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ABSTRACT
The ability to continually make predictions about the world may
be central to intelligence. O�-policy learning and general value
functions (GVFs) are well-established algorithmic techniques for
learning about many signals while interacting with the world.
In the past couple of years, many ambitious works have used
o�-policy GVF learning to improve control performance in both
simulation and robotic control tasks. Many of these works use
semi-gradient temporal-di�erence (TD) learning algorithms, like Q-
learning, which are potentially divergent. In the last decade, several
TD learning algorithms have been proposed that are convergent
and computationally e�cient, but not much is known about how
they perform in practice, especially on robots. In this work, we per-
form an empirical comparison of modern o�-policy GVF learning
algorithms on three di�erent robot platforms, providing insights
into their strengths and weaknesses. We also discuss the challenges
of conducting fair comparative studies of o�-policy learning on
robots and develop a new evaluation methodology that is successful
and applicable to a relatively complicated robot domain.
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1 INTRODUCTION
The ability to make o�-policy predictions may be central to intel-
ligence. For example, Littman, Sutton, and Singh (2002) showed
that the state of a partially observable dynamical system can be
represented in terms of predictions about the low-level data ac-
quired from interaction with the world. It has also been argued that
a general sense of knowledge can be represented using networks of
interrelated predictions while being grounded in sensorimotor data
(Tanner and Sutton, 2005; Rafols et al., 2006; Sutton, 2009; Sutton
and Tanner, 2005). Sutton et al. (2011) proposed an architecture for
knowledge representation consisting of many sub-agents each try-
ing to answer a predictive question about the environment. These
predictive questions are represented with general value functions
(GVFs); a value function with a generalized notion of target and
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termination that can be learned online with conventional temporal
di�erence learning methods. Finally, Ring (in preparation) demon-
strated how a collection of predictions, encoded as GVFs, can be
learned and combined layer-by-layer from low-level statements
about the data-stream all the way up to high-level concepts.

Several recent large-scale learning systems have utilized large
collections of GVFs learned o�-policy from a single stream of data.
The UNREAL learning system (Jaderberg et al., 2016) used hundreds
of auxiliary prediction and control tasks to improve a shared state
representation, resulting in state-of-the-art control performance
across numerous baselines. The UVFA architecture (Schaul et al,
2015) combines dozens of GVFs to generalize learned policies to
novel goals never experienced by the system during training. The
Predictron (Silver et al., 2017) uses a network of GVFs to construct
an implicit model of the world. The HYDRA learning system (Van
Seijen et al., 2017) shows how a complex task can be decomposed
into a collection of GVFs to dramatically speed learning in large-
scale applications like Atari.

The bene�ts of o�-policy GVF learning could be more pro-
nounced in physical systems like robots, where the agent can learn
about multiple ways of behaving from a single stream of experi-
ence. GVFs have been used to generate better exploratory behavior
in high-degree-of-freedom robotic control tasks. The Scheduled
Auxiliary Task (SAC) architecture (Riedmiller et al., 2018) learns a
collection of GVFs corresponding to primitive behaviors like reach-
ing to touch an object. The system learns which primitive-behavior
GVF to follow for dramatically speeding up exploration and al-
lowing the system to learn complex behavior like block stacking
from scratch, with no prior knowledge. In simulations an agent
can learn from multiple instances of the environment, substantially
speeding up learning (Jaderberg et al., 2016). This approach can
in principle be employed in settings with multiple robots (Gu et
al., 2017); however, in practice asynchronous updating only works
well if the environments (including the robot) are nearly identical.
Ultimately we want our AI systems to run on autonomous mobile
robot platforms, learning online in a changing world from a lifetime
of experience—in these settings o�-policy GVF learning may be
critical for scaling up learning.

Many of the demonstrations of GVF learning above use poten-
tially divergent learning algorithms. The UNREAL, UVFA, and
Hydra architectures use Q-learning, which can diverge with func-
tion approximation (Baird,1995; Sutton and Barto, 2018), while SAC
uses the Retrace algorithm (Munos et al., 2016), which has been
recently shown to diverge with approximation (Touati et al., 2018).
These algorithms remain popular in application because they are
well understood, computationally e�cient (linear in the number of
weights), work well with function approximation, and divergence
cases are rare in practice (Van Hasselt et al., 2018).



Recently several families of methods have been introduced that
are also computationally e�cient, based on temporal-di�erence up-
dates, and guaranteed convergent with approximation (e.g., Sutton
et al., 2009; Sutton, Mahmood, and White, 2016). However, much
less is known about these new methods in practice. A handful
of simulation studies (Dann et al., 2014; Geist and Scherrer, 2014;
White and White, 2016; Ghiassian et al., 2018) have suggested that
these new methods achieve good performance in small problems,
but we have little data on how these methods perform in larger
control domains. Prior works have demonstrated that Gradient-TD
methods can successfully learn accurate predictions and e�ective
policies on robots (Sutton et al., 2011; White, 2015). However, these
work do not include algorithmic comparisons, parameter sensitivity
analysis, or averaging over multiple runs. To our knowledge, there
has been no work comparing o�-policy GVF learning algorithms
on real physical systems.

