
TEMPORAL ABSTRACTION

IN REINFORCEMENT LEARNING

A Dissertation Presented

by

DOINA PRECUP

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2000

Department of Computer Science

© Copyright by Doina Precup 2000

All Rights Reserved

TEMPORAL ABSTRACTION

IN REINFORCEMENT LEARNING

A Dissertation Presented

by

DOINA PRECUP

Approved as to style and content by:

Richard S. Sutton, Chair

Andrew G. Barto, Member

Roderic A. Grupen, Member

Christopher V. Hollot, Member

Leslie P. Kaelbling, Member

James F. Kurose, Department Chair
Department of Computer Science

To my family

ACKNOWLEDGMENTS

My deepest gratitude goes to Richard Sutton, my thesis advisor. He helped me

tremendously to become a better researcher and a better writer, and provided con-

stant inspiration, feedback and support, as well as a wealth of intriguing ideas. It

was a great honor and a real pleasure for me to work with him, and I cannot imagine

a better advisor. I also want to thank the members of my thesis committee, Andy

Barto, Rod Grupen, Leslie Kaelbling and Chris Hollot, for their patience in reading

drafts of my thesis, and their very useful feedback.

Thanks to Satinder Singh for many inciting conversations and good research ideas.

His help with structuring some of the mathematical results included in this disserta-

tion is greatly appreciated.

During my graduate studies I also had the opportunity to collaborate with other

faculty members. I especially want to thank Paul Utgoff, for his guidance during the

first part of my graduate studies; Eliot Moss, for useful conversations regarding the

potential applications of my research; Andy Barto, for being a great resource and

for his constant feedback on my research; Rod Grupen and Paul Cohen, for their

constant support and for inspiring conversations. During my internship at AT&T

Research Labs, Michael Kearns and Dave McAllester provided great comments on my

research. I also want to thank Prof. Ioan Alfred Letia from the Technical University

Cluj-Napoca, Romania, for inciting my interest in artificial intelligence and machine

learning.

The ANW research group was a stimulating and fun research environment. I

especially want to thank Ted Perkins and Amy McGovern for many inspiring conver-

sations, for reading carefully through several preliminary drafts of the dissertation,

and for their constant friendship and support. Thanks to Andy Fagg, Balaraman

Ravindran, Leo Zelevinsky, Nathan Sitkoff, Anders Jonsson and Dan Bernstein for

their interest in my work, and for providing useful comments on preliminary drafts

of this dissertation. Thanks to Jitu Padhye for being a constant friend in good and

bad times.

This research would not have been possible without the financial support that I

received during my graduate studies from the Fulbright foundation, the University

of Massachusetts, and AT&T Research Labs. Part of this research was supported

by NSF grant ECS-9511805 and grant AFOSR-F49620-96-1-0254, both to Andrew

Barto and Richard Sutton, and by NSF grant ECS-9980062 to Andrew Barto and

John Moore.

Finally, a special thanks to my family, who made many sacrifices over time to help

me reach this point. Their love, support and encouragement has been invaluable over

the years. This dissertation is dedicated to them.

vi

ABSTRACT

TEMPORAL ABSTRACTION

IN REINFORCEMENT LEARNING

MAY 2000

DOINA PRECUP

B.Sc., TECHNICAL UNIVERSITY CLUJ-NAPOCA, ROMANIA

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Richard S. Sutton

Decision making usually involves choosing among different courses of action over

a broad range of time scales. For instance, a person planning a trip to a distant

location makes high-level decisions regarding what means of transportation to use,

but also chooses low-level actions, such as the movements for getting into a car. The

problem of picking an appropriate time scale for reasoning and learning has been

explored in artificial intelligence, control theory and robotics. In this dissertation we

develop a framework that allows novel solutions to this problem, in the context of

Markov Decision Processes (MDPs) and reinforcement learning.

In this dissertation, we present a general framework for prediction, control and

learning at multiple temporal scales. In this framework, temporally extended actions

are represented by a way of behaving (a policy) together with a termination condi-

tion. An action represented in this way is called an option. Options can be easily

incorporated in MDPs, allowing an agent to use existing controllers, heuristics for

picking actions, or learned courses of action.

The effects of behaving according to an option can be predicted using multi-time

models, learned by interacting with the environment. In this dissertation we develop

multi-time models, and we illustrate the way in which they can be used to produce

plans of behavior very quickly, using classical dynamic programming or reinforcement

learning techniques.

The most interesting feature of our framework is that it allows an agent to work

simultaneously with high-level and low-level temporal representations. The interplay

of these levels can be exploited in order to learn and plan more efficiently and more

accurately. We develop new algorithms that take advantage of this structure to

improve the quality of plans, and to learn in parallel about the effects of many different

options.

viii

TABLE OF CONTENTS

ix

Page

ACKNOWLEDGMENTS v

ABSTRACT..................................... vii

LIST OF FIGURES .. xii

CHAPTER

1. INTRODUCTION............ 1

1.1 Markov Decision Processes and Reinforcement Learning............ ... 3
1.2 Kinds of Abstraction... 4
1.3 Contributions........................... 7
1.4 Outline..................................... 11

2. BACKGROUND..................................... 13

2.1 Temporal Abstraction in Classical Al........................ 13
2.2 Temporal Abstraction in Control 16
2.3 Reinforcement Learning (MDP) Framework 17
2.4 Prior Work on Temporal Abstraction in Reinforcement Learning ... 20

3. OPTIONS.................................. 25

3.1 Policies and Options 26
3.2 Specifying Options , , . . 29

3.2.1 Flat Options .. 29
3.2.2 Hierarchical Options 32

3.3 Value Functions for Options 39
3.4 Conclusions............................... 41

4. SMDP METHODS FOR LEARNING AND PLANNING WITH
OPTIONS.. 43

4.1 SMDPs and Options........................ 43
4.2 SMDP Planning........................ 45
4.3 Illustration: Rooms Example 48
4.4 Illustration: Random Options 52
4.5 SMDP Value Learning....................................... 55
4.6 Conclusions.................. 57

5. INTRA-OPTION LEARNING.. 58

5.1 Intra-Option Model Learning 59
5.2 Illustration of Intra-Option Model Learning .. 63
5.3 Intra-Option Value Learning................................. . 64
5.4 Illustration of Intra-Option Value Learning..................... 66
5.5 Conclusions.. 69

6. OFF-POLICY LEARNING: MONTE CARLO METHODS 71

6.1 Policy Evaluation.................................... 72
6.2 Importance Sampling.. 73
6.3 Applying Importance Sampling to MDPs 74
6.4 Per-Decision Importance Sampling.................. 76
6.5 Conclusions.. 79

7. OFF-POLICY LEARNING: TEMPORAL-DIFFERENCE
METHODS... 81

7.1 One-Step TD Learning.. 81
7.2 Temporal-Difference Per-Decision Importance Sampling 83
7.3 Tree Backup Algorithm...................... 86
7.4 Empirical Comparison... 90
7.5 A Unified View of the Two Multi-Step TD Algorithms 92
7.6 Applying Multi-Step Off-Policy Learning to Intra-Option Learning . . 93
7.7 Conclusions... 95

8. ADAPTING OPTIONS ... 96

8.1 Interruption... 96
8.2 Examples of Interruption............ 99
8.3 Termination Iteration..................... 103
8.4 Illustration of Termination Iteration ... 107
8.5 Policy Iteration for Options.................. 109
8.6 Conclusions.. 112

X

9. CREATING NEW OPTIONS FROM SUBGOALS 113

xi

9.1 Subgoals of Achievement............ ... 114
9.2 Subgoals and Transfer 116

10.CONCLUSIONS AND FUTURE WORK 119

10.1 Contributions.............................. 119
10.2 Future Research Directions 121

BIBLIOGRAPHY.................. 125

LIST OF FIGURES

Figure Page

4.1 The rooms example is a gridworld environment with stochastic cell-to-
cell actions and room-to-room hallway options. Two of the hallway
options are suggested by the arrows labeled Oi and 02- The labels Gi
and G2 indicate two locations used as goals in experiments described
below... 49

4.2 The policy underlying one of the eight hallway options.................. 49

4.3 Value functions formed over iterations of planning by synchronous value
iteration with primitive actions and with hallway options. The
hallway options enabled planning to proceed room-by-room rather
than cell-by-cell. The area of the disk in each cell is proportional to
the estimated value of the state, where a disk that just fills a cell
represents a value of 1.0... 51

4.4 An example in which the goal is different from the subgoal of the hallway
options. Planning here was done by SVI with options O = A U 7Z.
Initial progress was due to the models of the primitive actions, but
by the third iteration room-to-room planning dominated and greatly
accelerated planning.. 52

4.5 Empty gridworld task. Options allow the error in the value function
estimation to decrease more quickly... 53

4.6 Performance of SMDP Q-learning in the rooms example with various
goals and sets of options. After 100 episodes, the data points are
averages over groups of 10 episodes to make the trends clearer. The
step size parameter was optimized to the nearest power of 2 for each
goal and set of options. The results shown used a = j in all cases
except that with (9 = 7/ and (7i (a = T) and that with (9 = A U H
and G-2 (o = I).................................. 56

5.1 Learning curves for model learning by SMDP and intra-option
methods... 64

xii

5.2 The learning of option values by intra-option methods without ever
selecting the options. The value of the greedy policy goes to the
optimal value (left panel) as the learned values approach the correct
values (as shown for one state, in the right panel)............................ 67

5.3 Comparison of SMDP, intra-option and macro Q-learning. Intra-option
methods converge faster to the correct values................................... 68

6.1 Different target and sampling distributions....................................... . 73

6.2 Comparison of classical and weighted importance sampling on 100
randomly generated MDPs. On the left, the behavior policy chose
50-50 from the two actions. On the right, the behavior policy chose
with 20-80 probabilities, exactly opposite to the target policy. In
both cases, the weighted algorithm is faster and more stable. ... 75

6.3 Comparison of Classical (Per-Return) and Per-Decision Monte Carlo
Importance Sampling Algorithms..................... 79

7.1 Backup tree for one-step TD......................... , . . 82

7.2 Comparison of One-Step TD and Monte Carlo Importance
Sampling.. 82

7.3 Backup diagram for the tree backup algorithm.................. 87

7.4 Comparison of all the off-policy learning algorithms on a testbed of 100
random MDPs.. 91

7.5 Full trajectory tree for an MDP .. 92

7.6 Error curves for the reward predictions (left panel) and next-state
predictions (right panel) for the SMDP, one-step intra-option
learning, and intra-option learning with tree backup eligibility
traces... 95

xiii

8.1 Interruption in navigating with landmark-directed controllers. The task
(up) is to navigate from S to G in minimum time using options based
on controllers that run each to one of seven landmarks (the black
dots). The circles show the region around each landmark within
which the controllers operate. The thin line shows the optimal
behavior that uses only these controllers run to termination, and
the thick line shows the corresponding interrupted behavior, which
cuts the corners. The lower panels show the state-value functions
for the SMDP-optimal and interrupted policies. Note that the latter
is greater.. 100

8.2 Phase-space plot of the SMDP and interrupted policies in a simple
dynamical task. The system is a mass moving in one dimension:
Xt+i = Xt + Xt+i, ii+i = Xt ■+■ at — 0.175it where Xt is the position,
xt the velocity, 0.175 a coefficient of friction, and the action at an
applied force. This continuous system is controlled at a discrete time
scale of 0.001. Two controllers are provided as options, one that
drives the position to x* = 1 and the other to x* = 2. Whichever
option is being followed at time t, its target position x* determines
the action taken, according to at = 0.01(x* — Xt}............................. 101

8.3 The mission planning task and the performance of policies constructed
by SMDP methods, interruption of the SMDP policy, and an optimal
static re-planner that does not take into account possible changes in
weather conditions.. 102

8.4 Simple MDP in which adding more options can decrease the quality of
the interrupted policy... 106

8.5 The result of termination iteration in the rooms environment, in the
room containing the goal. The states in which the options terminate
immediately are marked by small squares. The initiation sets of
the options are shaded. The two options available in the room are
terminated immediately if the option would take the agent away
from the goal state... 108

8.6 The result of termination iteration in the rooms environment, in the
north-west room. One of the options gets very fragmented............ 109

9.1 Learning subgoal-achieving hallway options under random behavior.
Shown on the left is the error between Qg{s, a) and Q*g{s, a} averaged
over s 6 T, a e A, and 30 repetitions. The right panel shows the
learned values for two options at one state (maximum over action
values) approaching their correct values.. 115

xiv

9.2 Two different optimal policies for options given two different subgoal
values at the target hallway. A subgoal value of +10 (left) results in
a more direct policy than a subgoal of +1..

9.3 A subgoal to which a hallway option does not transfer. The option for
passing from the lower-left room through to the state with subgoal
value 10 no longer works because of the state with subgoal value -1.
The original model of this option is overpromising with respect to
the subgoal

116

117

XV

CHAPTER 1

INTRODUCTION

How should an intelligent agent represent its knowledge of the world in order to be

able to reason and learn about different courses of action? This is a key, long standing

question in artificial intelligence (Al), as well as in robotics and control engineering.

