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Abstract

The Backprop algorithm for learning in neural networks utilizes two mechanisms: first, stochastic gradient descent and
second, initialization with small random weights, where the latter is essential to the effectiveness of the former. We show
that in continual learning setups, Backprop performs well initially, but over time its performance degrades. Stochastic
gradient descent alone is insufficient to learn continually; the initial randomness enables only initial learning but not
continual learning. To the best of our knowledge, ours is the first result showing this degradation in Backprop’s ability
to learn. To address this degradation in Backprop’s plasticity, we propose an algorithm that continually injects random
features alongside gradient descent using a new generate-and-test process. We call this the Continual Backprop algorithm.
We show that, unlike Backprop, Continual Backprop is able to continually adapt in both supervised and reinforcement
learning (RL) problems. Continual Backprop has the same computational complexity as Backprop and can be seen as a
natural extension of Backprop for continual learning.
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1 Introduction

In the last decade, deep learning methods have been successful and become the state-of-the-art in many machine learning
problems and applications, including supervised classification (Krizhevsky et al., 2012), reinforcement learning (Silver
et al., 2016), and natural language processing (Brown et al., 2020). These methods learn the weights of an artificial
neural network using Backprop, which is primarily applied to stationary problems. However, a primary challenge to
leveraging the strengths of deep learning beyond current applications is that Backprop does not work well in non-
stationary problems (McCloskey and Cohen, 1989; Sahoo et al., 2018), for example, a problem that consists a sequence of
stationary problems.

Leveraging the strengths of deep learning methods in non-stationary problems is important as many real-world appli-
cations of machine learning like robotics involve non-stationrities. Non-stationarities can arise due to high complexity
(Sutton et al., 2007), partial observability (Khetarpal et al., 2020), other actors (Foerster et al., 2018), or changes in the
environment (Thurn, 1998). Prior works proposed to remember previously learned information (Kirkpatrick et al., 2017;
Aljundi et al., 2018; Riemer et al., 2019). Some other works proposed to adapt fast to non-stationarities (Rusu et al., 2016;
Al-Shedivat et al., 2018; Finn et al., 2019).

Prior works on non-stationary problems are limited due to their lack of experiments with many non-stationarities. The
number of non-stationarities refers to the number of times the data distribution changes. Most works only look at
problems with less than ten non-stationarities (Rusu et al., 2016; Kirkpatrick et al., 2017; Al-Shedivat et al., 2018). Finn et
al. (2019) studied problems with up to a hundred non-stationarities. Dealing with many non-stationarities is important
for systems that continually interact with the real world as non-stationarities frequently occur in the world.

In this work, we study problems with a large number (thousands) of non-stationarities. We start with Permuted MNIST,
which belongs to a special class of problems that we call semi-stationary problems. These are online supervised learning
problems where the input distribution is non-stationary while the target function is stationary. The target function is
the function being approximated, for example, the true regression function. These problems are a natural way to study
many non-stationarities; slowly moving through a large input space can cause thousands of non-stationarities. Semi-
stationarities are especially relevant in the real world where inputs often depend on previous inputs, making the input
distribution non-stationary. Finally, we study a non-stationary RL problem. This is a full non-stationarity problem as the
input distribution changes when the agent’s behaviour changes and the target function—optimal policy—changes as the
dynamics of the environment change.

We show that in non-stationary problems Backprop performs well initially, but surprisingly, its performance continues
to degrade substantially over time as Backprop loses its ability to adapt. Backprop relies on proper random initialization
for its effectiveness (Glorot et al., 2010; Sutskerver et al., 2013; He et al., 2015). However, randomization in Backprop
only happens at the beginning. We hypothesize that Backprop’s ability to adapt degrades because the benefits of initial
random distribution are not present at all times.

To extend the benefits of the initial randomization throughout learning, we propose the Continual Backprop (CBP) al-
gorithm. CBP continually injects random features alongside SGD and uses a generate-and-test mechanism that consists
of two parts: a generator proposes new features, and a tester finds and replaces low utility features with the features
proposed by the generator. We show that unlike BP, CBP can continually adapt in non-stationary problems.

The first contribution of our work is to show that in non-stationary problems with many non-stationarities BP loses its
ability to adapt over time. In other words, we contribute to the understanding of why BP fails in non-stationary problems.
Our second contribution is the CBP algorithm that extends the benefits of the initialization in BP to all times.

