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Abstract
We present three new diagnostic prediction problems inspired by classical-conditioning experiments to facilitate research
in online prediction learning. Experiments in classical conditioning show that animals such as rabbits, pigeons, and dogs can
make long temporal associations that enable multi-step prediction. To replicate this remarkable ability, an agent must
construct an internal state representation that summarizes its interaction history. Recurrent neural networks can au-
tomatically construct state and learn temporal associations. However, the current training methods are prohibitively
expensive for online prediction—continual learning on every time step—which is the focus of this paper. Our proposed
problems test the learning capabilities that animals readily exhibit and highlight the limitations of the current recurrent
learning methods. While the proposed problems are nontrivial, they are still amenable to extensive testing and analysis in
the small-compute regime, thereby enabling researchers to study issues in isolation, ultimately accelerating progress
towards scalable online representation learning methods.

Keywords
State construction, classical conditioning, diagnostic benchmarks, reinforcement learning

Handling Editor: Verena Hafner

1. Introduction

We consider the problem of multi-step prediction learning in
a partially observable setting. In the multi-step prediction
learning problem, the agent’s objective is to use its sensory
experience to predict signals of interest multiple steps into
the future, just like when a reinforcement learning agent
must predict future reward. In the partially observable
setting, the agent must also construct an internal repre-
sentation that summarizes its experience, as the immediate
sensory information may not be sufficient for making ac-
curate long-term predictions. Consider, for example, a
rabbit trained to preemptively close its eyes by predicting a
puff of air using another predictive stimulus, such as a tone,
as shown in Figure 1. To appropriately time the eyeblink,
the rabbit needs an internal representation of the elapsed
time since the tone sounded. Neural network solution
methods can be used for such problems (Tallec & Ollivier,
2018; Jaderberg et al., 2017; Dehghani et al., 2019; Gehring
et al., 2017; Nath et al., 2019). Researchers use a variety of
benchmarks to evaluate the progress of the neural network
solution methods—toy problems, time-series data sets, NLP

tasks, and large-scale navigation problems. We focus on the
case in which the agent learns online: making and updating
its predictions on every time step, even when the prediction
target is not immediately available, as in temporal-
difference (TD) learning (Sutton, 1988).

Benchmarks in reinforcement learning are relevant for
evaluating multi-step predictions, but most are based on the
fully observable setting. The Arcade Learning Environment
(ALE) exhibits minor partial observability, but frame-
stacking can be used to construct a state that can achieve
good performance (Bellemare et al., 2013; Machado et al.,
2018). OpenAI-Gym (Brockman et al., 2016) and MuJoCo
(Todorov et al., 2012) offer a wide variety of tasks inspired
by problems in robotics that are partially observable when
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using only visual inputs. However, the focus is mostly on
continuous actions and high-dimensional inputs from joint
angles and velocities. The DeepMind Lab contains several
3D simulation problems inspired by experiments in neu-
roscience (Beattie et al., 2016; Wayne et al., 2018). Re-
searchers have used these problems to benchmark large-
scale learning systems; unfortunately, such experiments
require several billion steps of interaction and cloud-scale
compute (Beattie et al., 2016; Wayne et al., 2018; Parisotto
et al., 2020a; Fortunato et al., 2019; Espeholt et al., 2018).

Diagnostic issue-oriented benchmarks serve different
purposes than large-scale challenge problems. While the di-
agnostic benchmarks are simple, they still illuminate funda-
mental limitations of the existing methods. For example, the
eight-state Black and White problem highlights the need for
tracking in partially observable problems (Sutton et al., 2007),
and DeepSea highlights how dithering exploration can be
arbitrarily inefficient even in a grid world (Osband et al.,
2019). Such diagnostic problems isolate specific algorithmic
issues, and progress on these problems represents progress on
the specific issues. Additionally, if a diagnostic benchmark has
small compute requirements, then researchers can quickly
evaluate new ideas and avoid the additional engineering
complexity required to build high-performance, state-of-the-
art architectures. Large problems often require complex
architectures that can be difficult to analyze, and small im-
plementation details can lead to incorrect conclusions
(Engstrom et al., 2019; Tucker et al., 2018). Robust statistical
analysis, experiment repetition, and ablations can be chal-
lenging in large-scale benchmarks because of the excessive
computational requirements (see Machado et al. (2018);
Henderson et al. (2018); Colas et al. (2018)).

Inspired by animal learning, this paper contributes a set
of diagnostic benchmarks for the partially observable online
prediction problem.1 Our first problem, trace conditioning,

requires an agent to predict a distal stimulus from a pre-
viously observed cue, just as a rabbit predicts an air puff
based on a tone. The challenge here is representational: how
does the agent bridge the gap between the tone and the air
puff in a way that is not specific to the particular ar-
rangement or timing of the stimuli (Ludvig et al., 2012;
Sutton & Barto, 2018). Our second problem, noisy pat-
terning, is inspired by biconditional patterning experiments
(Mackintosh, 1974; Harris et al., 2008). This problem tests
the agent’s ability to determine which observation signals to
pay attention to, in the presence of noise and distracting
stimuli. Finally, our third benchmark, trace patterning,
combines trace conditioning and noisy patterning and re-
quires the agent to simultaneously discover the relevant
observation signals and build their temporal representations.

Our second contribution is empirical. We use the pro-
posed diagnostic problems to conduct a comprehensive
empirical study of several state-of-the-art recurrent learning
architectures, including Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997) and related Gated Re-
current Units (GRU) (Cho et al., 2014), trained via Trun-
cated Back-prop Through Time (T-BPTT) (Williams &
Peng, 1990) and Real Time Recurrent Learning (RTRL)
(Williams & Zipser, 1989). We systematically investigate
each method’s performance as we vary the key problem
parameters. We also introduce a simple input augmentation
scheme based on memory traces, improving both T-BPTT
and RTRL based methods. In total, our results show that the
proposed diagnostic problems can effectively isolate the
limitations of the current training methods and help stim-
ulate research in online representation learning.