For instance, consider a robot docking with its battery charger. Should it plan

at the lowest level of motor torques for its wheels? Or should it consider high-level

actions such as “locate charger,” “navigate to charger” and “precise docking?” Both

levels have their advantages. Reasoning at the higher level allows for short, compact

plans but might lack the detail necessary to carry out the plan or to optimize it

further in specific situations. The lower level allows filling in these details but is too

fine-grained to be used efficiently. Ideally, an intelligent agent should have the ability

to use both levels, as required by the circumstances it faces. For instance, the agent

could start with a high-level plan, then refine it into low-level actions. Moreover, the

agent should be able to reason and acquire knowledge at both levels in parallel, from

the real experience that it gets by acting in its environment.

Most approaches to action representation use hand crafted knowledge represen-

tations specialized for the specific task under consideration. Over the years, these

representations have taken many different forms. The Al planning community has

considered using macro-operators and, more recently, closed-loop sequences of actions

as the basis for describing the agent’s behavior. Roboticists and control engineers

have considered methodologies for combining and switching between independently

designed controllers or behaviors. All these approaches combine in some way the low-

1

level actions in the domain into courses of action that can be temporally extended

(i.e. take a variable, unknown amount of time). Some of these approaches address

the issues of learning useful courses of actions, and learning how to combine existing

courses of action in an efficient way.

In this dissertation we address the issue of representing knowledge about actions

and courses of action within the context of reinforcement learning (RL) and Markov

Decision Processes (MDPs). Our main goal is to provide a framework for represent-

ing, learning, and reasoning about courses of action that are temporally extended,

stochastic and contingent of events. This framework should satisfy several criteria:

Expressivity: The representation should be able to include basic kinds of common

sense knowledge, similar to that used by humans when reasoning at multiple

temporal scales.

Clarity: The framework for describing actions should be mathematically grounded

in primitive observations and actions. Many of the frameworks used in Al use

vague descriptions, which are made to be understandable by humans but have

no independent meaning for the agent.

Generality: The knowledge representations used to describe courses of actions should

be relevant for a variety of different tasks, rather than having special-purpose

representations for a specific task. The knowledge representation should also

allow the use of the existing body of theory and algorithms from the RL and

MDP literature, with minimal extensions.

Suitability for planning: The framework should specify methods for building pre-

dictive models for the actions that can be used to make decisions. Using these

models, the agent should be able to build plans for acting in the environment.

Rather than working at a fixed time scale, the models and planning methods

used should allow intermixing and relating of different temporal scales.

2

Suitability for learning: The agent should have the ability to learn about the conse-

quences of its courses of action, and to improve its strategy for picking actions

over time. This is especially important for agents acting in stochastic environ-

ments, and having incomplete knowledge about the environment, which is the

case we are considering. The knowledge representations adopted by the agent

should be easy to change based on observations from the environment, in order

to adapt to new situations, to changes in the environment, and to changes in

the agent’s own goals.

In this dissertation we elaborate a framework for representing and reasoning about

temporally extended actions that satisfies these criteria. We do not address the issue

of selecting a particular level of temporal abstraction for representing the actions.

We are just providing the ability to represent and reason about actions with different

time scales.

1.1 Markov Decision Processes and Reinforcement Learning
In this dissertation, we use Markov Decision Processes (MDPs) and reinforcement

learning (RL) as a theoretical foundation for the study of temporal abstraction. Rein-

forcement learning is a computational approach to automating goal-directed learning

and decision making (Sutton & Barto, 1998). It encompasses a broad range of meth-

ods for determining optimal ways of behaving in complex, uncertain and stochastic

environments.

In reinforcement learning, MDPs are used as a formal framework for defining

the interaction between the agent and its environment. MDPs are a standard, very

general formalism for studying stochastic, sequential decision problems (Bellman,

1957; Howard, 1960). In an MDP, an agent interacts with its environment at some

discrete, lowest-level time scale. On each time step, the agent perceives the state

of the environment and on that basis chooses a prhuitive action. In response to

3

this action, the environment produces one time step later a numerical reward, and

the agent finds itself in a new next state. The goal of the agent is to find a way

of behaving, a mapping of states into actions that maximizes the numerical reward

signal received over time. Such a mapping is called a policy. The expected long-term

reward associated with a policy is called a value function.

Many problems from artificial intelligence, control theory and operations research

can be tackled using this framework. Reinforcement learning has been used success-

fully in a large variety of applications, ranging from elevator dispatching (Crites &

Barto, 1996) to a world champion backgammon player (Tesauro, 1995), and from

schedule optimization (Zhang & Dietterich, 1995) to robotic soccer players (Stone &

Veloso, 1999). MDP planning has also been used successfully to tackle classical Al

planning tasks (Boutilier et al., 1999).

MDPs and RL provide a good theoretical foundation for grounding the semantics

of temporally extended actions. Such actions can be described in terms of closed-

loop policies that are used to pick primitive actions for some duration of time. The

effects of the actions can be related to the primitive observations and actions of the

system. This allows the agent to learn about the effects of its courses of action

by interacting with the environment, without human supervision. RL planning and

learning algorithms can be used to build knowledge representations for the agent,

which are clear and expressive. RL and MDPs will allow us to build a framework

that satisfies the desired criteria enumerated above.

1.2 Kinds of Abstraction

Artificial intelligence typically tackles large, complex problems. Solving such prob-

lems requires adequate representations. Abstraction in classical Al refers to a broad

range of techniques that attempt to provide a more compact representation for the

problem at hand, both at the state level and at the action level. Once the problem is

4

solved using the new representation, the solution is translated back into the original

state and action space.

There are two main kinds of abstraction methods in AL State abstraction methods

attempt to find a different representation of the state space, which makes it easier to

find a solution. Typically such representations ignore certain details of the original

state information. Temporal abstraction methods, the subject of this dissertation,

attempt to find a time scale that is adequate for describing the actions of an Al system

and the evolution of the system as a result of its actions. Methods for modeling the

evolution of physical systems at adequate time scales have been formally studied by

mathematicians and engineers since the 1800s. The previous Al research on temporal

abstraction methods has not focused as much on modeling an independently evolving

system. The luain focus has been to represent the actions available to an Al agent

in a way that allows the agent to build reliable predictive models of the effects of its

actions, and use these models efficiently to construct plans. A central idea that has

emerged throughout this research is to combine the low-level actions available to the

Al system into macro-actions or behaviors. Such macro-actions are typically executed

during an extended time period. The use of higher-level, temporally extended actions

allows Al systems to solve the tasks they face in a smaller number of action steps. But

how should an Al agent decide which extended actions to choose given a particular

problem? For how long should it execute an extended action? How could it find

macro-actions that are useful? These questions can be asked in a very clear and

precise way for systems based on RL.

Like many other Al systems, reinforcement learning systems often use abstraction

techniques in order to solve large problems efficiently. State abstraction methods have

been the focus of extensive theoretical research and empirical studies in RL systems

because they allow RL agents to tackle domains with large discrete or continuous

state spaces. In such domains, the issue is not only to represent the value function

5

compactly (with low memory costs), but also to generalize a limited amount of expe-

rience in order to produce a good approximation of the value function over the entire

state space. A standard approach is to use some form of function approximation to

generate a new representation of the state space. The value function is then learned

using this new representation. This approach has been used successfully in several

large-scale applications (see, e.g. Crites & Barto, 1995; Lin, 1993; Tesauro, 1995).

Recent RL research has focused more on methods for temporal abstraction (Singh,

1992b; Singh, 1992a; Kaelbling, 1993b; Kaelbling, 1993a; Dayan & Hinton, 1993;

Dean & Lin, 1995; Dietterich, 1998; Parr, 1998; Sutton, 1995; Precup & Sutton, 1998;

Sutton et al., 1999a). All these methods are centered around the idea of defining new,

temporally extended actions as closed-loop ways of behaving (policies) that terminate.

Such extended actions can be defined by the designer of the system, based on prior

knowledge of the task at hand, or can be acquired automatically by the RL agent itself.

These actions can be used by the RL agent instead of (or in addition to) the primitive

actions to generate behavior. The agent can also learn predictive models and value

functions for extended actions, which it can then use to improve its behavior. The

methods proposed so far differ mainly in the representation used for the temporally

extended actions, and in the learning algorithms used to acquire knowledge about

the effects of these actions. A detailed account of the existing methods is given in

chapter 2.

The research we present in this dissertation also focuses on temporal abstraction.

Our research builds on the work of Singh (1992b; 1992a), Sutton (1995) and Sutton

& Pinnette (1985). It is most closely related to the recent research of Parr (1998) and

Dietterich (1998). We define a simple and explicit representation of extended actions,

as policies together with a termination condition. Models and value functions for

such actions can be learned using minimal extensions of traditional RL algorithms.

Because this representation is very simple, we are able to formulate algorithms that

6

improve extended actions and that can learn efficiently about many actions from the

same real experience.

Some of the frameworks mentioned above combine state and temporal abstraction

(Dayan & Hinton, 1993; Dietterich, 1998) by constructing a new representation of

the state space together with a new set of actions. Unlike these methods, we address

the issue of temporal abstraction independently of the state space representation.

Our approach can be combined with any existing methods for state abstraction and

function approximation.

1.3 Contributions
In this dissertation we present a general framework for prediction, control and

learning at multiple temporal scales. In this framework, temporally extended actions

are represented by a (partial) policy together with a termination condition. An action

represented in this way is called an option. Unlike other representations for tempo-

rally extended actions, options are a strict generalization of the primitive actions.

This enables primitive actions and temporally extended actions to be used inter-

changeably by a learning agent. Options are a very general way to specify extended

actions, and they can be used to describe both open-loop and closed-loop policies.

In this dissertation, we show how hierarchical descriptions and other descriptions for

extended actions introduced in RL research can be mapped into options.

In developing this new framework, we build on the existing theory of Semi-Markov

Decision Processes (SMDPs). SMDPs are models of continuous-time, discrete-event

systems. In an SMDP, actions can take variable, stochastic amounts of time. When

introducing options in an MDP, we obtain a new, related SMDP. SMDP theory

provides planning and learning methods similar to those used for MDPs, and we can

use any of these methods to find an optimal policy in the higher-level SMDP defined

by the options.

7

The advantage of transforming the initial MDP is that we usually obtain a con-

siderably smaller SMDP, in which planning and learning can proceed faster. But the

best long-term rewards that can be obtained in the SMDP are typically lower than

those that can be obtained in the original MDP. These rewards are limited by the

quality of the options that the learning agent can execute. So if an agent would have

to choose between working at the MDP level or at the SMDP level, it would need

to accept a trade-off between speed of computation and the quality of the solution

obtained.

In this dissertation we take a different approach to this tradeoff. Instead of re-

stricting the algorithms to act either at the SMDP level or at the MDP level, learning

and planning can proceed at both levels. Leverage can be gained from inter-relating

the different time scales at which the system is acting. For instance, consider a policy

for finding a cup of coffee in an unknown building. Such a policy could use options for

following corridors and going through doors, and it could be computed fairly quickly.

But what if, while following a corridor, the agent sees the coffee pot? An SMDP

solution would still follow the corridor until the end, and then of course the agent

could choose to come back. Working between MDPs and SMDPs allows the agent

instead to immediately interrupt the option, and head for the coffee. We elaborate

an this idea in chapter 8. While following the corridor, the agent can also learn about

different other destinations that could be of interest later (as we will show in chapter

5). Such learning is not possible if we only consider the SMDP level. Finally, the

experience can be used to improve overall navigation performance and each of the

individual options used.

We propose novel algorithms that work between the MDP and the SMDP level,

in order to obtain better performance than the SMDP level alone, in a shorter time

than working at either level.

8

One class of algorithms addresses the issue of learning about the consequences

of options from experience. In the SMDP view, an agent can only learn about one

option at a time, by executing that option, observing its consequences and adjusting

its prediction accordingly. This kind of execution can be very expensive, especially

for options that take a long time to execute, or options that can lead to failure out-

comes. Our new learning algorithms (presented in chapter 5) do not require complete

execution of an option before learning about it. Instead, we define learning rules that

use the information obtained after each primitive action executed. In this way, we

take advantage of the underlying MDP structure. The learning algorithms use the

information obtained from the transitions that take place on every time step, in order

to learn about the consequences of all the options that could have caused these tran-

sitions. For instance, our navigation robot can learn about navigating towards the

coffee pot even from the first step it takes in the right direction, without waiting until

it actually reaches its destination. And if the copier happens to be near the coffee pot,

it can learn about navigating toward it while it is actually going for the coffee. There

are two major advantages to this approach. First, the real experience gathered from

the environment is used more efficiently, by learning about many options from the

same data. Second, the options do not have to be executed to completion. This gives

the learning agent the opportunity to consider many hypothetical options, without

losing time to gather information about each of them.