Comparing o�-policy learning algorithms on robots is challeng-
ing for several reasons. O�-policy learning allows the system to
learn about many—potentially thousands—GVFs in parallel. The
GVFs will likely learn at di�erent rates. Easy predictive questions
may be learned quickly and others will require signi�cantly more
data. Therefore, tracking the accuracy of only a subset of the GVFs
may not well re�ect the accuracy of the entire collection. Each
GVF can be contingent on a di�erent policy—thousands of GVFs
may make use of thousands of policies—we must somehow access
the accuracy of GVFs about policies that may never be executed
during normal operation. On a robot, every time step requires time
in the real world (and human supervision), and thus empirical com-
parisons must judiciously allocate computation and samples in the
most e�ective way possible. Currently, there are no well established
best practices on how to conduct meaningful and fair comparisons
of o�-policy learning algorithms on robots.

This paper has three primary contributions. First, we present
three case studies in which we empirically compare several modern
o�-policy GVF learning algorithms on robot platforms. Second, we
propose a newmethodology for evaluating o�-policy algorithms on
robots. Third, we provide several new insights into the performance
of the algorithms. In particular our results suggest: (i) Emphatic-TD
methods can substantially outperform other methods in prediction
tasks (�xed policy GVFs) but can be more sensitive to their choice
of learning rate parameter. (ii) In prediction tasks, Emphatic-TD
methods work better when the behavior is closer to on-policy, com-
pared with Gradient-TD methods that do better when the behavior
is more random. (iii) Eligibility traces signi�cantly improve per-
formance over one-step methods in prediction tasks. (iv) In GVF
control learning, Greedy-GQ exhibited substantially less variance
across test runs, compared with conventional Q-learning. (v) ABQ,
an o�-policy method that does not use importance sampling, did
not show a signi�cant advantage over importance sampling-based
Gradient-TD methods. Our experiments are the most extensive and
thorough comparisons of o�-policy GVF learning performed on
robots to date, including many algorithms and a wide range of
parameters.

2 BACKGROUND
In this paper, we consider the problem of estimating the value
function for a Markov decision process (MDP) where there is an
interaction loop between an agent and its environment. The agent
and environment interact continually at discrete time steps. At
each time step t , the agent is in a state St 2 S and takes an action
At 2 A according to its behavior policy b : |S| ⇥ |A| ! [0, 1]. The
environment, in turn, emits a reward Rt+1 2 R and takes the agent
to the next state St+1 2 S. The objective is to estimate the expected
return for a target policy � : |S| ⇥ |A| ! [0, 1], that is sum of the
discounted rewards given that the agent takes its actions according
to � . The expectation of return is known as the value function and
is denoted by �� :

�� (s) = E

" 1’
k=0

�kRt+k+1

���� St = s,At :1 ⇠ �

#

where � is the discount factor.
In this work, we consider a more general notion of value function,

introduced by Sutton et al. (2011), that is not limited to reward and
is called a general value function (GVF). A GVF, similar to a value
function, can be written as the expectation of a weighted sum of a
signal of interest:

�� ,� ,c (s) = E

" 1’
k=0

 k÷
j=1

� (St+j )
!
c(St+k+1)

���� St = s,At :1 ⇠ �

#

where � : S ! [0, 1] is a generalization of the discount factor to
a horizon (termination) function. The horizon function speci�es
the probability of the GVF terminating at each state. Therefore, it
speci�es the time scale of the prediction: T = �t

1�� , where �t is the
agent-environment update cycle. c : S ! R is the signal of interest
and is called the cumulant of the prediction.

For estimating value functions, we use temporal-di�erence (TD)
learning methods. The most classic TD method, TD(�), in the case
of linear function approximation can be summarized as follows:

�t €=Rt+1 + �t+1wT
t x(St+1) �wT

t x(St )
zt  �t�zt�1 + xt

wt+1  wt + ��t zt

(1)

where the learned value function for state St is denoted bywT
t x(St )

and is the dot product of the weight vectorw and the feature vector
x(St ). �t is the TD error and can be thought of as the di�erence
between the learned value of St and a more accurate estimate of it,
Rt+1+�t+1wT

t x(St+1). z is the eligibility trace vector. The eligibility
trace at each time step determines the eligibility of each component
of the weight vector to be a�ected by the TD error of that time
step. The eligibility of the components of the weight vector decays
over time and increases whenever they participate in forming an
estimate of the value of a visited state. The rate of decaying is
determined by the trace parameter � which can also be thought of
as a bias-variance knob.