2. Related work

In partially observable problems, the agent must construct
an internal state to summarize the history of interaction in
order to predict the future. This is often done by recurrent
networks. An RNN uses hidden layers with recurrent
connections trained via BPTT (Hopfield, 1982; Elman,
1990), in order to summarize the history of interaction.
Storing network activations from the beginning of time is
expensive, and so the update can be truncated T steps back
in time (i.e., T-BPTT) (Williams & Peng, 1990). This
presents a trade-off. If the truncation window is short, the
agent cannot learn long temporal dependencies. If the
truncation window is long, however, the agent can learn
long temporal associations, but computation and memory
costs grow with T. If the truncation window is shortened,
then most recurrent systems including basic RNNs and
LSTMs (and GRUs) cannot learn temporal relationships
longer than T (Williams & Peng, 1990). This trade-off is
particularly challenging in the online prediction setting
where the agent’s objective is to update and make a new
prediction on each time step. Ideally, our state construction

Figure 1. Eyeblink conditioning. After many pairings of the tone
with the puff of air, the rabbit learns to close its inner eyelid
(nictating membrane) before the puff of air is presented.
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methods would be able to learn dependencies greater than T
without requiring proportional computation—as humans
do.2

There are alternatives to T-BPTT, many based on RTRL;
which is itself an approximation of the true gradient. For a
fully connected network, RTRL requires quartic computation
in the number of hidden states per step which makes online
implementation with even modestly sized networks chal-
lenging (Williams & Zipser, 1989). Approximations of RTRL
such as Unbiased Online Recurrent Optimization (UORO)
(Tallec & Ollivier, 2018), synthetic gradient methods
(Jaderberg et al., 2017), and SnAp (Menick et al., 2020)
approximate the gradient back in time and thus suffer from
the representability/computation trade-off of T-BPTT. We
did not include UORO and SnAp as baselines in our
experiments; we instead included the results from RTRL
which both these methods approximate. We showed that
the performance of RTRL significantly deteriorates as the
temporal associations become longer, suggesting that its
recent approximations will also have difficulty with the
proposed benchmarks. In addition, prior work (Nath et al.,
2019) found UORO to perform significantly worse than
simpler T-BPTT variants in the related online predict k-
steps ahead problem setting, suggesting that our bench-
marks would be challenging for UORO.

Recent work has explored alternatives to overcome the
trade-off, including alternative optimization schemes for
RNNs (Nath et al., 2019), and learned sparse attention
mechanisms combined with feedforward networks
(Dehghani et al., 2019; Gehring et al., 2017). Fixed Point
Propagation (Nath et al., 2019) has not been extended to our
discounted multi-step prediction setting (estimating value
functions).

Learned sparse attention mechanisms combined with
feed-forward neural networks represent exciting alterna-
tives for training RNNs. The best way to use attention
strategies for partially observable reinforcement learning is
still evolving (Parisotto et al., 2020b; Parisotto &
Salakhutdinov, 2021; Loynd et al., 2020; Chen et al.,
2021; Janner et al., 2021). Chen et al. (2021) and Janner
et al. (2021) use transformers in the offline reinforcement
learning setting. Parisotto et al. (2020b) and Parisotto and
Salakhutdinov (2021) stack long sequences of past obser-
vations in order to learn long temporal dependencies.
Therefore, they require at least linearly more resources as
the span of temporal dependencies increases, which re-
introduces the truncation trade-off. Combining transformers
with mini-batches skewed more towards recent experiences
(as shown to be effective in RL (Zhang & Sutton, 2017))
represents an interesting next step. However, more work is
required to extend it to our online multi-step prediction
learning setting. As these strategies are still beginning to be
explored by the community, we leave these comparisons to
future work.

Small diagnostic benchmarks like ours have a long
history in online learning and reinforcement learning. Prior
work on online supervised representation learning (Sutton
& Whitehead, 1993; Mahmood & Sutton, 2013), step-size
adaption methods (Sutton, 1992; Jacobsen et al., 2019), and
divergence in temporal difference learning (Baird, 1995;
Sutton & Barto, 2018) all make use of small diagnostic test
problems to evaluate progress. More generally, small issue-
focused problems are used pervasively in reinforcement
learning to isolate and study research questions (see Sutton
and Barto (2018)). The Deepmind Behavior Suite in many
ways represents a modern attempt to organize and stan-
dardize a collection of interesting diagnostic test problems
in reinforcement learning (Osband et al., 2020), similar in
spirit to the Reinforcement Learning Competitions of old
(Whiteson et al., 2010). Recent work has shown that classic
toy problems like Mountain Car and Acrobot can be used to
highlight the advantages of fairly complex modern archi-
tectures like Rainbow (Obando-Ceron & Castro, 2020),
with a fraction of the computation typically required to run
ALE experiments. Our diagnostic benchmarks can be ac-
curately thought of as Prediction Suite.

3. Classical conditioning as
representation learning

The study of multi-step prediction learning in the face of
partial observability dates back to the origins of classical
conditioning. Pavlov was perhaps the first to observe that
animals form predictive relationships between sensory cues
while training dogs to associate the sound of a metronome
with the presentation of food (Pavlov, 1927). The animal
uses the sound of a metronome (which is never associated
with food in nature) to predict when the food will arrive,
inducing a hardwired behavioral response. The ability of
animals to learn the predictive relationship between stimuli
is critical for survival. These responses could be preparatory
like a dogs’ salivation before food presentation or protective
in case of anticipating danger like blinking to protect the
eyes. Such predictions in the face of limited information are
useful to humans too. You predict when the bus might stop
next—and perhaps get off—based on the distal memory of
the bell. You predict when the water from the tap might get
too hot and move your hand in advance. The study of
prediction, timing, and memory in natural systems remains
of chief interest to those that wish to replicate it in artificial
systems.

Some of the most relevant theories on multi-step pre-
diction in animals have been explored in trace conditioning.
In the classical setup, two stimuli are presented to the animal
in sequence as shown in Figure 1. The first is called the
conditioned stimulus or CS (the predictive trigger) which
usually takes the form of a light or tone. Then an uncon-
ditioned stimulus (US), such as a puff of air to the animal’s
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eye, is presented which generates a behavioral response
called the unconditioned response (UR)—the rabbit closes
its inner eyelid. After enough pairings of the CS and US, the
animal produces a conditioned response (e.g., closing the
inner eyelid) after the CS—behaving in advance of the US.
This arrangement is interesting because there is a gap, called
the trace interval, between the offset of the CS and onset of
the US where no stimuli are presented. Empirically we can
only reliably measure the strength and timing of the ani-
mal’s anticipatory behavior: the muscles controlling the
inner eyelid. However, the common view is that the rabbit is
making a multi-step prediction of the US triggered by the
onset of the CS that grows in strength closer to the onset of
the US (Schneiderman, 1966; Sutton & Barto, 1990, 2018),
similar to the conditioned response in Figure 1.

The mystery for both animal learning and Artificial
Intelligence (AI) is how does the agent fill the gap? No
stimuli occur during the gap and yet the prediction of the US
rises on each time step. There must be some temporal
generalization of the stimuli occurring inside the animal.
Additionally, what is the form of the prediction being made,
and what algorithm is used to update it? Previous work has
suggested that the predictions resemble discounted returns
used in reinforcement learning (Dickinson, 1980; Wagner,
1978), sometimes called nexting predictions (Modayil et al.,
2014), which can be learned using temporal difference
learning and eligibility traces (i.e., TD(λ)). Indeed the TD-
model of classical conditioning has been shown to emulate
several phenomena observed in animals (Ludvig et al.,
2008, 2012; Sutton & Barto, 1990).