Our learning algorithms are an example of a more general RL idea, called off-policy

learning. Off-policy learning is learning about one way of behaving while following

a different way of behaving. Prior to this work, off-policy learning was used mainly

in control algorithms, such as Q-learning (Watkins, 1989), in which the agent learns

how to behave optimally while taking many sub-optimal, exploratory actions. In this

work, we use off-policy learning in order to learn about many different ways of behav-

ing while following just one way of behaving. This poses a technical problem that has

9

not been studied in depth before: can we use standard RL methods, such as temporal-

difference learning (TD) and eligibility traces, to evaluate the long-term reward of a

given way of behaving from data generated by a different way of behaving by using

TD learning (Sutton, 1988) is one of the central ideas of RL, and it allows a learning

agent to update its predictions about the long-term reward it will obtain based on

the transitions observed on every time step. Eligibility traces are a mechanism that

allows such updates to take into account not only immediate information, but also

information from the more distant future. TD methods with eligibility traces have

been extensively studied in the case in which the agent learns about its current be-

havior. A few algorithms have been proposed for the control problem of learning the

optimal policy, but their theoretical properties are not currently known. In this dis-

sertation, we present the first eligibility trace, temporal-difference, off-policy learning

algorithms for evaluating policies, and prove convergence properties for these algo-

rithms. We apply these algorithms mainly in the context of learning about options,

but they can be applied for solving other RL problems as well.

Another class of algorithms that we propose and investigate concern changing the

options available to the agent in order to obtain better performance. One such change

is based on the simple idea that the agent should not be forced to execute an option to

completion if a better alternative is available. We allow options to interrupt whenever

a more promising option can be initiated. This change can be temporary, during the

actual execution of the options, but it can also be used as part of a new approach

for determining the best termination conditions for a set of options. Another similar

algorithm can be used to change the internal way in which an option picks primitive

actions.

10

1.4 Outline

In chapter 2 we review the literature on modeling physical systems at different time

scales and on describing temporally extended actions in control research, in robotics,

and in artificial intelligence. We discuss in detail the notion of macro-operators from

classical Al and the different approaches to temporal abstraction in MDPs and RL,

because these are especially relevant for our research.

In chapter 3 we introduce options, the main element of our framework for han-

dling temporally extended actions. We show how options can be described explicitly

through fiat or hierarchical representations. We also develop the links between the

options framework and other approaches to temporal abstraction described in the RL

and Al literature.

In chapter 4 we establish the link between options and SMDP theory. In partic-

ular, we introduce predictive models of options, which can be used to model their

consequences for planning purposes, and summarize basic SMDP learning and plan-

ning methods that can be used to approximate the values and models of options.

In chapter 5 we introduce a new class of algorithms for learning about options,

called intra-option methods. Intra-option methods have been designed to make ef-

ficient use of the agent’s experience in the environment. Unlike SMDP methods,

intra-option methods can learn about many options from experience generated by

just one way of behaving. As we mentioned in the previous section, these learning al-

gorithms have significant advantages over SMDP learning methods in terms of speed

and fiexibility.

As we mentioned before, intra-option learning methods are examples of off-policy

learning. In chapters 6 and 7 we study off-policy learning in depth, in a more general

context. We focus on the problem of policy evaluation, in which the agent is trying

to predict the long-term reward it can receive while following a specified way of

behaving. We present the first TD algorithms with eligibility traces for solving this

11

general problem, and we illustrate how these algorithms can be applied for learning

about options.

In chapter 8, we return to the study of the options framework. Whereas in the

rest of the dissertation, we assume that the set of options is fixed, in this chapter we

consider changing the options to obtain better performance. We present algorithms

that allow us to change both the termination conditions and the internal policies of

the options. These changes can be performed on-line during behavior, to improve

performance in particular situations.

In chapter 9 we discuss briefly the acquisition of new options. Options can be

viewed as policies that achieve subgoals; we present one way in which such subgoals

can be formulated that allows options and models to be transferred from one task to

another. We discuss some of the problems that arise during transfer and how these

problems can be avoided.

In chapter 10 we summarize the main contributions of the dissertation and the

open issues.

12

CHAPTER 2

BACKGROUND

Reasoning and learning about temporally extended actions has been studied ex-

tensively in several fields. In this chapter we review the main lines of research on this

topic from classical Al, control theory and reinforcement learning. We also review the

conventional reinforcement learning framework, which is used as a theoretical basis

throughout this dissertation.

2.1 Temporal Abstraction in Classical Al

The problem of using abstraction to facilitate planning has been a key focus of Al

research since its early days (see e.g., Fikes, Hart, & Nilsson, 1972; Newell & Simon,

1972). The key idea was to replace the low-level actions available to solve a given task

by macro-operators, open-loop sequences of actions that can achieve some subgoal.

Different forms of representation have been used for macro-operators. For in-

stance, Sacerdoti (1977; 1974) used procedural nets to represent an action hierarchy.

Each node represents an action both through a “declarative representation” (analo-

gous to a model) and through a “procedural representation” (analogous to an inter-

nal policy). More recently, Levinson and Fuchs (1994) proposed a decomposition of

macros into patterns and weights. The patterns are partially matched with states,

while the weights put an upper bound on the distance to the goal. The pattern-

weight pairs can then be used in a hill-climbing procedure to search for a solution

to the planning task. The idea of having a representation for the way in which the

macro-operator picks actions, as well as some predictive model for its consequences,

is common to many approaches to macro-operators.

13

A key issue in the Al research is learning useful macro-operators, which can be

re-used to solve different planning problems. Korf (1985; 1987) introduced the notion

of independent and serializable subgoals, which provide a decomposition of a plan-

ning problem. Such subgoals can be solved individually, and then the corresponding

macro-operators are combined to solve the larger planning problem. Korf proposed

a generate-and-test approach for constructing the macro-operators. The SOAR sys-

tem used a chunking mechanism, by which action sequences used to solve subtasks

were memorized as macro-operators (see, e.g., Laird, Rosebloom and Newell, 1986) .

Such macro-operators were then stored in a table, and no further modifications were

made. The SOAR research identified a utility problem: a moderate number of macro-

operators speeds up planning significantly, but when too many macro-operators ex-

ist, the cost of choosing the right ones becomes significant, and planning speed slows

down, even below the performance of using low-level actions.

Minton (1988) and Knoblock (1990) addressed the learning of macro-operators in

conjunction with the pre-conditions under which they succeed or fail. Their work

identified conditions under which a solution obtained in an abstracted state and

action space can be indeed executed. Iba (1989) designed a heuristic method for

automatically acquiring macro actions. The heuristic assumes the use of a value

function to determine the “goodness” of each state. Sequences of primitive actions

that lead from one peak in the value function to another peak are grouped together

to propose a macro, which can later be discarded, based on domain-specific filters.

Drescher (1991) advocated a constructive approach in which knowledge about the

world is gradually acquired in the form of schemas, elementary models containing

a context (state), an action and a result (new state). Schemas are built with the

purpose of capturing “regularities” in the environment. Subsequently, they are also

used to construct new, composite actions, by sequencing existing primitives.

14

More recent work focuses on methods that use closed-loop macros, as well as more

reactive ways of executing the plans, and re-planning in case of failure. Pierce and

Kuipers (1994) describe a method for creating an abstraction of the state and action

spaces for an agent operating in a continuous world. The state space abstraction is

based on features constructed from the raw input, using a generate-and-test method.

In this discrete state space, the agent can use primitive actions, as well as open-loop

and closed-loop behaviors. The closed-loop behaviors are constructed by generaliz-

ing the open-loop behaviors, based on information contained in the models of the

primitive actions.

Nilsson (1994) proposed a teleo-reactive planning system in which actions with

variable duration (potentially whole behaviors) are represented through their pre-

images and their post-conditions, expressed in a logical form. These actions are used

to construct plans, represented as trees with the goal state as the root. Plan execution

is reactive, and the course of action can be changed based on the conditions in the

environment. Ryan and Pendrith (1998) proposed a subsumption architecture in

which low-level behaviors are learned in parallel, using reinforcement learning, and a

teleo-operator approach is used for higher-level planning.

Some of the recent research even takes into account the assumption of a stochas-

tic, changing environment, in which the plans have to be executed. Probabilistic and

statistical methods are used to deal with such environments. For instance, Brafman

and Moshe (1997) advocate the use of “mental models”, a form of behavior modeling

that includes beliefs, value functions and different decision criteria to improve over

future behavior. Oates and Cohen (1996) use a statistical methods to detect corre-

lations between variations appearing in multiple streams of data; this technique can

potentially uncover the effects of actions over different time periods. Rosenstein and

Cohen (1998) use dynamic maps as models for behaviors, both for prediction and for

recognition purposes.

15

A line of research related to Al planning is qualitative reasoning about physical

systems (see e.g., De Kleer and Seely Brown, 1984 ; Kuipers, 1979; De Jong, 1994;

Say & Kuru, 1996) in which qualitative descriptions, based on discrete variables

and events, replace differential equations. In this case, both spatial and temporal

abstraction are used to ensure the desired degree of generality. These qualitative

descriptions are designed a priori in order to capture the relevant dynamics of the

system.

2.2 Temporal Abstraction in Control

Multiple time scales arise naturally in many physical systems, ranging from en-

sembles of mechanisms to fluid flows and plasma evolution. Therefore, the modeling

and control of such systems have been addressed both by mathematicians and by

engineers (see, e.g.. Brackbill & Cohen, 1985). Multiple scale systems are often char-

acterized by a fast motion superimposed over a slow motion. If the two motions do

not influence each other, then the fast motion can be modeled and then eliminated

to analyze the slow motion.

Multigrid methods for solving partial differential equations (see e.g. McCromick,

1989) address the issue of numerically solving partial differential equations for phys-

ical systems with large variations in scale. These methods define the resolution of

the discretization adaptively, for different regions, depending on the speed of the

variations.

In the control literature, the problem of controlling a system at multiple time

scales has been addressed by singular perturbation methods (Kokotovic, Khalil &

O’Reilly, 1986; Naidu & Rao, 1985 ; Naidu, 1988). These methods assume that the

physical system to be controlled has state variables that have fast and slow variations

respectively. Initially, the slow variations are ignored, and they are only taken care of

16

after the fast variations have been accounted for. Each type of variation is modeled

separately. This leads to a form of hierarchical control.

The control of hybrid systems represents another research area where temporally

extended actions and models have been used extensively. Hybrid systems (see, e.g.

Grossman et. al, 1993; Brockett, 1993; Godbole, Lygeros and Sastry, 1995) contain

both digital and analog devices that interact with each other. The interaction takes

place through some interface, which is able to translate the continuous state of the

analog devices into “events” that can be handled by the digital devices. Most of the

research in this area is looking at ways of automatically representing the events that

are important for the system and the separate regimes in which it should be controlled.

However, most of these methods are restricted in the sense that they assume extensive

knowledge about the physical system to be controlled, such as the variables that are

relevant for certain functioning regimes, and the differential equations underlying the

system. This assumption is often not true for the kinds of tasks tackled by artificial

intelligence. In particular, many reinforcement learning methods are designed to solve

problems for which no models are available.

2.3 Reinforcement Learning (MDP) Framework
In this section we briefly review the conventional reinforcement learning framework

of discrete-time, finite Markov decision processes, or MDPs, which forms the basis

for our extensions to temporally extended courses of action. In this framework, a

learning agent interacts with an environment at some discrete, lowest-level time scale

t = 0,1, 2,.... On each time step the agent perceives the state of the environment,

St G S, and on that basis chooses a primitive action, at G As^^ In response to each

action, at, the environment produces one time step later a numerical reward, n+i, and

a next state, It is notationally convenient to suppress the differences in available

actions across states whenever possible; we let A = U,s-:s As denote the union of the

17

action sets. If <S and A, are finite, then the environment’s transition dynamics are

modeled by one-step state-transition probabilities,

= Pr{st+i = s' I St = s, at = n},

and one-step expected rewards,

= E{rt+i I St = = o},

for all s,s' e S and a G (it is understood here that = Q ior a >ls). These two

sets of quantities together constitute the one-step model of the environment

The agent’s objective is to learn an optimal Markov policy^ a mapping from states

to probabilities of taking each available primitive action, t t : S x A [0,1], that

maximizes the expected discounted future reward from each state s;

y’^(s) = E {rt+i -b -frt+2 + I'^rt+i + • • • s* = s, t t }

= E {rt+i + 7y"(st+i) St = s, t t }

= E7r(s,n)U + 7Ep:,,yV)
oeA L s'

(2-1)

(2.2)

where 7r(s,a) is the probability with which the policy t t chooses action a G ^s in

state s, and 'y E [0,1] is a discount-rate parameter. This quantity, V^^s}, is called the

value of state s under policy t t , and V”' is called the state-value function for t t . The

optimal state-value function gives the value of a state under an optimal policy:

V*(s) = niaxb’^(s)

= maxE {rt+i + 7y*(st+i)
aEAs ''

St = s,at = a

18

s'
(2.4)

Any policy that achieves the maximum in (2.3) is by definition an optimal policy.