We consider o�-policy learning that is to learn about a policy
using the data generated from a di�erent policy. In order to learn
about a target policy, � , based on the data generated by a di�erent
behavior policy, b, we have to correct for the di�erences between



the two policies. This is usually done using the importance sam-
pling ratio �t =

� (At |St )
b(At |St ) . O�-policy TD(�) uses the importance

sampling ratio in the update of the eligibility trace to account for
the di�erences between the two policies. Unfortunately, o�-policy
TD(�) is proven divergent. However, there are several families of
TD methods that incorporate importance sampling ratio in di�er-
ent ways to achieve convergence (e.g., Emphatic-TD methods and
Gradient-TD methods).

To this point, we considered the problem of estimating the value
function for a �xed policy, also known as the policy evaluation
or prediction problem. Another category of problems focuses on
�nding the optimal policy—a policy that maximizes the sum of
discounted rewards—also known as the control problem. Solving
the control problem involves a policy improvement step in ad-
dition to estimating the value function of the learned policy. A
well-known o�-policy TD algorithm for solving control problems
is Q-learning (Watkins,1989). Despite being successful in many
domains, including Atari games (Mnih et al., 2016), Q-learning does
not have convergence guarantees when combined with function
approximation. Although classic o�-policy TD(�) and Q-learning
do not have convergence guarantees, various TD methods have re-
cently been proposed that are convergent under o�-policy training.
In the next section, we discuss several of these methods.

3 OFF-POLICY ALGORITHMS
We consider both prediction and control algorithms from the TD
family of methods.We focus on algorithms that are computationally
linear in the number of function approximation parameters. We
do not consider methods like Least-squares TD methods (Bradtke
and Barto, 1996; Boyan, 1999) because they are computationally
expensive and are not applicable to large-scale learning systems.

For o�-policy prediction, we consider several TD methods in
addition to the classic TD(�). Gradient-TD methods were the �rst
to provide convergence guarantees with two learned weight vec-
tors. These methods use stochastic gradient descent to minimize
the Mean Squared Projected Bellman Error (MSPBE) objective. We
consider GTD(�) and GTD2(�) (Sutton et al., 2009; Maei, 2011) from
the Gradient-TD family. It was known early on that TD(�) can be su-
perior to GTD(�) in the on-policy case. This motivated the creation
of another algorithm that we consider, called HTD(�) (Hackman,
2012; White and White, 2016). HTD(�) performs TD(�)-like updates
when data is sampled on-policy and GTD(�)-like updates when
data is sampled o�-policy, while providing the same convergence
guarantees as GTD(�). Di�erent derivations are possible if we con-
sider saddle point formulation of the objective function. Examples
of such methods are proximal-GTD and proximal-GTD2 algorithms
which we consider in our study (Mahadevan et al., 2014; Liu et al.,
2015).

Emphatic-TD methods were the �rst family to provide conver-
gence guarantees under o�-policy training with function approxi-
mation using only one learned weight vector. We study the original
ETD(�) (Sutton et al., 2016) as well as a slightly modi�ed version of
it, ETD(�, �) (Hallak et al., 2016). ETD(�, �) has an extra parameter,
� , that acts as a bias-variance parameter. O�-policy TD and ETD
are special cases of ETD(�, �) for � = 0 and � = � respectively.

O�-policy learning can su�er from high variance introduced by
the importance sampling ratio. Methods have been proposed that
tackle this problem by omitting an explicit use of an importance
sampling ratio. Thesemethods use a variable � to reduce the e�ect of
importance sampling ratio on the update when it is large. Examples
of these algorithms are V-trace(�), Tree-Backup(�), and ABQ(� )
(Espeholt et al., 2018; Precup et al., 2000; Mahmood et al., 2017).
In this work, we consider ABQ(� ) from this group since it was
shown to slightly outperforming the other two methods (Ghiassian
et al., 2018). The original ABQ(� ) method was proposed for control,
we consider a variant of it that is for policy evaluation proposed
by Ghiassian et al. (2018), called ABTD(� ). The original ABQ(� )
method also uses gradient corrections and is proven stable under o�-
policy training with function approximation. We, however, study a
simpler version of ABQ(� ) that does not use gradient corrections.

For o�-policy control, we consider two algorithms in addition
to the classic Q-learning method. First one is Greedy-GQ(�) from
the Gradient-TD family of methods. This algorithm extends the
original GTD(�) method to the control case (Maei et al., 2010).
The second method is Greedy-ABQ(� ) for control. We derived this
method using the same greedi�cation process that was used to
derive Greedy-GQ(�) from GTD(�).

