta
Edmonton, AB, Canada
whitem@ualberta.ca

Abstract

State construction from sensory observations is an important component of a reinforcement learning agent. One solution
for state construction is to use recurrent neural networks. Two popular gradient-based methods for recurrent learning are
back-propagation through time (BPTT), and real-time recurrent learning (RTRL). BPTT looks at the complete sequence
of observations before computing gradients and is unsuitable for online updates. RTRL can do online updates but scales
poorly to large networks. In this paper, we propose two constraints that make RTRL scalable. We show that by either
decomposing the network into independent modules or learning a recurrent network incrementally, we can make RTRL
scale linearly with the number of parameters. Unlike prior scalable gradient estimation algorithms, such as UORO and
Truncated-BPTT, our algorithms do not add bias or noise to the gradient estimate. Instead, they trade off the functional
capacity of the recurrent network to achieve scalable learning. We demonstrate the effectiveness of our approach on a

prediction learning benchmark inspired by animal learning.

Keywords:

agent-state construction, recurrent learning, online learning, scal-
able recurrent learning

Columnar Constructive Hybrid

w1 Wo \w3
o .-’ P, -

Figure 1: Three structures of recurrent neural networks for which gradients can be estimated in a scalable way without
bias or noise. Dotted lines represent parameters that are updated at every step, whereas solid lines are weights that are
fixed to prevent bias in the gradient estimate of remaining parameters. Recurrent networks with a columnar structure
can be trained end-to-end using gradients without any truncation, only requiring O(n) operations and memory per step.
However, columnar networks do not have hierarchical recurrent features—recurrent features made out of other recurrent
features. Constructive networks have hierarchical recurrent features, however must be trained incrementally to prevent
bias in the gradient estimate. Incremental learning is achieved by initializing all w; to zero, and learning hy, hg, and hs
in order. Finally, columnar and constructive networks can be combined to get hybrid networks. The pairs (h1, ko) and
(h3, ha) do not depend on each other, and can learn in parallel. However, (h3, h4) must be learned after the pair (hy, hs)
has been learned and fixed.

1 Introduction

Learning by interacting with the world is a powerful framework for building systems that can autonomously achieve
goals in complex worlds. A key ingredient for building autonomous systems is agent-state construction—learning a
compact representation of the history of interactions that helps in predicting and controlling the future. One solution for
state construction is to use differentiable recurrent neural networks (RNNs) learned to minimize prediction errors.

State construction using RNNs requires structural credit assignment—identifying how to change network parameters to
improve predictions. In RNNs, a parameter can influence a prediction made in the future. Effective credit assignment
requires tracking the influence of the parameter on future predictions. Two popular algorithms for gradient-based struc-
tural credit assignment in recurrent neural networks are Back-propagation through time (BPTT) (Werbos, 1988; Robinson
and Fallside, 1987) and real-time recurrent learning (RTRL) (Williams and Zipser 1989).

BPTT and RTRL are not suitable for online state construction for large problems. BPTT requires storing all past activations
for estimating the gradient. Additionally, it requires computation proportional to the length of the sequence seen so far.
RTRL can estimate the gradient on the go, and does not require more computation as the length of the sequence grows.
However, RTRL scales poorly with an increase in the number of parameters of the RNN. Both BPTT and RTRL can be
approximated, to make them more suitable for online learning.

A promising direction to scale gradient-based credit-assignment to large networks is to approximate the gradient. El-
man (1990) proposed to ignore the influence of parameters on future predictions completely for training RNNs. This
resulted in a scalable but biased algorithm. Williams and Peng (1990) proposed a more general algorithm called Trun-
cated BPTT (T-BPTT). T-BPTT tracks the influence of all parameters on predictions made up to k steps in the future.
T-BPTT limits the BPTT computation to last & steps, and works well for a range of problems (Mikolov et al., 2009, 2010;
Sutskever, 2013 and Kapturowski et al., 2018). Its main limitation is that the resultant gradient is blind to long-range
dependencies. Mujika et al. (2018) showed that on a simple copy task, T-BPTT failed to learn dependencies beyond
the truncation window. Tallec et al. (2017) demonstrated T-BPTT can even diverge when a parameter has a negative
long-term effect on a target and a positive short-term effect. A diagonal approximation to RTRL was used by Hochre-
iter and Schmidhuber (1997) in the original LSTM paper that scales linearly with the number of parameters. The same
approximation is also a special case of the SnAp-k algorithm proposed by Menick et al. (2021) when k = 1. Diagonal-
RTRL is not blind to long-term dependencies, but introduces significant bias in the gradient estimate for dense recurrent
networks.