2 Backprop loses the ability to adapt under extended tracking

Permuted MNIST (Zenke et al., 2017) is an online image classification problem with ten classes. The images in permuted
MNIST are generated from the images in the MNIST dataset by randomly permuting the pixels in the images. We present
the images sequentially and measure online classification accuracy. The MNIST dataset has 60k images. We present these
60k images in random order, and after all the images have been presented, we use a single permutation to change all
the images. This cycle of presenting all the 60k images and then changing the permutation of pixels can be continued
indefinitely, which allows us to create a long-term continual learning problem. However, the original work by Zenke et
al. (2017) only used this task with ten non-stationarities.

All solution methods used a feed-forward network with three hidden layers with 2000 hidden units, ReLU activations,
and used SGD for updates.

Figure 1 shows that in the permuted MNIST problem, the performance of Backprop gets worse for all steps-sizes. The
degradation in performance is slower for smaller step-sizes. From these results, we conclude that Backprop is not suitable
for extended tracking as it continues to lose its ability to adapt over time.
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Figure 1: The online classification
accuracy of a deep ReLU-network
trained using Backprop on Per-
muted MNIST. The online accuracy
is binned among bins of size 60k.
The performance of BP gets worse
over time for all step-sizes, meaning
that BP loses its ability to adapt un-
der extended tracking.

The weights of the learning network are different at the beginning and after some
gradient-based updates. In the beginning, they were small random weights; how-
ever, after learning for some time, the weights became optimized to reduce the
error for the most recent data distribution. Thus, the starting weights to get to the
next solution have changed. As this difference in the weights is the only difference
in the learning algorithm across time, the initial weight distribution must have
some special properties that allow the learning network to adapt fast.

3 Continual Backprop

The benefits of initializing with small random numbers in Backprop are only
present initially, as initialization with small random weights only happens at the
start. This special initialization makes Backprop temporally asymmetric as it does
a special computation at the beginning which is not continued later. But continu-
ally learning algorithms should be temporally symmetric as they should do similar
computations at all times.

One way to extend the benefits of initialization throughout learning is by contin-
ually injecting random features. A feature refers to a hidden unit in a network.
However, we are interested in continually learning methods that have similar
memory requirements at all times because methods whose memory requirements
grow with the amount of data are not scalable. So we also need to remove some
features without affecting the already learned function too much. The features to be replaced can be chosen either ran-
domly or using some measure of utility.

Continually replacing low utility features with new random features is a natural way to extend the benefits of initial-
ization to all times while using constant memory. We use a generate-and-test process to continually replace low utility
features with new random features. This process has two parts. First is a generator that provides new random fea-
tures from the initial distribution. The second is a tester that finds low utility features and replaces them with features
proposed by the generator. Our generate-and-test process is applicable to arbitrary feed-forward networks, modern ac-
tivations, and optimizers. While the prior algorithm (Mahmood & Sutton, 2013) was limited to learning networks with a
single hidden layer, only one output, LTU activation and could only use SGD to learn.

The generator creates new features by randomly sampling from the distribution that was used to initialize the weights.
When a new feature is added, its outgoing weights are initialized to zero. Initializing as zero ensures that the newly
added feature does not affect the already learned function. However, initializing the outgoing weight to zero makes it
vulnerable to immediate replacement. The new features are protected for maturity-threshold, m, number of updates.

... wl,i,k

hl,i
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i

Figure 2: A
feature/hidden-unit
in a network and its
utility at time t.

The tester finds low utility features and replaces them. At every time-step, replacement-rate, ρ,
fraction of features are replaced in every layer.

We define the overall utility of a feature as the product of its mean-corrected contribution-
utility and adaptation-utility. Where we define, the mean-corrected contribution utility as the
magnitude of the product of connecting weight and input minus the average value of the
input. The basic intuition behind the contribution part is that magnitude of the product of
feature activation, and outgoing weight gives information about how useful this connection is
to the next feature. And we define the adaptation-utility as the inverse of the average magnitude
of the features’ input weights. The adaptation-utility captures how fast a feature can adapt.
The overall utility, ûl,i,t, becomes

ul,i,t = (1− η) ∗
|hl,i,t − f̂l,i,t| ∗

∑nl+1

k=1 |wl,i,k,t|∑nl−1

j=1 |wl−1,j,i,t|
+ η ∗ ul,i,t−1, (1)

ûl,i,t =
ul,i,t−1

1− ηal,i,t
. (2)

where hl,i,t is features’ output, wl,i,k,t is the weight connecting the feature to the kth unit in
layer l + 1, nl+1 is the number of units is layer l + 1, al,i,t is the age of the feature at time t.
Here, f̂l,i,t is the bias-corrected running average of hl,i,t.