4 THE DYNAMIXEL CASE STUDY
We begin our comparative study of o�-policy learning with a simple
robot prediction task since the interpretation of the results in this
case is more straightforward. We constructed the robot using two
Dynamixel AX-12 motors and will refer to it as the Dynamixel robot.
We used this robot to design and solve a prediction task; to learn
how soon one of the motors reaches a particular target angle, given
that it is going back and forth between two limiting angles. The two
limiting angles are at horizontal and vertical positions (see Figure 1)
and have the values of 0 and 1.5 radians respectively. At each time
step, the motor can move left or right for 0.05 radians. We formu-
lated this prediction task as a single GVF. The target policy was to
move back and forth between the two limiting angles. The horizon
function returned 0.9 unless the distance between the current angle
and the target angle was less than 0.05 (termination condition) in
which case it returned 0. The cumulant function returned 1 when
the distance between the current angle and the target angle was
less than 0.05; otherwise, it returned 0.

End angle=1.5

End angle=0

Target angle=1
end =0

Figure 1: The Dynamixel robot

To approximate this GVF, we used a linear function with a tile
coded representation. To construct the feature vector, we used the
angle and velocity of the motor. Angle is between �0.1 and 1.6.
Velocity is 1 whenever the di�erence between the current angle
and the previous angle is positive and has a value of �1 otherwise.



To produce features, the angle was tile coded using 8 tilings each
with 4 tiles resulting in a binary vector of size 8⇥4. The �nal feature
vector was of size 2 ⇥ 8 ⇥ 4 where each of the 2 parts corresponded
to one of the values of velocity.

We applied the prediction algorithms discussed in Section 3 to
this prediction task. We made many instances of them by con-
sidering a wide range of parameters. Step-size was in the form

�
number of tilings where� 2 {0.1⇥2

x |x = �10,�9, ..., 3}. For Gradient-
TD methods the second step-size was in the following form: �w =
�⇥ �

number of tilings where � 2 {2
x |x = �10,�12, ..., 2}. The trace pa-

rameters, � and �, were a number in {0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 1}.
� for ETD(�, �) was a number in {0.2, 0.4, 0.6, 0.8, 1}.

The behavior policy was to move in the same direction as target
policy with probability 0.9 and to move in the opposite direction
with probability 0.1. We generated 30 runs of data. Each run con-
sisted of 20,000 steps and took approximately 100 minutes. We
then used the data to learn the value function o�ine; meaning that
gathering the data and learning happened in two separate phases.

Evaluating the learning algorithms on a robot can be challenging.
In simulated domains, the di�erence between the estimated and
true value function is used as the error measure. In this domain,
like all other robot domains, we do not have access to the true
value function. Therefore, we cannot evaluate the algorithms by
looking at the di�erence between the estimated and true values. To
evaluate the algorithms, we sampled several time steps following
the behavior policy and calculated the return corresponding to
those time steps by following the target policy prior to learning. We
recorded the observations corresponding to the sampled time steps
along with the corresponding returns to form the evaluation data.
During learning time, we computed the squared di�erence between
the estimated predictions and the returns and computed the average
over the evaluation data. We denote our performance measure byõMSRE(w) because it is an estimation of the mean squared return
error (MSRE). MSRE can be de�ned as the di�erence between the
estimated value and the return, squared and averaged over all states:

MSRE(w) =
’
s 2S

db (s)E[(wT x(St ) �Gt )2 |St = s]

where db (s) denotes the probability of state s under the behavior
policy. w and x(St ) are respectively the weight vector and the
feature vector and their dot product produces the estimation of the
value of St . Gt is the return at time step t .

To demonstrate the performance of the algorithms, we used
learning curves and parameter studies. Learning curves show the
mean squared return error at each time step. The parameter studies
show the asymptotic performance for di�erent values of step-size.
To estimate the asymptotic performance, we computed the average
of error over the last 0.25 percent of each run and averaged over 30
runs. The learning curves and parameter studies of the asymptotic
performance over step-size for all the algorithms for � = 0 are
shown in Figure 2. We report the results for � = 0 because in this
case, the di�erence between the algorithms was more evident. All
the other parameters (e.g., GTD’s second step-size) were set to
values resulting in the lowest asymptotic performance.

According to the learning curves, ETD(0) and ETD(0, �) sub-
stantially outperformed other algorithms in terms of asymptotic
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Figure 2: The learning curves and parameter studies of the
asymptotic performance over step-size for the case of � = 0
for the Dynamixel case study. ETD(0) and ETD(0, �) reached
a lower level of asymptotic error and were faster.

performance and speed with ETD(0, �) being the fastest. Proximal-
GTD(0) achieved the next best level of asymptotic error. However,
it achieved its best performance for one speci�c parameter setting
whereas ETD(0) and ETD(0, �) achieved theirs for a wide range of
step-sizes according to the parameter studies.