On the question of representation or agent state, the
answer is less clear. TD-models can generate predictions
consistent with the animal data, but only if the state rep-
resentation fills the gap between the CS and US in the right
way (Ludvig et al., 2009, 2012; Williams et al., 2017). A
flag indicating the CS just happened, called the presence
representation, will not induce predictions that increase
over time, and a clock is not plausible given the range of
timescales, the presence of other non-relevant distracting
signals, and the massive number of predictive relationships
an agent must learn in its lifetime 3 (Gallistel & King, 2011).
Hand-designed temporal representations do reproduce the
animal data well (Ludvig et al., 2008, 2009, 2012; Williams
et al., 2017), but their generality remains unclear. Ideally,
the learning system could discover for itself how to rep-
resent different stimuli over-time in a way that (1) is useful
across a variety of prediction tasks, and (2) requires com-
putation and storage independent of the size of the trace
interval. Animals do require more training to learn trace
conditioning tasks with longer and longer trace intervals,
but there is no evidence that the update mechanisms or
representations fundamentally change as a function of the
trace interval (Howard & Eichenbaum, 2013). Prior work
by Rivest et al. has investigated an LSTM driven by

temporal-difference errors as a model of cortical and do-
paminergic neurons during trace conditioning (Rivest et al.,
2014), but Rivest’s work did not focus on the impact of
problem parameters like the trace interval on learning
performance. The Rescorla-Wagner drift-diffusion model
provides a reasonable account of trace conditioning (Luzardo,
2018), but does not update predictions during the trial.

Trace conditioning represents a family of diagnostic
problems with many potential variations. There could be
several additional stimuli which are unrelated to the CS and
US, called distractors. The CS and US could occur for
different lengths of time and overlap in different ways. There
can be multiple CSs and the US might only occur for par-
ticular ordering and configurations of the CSs. In patterning
or biconditional discrimination experiments, for example, the
CSs all occur at the same time step, but only a particular
pattern of active and inactive CSs trigger the US (see Harris
et al. (2008)). Finally, we can combine these problems in a
variety of ways mixing multi-step dependencies, distractors,
and patterning. In this paper, we propose three variations as
diagnostic benchmark problems for evaluating online multi-
step prediction and state construction.

4. From animal learning to online
multi-step prediction

We model our multi-step prediction task as an uncontrolled
dynamical system. At every time step t, the agent observes
stimuli ot 2R

d , which includes CSt and USt, and makes a
prediction vt 2R about the future value of the US. The CS at
time t may be relevant to the prediction of the US in the
future, and the observation ot may contain distractors that
are unrelated to the US—regardless ot does not fully capture
the current state of the system. As discussed in Section 3, a
suitable choice for formulating the US predictions is the
expected discounted return or value function: vt^E½GtjSt�
where

Gt^
X∞
k¼0

γkUStþkþ1 (1)

is called the return and St is the unobserved state. γ2 [0, 1) is
called the discount factor and defines the horizon of the
prediction of the US.

We will incrementally estimate vt on each time step with
semi-gradient temporal difference (TD) learning (Sutton,
1988). Semi-gradient TD is the most commonly used al-
gorithm for these online prediction tasks and has appealing
features relevant to our setting. TD is (1) simple and
computationally frugal (linear complexity), and (2) efficient
and accurate for learning multi-step predictions online from
real data (see Modayil et al. (2014)). Semi-gradient TD
learns a parametric approximation Vt 2R ≈ vt by updating a
vector of parameters. wt 2R

d as follows
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wtþ1←wt þ αðUStþ1 þ γVtþ1 � VtÞzt
zt← γλzt�1 þ =wVt

(2)

where α 2 (0, 1] is the learning rate and λ 2 [0, 1] controls
the decay of eligibility trace zt 2R

d . The precise form of Vt

depends on the parameterization scheme. In the linear case,
Vt^xTt wt and=wVt = xt, where xt 2R

d is a vector of features
constructed from ot. In the non-linear case, Vt can be computed
by a neural network and =wVt by backpropagation. More
generally, USt+1 can be any component of ot in equations (1) and
(2) allowing prediction of any component of the observations
(as in Modayil et al. (2014)).

In this paper, we investigate different approaches to con-
structing xt. One approach is to simply form an exponentially-
weighted decaying memory of each component of ot, or stimu-
lating trace,4 and then apply a non-linear mapping to produce xt.
Each component of stimulating trace, yt, corresponds to one
component of ot and is set to 1 at the onset of the corresponding
observation and decays immediately after the observation onset
following yt+1 = τyt where 0 < τ < 1 is the decay parameter. Our
tile-coded traces representation applies tile coding5 to the stimu-
lating traces of ot. In this case, the quality of xt depends on both the
tile coding parameters and the exponential decay rate of the
stimulating trace. The so-calledmicrostimulus representation, used
in prior computational modeling of trace conditioning, is also a
fixed feature construction approach dependent on hyper-
parameters set by the designer. The microstimulus is formed
froma set of overlappingGaussian basis functionswith the heights
forming an exponential decay of ot achieved by using larger
standard deviations for each gaussian (Ludvig et al., 2008, 2012;
Hull, 1939). Figure 2 shows an example of the stimulating trace of
theCS and how the representation constructed by tile-coded traces
(1 tiling 8 tiles) andmicrostimulus (8Guassians) for theCS unfold
over time.

Alternatively, xt can be constructed recursively from
ot and xt�1 using a non-linear state update function
xt ^u(xt�1, ot). See Figure 3. The tile-coded traces and
microstimulus representations represent particular instan-
tiations of u that never change during learning. We can also
think of u constructing xt as a recurrent neural network. We
consider both the case where u is fixed at the beginning of
learning, also known as echo state networks (Jaeger, 2001),
as well as the case where T-BPTT or RTRL changes u on
each time step. In the case of echo state network, there are
three groups of incoming weights to the hidden layer: (1) the
input weights from the input to the hidden layer (2)
the internal weights from the hidden layer to itself and (3)
the feedback weights from the output layer to the hidden
layer. All the incoming weights to the hidden layer are fixed
at the beginning of learning and only the weights from the
features to the output are learned. In contrast, in the case of
learning with T-BPTT and RTRL not only the agent’s pre-
dictions of vt are updated, but also the function ut is learned.

Using T-BPTT and RTRL to train RNNs and their
variants in an online setting is not new, nor is the application
of such architectures to multi-step TD prediction targets. We
followed standard practice in implementing these methods.
For T-BPTT with truncation length T, when making an
update at time t, we unroll the RNN for T steps. We set the
initial hidden state to xt�T�1. Then we compute the hidden
states and the value predictions along the observation se-
quence ot�T,…, ot�1. After computing the value predictions
Vt�T to Vt�1, we use them as a mini-batch to update the
parameters of the network using backpropagation.

For RTRL, on the other hand, we update the parameters
throughout the training sequence on every time step, while
still carrying forward a stale Jacobian that tracks sensitivity
to the old parameters (See Menick et al. (2020)).