Thus, given V*, an optimal policy is easily formed by choosing in each state s any

action that achieves the maximum in (2.4). Planning in reinforcement learning refers

to the use of models of the environment to compute value functions and thereby to

optimize or improve policies. Particularly useful in this regard are Bellman equations,

such as (2.2) and (2.4), which recursively relate value functions to themselves. If we

treat the values, y’^(s) or V*(s), as unknowns, then a set of Bellman equations, for

all s e 5, forms a system of equations whose unique solution is in fact or V* as

given by (2.1) or (2.3). This fact is key to the way in which all temporal-difference

and dynamic programming methods estimate value functions.

For learning methods, of particular importance is a parallel set of value functions

and Bellman equations for state-action pairs rather than for states. The value of

taking action a in state s under policy t v , denoted a}, is the expected discounted

future reward starting in s, taking a, and henceforth following t t :

a) = E {r,+i + 7r,+2 + 7\+3 H----- s, = s,a, = a.Tr j-

s'

This is known as the action-value function for policy t v . The optimal action-value

function is

Q*(s,a) = max(5’^(s,a)
TT

= r: + 75:pt.maxQ-(3',o').
s'

19

Finally, many tasks are episodic in nature, involving repeated trials, or episodes,

each ending with a reset to a standard state or state distribution. In these episodic

tasks, we include a single special terminal state, arrival in which terminates the current

episode. The set of regular states plus the terminal state (if there is one) is denoted

Thus, the s' in in general ranges over the set «S+ rather than just 5 as stated

earlier. In an episodic task, values are defined by the expected cumulative reward

up until termination rather than over the infinite future (or, equivalently, we can

consider the terminal state to transition to itself forever with a reward of zero).

2.4 Prior Work on Temporal Abstraction in Reinforcement
Learning

MDPs have emerged as useful models for stochastic planning and control problems.

The ability to reason at the level of temporally abstract actions is key to speeding up

the learning and planning techniques for MDPs.

Singh (1992a; 1992b) introduced hierarchies of “abstract actions”, which achieve

different tasks, as well as a hierarchy of models, with variable temporal resolution.

This research is one of the sources of inspiration for the work presented in this disser-

tation. Singh uses a special purpose gating architecture to switch between abstract

actions, and specialized learning algorithms for this architecture. We provide a very

general framework, which allows abstract actions to be treated similarly to primitive

actions for the purposes of learning and planning in an MDP.

Another source of inspiration for this research is the work of Kaelbling (1993b;

1993a), who proposed the idea of using subgoals both in order to learn sub-policies,

and in order to collapse the state space. The initial approach was to learn paths to all

the possible goals in an environment. Moore, Baird & Kaelbling (1998) extend this

work by describing an efficient way to determine useful subgoals. The idea of learning

paths to many subgoals in parallel from the same real experience is also used in the

20

intra-option algorithms described in chapter 5, but our algorithm is more general,

and we prove convergence properties for it.

The starting point of this research is the work on modeling MDPs at multiple

temporal scales (Sutton & Pinette, 1985; Sutton, 1995). Sutton (1995) introduced

multi-time models for modeling a policy at several different time scales. But this work

was limited to learning models for just one policy, while behaving according to that

policy. In this dissertation we develop algorithms that learn models for many different

options, even if the data comes from an unrelated behavior. We also deal with the

complete control problem, in which we do not only evaluate models for options, but

we also use them in making decisions about which options should be executed.

Our work is also related to the recent work of Parr (1998; Parr & Russell, 1998) on

hierarchical abstract machines and Dietterich (1998) on MAXQ learning. These are

two frameworks for learning about temporally extended actions that are very related

to options. The common idea of all these frameworks is that a temporally extended

action can be defined as a way of behaving, together with a termination condition.

The frameworks differ in the details of how a way of behaving is represented. We

take this idea very literally, and we represent an extended action (option) as a policy,

together with a (stochastic) termination condition. This is a very simple and gen-

eral formulation, which allows us to develop algorithms for improving options, and

for learning about many options in parallel. Parr uses finite-state machines to pro-

vide constraints on the internal policy of an extended action. Dietterich uses value

functions to represent the internal policies of extended actions. Each value function

depends only on a subset of the variables used to describe the state of the MDP, and

all value functions are learned at the same time. In chapter 3 we show how options

can be used to represent extended actions expressed as HAMs or MAXQ hierarchies.

All of these recent frameworks recognize that temporally extended actions together

with an MDP define a higher-level Semi-Markov Decision Process (SMDP). SMDPs

21

have been used as a standard formalism for the study and control of discrete-event

dynamical systems (Cassandras, 1993; Puterman, 1994). The relationship between

our work and SMDPs is explored in detail in chapter 4.

A related line of research connects temporal abstraction and state abstraction,

by constructing abstract representations along both dimensions at the same time.

Feudal RL (Dayan & Hinton, 1993) is a strictly hierarchical technique, which re-

cursively partitions the state space and the time scale from one level to the next.

Several approaches use temporal information to determine state representations that

facilitate learning. The successor representation (Dayan, 1993) represents the state

of a reinforcement learning system by the states that it can reach. McCallum (1995)

uses utile suffix memory to represent the state space in environments with hidden

information. Wiering and Schmidhuber (1998) introduced HQ-learning, a method for

temporal and state abstraction in Partially Observable MDPs (POMDPs).

Several other learning algorithms have been developed for special classes of MDPs

and value function representations. For instance, Wixson (1991) uses a variation of

Q-learning with a modular agent architecture, which allows switching among actions

that achieve different subtasks. The approach is illustrated in an active vision task.

Ring (1994) uses two different methods for constructing “behavior hierarchies”.

The first method constructs behaviors as units with randomly chosen weights in a

neural network. The second approach, the temporal transition hierarchy, constructs a

neural network representing the behaviors at the lowest level, and the policy choosing

among them at the higher level.

Karlsson (1997) uses policies operating in subsets of the state space for solving sub-

tasks in a reinforcement learning system, but these policies are not executed serially.

Instead, choice of primitive action to take is base on weighting the recommendations

of several policies.

22

Meuleau e1 al. (1998) introduce a form of MDP decomposition in which loosely

coupled MDPs are first decomposed into several value functions, corresponding to

different tasks, and then the decision is made based on the state in each separate

MDP. Hauskrecht et. al (1998) demonstrate a method through which an MDP can

be modified, by reducing the number of states, using the framework of options.

Recent research is also targeted towards finding temporally extended actions au-

tomatically. Drummond (1998) proposes a system that combines RL and case-based

reasoning, by re-using previously learned pieces to compute the value function for

new tasks. The most interesting aspect of this work is the method for determining

the pieces of the value function that can be transferred to new tasks. A computer

vision technique called a “snake” is used to detect big jumps in the value function.

These jumps are used to define the boundaries between different pieces.

Thrun and Schwartz (1995) describe a method that attempts to learn temporally

extended actions that are re-usable when the goal changes. The method constructs

simultaneously the policy that chooses among the extended actions, the policy inside

each of these actions and the region of the state space in which each action is appli-

cable. McGovern (1998), Digney (1996) and Andre (1998) also propose methods for

automatically acquiring macro-actions.

Hierarchical approaches to RL have been successfully integrated with behavior-

based robotics (Brooks, 1986) in several large scale applications (see e.g. Mataric,

1997; Kalmar, Szepeszvari & Lorincz, 1997; Stone & Veloso, 1998; Asada et. al, 1996;;

Uchibe et.al, 1996; Digney, 1996). Mahadevan and Connell (1992) demonstrated the

success of a subsumption-style architecture in which simple behaviors are acquired

using RL and then are combined (by a pre-wired coordination scheme) to solve a

complex task. Lin (1993) also used the decomposition of a complex task into smaller

subtasks, each having its own limited subdomain in the state space and its own reward

23

function. A robot can learn a behavior for solving each subtask, and then use RL at

the higher level as well in order to determine the best combination of sub-behaviors.

Dorigo and Colombetti (1994) used a learning classifier system, implemented using

a genetic algorithm, and RL to determine the internal policies of behaviors that

achieve subtasks. Switching among subtasks is determined by the internal (control)

state of the agent.

Huber & Grupen (1997) use RL and a hybrid discrete event dynamical system to

learn walking gaits for a robot. At the low level, the robot uses a set of pre-existing

controllers that can generate collision-free motion and optimize forces and posture. At

the higher level, reinforcement learning is used to determine which of the controllers

should be applied, depending on a set of discrete variables describing the state of the

system. A similar approach is used by Coelho et.al (1998) to learn how to control an

agent in a non-Markovian environment.

All these robotic applications use controllers in order to learn efficiently in very

complex domains. These controllers can be viewed as temporally extended actions. In

this dissertation we develop the theory for learning and planning with such controllers.

24

CHAPTER 3

OPTIONS

In this chapter we introduce options, the main element of our framework for tem-

poral abstraction. The term “options” denotes our generalization of primitive actions

to include temporally extended courses of action. An option is a way of behaving - a

closed-loop policy for taking action. Options are initiated, make decisions regarding

which actions to take for some period of time, and then terminate. When an option

terminates, the agent selects another option to be executed. Examples of options in-

clude complex courses of action, such as picking up an object or traveling to a distant

city, as well as primitive actions, such as joint torques and muscle activations.

In this chapter we formalize these intuitive ideas, by defining what an option is

and showing how an option can be specified. We focus on two kinds of representations

for options: a flat representation, in which an option chooses among actions, and a

hierarchical representation, in which an option chooses among other options.

The representation of an option tells the agent how the option is executed, but it

has no information about how good an option is. An agent needs information about

the long-term reward it can expect from each option in order to decide which options

to choose. Therefore, we define value functions for options and policies over options,

analogous to the usual value functions for actions and policies over actions. In the

following chapters we will focus on algorithms for efficiently computing such value

functions.

25

3.1 Policies and Options

In reinforcement learning, a way of behaving is represented formally by a policy (as

defined in Section 2.3). Usually a policy specifies a distribution over primitive action

choices based only on the current state of the environment. Such policies are called

Markov. In general, policies can be non-stationary, which means that they make

decisions based on all the states, actions and rewards observed since the beginning of

time. In order to handle temporally extended courses of action, we use a special case

of non-stationary policies that has two specific characteristics.

First, we allow a policy to specify actions based on all the events since it was

initiated. These events are contained in the partial history of the agent. A partial

history ht^T is the sequence of all states, actions and rewards from time t up to time

T>t-.

ht,T (st, at, rt+t, st+-i,.. . St }. (3.1)

For ease of notation, we denote ht^t = (st) by Sf We denote by H the set of all

possible partial histories, and by Ht the set of all possible partial histories from time

t on.

Second, we introduce a reset action t , which represents the decision to terminate

a policy. With these extensions, we can define an option as follows:

Definition 1 (Option) An option o is a mapping from partial histories and actions

to probabilities of taking each action after each partial history:

O'.H^ (4u {t })-> [0,1], (3.2)

where

o^fsta,.. .St}, a) = Pr{at = a | ois initiated at to, {stg, ■ ■ ■ Sj)}

For partial histories containing only one state, the probability of the reset action t

has to be either 1 or 0: o{st, t } = 1 or o{st, t } — 0, \/st E S.

26

Because an option specifies a probability distribution over actions after each partial

history, the probabilities of all actions must sum to one:

o(ht^T, o) = 1, e H
aeXu{r}

In episodic tasks, the termination of an episode also terminates any option that could

be executed at that time: t) = 1 for all partial histories ht,T for which s t is

a terminal state of the MDP. We will refer to the representation of an option as a

probability distribution over actions (3.2) as an explicit representation of the option.

For now, we assume that the execution of an option is call-and-return. An option

o can be initiated in any state s G 5. If o is initiated in s at time t. then the agent

picks an action at according to the probability distribution o(s, •). If at = t , the

option o terminates immediately, on the same time step. If at E A, the agent receives

one time step later a reward and transitions to a new state At time t + 1,

the agent picks an action according to the probability distribution o{ht^t+i, •)•

If Ot+i = r, the option o terminates at t + 1. If Ot+i G .4, the agent receives one

time step later a reward rt+2 and transitions to a new state St+2, and so on. In later

chapters we will investigate other models of execution as well.

Primitive actions a G A are a special case of options. Each action a corresponds

to an option that selects a everywhere a is available, and that always lasts exactly

one step:

o(s, a) = 1 and o((s, a, r, = 1, Vs, r^ s' such that a G and p^g, > 0

o(s, t) = 1, Vs such that a

Because the primitive actions are options, the agent’s choice at each decision point

is entirely among options, some of which persist for a single time step, others which

are temporally extended.

27

Another important special case of options is Markov options (Sutton et al., 1998a;

Sutton et al., 1999a).

Definition. 2 (Markov option) An option is said to he Markov if

o{h, o) = o(s, o),

for all states s e S, for all actions a e {t } and all partial histories h E Ti that

end in state s.