Existing approximations to gradient-based learning approximate the estimate of the gradient, but keep the function class
of the network the same. These approximations either introduce bias, which can result in poor performance or even
divergence, or noise in the gradient estimate, making learning extremely slow. In this work, we propose a different
strategy: instead of introducing bias or noise in the gradient estimate, we limit the function class of the RNNs to allow
scalable, unbiased and noise-free gradient estimation.

1.1 Recurrent learning

A recurrent neural network consist of a hidden state vector represented by h, € R?. The agent uses a weight vector
w; € R to make a prediction y; at time t as:

d
Yt = Z ht,kwt,k (1)
k=0
where
hy = f(he_1,x:,6;) . 2

he, and wy i, are the kth element of h; and wy, respectively. 6, are the parameters of the RNN at time ¢ and f is the
dynamics function of the recurrent network. Given this notation, we can write the gradient of a prediction y; w.r.t the
parameters 6,.; as

Oy _ Oy Ohy 3)
aal:t aht aal:t
We can expand the second term using the recursive relation:
oh; % oh; Oh;_y 4
a01:1& N aot aht—l ael:t—l
to get
Oy _ % % n oh; 0oh;_; 5)
06y.. Ohy \ 00, Ohy_y 00141

We can compute the gradient in equation 5 using BPTT or RTRL. BPTT stores the network activations from prior steps

and uses the expansion in equation 4 repeatedly to compute the gradient. RTRL, on the other hand, maintains the

jacobian 8%‘;1 using equation 4 at every step. To get the gradient w.r.t the prediction, it uses the pre-computed jacobian in

equation 3. As a results, gradients are readily available at every step. However, computing the jacobian using equation 4
requires O(|h;|?|6,|) operations and O(|h;|f;|) memory, and scales poorly to large networks.

2 Proposed methods

The key idea behind our methods is to structure a recurrent learning system in a way to make RTRL scale linearly with
the number of parameters. We propose three approaches: (1) Columnar networks, (2) Constructive networks, and (3)
Hybrid networks.

2.1 Columnar Networks

The first approach, called Columnar Networks, organizes the recurrent network such each scalar recurrent feature is
independent of other recurrent features. Let h; ;, be the kth index of the state vector h;. Then, in columnar networks,

hie = fro(he—1,5,Xe, 0t 1) (6)

Each f;, outputs a scalar recurrent feature, and is called a column. 6, ; are the sets of parameters of the column ¢ and j,
and are disjoint for i # j. A columnar network consists of d columns. The output of all columns are concatenated to get
d-dimensional h;. In this work, we implement each column as a single LSTM cell with a hidden size of one.

Because recurrent features in a columnar network are independent of each other, we can apply RTRL to each of them
individually. The computation cost of RTRL is O(|h¢|?|6;|). For a single column, it reduces to O(|6;]), since |h;| = 1. The
cost for all the columns is

O(10:1) + - -- OOrn

) = O([6:])- @)

Visualization of predictions after learning for 5 million steps 0.040 Trace patterning benchmark
1 ‘ Prediction targets T-BPTT 0.035 1
0 T P e A r . . .
0.030 T-BPTT O(n) RTRL (Diagonal jacobian)
1
O(n) RTRL (Diogonal jacobian) 0.025 -4
| 71 = MSRE ol
(30runs) 0.020 A olumnar ’
1 Constructive
Predictions | /4 28l qSotumnar Networks 0.015 -
1 0.010 A1
Constructive Networks
o‘ 4w 4B 0.005
1 LA Hybri 0.000 T T T T
ybrid Networks
0 -1 i 0 1 2 3 4
0 50 100 150 200 250 300 350 400
Timesteps No of steps in millions

Figure 2: Left: Comparison of the predictions produced by the different methods for the last 400 timesteps of training.
Right: Learning curves for the proposed and other online baseline methods on the trace patterning benchmark (lower
is better). All the runs are averaged over 30 seeds, and the error regions are the 95% confidence intervals. T-BPTT
uses a truncation length k=27—sutfficient to capture the longest dependency in the data stream. Dense LSTM networks
trained with both T-BPTT and Diagonal-RTRL perform poorly. Columnar and constructive networks perform well;
hybrid networks, that combine columnar and constructive, perform the best, showing that both parallel learning, and
hierarchical learning is important.