The e�ect of step-size on the asymptotic performance of TD(�)
and ETD(�) for di�erent values of � is shown in Figure 3. ETD(�), un-
like TD(�), was not sensitive to the trace parameter, �, and achieved
the same level of asymptotic error for all values of it. TD(�), how-
ever, worked better with eligibility traces. For higher values of �,
TD(�) achieved a lower level of error but converged for smaller
values of step-size.
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� = 0Root mean
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return error
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0.3
0.4
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Increasing 
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�(10x)

� = 1

� = 0

Increasing 
lambda

�(10x)

Figure 3: The parameter studies of the asymptotic perfor-
mance over step-size for TD(�) and ETD(�) for the Dy-
namixel case study.

The e�ect of step-size on the asymptotic performance of GTD(�),
HTD(�), and GTD2(�) for di�erent values of � and second step-size
is shown in Figure 4. Each line corresponds to a speci�c value of
� and second step-size with the curves of the same color corre-
sponding to the same value of �. All methods worked better with
eligibility traces. GTD(�) and HTD(�) were quite robust to the sec-
ond step-size and the sensitivity of GTD(�) reduced as � got bigger.
GTD2(�), however, was more sensitive to the second step-size.

5 THE COLLISION CASE STUDY
In the previous case study, we considered the problem of predict-
ing how soon an event happens—how soon the Dynamixel motor
reaches a target angle. In this case study, we consider a similar
prediction task in a more complicated robot domain with a higher
dimension input space and a more exploratory behavior policy. For
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Figure 4: The parameter studies of the asymptotic perfor-
mance over step-size for Gradient-TD algorithms for the
Dynamixel case study. Each curve corresponds to a speci�c
value of � and second step-size.

this case study, we used a Kobuki robot. The robot wanders in a pen
and tries to learn how soon it will bump into something if it goes
forward (Figure 5). The sensors available to the agent are Kobuki’s
camera and two bump sensors. We formulated this task as a single
GVF. The target policy was to pick the forward action in all states.
The horizon function returned zero whenever the robot bumped
into something and returned 0.97 otherwise (Given � = 0.97 and
Kobuki’s update cycle of 0.1 second, the time scale of the GVF is
about 3 seconds). The cumulant function returned a binary value
that became 1 whenever either of the bump sensors was on.

Figure 5: The Kobuki wandering in the pen.

To approximate this GVF we used a linear function with tile
coded features. To construct the feature vector we used the tile
coding software publicly available on Richard Sutton’s website1.
The input to tile coding was 50 RGB pixels randomly selected from
the camera, represented as a vector of size 150. We tile coded each
vector element separately using 8 tilings each with 4 tiles. (The
software uses a hash table. The feature vector size is the same as
the size of the hash table—9600 in our case.)

We applied the aforementioned prediction algorithms to this pre-
diction task. We made many instances of each method by consider-
ing a wide range of parameters. The parameter settings that we tried
for the Collision case study were the same as the Dynamixel case
study except that � was a number in {0.1 ⇥ 2x |x = �10,�9, ..., 5}.

Behavior policy was to move forward with probability 0.9 and
turn left otherwise. Although in both Dynamixel and Collision
case studies, the behavior policy di�ered from the target policy 10
percent of the time, in the latter the behavior is more exploratory.

1http://incompleteideas.net/tiles/tiles3.html

This is because time-wise it takes longer to drive across the pen
than to rotate on the Dynamixel; therefore, it is more probable that
interruption happens during the operation of the target policy.

To evaluate the methods, we used a methodology similar to the
Dynamixel case study. However, instead of collecting the evaluation
and learning data separately, we collected all the data at the same
time. The data collection process consisted of three phases: learning-
data collection, excursion, and recovery (Figure 6). In the learning-
data collection phase, the agent followed the behavior policy and
the stream of observations and actions was stored to be used for
learning o�ine. In the excursion phase, the agent switched from the
behavior policy to the target policy to compute the return for the
state at which the switching happened. The probability of starting
an excursion at each time step of the learning-data collection phase
was 0.01. At the end of each excursion, we recorded the return
and the observations for the state from which the excursion was
started. This information was used later for evaluation. After the
excursion, the agent entered the recovery phase where it followed
the behavior policy for a while, to come back to the distribution of
the behavior policy. Following this procedure, we collected 30 runs
of learning and evaluation data. The data collection process for all
30 runs took about 60 hours. Each run contained 150 excursions.
Therefore, each run contained 150 streams of learning data and an
evaluation data with 150 samples.

Figure 6: The process of collecting the learning and evalua-
tion data for the Collision case study.

After collecting the data, for each run, we concatenated the 150
streams of learning data and applied the algorithms to it to learn
the predictions o�ine. To evaluate the learned predictions, we com-
puted an estimation of MSRE: we computed the squared di�erence
between the learned predictions and returns and computed the
average over the evaluation data collected from the 150 excursions.