Markov options include the usual Markov policies used in MDPs. An option corre-

sponding to a Markov policy never terminates: o{s, t) = 0, Vs E S.

Timeout options are options that terminate after a fixed number of time steps.

These options are not Markov because the decision to take the reset action t depends

on the length of the partial history since the option was initiated, not on the state of

the system. Such options are very useful for real-time systems in which execution of

a controller has to be aborted after some time has elapsed even if a target state has

not been reached.

Given a set of options O, one can define policies over options in a way similar

to the definition of conventional policies over actions. When initiated in a state, st,

the Markov policy over options p : 5 x O [0,1] selects an option o E O according

to probability distribution /z(sf, •)• The option o is then initiated in determining

actions until it terminates in Stj^k, at which point a new option is selected, according

to //(sj+fe, •), and so on. In this way a policy over options, p, determines a conventional

policy over actions, or flat policy, re = f(p}. Henceforth the unqualified term policy

is used for policies over options, which include fiat policies as a special case.

Note that even if a policy is Markov and all of the options it selects are Markov, the

corresponding flat policy is unlikely to be Markov if any of the options are temporally

extended. The action selected by the flat policy in state St depends not just on st

28

but on the option being followed at that time, and this depends stochastically on the

partial history hto,t since the policy was initiated at time to-

3.2 Specifying Options
Explicitly specifying the entire probability distribution (3.2) for an option can

be cumbersome and confusing, especially in large state and action spaces. In this

section we introduce two alternative ways of specifying an option. The first way is

by specifying a pre-condition, a way of picking actions, and a post-condition. In this

case, the specification is still flat, because the three elements are given in terms of

states and actions. The second way is to deflne a multi-level hierarchy. We show that

no special-purpose methods are needed to handle the fully hierarchical case. These

two ways of specifying options are potentially more clear and concise than specifying

the option explicitly as a probability distribution over partial histories and actions.

3.2.1 Flat Options

A flat option representation is a triple (1,7r,/3), where:

• T C <S is the initiation set, containing the states in which the option may be

initiated

• TT : X A -> [0,1] is the internal policy, which determines the way in which the

option picks primitive actions

• fl : 7/ —> [0,1], is the termination condition, which gives the probability that

the option terminates after each history.

In our previous work (Sutton et al., 1998a; Sutton et al., 1999a) we have used the

term semi-Markov option to denote options that are represented in this way. If t t and

fl make decisions based only on the current state, the option is a flat Markov option.

A flat option {I, %, fl) can be initiated in state s if and only if s e T. If the op-

tion is initiated, then actions are selected according to t t until the option terminates

29

stochastically according to /?. In episodic tasks, termination of an episode also ter-

minates the current option (i.e., /3 maps the terminal state to 1 in all options). More

precisely, if the option is initiated at time t, then the agent selects action at according

to the probability distribution 7r(s<, •)• Then the agent receives a reward n+i and

transitions to a new state At time t -I- 1, the option terminates with proba-

bility j3{ht,t+i} or continues, with probability 1 - ^{ht,t+r)- If the option continues,

then a new primitive action o<+i is chosen according to the probability distribution

•), and so on. Note that options specified by a fiat representation always take

at least one time step before terminating. The general definition of options (3.2) does

not impose this restriction.

As an illustration for the flat representation of options, consider an option for a

mobile robot to dock with its battery charger. The option might be defined only

for states 1 in which the battery charger is within sight. A hand-crafted controller

TT could be initiated in those states and direct the robot during the operation. The

termination condition would be 1 outside of T and when the robot is successfully

docked.

The initiation set and termination condition of an option together restrict its

range of application in a potentially useful way. In particular, they limit the range

over which the option’s policy has to be defined. For Markov options, for instance,

it is natural to assume that all states where an option might continue are also states

where the option might be started (i.e., that {5|/3(s) < 1} C T). In this case, t t needs

to be defined only over T rather than over all of «S.

Limiting the initiation set can also limit the number of options that need to be

considered in every state in which the agent has to make a choice. Given a set of

options, their initiation sets implicitly define a set of available options (Ds for each

state s G 5. Having a small number of options in the set Os, Vs, is a way of avoiding

the increase in deliberation cost due to the use of options.

30

The flat representation of options has the same expressive power as the explicit

representation, as shown in the following theorem:

Theorem 1 For any flat representation (T, 7r,/3), there exists a unique option o

whose execution from all states s E S produces the same probability distribution over

partial histories for any MDP. Conversely, for any option o, there exists a unique

flat representation {X, t t , whose execution for all states s E 5 produces the same

probability distribution over partial histories for any MDP.

Proof: For the first part, we consider that {X, t t , fl} is given and construct a mapping

o : H X A U {t } [0,1] that produces equivalent choices of action. Let h E H be

the current history since option o started. Then we can define o as follows:

o(s, t) = 1.,\/s^X

o{h,T) — fl{h}

o{h,aj} = (1 - fl{h)}7r{h,aj},^aj E A

We show that o and lfL,T[,fl} produce the same distribution over partial histories

by induction over the history length k. For k = 0, both representations will stop

immediately for states s ^X and make the same choices of action by construction for

s e X.

Assume that o and (T, t t , fl} produce the same distribution for all partial histories

up to length k. Given a partial history h of length k, ending in by construction o

and fX,Tx,fl} will make the same choices of action. Then the probability of the next

partial history is:

Pr{(/i, Oj, rffl s'} 1 h} = o{h, aj}p‘fl^, = (1 - fl{h}}Tr(h, aflp^,

Pr{sjfe I fi} = o(h,T} = fl{h}

31

Pr{s/. \h} = l3{h} = o{h,T}

This proves the induction step and concludes the theorem, o

3.2.2 Hierarchical Options

The explicit and flat representations of options provide one level of abstraction on

top of the primitive actions. So far, we have considered that an option makes choices

among the primitive actions and the reset action. In this section we deflne hierarchical

options, which make their choices among other options. This extension is natural,

given the uniform treatment of primitive actions and options in our framework. As

we show in this section, no special-purpose methods are needed to handle hierarchies

with multiple levels of options.

Conversely, assume that the explicit mapping o : H x A U {t } [0,1] is given.

Then the corresponding flat representation can be constructed as follows:

Again, in order to prove that o and (T, t t , induce the same distribution over partial

histories, we use induction over the length of the history k. For A: = 0, by definition

the two representations stop immediately in the same states. Assume that o and

(I, TT, produce the same distribution for all partial histories up to length k. Given

a partial history h of length k, ending in s^, the probability of the next partial history

is:

/3(h) = o(h, T),Vhe7Z

7r(h, oj) = g 7/ s^jch that o(h,T) 1

X OifT/j 'TJ

32

Let O be a set of options. A history over options xt,T is a sequence of states,

options and rewards:

Xt,T = {stOtrt+kSt+k ■ ■ • s t Ot),

where oy is optional and denotes the option chosen at sy (the most recent choice

point) and which is currently executing. Note that, given a partial history ht^Ti

there can be many different histories over options Xt,T that could have generated htp'.

Conversely, a history over options can lead to many corresponding partial histories,

if the options or the environment are stochastic. Given a set of options (9, we denote

by Ho the set of all possible histories over options.

A hierarchical option representation over a set of options O is a triple o = (T, /x, /3)

where T C 5 is an initiation set, p, : Ho [0,1] is an internal policy over options,

and : Ho [0,1] is a termination condition.

For any hierarchical representation of an option, there exists an equivalent ex-

plicit representation, i.e., a representation which generates the same distribution over

partial histories. We show this formally later in this section.

The definition of hierarchical options mimics exactly the definition of fiat options

from the previous section. The main difference is that the internal policy chooses

among general options instead of only among primitive actions. We can also define

hierarchical Markov options, for which the policy and the termination condition take

into account only the current state, rather than the whole history since the initiation

of the option. Later in this chapter we will show that the hierarchical representation

of options has the same power as the explicit representation.

The hierarchical option representation is extremely general, but somewhat im-

practical, because it keeps track of complete history information, which is extremely

expensive. For practical purposes, histories are either limited to some small duration

(as in the case of Markov options), or they are memorized in some parsimonious way

(e.g. through sufficient statistics).

33

Several other hierarchical representations for temporally extended actions have

been proposed in Al and RL. Now we will show how the action representations they

propose can be mapped into hierarchical options:

1. Macro-operators have been extensively studied in classical Al (see e.g. Fikes,

Hart & Nilsson, 1972; Korf, 1985; Laird, Rosenbloom & Newell, 1986; Knoblock,

1990). A macro-operator is an open-loop sequence of other macro-operators.

The initiation of a macro operator depends on the state of the system, but the

action decisions during the execution of the macro operator only depend on the

macro operators already executed. In our framework, a macro-operator can be

viewed as a hierarchical option with an open-loop policy for selecting among

the available sub-options. The history information contains only the options

executed, without any details about the intermediate states or the rewards

received.

2. Hierarchical abstract machines (HAMs) (Parr & Russell, 1998; Parr, 1998) are

hierarchical representations in which the action choice at each level is con-

strained by a finite state machine (or a “program”). The machines on one level

can call programs from a lower level. If a machine completely specifies the

choices of action, it can be viewed as an option, for which the internal policy is

specified by the corresponding finite state machine. Instead of an explicit com-

plete history, each machine keeps track of several internal state variables, in

addition to the environment variables. These variables represent efficiently the

part of the history that is relevant for the decision-making process. But HAMs

allow a user to specify just constraints over the policies, without specifying the

precise action choices. In this case, just the policy that the HAM finds after

learning can be represented as an option.

34

3. MAXQ (Dietterich, 1998) is an alternative framework for specifying a hierarchy

of options. Each state is represented by a vector of state variables, and each

option takes into account only the variables that are relevant for its level. It is

the task of the system’s designer to specify which variables should be taken into

account at each level. Options at each level are Markov and they are acquired

using standard reinforcement learning techniques, such as Q-learning.

Hierarchical options make their choices based on a history over options. It is not

immediately clear that such options do not need to be treated using special com-

putational methods. We will now show that for any hierarchical option, there is an

explicit representation that generates the same distribution over histories. This prop-

erty enables us to treat hierarchical options in the same way as flat options, without

designing special-purpose methods. Executing hierarchical options involves two basic

operations: sequencing (composition) of two or more options, and stochastic choice

from the given set of options. We now show that for each of these basic operations,

there is an explicit representation that generates the same history distribution.

Lemma 1 (Sequencing) For any two options Oi and 02, and for any MDP, there

exists an option o whose execution from any state s e 5 produces the same distribution

of histories as the execution of Oi in s, followed by the execution of o^.

Proof: Let ht,T € 7/ be a history obtained by executing O] followed by 02. If no

additional information is available about the option that is executing, then in general,

two situations are possible:

1. option 01 might still be executing, in which case it is still picking primitive

actions;

2. option 01 terminated at some intermediate time step k and 02 has taken over

from there.

35

Using this observation, option o can be specified as follows:

T
o(ht,T,aj) = oi{ht,T,aj')+ ^oi{ht,k,r}o2{hk,T,aj)yaj E A

k=t
T

o(,ht,T,r} = ^0i(h<,fe,T)o2(hfc,T,T)
k=t

By this construction, the distribution of actions after any given history is the same

for o as it is for the execution of oi followed by 02. If two options generate the same

action choices after each history, then they will generate the same distribution over

histories, by the same induction argument as the one used to prove theorem 1. o

Corollary 1 For any sequence of options oi... and for any MDP, there exists

an option o whose execution from any state s e 5 produces the same distribution of

histories as the execution of the given sequence starting in s.

Proof: The proof is immediate by induction over n. The base case n = 2 is proven

in lemma 1. For the induction step, consider the set of options Oi,... o„, On+i. From

the induction hypothesis, the sequence Oi... can be represented explicitly using an

option o'. Then from theorem 1, the sequence of o', o„+i can be represented explicitly

by some option o, which proves the corollary, o

Lemma 2 (Stochastic choice) Let O = {o^... On} be a finite set of options and

ZeZ // : 5 X (9 —> [0,1] be a Markov policy that chooses from the options in O. Then

there exists an option o such that, for any MDP, the execution of o starting from any

state s G S generates the same distribution over histories as a single choice of option

performed in s according to distribution p{s, •).

Proof: Let h G H be the history over primitive actions since p was initiated. Then

0 should take into account the likelihood of each of the possible options being active,

36

given the observed history, and average the suggested choices of action from each

option. Formally, o can be defined as follows:

o{h,T) = Pr{oi\h}oi{h,T)
OiEO

o{h,aj) = '^PT{aj \oi,h} = '^Pr{oi\h}oi{h,aj}
OiEO OiEO

Because h has been observed, using Bayes rule, we have:

Pr{oj I fi} = //(s,Oi)Pr{h | oj,

where s is the first state of h. The second factor can be computed immediately from

Oi and from the dynamics of the environment.