The final algorithm combines BP with our generate-and-test algorithm to continually inject random features from the ini-
tial distribution. We refer to this algorithm as Continual Backprop (CBP). CBP performs a gradient-descent and a generate-
and-test step at every time step. Algorithm 1 specifies the CBP algorithm for a feed-forward neural network.

Continual Backprop on Permuted MNIST
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Algorithm 1: Continual Backprop (CBP) for a feed forward neural network with L hidden layers

Set: step-size α, replacement rate ρ, decay rate η, and maturity threshold m (e.g. 10−4, 10−4, 0.99, and 100)
Initialize: Initialize the weights w0, ...,wL. Let, wl be sampled from a distribution dl
Initialize: Utilities u1, ...,uL, average feature activation f1, ..., fl, and ages a1, ..., aL to 0
for each input xt do

Forward pass: pass input through the network, get the prediction, ŷt
Evaluate: Receive loss l(xt, ŷt)
Backward pass: update the weights using stochastic gradient descent
for layer l in 1 : L do

Update age: al += 1
Update feature utility: Using Equation 5
Find eligible features: Features with age more than m
Features to replace: nl∗ρ of eligible features with smallest utility, let their indices be r
Initialize input weights: Reset the input weights wl−1[r] using samples from dl
Initialize output weights: Set wl[r] to zero
Initialize utility, feature activation, and age: Set ul,r,t, fl,r,t, and al,r,t to 0

Figure 3: The online classification
accuracy of various algorithms on
Permuted MNIST. The performance
of all algorithms except CBP de-
grade over time. CBP maintains
a good level of performance for a
wide range of replacement rates, ρ.

The most common ways to keep the weight distribution close to the initial distri-
bution are L2 regularization and BatchNorm. So, we use these two methods along
with BP and compare them to CBP. As we study online problems and we consider
incremental updates, we used OnlineNorm (Chiley et al., 2019), an online variant
of BatchNorm. Figure 3 show that among all the algorithms, only CBP is stable
as its performance does not degrade over time. The performance of all the other
algorithms degrades over time.

Continual Learning in a non-stationary RL problem

Slippery Ant is a non-stationary RL problems and is a continual variant of Py-
bullet’s (Coumans and Bai, 2016) Ant problem. In our problems the environment
changes after every 10M time-steps, making it necessary for the learner to adapt.
In the standard problem, the value of the friction is fixed at 1.5. We change the
friction after every 10M time-steps by log-uniformly sampling it from [1e−4, 1e4].

We used the PPO algorithm as described by Schaulman et al. (2017). We used
separate networks for policy and value function, and both had two hidden layers
with 256 hidden units with tanh activation. To use CBP with PPO, we use CBP instead of BP to update the networks’
weights. Whenever the weights are updated using Adam, we also update them using generate-and-test. We call the
resulting algorithm Continual PPO.

4 Conclusion

Figure 4: Performance of PPO,
PPO+L2, and Continual-PPO on
Slippery Ant. The performance of
PPO degraded rapidly. In contrast,
both CPPO and PPO+L2 perform
substantially better than PPO, and
CPPO performed best.

In this work, we studied learning problems that have a large number of non-
stationarities. We showed that in these problems, the performance of Backprop
degrades over time, and it loses its ability to adapt. In other words, we showed
that neural networks have a “decaying plasticity” problem. Ours is the first result
showing this degradation in Backprop’s ability to adapt. This result means that
Backprop can be unsuitable for continual adaptation.

We proposed the Continual Backprop (CBP) algorithm to get a robust continual
learning algorithm where both components of Backprop are present continually.
CBP extends the benefits of special random initialization throughout learning us-
ing a generate-and-test process. We showed that CBP could continually adapt
even after thousands of non-stationarities.

Continual learning is becoming more and more relevant in machine learning.
These systems can not use BP or its variants in their current form, as they are
not stable in non-stationary problems. We expect that by establishing Backprop’s
decaying plasticity, our work will invite many solutions similar to how many works have addressed “catastrophic for-
getting”. We foresee that our work will open a path for better Continual Backprop algorithms.
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We expect Continual Backprop to be particularly relevant for Reinforcement Learning. RL problems are inherently non-
stationary as the state-action distribution changes as the policy changes, and the target function of the value network
changes as the policy changes. Studying the effect of decaying plasticity in RL is an exciting direction for future work.
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