The learning curves and parameter studies of the asymptotic
performance over the step-size for � = 0 is shown in Figure 7. We
report the results for � = 0 because all the methods performed
more similarly as � got larger. All the parameters were set to values
resulting in the lowest asymptotic performance. To estimate the
asymptotic performance, we computed the average of the error for
the last 100 time steps of each run and averaged over 30 runs.

According to Figure 7, all methods performed similarly in terms
of asymptotic performance. GTD(0) converged to a lower level of
asymptotic error and was faster. ETD(0, �) also achieved a low level
of asymptotic error. According to the parameter studies, ETD(0)
converged withmuch smaller values of step-size, but still performed
well. The � parameter of ETD(0, �) helped improve ETD(0)’s sen-
sitivity to step-size. TD(0), HTD(0), and ABTD(0) had the best

http://incompleteideas.net/tiles/tiles3.html
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Figure 7: The learning curves and parameter studies of the
asymptotic performance over step-size for � = 0 for the
Collision case study. All methods performed similarly, but
GTD(0)were slightly better in terms of asymptotic error and
speed.

sensitivity to step-size; however, they converged to a higher level
of error.

Parameter sensitivity results agree with those of the Dynamixel
case study. ETD(�) achieved the same level of asymptotic error
for all values of � (Figure 8). However, all other methods worked
better with eligibility traces. GTD(�) and HTD(�) were robust to
the second step-size and their sensitivity reduced as � got larger.
GTD2(�), however, was more sensitive to the second step-size (Fig-
ure 9). Another interesting result is that ABTD(� ) converged for a
wider range of step-sizes compared to TD(�) for high values of �
(Figure 8).
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Figure 8: The parameter studies of the asymptotic perfor-
mance over step-size for ABTD(�), TD(�), and ETD(�) for the
Collision case study.
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Figure 9: The parameter studies of the asymptotic perfor-
mance over step-size for Gradient-TD algorithms for the
Collision case study. Each curve corresponds to a speci�c
value of � and second step-size.

6 THE TIME-TO-ALIGN CASE STUDY
In the �rst two case studies, we focused on solving the prediction
problem. In this case study, we consider a control task on the Kobuki.
The task is to learn to align with the Kobuki’s charging station as
fast as possible. To do this, the Kobuki can turn left and right in
place (Figure 10). There are two sensors available to the robot to
learn this control task. One is the infrared receiver at the front
of the Kobuki which produces a unique reading when the Kobuki
is aligned with the charging station. The other is the Kobuki’s
gyroscope which provides the orientation of the robot; turning left
and right increases and decreases the orientation respectively. It
takes about 100 steps for the robot to complete a cycle with the
velocity at which it is turning. We formulated this control task as a
single GVF. The target policy was greedy with respect to the action-
value function. The horizon function returned 0 when the Kobuki
was aligned with the charging station, otherwise, it returned 1. The
cumulant function always returned �1. Given that the cumulant is
always �1 and the policy is greedy, the agent is trying to minimize
the number of time steps till aligning with the charging station.
Therefore, we call this task the Time-to-align control task.

Aligned

Not Aligned

The Kobuki

The charging station

The charging
 station

The Kobuki

Figure 10: The Kobuki alignment with the charging station.

To learn this GVF we used a linear function with tile coded
features. To construct the feature vector, we used the orientation
of the Kobuki which was a real value in (�1, 1) that wraps around
1. We fed the orientation to a wrap tile-coder with 16 tilings each
with 4 tiles. (We set the size of the tile-coder’s hash table to 4096.)

We used Q-learning, Greedy-GQ(�), and Greedy-ABQ(� ) meth-
ods.Wemade several instances of the algorithm each corresponding
to a parameter setting. Step-size was in the form �

number of tilings
where � 2 {0.1 ⇥ 2x |x = �4,�3, ..., 1}. � and � were a number in
{0, 0.5, 0.9} for Greedy-GQ and Greedy-ABQ. Second step-size was
in the form: �w = � ⇥ �

number of tilings where � 2 {0.0625, 0.25, 1, 4}.
We used a behavior policy that selected between turning left

and right randomly at each time step with a 90 percent bias toward
repeating the previous action.

There were certain issues that made performing this experiment
challenging. First, the Kobuki was supposed to stay in its place
and only turn left and right; however, after turning left and right
for a while, it would slightly slide toward one direction. Second,
the orientation readings were not reliable; therefore, we would get
di�erent readings for the same orientation over time. These two
issues introduced non-stationarity to the problem. To deal with this
non-stationarity, we collected small batches of data and manually



resolved the non-stationarity when starting the collection of a new
batch. To address the sliding problem, we moved the robot man-
ually to the starting position. To address the unreliability of the
orientation readings, we o�set the readings by the value of the ori-
entation at which the Kobuki was aligned with the charging station.
By performing this o�setting, we made sure that the orientation of
the robot when it was aligned with the charging station was kept
at a value around 0.