5. Trace conditioning: Learning to fill
the gap

Our first diagnostic problem, trace conditioning, is inspired
by classical conditioning experiments described in Section 3.
The problem is made up of a series of trials in each of which
a sequence of stimuli are presented: the CS followed by the
US. On each trial, the CS lasts for 4 time steps, and is
followed by a long gap and then the US which lasts for 2
time steps. The time from the CS onset to the US onset is
called the inter-stimulus interval (ISI). In this problem, the
ISI is drawn from a uniform distribution. The time from the
US onset to the start of the next trial is called the inter-trial
interval (ITI). The ITI is uniformly sampled from (80, 120).
γ is set according to the ISI: γ ¼ 1� 1=EðISIÞ. This allows
the time horizon of the return to match the ISI. Figure 4
provides an example trial including the CS, US, and return
for a case where ISI ∼Unif ð7; 13Þ.

We also include several binary distractor stimuli that
do not contain any information about the US. The
distractors are drawn from a Poisson distribution with
different frequencies and each lasts for 4 time steps. The
frequency varies from distractor to distractor. One
distractor occurs on average every 10 steps, another
every 20 steps, and so on, up to one distractor that occurs
every 100 steps on average. Note that they also occur
during the ITI.

To understand why this problem could be challenging for
a learning system, consider learning to predict using the
presence representation. This representation contains one
binary feature per stimulus which is activated only when the
corresponding stimulus is present. The presence feature
corresponding to the CS is active during the CS activation as
shown in Figure 2. However, during the trace interval,
between the offset of the CS and the onset of the US, no
feature is active (only the bias feature, which has a small
weight associated with it is active) and therefore, the trace
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interval is not represented by the presence representation.
As a result, as shown in Figure 4, the presence represen-
tation has a close to zero prediction during the trace interval.

To understand what a good prediction looks like, con-
sider the microstimulus and tile-coded traces representa-
tions. During the empty gap between the CS offset and the
US onset, the microstimulus and tile-coded traces repre-
sentations have active features constructed from a trace of
the CS (see Figure 3). As a result, they successfully as-
sociate the CS with the US (see the predictions for the
microstimulus representation in Figure 4). Note that the
return reaches its maximum just before the US onset and
steps downward after. This happens because the discounted
sum of future USs is maximal just before the US onset: at
this instant in time the US is multiplied by the largest
possible values of the discount factor, γ. This temporal
profile is consistent with previous work on Nexting
(Modayil et al., 2014) and computational modeling in an-
imal learning (Ludvig et al., 2012).

Note that the prediction increases only after the CS onset
whereas the return has non-zero values before the CS onset.
This makes sense because there is a significant time between
each trial and thus the onset of the CS is unpredictable by
design—just like in trace conditioning experiments with
animals.

In the trace conditioning benchmark, we experimented
with two groups of representations as baselines. The first

group includes fixed representations: microstimulus,
tile-coded traces, and echo state network (See Section 4
for the explanation about these representations). Mi-
crostimulus and tile-coded traces are expert-designed
representations and include a bias feature that is always
1. We adjusted the stimulating trace decay parameter for
microstimulus and tile-coded traces according to the ISI:
1=EðISIÞ. For echo state networks, all the three sets of
weights contributing to constructing the hidden state
were initialized and fixed at the beginning of learning.
The input weights and feedback weights were initialized
using a binomial distribution and scaled by an input
scaling parameter. The internal weights were initialized
in such a way that the spectral radius of the corre-
sponding matrix is less than 1 and its density is small.

Figure 3. Recursive construction of xt from ot and xt�1 where ot
includes the CSs, the US, and the distractors, if any.

Figure 2. The stimulus representation for the tile-coded traces, microstimulus, and presence representations. The presence
representation does not have any active features during the trace interval. This figure is adapted from Ludvig et al. (2012).
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The second group of representations includes those
learned by recurrent neural networks: Vanilla-RNN, LSTM,
and GRU. We used Haiku library for implementing the
Vanilla-RNN, LSTM, and GRU architectures. We evaluated
both T-BPTT and RTRL for computing the gradient of the
value function with respect to the network’s weights.

For each of these representations, we used semi-gradient
TD(λ) and ADAM optimizer with β1 = 0.9, β2 = 0.999, and
ϵ = 10�8 (Kingma & Ba, 2014). For the fixed representa-
tions, we set the eligibility traces parameter, λ, to 0.9. For the
RNNs, we used λ = 0.

To evaluate the performance, we computed the Squared
Return Error (SRE): ðbvðSt,wtÞ � GtÞ2. We then averaged the
SRE over all time steps resulting in a Mean Squared Return
Error (MSRE). We studied the effect of the ISI on the per-
formance of the baseline representation methods considering
three cases: (1) short: ISI ∼Unif ð7; 13Þ, (2) medium: ISI
∼Unif ð14; 26Þ, and (3) long: ISI ∼Unif ð20; 40Þ, with ex-
pected ISI equal to 10, 20, 30 for the 3 settings, respectively.

We swept over the parameters of each representation
method. See Table 1. The parameter sweeps included the
step-size for all the methods, the number of Tile/RBFs for
tile-coded-traces/microstimulus, the hidden layer size for
the RNNs and echo state network, and the spectral radius,
input scaling, and internal connections density for the echo
state network. For tile-coded traces, we used 2 tilings and
for microstimulus, we set the standard deviation of the RBFs
to 0.8. For RNNs trained with T-BPTT, we swept over T-

Table 1. Parameter sweeps for the three benchmarks.

Problem Representation
Method

Number of
Tiles/RBFs

Hidden
layer
size

Spectral
Radius

Input
scaling

W h
density

Truncation
Length

Step-size

Trace Conditioning
and Trace
Patterning

Presence — — — — — — 3 × 10�6,
10�5

3 × 10�5,
10�4

3 × 10�4,
10�3

Microstimulus 4, 8, 16, 32 — — — — —

Tile-coded-traces 2, 4, 8, 16 — — — — —

Vanilla-RNN — 10, 20, 40 — — — 5, 10, 20, 40
GRU — 10, 20, 40 — — — 5, 10, 20, 40
LSTM — 10, 20, 40 — — — 5, 10, 20, 40
ESN — 100, 1000 0.9, 0.99,

0.999
0.1, 0.5 0.05, 0.1 —

Noisy Patterning Presence — — — — — —

Vanilla-RNN — 10, 20, 40 — — — 5
GRU — 10, 20, 40 — — — 5
LSTM — 10, 20, 40 — — — 5
ESN — 100, 1000 0.9, 0.99,

0.999
0.1, 0.5 0.05, 0.1 —

Figure 4. An example of learned predictions in trace conditioning.
The return defined in equation (1) is the target of prediction.
Rows 4 and 5 show predictions using the presence and
microstimulus representations after 200,000 time steps learning.
Microstimulus successfully predicted the US—matching the
return—the presence representation failed to predict the US.
The predictions never go to zero like the return because all
representations use a bias feature and even after 200,000 steps
the predictions continue to update.