2.2 Constructive and Hybrid Networks

In constructive and hybrid networks, the recurrent network is a directed acyclic graph (DAG) learned incrementally. We
initialize the vector w; to be zero. Let d be a function from Z — Z that takes as input the index of a recurrent feature, and
returns the length of the longest path from the input x to the recurrent feature in the DAG. Learning in a constructive or
hybrid network happens in phases. First, we learn all recurrent features, and their corresponding w; for which d(a;) = 1.
Once those features have been learned, we freeze the ¢; for these features. The corresponding w; are not frozen and
continue to be updated. We then learn features for which d(a;) = 2. Note that these features may take as input the earlier
frozen recurrent features. We repeat this process until all the features have been learned. Once again, all w; continue to
be updated continually.

The benefit of the phased approach is that at any given moment, the features that are being learned are independent of
each other. As a result, RTRL stays scalable, and only requires O(|6,|) operations per step, similar to Columnar networks.

We call the special case when exactly one feature has d(i) = j, for all j the constructive network. The case when there
can be multiple features with the same value of d(.) are called hybrid networks, since they both learn incrementally, like
constructive network, and learn multiple independent features simultaneously, like columnar networks.

3 Empirical evaluation

We use the trace patterning environment introduced by Rafiee et al. (2022) to benchmark our algorithm. It is an online
prediction task, that requires the learner to discriminate between patterns—conditional stimuli (CS)—that are followed
by the scalar—unconditional stimuli (US)—with a time delay. The goal of the agent is to predict the discounted sum of
the US. Correct predictions require the ability to discriminate between patterns that lead to US from those that do not.
The time delay between the CS and US requires remembering information from the past. We use an ITI of (80, 120), ISI
of (14, 26), and 5 distractors. The US consists of 6 features, 3 of which are active to represent a pattern. Ten randomly
chosen patterns lead to the CS. For an explanation for all the terms, please refer to Rafiee et al. (2022).

3.1 Baselines

We report the results of our approaches and compare them to T-BPTT, and the diagonal approximation to RTRL. Both
T-BPTT and diagonal-RTRL use LSTM networks for learning. The sum of operations done for prediction and learning at
each step is the same for all methods. Because T-BPTT is a more expensive algorithm than other methods, the LSTM for
T-BPTT has fewer parameters to keep the computation per-step constant.

3.2 Results

We use the TD()) algorithm for learning, and report the results in figure 2.2. We tune hyper-parameters for all meth-
ods independently over a wide range and plot the results for the best performing hyper-parameters. All three of our
approaches outperform truncated-BPTT and diagonal RTRL by a significant margin. The hybrid approach performs the
best, showing that both learning hierarchical recurrent features and learning many recurrent features in parallel improve
state construction.

4 Conclusion

We propose two algorithms—columnar RNNs and constructive RNNs—and show that they can learn to construct a
state for a prediction task. The two algorithms can be combined to give a third algorithm—hybrid RNNs—that combine
the strengths of both columnar and constructive. All three of our algorithms outperform LSTM networks trained via
truncated-BPTT or the diagonal approximation to RTRL on the trace patterning benchmark under a fixed computation
budget.

References

Elman, J. L. (1990). Finding structure in time. Cognitive science.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation.

Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., & Dabney, W. (2018, September). Recurrent experience replay in
distributed reinforcement learning. In International conference on learning representations.

Menick, J., Elsen, E., Evci, U., Osindero, S., Simonyan, K., & Graves, A. (2020). A practical sparse approximation for real
time recurrent learning. ICLR 2021.

Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., & Khudanpur, S. (2010, September). Recurrent neural network based
language model. In Interspeech.

Mikolov, T., Kopecky, J., Burget, L., & Glembek, O. (2009, April). Neural network based language models for highly
inflective languages. In 2009 IEEE international conference on acoustics, speech and signal processing. IEEE.

Mujika, A., Meier, F.,, & Steger, A. (2018). Approximating real-time recurrent learning with random kronecker factors.
Advances in Neural Information Processing Systems, 31.

Rafiee, B., Abbas, Z., Ghiassian, S., Kumaraswamy, R., Sutton, R., Ludvig, E., & White, A. (2022). From Eye-blinks to
State Construction: Diagnostic Benchmarks for Online Representation Learning. Adaptive Behavior.

Robinson, A. J., & Fallside, F. (1987). The utility driven dynamic error propagation network. Cambridge: University of
Cambridge Department of Engineering.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature.
Sutskever, I. (2013). Training recurrent neural networks (pp. 1-101). Toronto, ON, Canada: University of Toronto.
Tallec, C., & Ollivier, Y. (2017). Unbiased online recurrent optimization. ICLR 2018.

Werbos, P. J. (1988). Generalization of backpropagation with application to a recurrent gas market model. Neural net-
works.

Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural
computation.

Williams, R. J., & Peng, J. (1990). An efficient gradient-based algorithm for on-line training of recurrent network trajecto-
ries. Neural computation.