We collected 80 batches of data each of size 1000 time steps by
following the behavior policy. Collecting each batch took about 100
seconds; however, readjusting the robot manually made the data
collection phase take much longer. Therefore, the collection of all
batches took about 5 hours. We used 20 batches of data for each
run, resulting in 4 runs of size 20, 000 time steps. For half of the
batches, the Kobuki started from the orientation at which it was
aligned with the charging station and for the other half, it started
from roughly the opposite orientation. After collecting the data,
we applied di�erent instances of the algorithms to learn the task
o�ine.

A natural approach for evaluating how well an algorithm has
learned a robot control task is to test the policy that it has learned
on the robot and compute the return. However, to systematically
compare the algorithms, lots of tests are required and running tests
on robots is expensive because it requires time in the real world.
For this case study, a large number of tests were required because
we had many instances of each method, each corresponding to
a parameter setting. For example, Greedy-GQ(�) had 72 di�erent
parameter settings. In addition, we had 4 di�erent runs of learning
data and we wanted to do multiple tests each starting from a di�er-
ent starting orientation. Moreover, to get an estimation of how good
each algorithm had learned over time, we had to evaluate the policy
that it had learned after di�erent number of time steps. To get an
estimation of how many tests are needed to evaluate Greedy-GQ
let’s suppose we want to do the evaluation from 4 di�erent starting
orientations and after 4 di�erent number of time steps. We would
need to run 72 ⇥ 4 ⇥ 4 ⇥ 4 = 4608 tests which is not feasible.

To reduce the high number of evaluations, we decided to select
one parameter setting for each of the algorithms that seemed to
be a reasonably good setting. We selected the parameter setting
for each algorithm by looking at the action-value plots of them for
di�erent settings (e.g., Figure 11). These plots show the action-value
function of the learned policy after 20,000 time steps, for di�erent
orientations and actions, and averaged over 4 runs.

To understand the action-value plots lets look at the two exam-
ples shown in Figure 11. The x axis is the orientation and the y
axis is the action-value function for action a. Each plot contains
two lines. The red one corresponding to turning right and the blue
one corresponding to turning left. Given that the goal of the robot
is to minimize the number of steps till aligning with the charging
station and that the alignment happens at an orientation about
0, the optimal policy is to move toward orientation 0. Therefore,
when the orientation of the robot is in the range [0, 1], it should
turn right, that is to move toward smaller values of orientation,
and turn left otherwise. Moreover, the closer an orientation is to 0,
the smaller is the number of steps needed till alignment. Therefore,
Example 2 is a properly learned action-value function. However,
Example 1 is a poorly learned action-value function: if the robot

follows the greedy policy with respect to this action-value function,
at orientation �0.5, it would turn right toward smaller values of
orientation instead of turning left towards orientation 0.

a = left a = right
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Example 1 Example 2

a = left

a = right

Figure 11: Examples of action-value plots.

We selected a reasonable parameter setting for each of the al-
gorithms by inspecting the action-value plots. For Q-learning, the
step-size was set to 0.05. For Greedy-GQ, the step-size, second step-
size, and trace parameter were set to 0.05, 4 ⇥ 0.05, 0.5 respectively.
For Greedy-ABQ, the step size and the trace parameter were set to
0.0125 and 0.5 respectively.

To evaluate the methods, we ran their target policy, the greedy
policy with respect to the learned action-value functions, on the ro-
bot. We considered the action-value functions that had been learned
after di�erent number of time steps. We call these time steps, eval-
uation points. For this experiment the evaluation points were 1000,
5000, 10000, 20000. To evaluate the learned policy for each evalu-
ation point and run, we ran 4 tests each starting from a di�erent
orientation and calculated the return. The length of the tests were
250 time steps. The starting orientations are shown in Figure 12. For
an optimal policy, the average return from the 4 di�erent starting
orientations should be around �30. This whole process of evalu-
ating the algorithms considering the manual readjustment of the
robot took about 7 hours.

Orientation     -0.3�
Orientation = 0

Orientation     0.55�

Orientation     -0.95�Orientation      0.95�

1

23

4

Figure 12: The starting orientations for evaluation.

Figure 13 summarizes the results. The x axis represents the eval-
uation points. The y axis is the average return over starting orienta-
tions, where the return is the number of steps to alignment negated.
Each plot contains 5 lines with each dotted line corresponding to
one run and the solid line showing the average of performance over
the 4 runs. According to Figure 13, all methods learned to turn in
the direction that would achieve the goal fastest within 20, 000 time
steps. Greedy-GQ(�), however, outperformed the other algorithms
in the mean and learned the optimal policy faster.
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Figure 13: Comparison of the algorithms on the Time-to-
align control task. The y axis is the average return over start-
ing orientations. Each dotted line corresponds to one run
and the solid line shows the average over the 4 runs. Greedy-
GQ outperformed the other methods.