Rafiee et al. 7



BPTT truncation length. For all RNNs, the number of
hidden layers was set to one.

We ran each method with each of its parameter
settings for 5 runs and 2 million time steps. We then
computed MSRE averaged over the 5 runs and selected
the parameter setting that resulted in the lowest level of
MSRE. After optimizing the parameters, we ran each
method with its best parameter setting for 30 runs and
averaged the result. We calculated standard errors for
each method to measure how far the sample means are
from the true population means. We then plotted the
MSRE averaged over 30 runs and standard error bars
with non overlapping standard error bars for two
methods suggesting significant difference in their
performance.

Figure 5 showsMSRE for fixed representations for short,
medium, and long ISI. The y-axis is MSRE averaged over
30 runs. The level of error for the presence representation is
shown with a dotted gray line for comparison.

The expert designed fixed representations of micro-
stimulus and tile-coded traces performed well across all ISI
settings; however, echo state network failed to capture longer
temporal dependencies. In the short setting, all fixed repre-
sentations performed well. As ISI got larger, echo state network
performed worse and approached the level of error of the
presence representation. This is likely due to the fact that echo
state networks trade-off prediction accuracy for computation.

Figure 6 shows MSRE for representations learned by T-
BPTT and RTRL for short, medium, and long ISI. In each
subplot, multiple bars are shown for each of Vanilla RNN,

Figure 5. The interaction between ISI and truncation level in trace conditioning for fixed representations: tile-coded traces (TCT),
microstimulus (MS), and echo state network (ESN). Each subplot corresponds to one setting of short, medium, and long ISI. A mini
picture of the CS and US timings is included in the leftmost subplot. The y-axis is the MSRE. Lower is better. The results are calculated
over 2 million steps and averaged over 30 runs. (Standard error bars are plotted but in some cases are not visible due to being small). The
error level for the presence representation is plotted in each subplot as a dotted line for comparison. In the short setting, all methods
performed well. Microstimulus and tile-coded traces performed well across all settings. The performance of echo state network,
however, deteriorated as ISI got larger.

Figure 6. The interaction between ISI and truncation level in trace conditioning for representations learned by T-BPTT and RTRL. Each
subplot corresponds to one setting of ISI. In each subplot, multiple bars are plotted for Vanilla RNN, LSTM, and GRU. For each
architecture, the left four bars correspond to T-BPTT with different truncation levels and the right bar corresponds to RTRL. The y-axis
is the MSRE with lower better. The results are calculated over 2 million steps and averaged over 30 runs. Standard error bars are included
in the plot. With short ISI all methods performed well and the T-BPTT based methods worked with all T’s. In the medium setting, we
see basic RNNs performed poorly, and LSTMs and GRUs required truncation at or greater than expected ISI (20) to performwell. In the
long setting, we see that none of the T-BPTT based methods performed well, even with T greater than expected ISI. Across all three
problem settings, RTRL-based LSTMs learned accurate predictions.
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LSTM, and GRU architectures. For each architecture, the
four left bars correspond to T-BPTTwith T = 5, T = 10, T =
20, and T = 40. The right bar corresponds to the result for
RTRL.

In the short setting, the representations learned by both
T-BPTT and RTRL performed well for all architectures,
reaching a much lower level of error compared to the
presence representation.

RNNs trained with T-BPTT were sensitive to the length
of the truncation window, and the sensitivity became more
pronounced as ISI got larger (Figure 6). To better under-
stand this, let us contrast the performance of T-BPTT with
that of the RTRL variants, which are roughly equivalent to
T-BPTT for T =∞ (since when T =∞, T-BPTTcomputes the
gradient all the way back in time, resulting in a gradient
roughly the same as the one computed by RTRL). In the
medium setting, the T-BPTT variants for LSTMs and GRUs
performed similarly to the RTRL counterparts only when
the truncation window was greater than or equal to 20—the
expected ISI (Figure 6, middle column). This effect was
even stronger in the long setting (Figure 6, right column).
This result is one example of the efficacy of trace condi-
tioning as a diagnostic benchmark—it clearly isolates the
trade-off introduced by the T-BPTT algorithm.

There was a significant drop in the performance of
Vanilla RNNs as we increased the expected ISI and larger
truncation window did not help improve performance much.
This is likely due to the vanishing gradient problem
(Hochreiter et al., 2001). Vanilla RNN trained with RTRL
also failed to capture longer dependencies. This is in
contrast to the LSTM and GRU variants trained with RTRL.

Our results suggest that further algorithmic improvements
are required for solving the trace conditioning problem. While
the expert designed fixed representations perform robustly
across all ISI settings, they do not automatically discover
useful features, and thus are not scalable. RTRL also performs
well in all cases; however, it is not computationally feasible.
Finally, T-BPTT’s performance is highly sensitive to the
truncation parameter, requiring much more computation for
learning longer temporal dependencies. Later we will discuss a
simple algorithm that we tried to improve performance.

6. Noisy patterning

The trace conditioning benchmark is an idealization because
there is only one signal of interest: the CS. The agent need
not figure out which parts of its input stream to focus on—it
is purely a temporal memory problem. Our second diag-
nostic benchmark, noisy patterning, does not make this
assumption. In noisy patterning, the agent must predict a
binary outcome which only occurs if a particular pattern of
stimuli is presented (Mackintosh, 1974; Harris et al., 2008).
To do so, it has to both figure out which parts of the input to
pay attention to in the presence of noise and distractors and

also make nonlinear features to identify the patterns of
interest. This is similar to the “Blooming, Buzzing Con-
fusion” visual stream that infants experience—they must
learn what to pay attention to and ignore (James, 1890). In
robot terms, the equivalent would be which sensors the
agent should pay attention to, to avoid damage or gain
additional reward. Similar problems have been studied in
supervised learning (Sutton, 1992; Sutton & Whitehead,
1993; Mahmood & Sutton, 2013).

Noisy patterning is analogous to positive/negative pat-
terning in psychology. It considers a situation where non-
linear combinations of CSs activate the US. As we
discussed in Section 3, in negative patterning each CS in
isolation activates the US but their combination does not.
Interestingly, these problems correspond to famous logical
operations like XOR, which are famously unsolvable by
single-layer neural networks. While neural networks with
more than one layer can easily learn patterning problems
like XOR, some of the approaches considered in this paper,
such as microstimulus, fail to solve them. To make the
benchmark more challenging, we designed the benchmark
such that multiple configurations of the CSs activate the US
and added distractors and noise.