By this construction, o makes the same action choices for any history as applying

/J. for one step. By induction on the length of the history, analogous to theorem 1, o

and ij, will generate the same distribution over histories, o

Based on these results, we can show that any hierarchical option has an explicit

representation:

Theorem 2 Let {I, //, be a hierarchical option that chooses from the set O =

{oi.. .o„}. Then there exists an explicit representation o such that, for any MDP,

the execution of o from any state s S 5 produces the same distribution of histories as

the execution of (T, t v , starting in s..

Proof: The proof is based on the results and proof techniques used in lemmas 1

and 2. Consider a history htpr- We have to determine all the possible histories over

options that could have generated this real history in the environment. Such histories

can have from one option to at most T — t options in them, and we have to consider

37

all possible breakdown points. So the choice of o for each history can be written as a

sum of probabilities, taking into account all these possible breakdown points:

k=0
T—t

o(ht,T,aj) = Pk(hf:r.aj''),
k=0

where Pk{ht,T,T) and Pk{ht^T,aj} denote the probabilities of taking t and aj respec-

tively after ht^r, assuming that k reset points have occurred between t and T.

Let us consider first the situation in which no breakpoint occurred yet (the first

option picked by o is still executing). This is actually the stochastic choice case

presented in lemma 2, so Pq can be expressed as follows:

Po(hi,r,a) = Pr{oj | a), Va E A
Oieo

Po(ht^T,T) = Pr{oi I
Oieo

where rt,T is the total discounted reward observed during the period from t to T:

f't,T = Vt + ... + y'^~^rT. Based on the proof of theorem 1,

Pr{oi I ht,T,/J.} = n(st,Oi)Pr{ht,T | oj.

Now consider the case in which one termination occurred between t and T. In

this case, the probabilities Pi can be determined analogously to lemma 1:

T
Pi{ht,T,a) = Pr{(sfOin,fcSfcOj) I

fc=t+i 0j,0jec>

T
Pi{ht^T,'T) — Pr{(sfOjri,/;SfeOj) \ k‘}oj[hk,TiT)^((stOirt^kSkOjrk,TST')')

fe=i+l Oj,OjeC>

38

The conditional probability of the history over options can be decomposed as follows:

Pr{{stOiVt^kSkOj} I = Pr{oi I Kk, /^}oi{ht,k, T)Pr{oy | {stOirt,kSk}, hk,T^ A*}

= Pr{oi I ht^k, fJ'}oi{ht,k,T}i2({stOirt^kSk}, Oj)Pr{hk,T | oj}

The same unrolling technique can be use for computing any term Pk-

By this construction, and by lemmas 1 and 2, o produces the same distribution of

histories as o

Corollary 2 ylra?/ hierarchical option o choosing from a given set of hierarchical op-

tions O = {oi... o„} can be represented explicitly by a mapping o : H x X U {r} —>

[0,1].

Proof: Based on theorem 2, we can successively “flatten” each level of hierarchical

options, providing the respective explicit representation. The corollary is immediate

by induction on the number of levels in the hierarchy, o

This theoretical result shows that hierarchies of arbitrary depth can be flattened,

and therefore treated in the same way as flat options. Therefore, from now on we

will use the general term “options” regardless whether the representation is flat or

hierarchical. We will present our theoretical results for the explicit representation of

options, and indicate any specializations for flat or hierarchical representations.

3.3 Value Functions for Options

So far we have described how options can be specified and executed. But knowing

how an option is executed is not enough for an agent that is trying to make decisions

about which options it should choose. In order to make decisions, the agent needs

39

long-term predictions about the consequences of behaving according to different poli-

cies over options. Now we generalize the usual state value and action value functions

to apply to options and policies over options.

Let ^’(Tr, s,t) denote the event of a fiat policy t t being initiated in s at time t. It

is also useful to define 5(0,the event of an option o continuing from history h

at time t, where h is a history ending in st- In continuing, actions are selected as if

the history had preceded Sf That is, at is selected according to o(h, •)• If the action

chosen is not the reset action, then the agent receives a reward n+i and transitions

to a state On the next time step, the action choice will be made according to

o{{hatrt+ist+i},-}.

Definition 3 The value of a state s € «S under a flat semi-Markov policy t t is the

expected return if the policy is initiated in s:

V'^{s} = E\rt+]_^‘yrt+2+'y‘̂rt+3-\----- 5(7r,s,t)}. (3.3)

Definition 4 The value of a state under a policy over options p is the value of the

state under the corresponding flat policy:

(3.4)

It is natural to generalize action-value functions to op/wn-value functions. Given

an option o and a policy over options p, let op denote the policy that first follows o

until it terminates and then starts choosing according to p in the resulting state.

Definition 5 The value of taking option o in state s G T under policy p is:

Q^{s,o) = E\rt^i+'yrt+2 + T‘̂ rt+zA---- 5(o/z,s,t)} (3.5)

40

Finally, there are generalizations of optimal value functions to options and to

policies over options. Of course the conventional optimal value functions V* and Q*

are not affected by the introduction of options; one can ultimately do just as well with

primitive actions as one can with options. Nevertheless, it is interesting to know how

well one can do with a restricted set of options that does not include all the actions.

For example, in planning one might first consider only high-level options in order to

find an approximate plan quickly. Let O denote a restricted set of options and let

11(0) be the set of all policies selecting only from options in O.

Definition 6 Given a set of options O, the optimal value function for 0 zs;

1^(5) max V^(s}Men(c>) '■ (3.6)

Definition 7 Given a set of options O, the optimal option-value function for 0 is:

Qo(s,o)= max (5^(s,o) (3.7)

Definition 8 Given a set of options, O, a corresponding optimal policy, denoted pfj,

is any policy that achieves V^, i.e., for which V^o(^s) = lo(s) in all states s E S.

S.4 Conclusions

In this chapter we defined several important components of our framework for

temporal abstraction in reinforcement learning. We defined options, which are es-

sentially closed-loop, stochastic ways of behaving that terminate. Options can be

temporally extended, and their choices of action can depend on the whole history of

events since the option was initiated.

We defined three ways of specifying options. The explicit representation and the

flat representation describe the options in terms of their choices of primitive actions.

41

In the hierarchical representation, options choose from a set of other options. The

hierarchical representation of options subsumes other representations for temporally-

extended actions that have been introduced in Al and RL, such as macro-operators,

hierarchies of abstract machines and MAXQ hierarchies. We showed that any hierar-

chy of options can be mapped into a flat option. This result enables us to treat both

representations in a uniform way, both for theoretical and for practical purposes.

Finally, we deflned value functions for options and policies over options. These

value functions are analogous to the state and action value functions used in RL. Es-

pecially important are the optimal value functions for a set of options; knowing these

value functions allows an agent to behave optimally while choosing from the available

options. In the next two chapters, we focus on planning and learning algorithms that

allow an agent to compute efficiently such optimal value functions.

42

CHAPTER 4

SMDP METHODS FOR LEARNING AND PLANNING
WITH OPTIONS

The options framework presented in the previous chapter allows us to specify

temporally extended courses of action that an agent can execute. But knowing how

an option is executed is not enough in order to reason about it, or to use it effectively.

We need information about the consequences of options, and we need algorithms that

allow us to plan ways of behaving using options.

In this chapter we address the issue of learning and planning with options. In

particular, we present a class of learning and planning methods called SMDP meth-

ods. These methods are adapted from the theory of Semi-Markov Decision Processes

(SMDPs), which are used to model continuous-time, discrete-event systems. Our key

observation is that by introducing options in an MDP we obtain an SMDP. Then

we can define models of options, analogous to the models of SMDP actions, and we

can use all the learning and planning methods available in SMDPs. In this chapter

we illustrate how using SMDP methods and options results in faster learning and

planning compared to the usual MDP methods.

4.1 SMDPs and Options
How can we compute optimal value functions and optimal policies for different

sets of options? In order to answer this question, note that options are closely related

to the actions in a special kind of decision problem known as a semi-Markov decision

process, or SMDP (e.g., see Puterman, 1994). SMDPs are related to MDPs, but

more appropriate for modeling discrete-event systems. Formally, an SMDP is a tuple

43

Q), where 5 is the set of states, A is the set of actions, TZ is the reward

function, and Q, is the joint distribution of the next state and the transit time. More

specifically, if the system is in state s and chooses action a at the current decision

epoch, then Q{t, s'|s, o) denotes the probability that the next decision epoch occurs

within time t, and that the system will be in state s' at that time.

An SMDP is usually viewed as a decision process overlaid on top of a natural

process. The underlying system can change state between decision epochs, but these

changes do not provide any relevant information to the agent. From this perspective,

any MDP together with a fixed set of options is an SMDP. The MDP is the natural

process, and the options are the actions in the SMDP process. Each decision epoch

occurs at the moment of a reset action, and at that time, the system can choose a new

option to execute. The reward (TZ) and transition (Q) distributions are well defined

for each state and option by the underlying MDP and by the option itself. These

distributions are well defined because MDPs are Markov and every option makes its

choices based only on events that occurred since the option was initiated. Therefore,

the next state, reward and transition time depend only on the option and the state

in which it was initiated. The transit times of options are always discrete, but this is

simply a special case of the arbitrary real intervals permitted in SMDPs. This result

can be stated more formally as follows:

Theorem 3 (MDP + Options = SMDP) For any MDP, and any fixed set of

options defined on that MDP, the decision process that selects among those options,

executing each to termination, is an SMDP.

This relationship among MDPs, options, and SMDPs provides a basis for the

theory of planning and learning methods with options. In particular, all the SMDP

planning and learning methods can be applied immediately to the case in which

temporally extended options are used in an MDP. The remainder of this chapter

discusses SMDP planning and learning methods. Although our formalism is slightly

44

different, these results are in essence taken or adapted from prior work in SMDP

theory (see, e.g. Puterman, 1994), and reinforcement learning (Bradtke & Duff, 1995;

Parr & Russell, 1998; Singh, 1992a; Singh, 1992b; Sutton, 1995; Precup & Sutton,

1997; Precup et al., 1997; Precup & Sutton, 1998; Precup et al., 1998; McGovern

et al., 1997). A result very similar to theorem 3 was proved in detail by Parr (1998).

4.2 SMDP Planning

Planning with options requires a model of their consequences. Fortunately, the

appropriate form of model for options is known from existing SMDP theory. For each

state in which an option may be initiated, this kind of model predicts the state in

which the option will terminate and the total reward received along the way. These

quantities are discounted in a particular way. For any option o, let 5(o, s,t) denote

the event of o being initiated in state s at time t. Then the reward part of the model

of 0 for any state s G is

’’s = E {n+i + 7n+2 +-----h I*’ ^rt+k I E. (o, s, f) y, (4.1)

where t + k is the random time at which o terminates. The state-prediction part of

the model of o for state s is;

oo

Pss' =
fc=l

(4.2)

where p(s', k) is the probability that the option terminates in s' after k steps. Thus,

is a combination of the likelihood that s' is the state in which o terminates together

with a measure of how delayed that outcome is relative to 7. This kind of model is

called a multi-time model (Precup & Sutton, 1997; Precup & Sutton, 1998) because

it describes the outcome of an option not at a single time but at potentially many

different times, appropriately combined. The definition of p°g, differs slightly from

45

that given previously for primitive actions. Under the new definition, the model of

transition from state s to state s' for an action a is not simply the corresponding

transition probability, but the transition probability times 7.

Multi-time models can be generalized to handle the case in which options continue

after a given history. If 5(h, o, t) denotes the event of o continuing after history h

which ends in state St, then equations (4.1) and (4.2) hold when replacing s with h.

Multi-time models can be used to write Bellman equations for general policies

and options. For any Markov policy over options fj,, the state-value function can be

written as:

V'-ts) = E {r„. + • ■ • + | £(/i, s,«)},

where k is the duration of the first option selected by /z. By using the model definition,

this equation can be rewritten as:

oeo,
= E^5 + E(s') .

s'

which is the Bellman equation for the state-value function. The corresponding Bell-

man equation for the value of an option o in state s E T is:

Q>^{s,o) = E{n+i + ..- + 7''-'ri+, + 7'U^(W|«^(o,s,i)}

= -----+ ti{st+k,o')Qf^{st+h,o'} f(o,s,t)}
o'CiOs

= < + (4.4)
s' o'eOs

Note that all these equations specialize to the usual Bellman equations used for solving

MDPs, in the case in which p, is a conventional policy and o is a conventional primitive

action. Also note that Q^{s, o) = y°^(s).

46

Similarly, the optimal Bellman equations can be written for general policies and

options. For instance, the optimal value function given that options are chosen only

from the set Clean be expressed as;

VoCs) = mgx£'{r,+,+--- + 7‘ + 7‘Vo(«,+i) I (4.5)

max r° + ^p°„,ViW .
’ L s'

(4.6)

The Bellman equations for the optimal option-value function are:

(5o(s,o) - £7 H------- h 7*" ’■’"f+fc +

= £/{n+i + • • • + 7*"^n+fe + 7'' max Qo{st+k, o') £{o,s,t)},

= ^s + ZP°s' o'). (4.7)
s'

If Vq and models of the options are known, then optimal policies can be formed

by choosing in any proportion among the maximizing options in (4.5) or (4.6). Or, if

Qo is known, then optimal policies can be found without a model by choosing in each

state s in any proportion among the options o for which Qo(s,o) = max,./ Qq (s ,o ')-

In this way, computing approximations to or become key goals of planning

and learning methods with options.