7 OFF-POLICY EVALUATION ON ROBOTS:
PROPOSED METHODOLOGY

As mentioned in Section 1, conducting meaningful comparisons of
o�-policy algorithms on robots can be challenging. In this section,
we discuss some of these challenges and the methodology that we
developed in our case studies to address them. Our methodology
was e�ective, but much more is left to know about systematic
comparisons of o�-policy learning in large-scale domains.

One challenge of evaluating o�-policy algorithms is that when
learning o�-policy, the data is generated using a policy di�erent
from the policy that the agent learns about. Therefore, we cannot
evaluate the algorithms using the conventional schemes of follow-
ing the policy till termination and calculating the return. Moreover,
in robot domains, we do not have access to the true value function
and cannot use the di�erence between the estimated and true value
function as the performance measure. To deal with these problems
in the Dynamixel and Collision case studies, we collected several
samples from the behavior policy and computed the return corre-
sponding to those samples by following the target policy. All this
happened prior to the learning phase. To evaluate the algorithms,
we computed the squared di�erence between the learned predic-
tions and previously computed returns and computed the average
over all samples. Using this methodology, we e�ciently estimated
MSRE and e�ectively compared the algorithms.

Another challenge of evaluating algorithms on robots is that
each time step requires time in the real world and human supervi-
sion. To conduct a fair comparison, extensive parameter sweeps are
required over many independent runs. Therefore, computation and
evaluation should be conducted e�ciently. We developed a method-
ology that can be employed to e�ciently evaluate policy evaluation
methods on real-world problems. The methodology, however, heav-
ily relies on following a �xed policy throughout the experiment
and thus is not applicable to the control case with rapidly changing
policies. To get around this issue in the control case, we proposed a
systematic approach that reduced the required time for a control
experiment signi�cantly. In our proposed method, we �rst selected
a reasonable parameter setting for each method. This removed
the need to evaluate each method for various parameter settings
and reduced the number of required experiments. Moreover, we
proposed using only a subsample of the time steps to evaluate a
method, meaning that we �rst select a number of time steps and
evaluate the methods only at those time steps instead of evaluating

them at all time steps. This produces learning curves like the ones
shown in Figure 13. Although our evaluation methodology was
applicable to our control problem, better practices are required
for conducting comparative studies on more complicated control
robot domains. A promising future direction is to use o�-policy
policy evaluation methods (Thomas and Brunskill, 2016; Jiang and
Li, 2015) to evaluate the learned policy using the data gathered by
the behavior policy.

Another challenge of evaluating o�-policy learning on robots
is that in o�-policy learning, a system can potentially learn about
thousands of GVFs in parallel; however, it is not clear how we can
evaluate a large collection of GVFs each about a speci�c policy
that is potentially di�erent from the behavior policy and is never
executed during the normal operation. The evaluation methodology
that we developed for the case of policy evaluation might be e�ec-
tive if many of the GVFs share their policy. However, more e�ective
evaluation techniques are required in cases which we want to learn
about many di�erent policies. Another challenge of evaluating a
large collection of GVFs is that it is not clear how we can get an
overall assessment of how well the entire collection was learned.
Some of the GVFs may be easier to learn and some may need more
data. We need evaluation methodologies that give a fair assessment
of the overall performance of the system.

8 CONCLUSION
In this work, we presented three case studies in which we empiri-
cally compared several modern o�-policy GVF learning algorithms
on robot domains. Based on our results, Emphatic-TD methods
exhibit an advantage over other methods both in the asymptotic
performance and speed of learning when the behavior is close to
on-policy. Gradient-TD methods, on the other hand, perform better
than ETD when the behavior is more random. Our results also
suggest that use of eligibility traces improve the performance of all
prediction methods. This suggests an advantage of linear function
approximation which can be easily combined with eligibility traces
compared to neural network representation which due to computa-
tional reasons cannot easily be combined with eligibility traces. In
GVF control, Greedy-GQ showed substantially less variance across
test runs compared to Q-learning; this suggests that Greedy-GQ
could be a good alternative to popular Q-learning, having both
convergence guarantees and better performance. Finally, in none of
our experiments, ABQ which performs o�-policy learning without
importance sampling showed an advantage over other methods.

We also argued that conducting fair and meaningful comparative
studies of o�-policy learning on robots is challenging and currently
there are no well-established practices for performing such studies.
We developed an evaluation methodology that was successful and
applicable to relatively complicated robot domains. However, there
is much left to know about how to do evaluation on large-scale real-
world domains where wewant to make predictions about thousands
of GVFs each conditioned on a di�erent way of behaving.
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