This benchmark includes n CSs and one US. There are k
configurations of the CSs that activate the US. We refer to

Figure 7. Example trials for noisy patterning in the case of 8 CSs,
8 activation patterns, 10 distractors, and 10 percent noise.
10100110 is one of the 8 activation patterns. In the example trial
on the left, the pattern of the CSs matches this pattern and the US
gets activated as a result. In the example trial on the right,
however, the pattern of the CSs does not match any of the
activation patterns resulting in US remaining 0.
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these configurations as activation patterns. Each trial starts
with the CSs getting a value of 0 or 1. If the value of the CSs
matches an activation pattern, the US becomes 1 in 4 time
steps (i.e., ISI equals 4). (In contrast to trace conditioning,
the ISI is fixed.) The ITI is uniformly sampled from (80, 120).
We designed the benchmark such that in half of the trials, one
of the activation patterns occurs each of which includes n/2
activated CSs and n/2 non-activated CSs. The benchmark also
includesm distractors, which occur at the same time as the CSs
but do not contribute to the US activation. We also add noise
such that in x percent of the trials, an activation pattern occurs
but the US remains 0 or a non-activating pattern occurs and the
US gets activated. γ is set to 1� 1=ISI ¼ 0:75. Two example
trials for a case with 8 CSs, 8 activation patterns, 10 distractors,
and 10 percent noise are shown in Figure 7. In the example on
the left, the pattern of the CSs matches one of the 8 activation
patterns. Therefore, the US gets activated. In the example on
the left, however, the pattern of the CSs does not match any of
the activation patterns. As a result, the US remains 0.

Just as we can control the difficulty level of trace con-
ditioning by changing, for example, the ISI, we can also
control the difficulty level of noisy patterning by changing
the key problem parameters—the number of CSs, the
number of activation patterns, the number of distractors, and
the level of noise. Using this flexibility, we experimented
with noisy patterning in two ways. First, we evaluated echo
state network and several T-BPTT variants with truncation
length 5 on three different levels of difficulty that we refer to
as easy, medium, and hard.

We did not experiment with RTRL because with small
ISI (= 4), T-BPTTwith T = 5 performs as well as the idealized
RTRL baseline. We also did not experiment with tile-coded
traces and microstimulus because they independently rep-
resent each input and cannot predict patterns of CSs as they
are combined with linear function approximation.

There was a consistent drop in performance, across all
methods, as the level of difficulty was increased
(Figure 8(a)). Echo state network performed worse than all
three recurrent variants trained with T-BPTT in all three
configurations of the problem. This is likely due to the fact
that echo state network’s representation, which is randomly
determined and fixed at the beginning of learning, is not
suitable for capturing the activation patterns.

Example prediction profile plots for noisy patterning are
provided in Figure 9 for the medium and hard levels of
difficulty. We are only showing 2 of the CSs and 2 of the
distractors as examples. In both examples, an activation
pattern occurred and the US got activated (i.e., the US ac-
tivation was not due to noise). In the medium setting, LSTM
successfully predicted the US, matching the return after the

Figure 8. Noisy patterningwith varying difficulty levels. The 3 bar plots (a) show the MSRE of Vanilla-RNN, GRU, and LSTM trained with T-BPTT as
well as theMSRE of echo state network for three different configurations of the problem: easy, medium, and hard. The results are for 2million steps
of training and averaged over 30 runs. The standard error bars are included. In the leftmost plot, we see a consistent drop in performance, across all
methods, from the easy setting to the hard one. The heatmap on the right (b), illustrates that the performance of LSTMdegraded as the the number of
distractors and activation patterns increased.

Figure 9. Example prediction profile plots for noisy patterning in
the medium setting and hard setting. Unlike Figure 7 where all the
CSs and distractors were shown, in this figure only two of the CSs
and distractors are shown as examples. In both cases, an activation
pattern occurred as a result of which the US got activated. In the
the medium setting, LSTM prediction matched the return. In the
hard setting, however, LSTM did not predict the US accurately.
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onset of the CS. However, in the hard setting, there was a
mismatch between LSTM’s prediction and the return.

To further highlight the configurability of noisy pat-
terning, we evaluated the T-BPTT variant of LSTM across
two dimensions: the number of activation patterns and the
number of distractors. The results, presented as a heatmap of
MSRE in Figure 8(b), show that the performance deterio-
rated as we made the problem more difficult across either
dimension.

Taken together, these results demonstrate that noisy
patterning can be useful for systematically studying the
scaling properties of the algorithms in isolation from
the temporal dimension, by simply increasing the
number of signals from half a dozen to tens of
thousands.

7. Trace patterning: Putting it all together

We put together the challenge of bridging the temporal gap,
as posed by trace conditioning, and the challenge of

recognizing important patterns, as formulated in noisy
patterning, in a unified diagnostic problem that we refer to
as trace patterning. For a learner to do well on this problem,
it has to both fill the trace interval and construct non-linear
representations of the CSs.

Similar to the results presented in Section 5, we eval-
uated the baseline methods as we increased the ISI while
keeping the rest of the problem parameters constant (8 CSs,
8 activation patterns, 10 distractors, and 10% noise). The
results for fixed representations and representations learned
by T-BPTT and RTRL are provided in Figures 10 and 11,
respectively.

The fixed representations performed poorly in all cases
of short, medium, and long ISI and their performance got
worse as ISI got larger (Figure 10). The expert designed
fixed representations of microstimulus and tile-coded traces
independently represent each input (and not their combi-
nations) and thus cannot learn accurate predictions; con-
textualizing the failure of the echo state network in this
problem.

Figure 10. The impact of truncation level in trace patterning for fixed representations. We used the exact same scheme as Figure 5 to
visualize the performance in trace patterning. Each plot corresponds to one setting of short, medium, and long ISI. Each bar reports the
MSRE averaged over 30 runs. All methods were trained for 5 million steps. All fixed representations performed poorly. Tile-coded
traces and microstimulus independently represent each input (not combinations) and thus cannot learn accurate predictions.

Figure 11. The impact of truncation level in trace patterning for representations learned by T-BPTT and RTRL. Each subplot
corresponds to one setting of short, medium, and long ISI and includes the error for Vanilla-RNN, LSTM, and GRU. For each
architecture, multiple bars are shown with the left four bars corresponding to T-BPTT with different T’s and the right bar corresponding
to RTRL. The results are calculated over 5 million steps and averaged over 30 runs. Similar to trace conditioning, the T-BPTT based
methods showed sensitivity to the truncation parameter. The use of RTRL always improved performance; however, except for ISI∼10
no methods learned accurate predictions.
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The T-BPTT algorithms showed sensitivity to the length
of the truncation window (Figure 11). This is consistent with
the findings from the trace conditioning experiments. One
key difference, however, is that longer truncation parameter
for the LSTM and GRU variants did not help as much as in
trace conditioning. Moreover, in contrast to trace condi-
tioning, the performance of the idealized RTRL baselines
for the LSTM and GRU variants got worse considerably as
we increased the ISI.