Each of the Bellman equations for options, (4.3), (4.4), (4.5), and (4.7), defines

a system of equations whose unique solution is the corresponding value function.

These Bellman equations can be used as update rules in dynamic-programming-like

planning methods for finding the value functions. Typically, solution methods for

this problem maintain an approximation of V^{s) or Q*^{s,o) for all states s e 5

and all options o G Og. For example, synchronous value iteration (SVI) with options

starts with an arbitrary approximation Vq to and then computes a sequence of

new approximations {14} by

47

H(s) = max r° + p°^,Vk-x{s'} ,Vs G S.
c*

(4-8)
s'e5

The action-value form of SVI starts with an arbitrary approximation Qo to Qo a-^d

then computes a sequence of new approximations {Qk} by:

o) = r° + p°^, max Qk-i{s', o'), Vs G 5, o G O,. (4.9)
s'es °

Note that these algorithms reduce to the conventional value iteration algorithms in

the special case that (9 = A. Standard results from SMDP theory guarantee that

these processes converge for general options: limfc_^oo 14 = and limfc^.oo Qk = Qo

for all sets of options O.

The plans (policies) found using temporally extended options are approximate

in the sense that they achieve only V^, which is less than the maximum possible,

V*. Parr (1998) provides some bounds on the sub-optimality of any given set of

options. On the other hand, if the models used to find them are correct, then they

are guaranteed to achieve Vq . This is the value achievement property of planning

with options. This contrasts with planning methods that abstract over state space,

which generally cannot be guaranteed to achieve their planned values even if their

models are correct (e.g.. Dean and Lin, 1995).

4.3 Illustration: Rooms Example

As a simple illustration of planning with options, consider the roorns example,

a gridworld environment of four rooms shown in Figure 4.1. The cells of the grid

correspond to the states of the environment. From any state the agent can perform

one of four actions, up, down, left or right, which have a stochastic effect. With

probability 2/3, the actions cause the agent to move one cell in the corresponding

direction, and with probability 1/3, the agent moves instead in one of the other three

directions, each with probability 1/9. In either case, if the movement would take the

48

HALLWAYS
4 stochastic
primitive actions

right Fail 33%
of the time

down

8 muiti-step options
(to each room's 2 hallways)

Figure 4.1. The rooms example is a gridworld environment with stochastic cell-
to-cell actions and room-to-room hallway options. Two of the hallway options are
suggested by the arrows labeled oj and 02- The labels and indicate two locations
used as goals in experiments described below.

agent into a wall, then the agent remains in the same cell. The rewards are zero on

all state transitions.

Target
Hallway

Figure 4.2. The policy underlying one of the eight hallway options.

Two built-in hallwa-y options are provided in each of the four rooms. These options

are designed to take the agent from anywhere within the room to one of the two

hallway cells leading out of the room. A hallway option’s policy t t follows a shortest

path within the room to its target hallway while minimizing the chance of stumbling

into the other hallway. For example, the policy for one hallway option is shown in

Figure 4.2. The termination condition for each hallway option is zero for states within

the room and 1 for states outside the room, including the hallway states. Each option

is also restricted to last at least one time step before terminating. The initiation set

49

T comprises the states within the room plus the non-target hallway state leading into

the room. Note that these options are deterministic and Markov, and that an option’s

policy is not defined outside of its initiation set. The set of eight hallway options is

denoted by H. For each option o e H, its accurate model r° and is also provided

a priori, for all s G T and s' G 5 (assuming there is no goal state). Note that although

the transition models are nominally large (order |I| x |«S|), in fact they are sparse,

and relatively little memory (order |2r| x 2) is actually needed to hold the nonzero

transitions from each state to the two adjacent hallway states. The off-target hallway

states are exceptions in that they have three possible outcomes: the target hallway,

themselves, and the neighboring state in the off-target room.

Now consider a sequence of planning tasks for navigating within the grid to a

designated goal state, in particular, to the hallway state labeled in Figure 4.1.

Formally, the goal state is a state from which all actions lead to the terminal state

with a reward of -1-1. The discount factor is 7 = 0.9.

As a planning method, we used SVI as given by (4.8), with various sets of options

O. The initial value function Fq was 0 everywhere except the goal state, which

was initialized to its correct value, Vo(G'i) = 1, as shown in the leftmost panels of

Figure 4.3. This figure contrasts planning with the original actions ((9 = M) and

planning with the hallway options and not the original actions (0 = 7/). The upper

part of the figure shows the value function after the first two iterations of SVI using

just primitive actions. The region of accurately valued states moved out by one cell on

each iteration, but after two iterations most states still had their initial arbitrary value

of zero. The lower part of the figure shows the corresponding value functions for SVI

with the hallway options. In the first iteration all states in the rooms adjacent to the

goal state became accurately valued, and in the second iteration all the states become

accurately valued. Although the values continued to change by small amounts over

subsequent iterations, a complete and optimal policy was known by this time. Rather

50

Primitive
options
O=A

Hallway
options
O=H

Initial Values Iteration #1 iteration #2
Figure 4.3. Value functions formed over iterations of planning by synchronous
value iteration with primitive actions and with hallway options. The hallway options
enabled planning to proceed room-by-room rather than cell-by-cell. The area of the
disk in each cell is proportional to the estimated value of the state, where a disk that
just fills a cell represents a value of 1.0.

than planning step-by-step, the hallway options enabled the planning to proceed at

a higher level, room-by-room, and thus be much faster.

This example is a particularly favorable case for the use of multi-step options

because the goal state is a hallway, the target state of some of the options. Next,

we consider a case in which there is no such coincidence, in which the goal lies in

the middle of a room, in the state labeled G2 in Figure 4.1. The hallway options

and their models were just as in the previous experiment. In this case, planning with

the hallway options alone could never completely solve the task, because these take

the agent only to hallways and thus never to the goal state. Figure 4.4 shows the

value functions found over five iterations of SVI using both the hallway options and

options corresponding to the primitive actions (i.e., using O = A U H}. In the first

two iterations, accurate values were propagated from G2 by one cell per iteration by

the models corresponding to the primitive actions. After two iterations, however, the

51

first hallway state was reached, and subsequently room-to-room planning using the

temporally extended hallway options dominated. Note how the state in the lower

right corner was given a nonzero value during iteration three. This value corresponds

to the plan of first going to the hallway state above and then down to the goal; it was

overwritten by a larger value corresponding to a more direct route to the goal in the

next iteration. Because of the hallway options, a close approximation to the correct

value function was found everywhere by the fourth iteration; without these options.

only the states within three steps of the goal would have been given non-zero values

by this time.

Primitve
and

hallway
options

O=AU H

Initial values Iteration #1 Iteration #2

a:a bb^b

:: ::::: I ::::: bzs:: ----- -- ■■■■■■
^iiSfliSiSsiSSSMiUSi

siii:

Iteration #3

::i:BBBBB$:SBBBBB:S:: BBBBBBaaaaB BBBBBaDDBD

Iteration #4 Iteration #5

Figure 4.4. An example in which the goal is different from the subgoal of the hallway
options. Planning here was done by SVI with options O = AuTi. Initial progress was
due to the models of the primitive actions, but by the third iteration room-to-room
planning dominated and greatly accelerated planning.

4.4 Illustration: Random Options
In the rooms example, the options are designed to capture an important feature

of the environment: hallway states are important for navigation, because they are

funneling states between different regions of the state space. But options can help to

speed up planning even if they are not so carefully designed (Precup et al., 1998).

52

0.6

iHSiiil
iniSilsSl

Average
RMSE
for all

possible
goal

positions

0 2 4 6 8 10 12 14 16
Number of Iterations

o.s

0.3

0.2
Primitives

Options'

18 20

Figure 4.5. Empty gridworld task,
estimation to decrease more quickly

Options allow the error in the value function

In order to illustrate this point, consider the task depicted on the left panel of

figure 4.5. The dynamics of the environment is the same as in the previous example.

In addition to the four primitive actions, the agent can use four additional higher-level

options, to travel to each of the marked locations. These locations have been chosen

randomly inside the environment. Accurate multi-time models for all the options are

also available.

The agent is repeatedly given new goal positions and it needs to compute optimal

paths to these positions as quickly as possible. In this experiment, we considered all

possible goal positions. In each case, the value of the goal state is 1, there are no

rewards along the way, and the discounting factor is 7 = 0.9. We performed planning

according to the SVI method, where the starting values are Vo(s) = 0 for all the

states except the goal state, for which Vo^goal) = 1. In the first experiment, the

agent was only allowed to use primitive actions, while in the second case, it used both

the primitive actions and the higher-level options.

The right panel in figure 4.5 shows the average root mean squared error in the

estimate of the optimal value function over the whole environment. The average

is computed over all possible positions of the goal state. The use of higher-level

options introduces a significant speedup in convergence, even though the options

have been chosen arbitrarily. Note that an iteration using all the options is slightly

53

more expensive than an iteration using only primitive actions. This aspect can be

improved by using more sophisticated methods of ordering the options before doing

the update.

SVI was used in these examples because it is a particularly simple planning method

that makes the potential advantage of temporally extended options particularly clear.

In large problems, SVI is impractical because the number of states is too large to com-

plete many iterations, often not even one. In practice it is often necessary to be very

selective about the states updated, the options considered, and even the next states

considered. These issues are not resolved by using temporally extended options, but

they are not greatly aggravated either. Options provide a tool for dealing with them

more flexibly. Planning with options need not be more complex than planning with

actions. In the SVI experiments above there were four primitive options and eight

hallway options, but in each state only two hallway options needed to be considered.

In addition, the models of the primitive actions generate four possible successors with

non-zero probability whereas the multi-step options generate only two. Thus, plan-

ning with the temporally extended options was actually computationally cheaper than

conventional SVI in this case. In the second experiment this was not the case, but

the use of multi-step options still did not greatly increase the computational costs. In

general, of course, there is no guarantee that multi-step options will reduce the overall

expense of planning. For example, Hauskrecht et al. (1998) showed that adding such

options may actually slow SVI if the initial value function is optimistic. Research with

deterministic macro-operators has identified a related “utility problem” (an increase

in the cost of deliberation) when too many macros are used (e.g., see Etzioni, 1990;

Minton, 1990; Tambe, Newell, and Rosenbloom, 1990; Greiner and Jurisica, 1992;

Gratch and DeJong, 1996). Temporal abstraction provides the fiexibility to reduce

greatly computational complexity, but can also have the opposite effect if used indis-

54

criminately. Pruning efficiently the space of options to consider during planning and

learning will be the topic of future work.

4.5 SMDP Value Learning

The problem of finding an optimal policy over a set of options O can also be

addressed by SMDP learning methods, as developed by Bradtke and Duff (1995), Parr

and Russell (1998), Mahadevan et al. (1997), or McGovern, Sutton & Fagg (1997).

Like in the planning method discussed above, each option is viewed as an indivisible,

opaque unit. In a given state s, the learning agent can pick an option o and executes

it until the option terminates, in some state s'. Based on the experience accumulated

between s and s', an approximate option-value function Q(s, o) is updated. For

example, the SMDP version of one-step Q-learning (Bradtke & Duff, 1995), which we

call SMDP Q-leaming, updates after each option termination by:

Q(s,o) Q(s,o) 4-0 r 4-7* max Q(s',o') - Q(s, 0} , (4.10)

where k denotes the number of time steps elapsing between s and s', r denotes the

cumulative discounted reward over this time, and it is implicit that the step-size

parameter a may depend arbitrarily on the states, option, and time steps. The

estimate Q(s, 0) converges to Qo(s, 0) for all s e 6 and 0 e O under conditions

similar to those for conventional Q-learning (Parr, 1998).

As an illustration, we applied SMDP Q-learning to the rooms example (Figure 4.1)

with the goal at and at G2 respectively. As in the case of planning, three different

sets of options were used: A (only the primitive actions), Ti (only the hallway options),

and Au PL (both primitive and hallway options). In all cases, options were selected

from the set according to an e-greedy method dependent on the current option-value

estimates. That is, given the current estimates Q(s, o), let 0* = argmaxoco, Q(s,o)

55

1000

10

jV

UH
Steps

per 100
episode

Goal
at G-i

10 100 1000 10,000

Episodes

1000

100

10

VAUH

Goal
at G2

10 100 1000 10,000

Episodes

Figure 4.6. Performance of SMDP Q-learning in the rooms example with various
goals and sets of options. After 100 episodes, the data points are averages over groups
of 10 episodes to make the trends clearer. The step size parameter was optimized to
the nearest power of 2 for each goal and set of options. The results shown used a = |
in all cases except that with G = H and Gi (a = ■") and that with O = A U H and
G2 {a = 1).

denote the best valued action (with ties broken randomly). Then the policy used to

select options was;

+ if 0 = 0*

otherwise,

for all s G «S and o G (9. The probability of a random action, e, was 0.1 in all the

experiments. The initial state of each trial was in the upper-left corner. Figure 4.6

shows learning curves for both goals and all sets of options. In all cases, temporally

extended options caused the goal to be reached much more quickly, even on the

very first trial. With the goal at Gi, these methods maintained an advantage over

conventional Q-learning throughout the experiment, presumably because they did

less exploration. The results were similar with the goal at G2, except that the H

method performed worse than the other methods in the long term. This is because

the best solution requires several steps of primitive actions (the hallway options alone

find the best solution running between hallways and sometimes stumbling upon G2).