Example prediction plots for LSTM trained with T-BPTT
are shown in Figure 12 in the case of expected ISI of 10 and
30. In both cases, a truncation length of 40 was used. While
LSTM prediction profiles resemble the return in the case of
expected ISI of 10, they fail to match the return in the case of
expected ISI of 30.

This result emphasizes the difficulty of trace patterning—
the tested recurrent networks struggle to achieve low error,
even when they have access to better gradient approxima-
tions, as in the case of training with RTRL.

8. Combining stimulating traces
with RNNs

Our experimental results highlight the limitations of the
current learning methods. While the linear trace-based
methods successfully bridge the temporal gap in trace
conditioning, their performance deteriorates when we
introduce nonlinearities in trace patterning. On the other
hand, the recurrent learning algorithms can simultaneously
bridge the temporal gap and handle nonlinearities, but they
can be expensive in computational and memory
requirements

In the case of T-BPTT, the memory requirements of RNNs
grow with the length of the truncation window, and learning

long-term dependencies, as in trace conditioning, requires a
comparably long truncation window. In the case of RTRL,
the computational complexity of RNNs grows quartically in
the size of the hidden state, and learning patterns from a large
number of signals, as in noisy patterning, requires a large
hidden state. Ideally, we need trainingmethods that scale well
in computation and memory simultaneously.

As an example, we present a simple approach that scales
well in computation and memory. We augment the RNNs
with the stimulating memory traces of the observation. In
particular, we feed an exponentially decaying trace of each
stimulus, as described in Section 4, as part of the input
observation to the recurrent network.

Figures 13 and 14 show the effect of augmenting the
RNNs with the stimulating memory traces of the obser-
vation, respectively, in trace conditioning and trace pat-
terning. The results for RNNs fed with only the observation
is also included in lighter shades for comparison., as does
the general conclusion that stimulating traces improve
performance but less so than in trace conditioning.

When trained with T-BPTT, feeding the RNNs with the
stimulating traces significantly improved the performance
for the Vanilla RNN, LSTM, and GRU variants in trace
conditioning. Moreover, it made the T-BPTT variants robust
to the truncation length, achieving a similar level of error for
all T’s. This effect was more pronounced in the long setting
(Figure 13).

When trained with RTRL, feeding the RNNs with the
stimulating traces helped improve the performance
(Figure 13). The improvement was larger for Vanilla RNN
than the LSTM and GRU variants.

In trace patterning, also feeding the RNNs with the
stimulating traces improved performance in both T-BPTT
and RTRL variants but less so than in trace conditioning.

Figure 12. Example prediction profile plots for LSTM in trace patterning in the the case of expected ISI 10 and 30. LSTMwas trained with
T-BPTT and a truncation length of 40. Only two of the CS and distractors are shown as examples. In both cases, an activation pattern
occurred as a result of which the US got activated. In the the case of expected ISI of 10, LSTM prediction resembled the return. In the
case of longer ISI with expectation of 30, however, LSTM did not predict the US accurately.
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While the space of ideas for fruitfully combining
memory traces and RNNs needs further investigation, this
result shows how the proposed diagnostic benchmarks can
help us search for general and scalable ideas for the online
prediction problem.

9. Discussion

Our diagnostic benchmarks can be used to isolate and in-
vestigate fundamental algorithmic issues in recurrent
learning. In trace conditioning, we found that basic re-
current architectures could not handle significant temporal
dependencies. Gated architectures exhibited significant
sensitivity to truncation level (needing to unroll beyond the
onset of the relevant cue) but did not perform as well as
RTRL variants. In our trace patterning experiments, all

methods struggled when confronted with the combination
of long temporal dependencies and the need to extract
configuration patterns.

In this paper, we investigated the online prediction
setting, but more stringent computational restrictions might
be useful for future work. Many RL algorithms, like TD, can
make and update long-horizon predictions with computa-
tion significantly less than the length of the prediction’s
horizon (van Hasselt & Sutton, 2015). This might also be
possible in representation learning. Can the agent construct
representations capable of overcoming dependencies back
in time with computation and storage less than the length of
the gap? While recurrent learning algorithms based solely
on T-BPTT do not meet this requirement, our results show
that some combination of stimulating traces and recurrent
architectures may reduce the agent’s dependency on the

Figure 14. Results for combining stimulating traces with RNNs in trace patterning. The naming conventions exactly match Figure 13, as
does the general conclusion that stimulating traces improve performance but less so than in trace conditioning.

Figure 13. Results for combining stimulating traceswith RNNs in trace conditioning. We used the exact same scheme as Figure 6. Darker
colors denote the combination of stimulating traces with the recurrent methods and lighter shades denote the recurrent methods.
Each bar reports the MSRE averaged over 30 runs. The methods were trained for 2 million steps. The error bars denote the standard
errors. Adding stimulating traces to the input of the Vanilla-RNN, GRU, and LSTM improved their performance in both T-BPTT and
RTRL cases and made them less sensitive to the truncation length in the case of training with T-BPTT.
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truncation level. Moreover, there is a discrepancy between
the speed of learning for natural and artificial systems; while
animals learn eyeblink conditioning in about a few hundred
trials, our baseline methods require thousands of trials to
learn the task. Future research should investigate reasonable
computational restrictions if we hope to discover repre-
sentations as efficient as those used by animals. Work on
more efficient update rules (Nath et al., 2019) and attention
mechanisms (Dehghani et al., 2019) represent promising
directions toward this ambitious goal.
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Notes

1. The source code for our three benchmark problems is available
here.

2. Humans do not appear to perform more computations to re-
member further back in time, rather people appear to employ
abstractions that lose precision the further back they remember.

3. Ludvig’s microstimulus representation can be viewed as a clock
whose resolution gets worse over time (Ludvig et al., 2012).

4. A stimulating trace of the observation is different from the
eligibility trace vector z. z is part of the update mechanism and
does not impact the representational capacity of x. Mozer was
the first to investigate stimulating traces as input to neural
network representation learning (Mozer, 1989).

5. See (Sutton & Barto, 2018) for an in-depth treatment of tile
coding.
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Sweden, 10-15 July 2018, (Vol. 80, pp. 1407–1416). PMLR.

Fortunato, M., Tan, M., Faulkner, R., Hansen, S., Badia, A. P.,
Buttimore, G., Deck, C., Leibo, J. Z., & Blundell, C. (2019).
Generalization of reinforcement learners with working and
episodic memory. In Advances in neural information pro-
cessing systems (pp. 12469–12478).

Gallistel, C. R. & King, A. P. (2011). Memory and the compu-
tational brain: Why cognitive science will transform neu-
roscience (Vol. 6). John Wiley & Sons.

Gehring, J., Auli, M., Grangier, D., Yarats, D., &Dauphin, Y. N. (2017).
Convolutional sequence to sequence learning. In International
conference on machine learning (pp. 1243–1252). PMLR.

Harris, J. A., Livesey, E. J., Gharaei, S., &Westbrook, R. F. (2008).
Negative patterning is easier than a biconditional

14 Adaptive Behavior 0(0)

https://orcid.org/0000-0003-4641-7349
https://orcid.org/0000-0003-4641-7349
https://github.com/banafsheh-rafiee/From-Eye-blinks-to-State-Construction-Diagnostic-Benchmarks-for-Online-Representation-Learning
https://doi.org/10.1016/0364-0213(90)90002-E


discrimination. Journal of Experimental Psychology: Animal
Behavior Processes, 34(4), 494–500. https://doi.org/10.1037/
0097-7403.34.4.494

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., &
Meger, D. (2018). Deep reinforcement learning that matters.
In Proceedings of the AAAI conference on artificial intelli-
gence (Vol. 32).

Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001).
Gradient flow in recurrent nets: the difficulty of learning long-
term dependencies. In A field guide to dynamical recurrent
neural networks.

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8), 1735–1780. https://
doi.org/10.1162/neco.1997.9.8.1735

Hopfield, J. J. (1982). Neural networks and physical systems with
emergent collective computational abilities. Proceedings of
the National Academy of Sciences, 79(8), 2554–2558. https://
doi.org/10.1073/pnas.79.8.2554

Howard, M. W. & Eichenbaum, H. (2013). The hippocampus,
time, and memory across scales. Journal of Experimental
Psychology: General, 142(4), 1211–1230. https://doi.org/10.
1037/a0033621

Hull, C. L. (1939). The problem of stimulus equivalence in be-
havior theory. Psychological Review, 46(1), 9–30. https://doi.
org/10.1037/h0054032

Jacobsen, A., Schlegel, M., Linke, C., Degris, T., White, A., &
White, M. (2019). Meta-descent for online, continual pre-
diction. Proceedings of the AAAI Conference on Artificial
Intelligence, 33(1), 3943–3950.

Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O.,
Graves, A., Silver, D., & Kavukcuoglu, K. (2017). De-
coupled neural interfaces using synthetic gradients. In In-
ternational conference on machine learning
(pp. 1627–1635). PMLR.

Jaeger, H. (2001). The “echo state” approach to analysing and
training recurrent neural networks-with an erratum note.
Bonn, Germany: German National Research Center for In-
formation Technology GMD Technical Report 148(34): 13.

James, W. (1890). The Principles of psychology (Vol. 1). Henry
Holt and Company.

Janner, M., Li, Q., & Levine, S. (2021). Reinforcement learning as
one big sequence modeling problem. arXiv preprint arXiv:
2106.02039.

Kingma, D. P. & Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Loynd, R., Fernandez, R., Celikyilmaz, A., Swaminathan, A., &
Hausknecht, M. (2020). Working memory graphs. In Inter-
national conference on machine learning (pp. 6404–6414).
PMLR.

Ludvig, E. A., Sutton, R. S., & Kehoe, E. J. (2008). Stimulus
representation and the timing of reward-prediction errors in
models of the dopamine system. Neural Computation,
20(12), 3034–3054. https://doi.org/10.1162/neco.2008.11-
07-654

Ludvig, E. A., Sutton, R. S., & Kehoe, E. J. (2012). Evaluating the
td model of classical conditioning. Learning & Behavior,
40(3), 305–319. https://doi.org/10.3758/s13420-012-0082-6

Ludvig, E. A., Sutton, R. S., Verbeek, E., & Kehoe, E. J. (2009). A
computational model of hippocampal function in trace con-
ditioning. In Advances in neural information processing
systems (pp. 993–1000).

Luzardo, A. (2018). The Rescorla-Wagner drift-diffusion model.
PhD Thesis, City, University of London.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J.,
Hausknecht, M., & Bowling, M. (2018). Revisiting the arcade
learning environment: Evaluation protocols and open prob-
lems for general agents. Journal of Artificial Intelligence
Research, 61, 523–562.

Mackintosh, N. J. (1974). The psychology of animal learning.
Academic Press.

Mahmood, A. R. & Sutton, R. S. (2013). Representation search
through generate and test. In Workshops at the Twenty-
Seventh AAAI conference on artificial intelligence.

Menick, J., Elsen, E., Evci, U., Osindero, S., Simonyan, K., &
Graves, A. (2020). Practical real time recurrent learning with
a sparse approximation. In International conference on
learning representations.

Modayil, J., White, A., & Sutton, R. S. (2014). Multi-timescale
nexting in a reinforcement learning robot. Adaptive Behavior,
22(2), 146–160. https://doi.org/10.1177/1059712313511648

Mozer, M. C. (1989). A focused back-propagation algorithm for
temporal pattern recognition.Complex Systems, 3(4), 349–381.

Nath, S., Liu, V., Chan, A., Li, X., White, A., & White, M. (2019).
Training recurrent neural networks online by learning explicit
state variables. In International conference on learning
representations.

Obando-Ceron, J. S. & Castro, P. S. (2020). Revisiting rainbow:
Promoting more insightful and inclusive deep reinforcement
learning research. arXiv preprint arXiv:2011.14826.

Osband, I., Doron, Y., Hessel, M., Aslanides, J., Sezener, E.,
Saraiva, A., McKinney, K., Lattimore, T., Szepesvari, C.,
Singh, S., Roy, B. V., Sutton, R., Silver, D., & Hasselt, H. V.
(2020). Behaviour suite for reinforcement learning.In Inter-
national conference on learning representations.

Osband, I., Van Roy, B., Russo, D. J., & Wen, Z. (2019). Deep
exploration via randomized value functions. Journal of
Machine Learning Research, 20(124), 1–62.

Parisotto, E. & Salakhutdinov, R. (2021). Efficient transformers in
reinforcement learning using actor-learner distillation. arXiv
preprint arXiv:2104.01655.

Parisotto, E., Song, F., Rae, J., Pascanu, R., Gulcehre, C., Jaya-
kumar, S., Jaderberg, M., Kaufman, R. L., Clark, A., &
Noury, S. (2020b). Stabilizing transformers for reinforcement
learning. In International conference on machine learning
(pp. 7487–7498). PMLR.

Parisotto, E., Song, F., Rae, J., Pascanu, R., Gulcehre, C., Jaya-
kumar, S., Jaderberg, M., Kaufman, R. L., Clark, A., Noury,
S., Botvinick, M., Heess, N., & Hadsell, R. (2020a).

Rafiee et al. 15

https://doi.org/10.1037/0097-7403.34.4.494
https://doi.org/10.1037/0097-7403.34.4.494
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1037/a0033621
https://doi.org/10.1037/a0033621
https://doi.org/10.1037/h0054032
https://doi.org/10.1037/h0054032
https://doi.org/10.1162/neco.2008.11-07-654
https://doi.org/10.1162/neco.2008.11-07-654
https://doi.org/10.3758/s13420-012-0082-6
https://doi.org/10.1177/1059712313511648


Stabilizing transformers for reinforcement learning. In H.
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