0) =

56

For the same reason, the advantages of the A U H method over the A method were

also reduced.

4.6 Conclusions
In this chapter we developed the link between options and SMDPs. We showed

that an MDP with a set of options is an SMDP. This enables us to define multi-time

models of options, similar to the models of actions in an SMDP. We also showed how

SMDP learning and planning methods could be applied to find a solution faster than

standard MDP methods.

SMDP methods work at the level of options only, without using any of the informa-

tion about the underlying MDP, or the internal structure of the options. The model

of execution of the options is also restricted to be call-and-return. In subsequent

chapters we will present new learning and planning algorithms, which take advantage

of the underlying MDP structure to obtain better solutions in a more efficient way.

57

CHAPTER 5

INTRA-OPTION LEARNING

SMDP methods apply to options, but only when they are treated as opaque indi-

visible units. Once an option has been selected, such methods require that its policy

be followed until the option terminates. More interesting and potentially more pow-

erful methods are possible by looking inside options and by altering their internal

structure. In the rest of the dissertation we focus on methods that exploit the MDP

structure underlying the SMDP defined by the options.

In this chapter we propose an alternative to SMDP learning methods. One draw-

back to SMDP learning methods is that they need to execute an option to termination

before they can learn about it. Therefore, they cannot be used for non-terminating

options and can only be applied to one option at a time - the option that is executing

at that time. However, if we are willing to look at the structure inside the options,

then we can use special temporal-difference methods to learn usefully about an option

before the option terminates. We call these intra-option learning methods because

they learn about an option from a fragment of experience within the option.

Intra-option methods are examples of off-policy learning methods (Sutton & Barto,

1998). Off-policy learning methods learn about the consequences of one policy from

data generated by following another, potentially different policy. In general, off-

policy learning can greatly multiply learning because many policies can be learned

about at the same time, while only one can be followed. This is true also in the

case of intra-option methods, which can be used to learn simultaneously about many

diflferent options from the same experience. Moreover, they can learn about the values

58

of executing options without ever executing those options, as long as some action

selections are made that are consistent with the option. Therefore, they are more

flexible than SMDP learning, and they make more efficient use of the real experience.

Intra-option methods were introduced by Sutton (1995) for a prediction problem

with a single unchanging policy. In this chapter we present general intra-option

learning algorithms for learning models of options and value functions over options

(Sutton, Precup & Singh, 1998b). These are temporal-difference one-step learning

algorithms that converge to correct values under standard assumptions. Versions of

these algorithms using eligibility traces are considered in subsequent chapters.

5.1 Intra-Option Model Learning
In this section we introduce a new method for learning to approximate the model

r° and of an option o, given experience and knowledge of o. The most straight-

forward approach to learning the model of an option is to execute the option to

termination many times in each state s, recording the resultant next states s', cu-

mulative discounted rewards r, and elapsed times k. These outcomes can then be

averaged to approximate the expected values for r° and p°g, given by (4.1) and (4.2).

For example, an incremental learning rule for this could update its estimates and

for all a; € «S, after each execution of o initiated in state s and terminated in state

s', by

fs = + and (5.1)

f,. = & + Q17‘'5«'-py,V^e5+, (5.2)

Ss'x = lif s' = X and is 0 else, and where the step-size parameter, a, may be constant

or may depend on the state, option, and time. For example, if a is 1 divided by the

number of times that o has been experienced in s, then these updates maintain the

estimates as sample averages of the experienced outcomes. However the averaging is

59

done, we call these SMDP model-learning methods because they are based on jumping

from initiation to termination of each option, ignoring what happens along the way.

In the special case in which o is a primitive action, the SMDP model-learning methods

reduce exactly to those used to learn conventional one-step models of actions.

Let us consider first the case in which o is a deterministic Markov option. Based

on an execution of o from t to t + k, SMDP methods extract a single training example

for r° and p°,,. But because o is Markov, it is, in a sense, also initiated at each of

the steps between t and t + k. The jumps from each intermediate Sf+j to st+k are

also valid experiences with o, experiences that can be used to improve estimates of

and Or consider an option that is very similar to o and which would

have selected the same actions, but which would have terminated one step later, at

t -I- k -1-1 rather than at t + k. Formally this is a different option, and formally it was

not executed, yet all this experience could be used for learning relevant to it. In fact,

an agent can often learn about an option from experience that is only slightly related

(occasionally selecting the same actions) to what would be generated by executing

the option. This is the idea of off-policy training — to make full use of whatever

experience occurs in order to learn as much possible about all options, irrespective of

their role in generating the experience.

Just as there are Bellman equations for value functions, there are also Bellman

equations for models of options. Consider the intra-option learning of the model of a

Markov option o = The correct model of o is related to itself by

< = 52 7r(s,a)E{r-F7(l-,d(s'))r",}
aeA

= 52 +12
ae.Aj s'eS

(5.3)

(5.4)

where r and s' are the reward and next state given that action a is taken in state s.

and

60

P^x = L 0)74(1 - ^{^Ws'x +)^(s')<^«'x}

oe>ij

= E ’^(». “) Z M.'(i - MM. + MS.:}
ae?tj i'65

for all s, X G 5. How can we turn these Bellman equations into update rules for

learning the model? First consider that action a* is taken in st and that the way

it was selected is consistent with 0 = (I, t t ,/0), that is, that Ot vras selected with

the distribution %(«<, •). Then the Bellman equations above suggest the following

temporal-difference update rules:

+ a [rt+i + 7(1 -] (5.5)

and

pIx fstx + Q;[7(1 - ^(s<+i))p?e+ix + 7/3(st+i)<y.e+i^ “ (5.6)

where and f° ate the estimates of p",/ and r°, respectively, and a is a positive

step-size parameter. The method we call one-step intra-option model learning applies

these updates to every option consistent with every action taken.

Of course, this is just the simplest intra-option model-learning method. How can

we lift the assumptions that o, the option learned about, is Markov, deterministic

and represented by a flat representation ? We consider first learning the models of

stochastic options. Equations (5.5) and (5.6) apply in this case only if choices of

action are made according to the distribution 7r(st, •). This is not the case in general

if diflferent options are executing, and we want to update the models of all options on

every time step. It is not obvious how to keep track of the actual action distribution

at state S{.

The solution we adopt here is a standard trick used in off-policy learning methods:

we increase the size of the models by the number of actions. Therefore, instead of

keeping track of r" and p°^z we will have one component for each primitive action, r^°

61

and p“",. The reward component r"" is the expected cumulative discounted reward

for starting in state s, performing action a and acting according to o afterwards.

Similarly, is the expected probability of transition from s to s' when performing

action a and then acting according to o, discounted appropriately by the duration of

the sequence ao. The multi-time model of the option can be computed as an average

of these more explicit models;

a

P°S' =
a

With this change in the models, equations (5.5) and (5.6) can be used to learn each

component of the models. If action a* is taken in state s*, the models are updated

by:

4- a [n+i -F 7(1 - ^(s<+i))r"] (5.7)

and

fstx + «[7(1 - (5.8)

In the general case of options that depend on the partial history since they were

initiated, there is no direct way for applying intra-option learning to acquire state

models, because the Bellman equations do not hold inside such options. Of course,

one can always execute these options to termination and use SMDP model learning.

The other alternative to consider is to expand the models of the options even further,

by introducing separate components and for each history. With these changes,

equations (5.7) and (5.8) hold for these detailed models. Of course, it is impractical to

keep general models that depend on whole histories. This approach could be practical

in special cases in which the history can be summarized efficiently, or represented

using function approximation. More efficient algorithms may be possible in the case

of hierarchical Markov options. This is a topic for further research.

62

5.2 Illustration of Intra-Option Model Learning
As an illustration, consider the application of SMDP and intra-option model-

learning methods to the rooms gridworld environment shown in Figure 4.1. The only

difference from the previous setup is that there are small negative rewards for each

action, with means uniformly distributed between 0 and -1. The rewards are also

perturbed by Gaussian noise with standard deviation 0.1. For this experiment, there

is no goal state.

The eight hallway options are given as before, but their models are not given

and must be learned. Experience is generated by selecting randomly in each state

among the two possible options and four possible primitive actions, with no goal

state. In the SMDP model-learning method, equations (5.1) and (5.2) were applied

whenever an option was selected, whereas, in the intra-option model-learning method,

equations (5.5) and (5.6) were applied on every step to all options that were consistent

with the action taken on that step. In this example, all options are deterministic, so

consistency with the action selected means simply that the option would have selected

that action.

For the SMDP method, the step-size parameter was varied so that the model

estimates were sample averages, which should give fastest learning. The results of

this method are labeled “SMDP 1/t” on the graphs. We also looked at results using

a fixed learning rate. In this case and for the intra-option method we tried step-size

values of a = j, |, j, and and picked the best value for each method.

Figure 5.1 shows the learning curves for all three methods, using the best a values,

when a fixed alpha was used. The left panel shows the average and maximum absolute

error in the reward predictions, and the right panel shows the average absolute error

and the maximum absolute error in the transition predictions, averaged over the

eight options and over 30 independent runs. The intra-option method approached

the correct values more rapidly than the SMDP methods.

63

3

2

Reward
prediction

error

Max error

Intra
V 'SgMDP 1/t

sjypp
222:2-........ .SpTrt

0----------- ■----------- 1----------- 1----------- 1----------- 1

0 20,000 40,000 60,000 80,000 100,000

Options executed

SMDP 1/t

State
prediction

error

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

SMDP
..jMDPlTf—- Max

error
SMDP Avg,

error
20,000 40,000 60,000 80,000 100,000

Options executed
Figure 5.1. Learning curves for model learning by SMDP and intra-option methods.

5.3 Intra-Option Value Learning
We turn now to the intra-option learning of option values, and thus of optimal

policies over options. Again, in the case of options that depend on the partial history

since initiation, the SMDP methods described in the previous chapter may be the

only feasible solution. But in special cases, such as that of Markov options, we can do

better if we are willing to look inside the options and consider intra-option methods.

As in model learning, intra-option methods for value learning are potentially more

efficient than SMDP methods because they extract more training examples from the

same experience.

It is convenient to introduce new notation for the value of a state-option pair

given that the option is Markov and executing upon arrival in the state:

o) = (1 - /3(s))Qo(s, o) -b /3(s) maxQ^(s, o'),

Then we can write Bellman-like equations that relate Qo{s, o) to expected values

of Uq {s '^ o), where s' is the immediate successor to s after initiating Markov option

o = (I, TT, jd) in s:

64

' QUs,d) = 52 T^{s,a)E[r + yUo{s',o') | s,a}

= r°,+Y^P''ss'Uo{s',o) ,
aeXj s'

where r is the immediate reward upon arrival in s'. Now consider learning methods

based on this Bellman equation. Suppose action o* is taken in state st to produce

next state and reward rt+i, and that a* was selected in a way consistent with

the Markov policy t t of an option o = That is, suppose that a< was selected

according to the distribution 7r(st, •)• Then the Bellman equation above suggests

applying the off-policy one-step temporal-difference update:

(5.9)Q(s„ o) <- Q(s„ o) + a (r,+i + 'll!(s,+i, o)) - (3(s,, o) ,

where

C/(s,o) = (l-/3(s))Q(s,o)-h^(s)max(5(s,o')

The method we call one-step intra-option Q-leaming applies this update rule to every

option 0 consistent with every action taken Ot.

Theorem 4 (Convergence of one-step intra-option Q-learning) For any set of

deterministic Markov options O, one-step intra-option Q-leaming converges with

probability 1 to the optimal Q-values, Q^, for every option, regardless of what op-

tions are executed during learning, provided every primitive action gets executed in

every state infinitely often.

Proof: On experiencing (s, a, r, s'}, for every option o that picks action a in state s,

intra-option Q-learning performs the following update:

Q(s, o) Q(s, o) -t- ^(s, o)[r -t- ^U{s', o) - Q{s, o)].

65

Let a be the action selection by deterministic Markov option o = (I, t t , p}. Our result

follows directly from Theorem 1 of Jaakkola et al. (1994) and the observation that

the expected value of the update operator r+7C/(s', o) yields a contraction, as shown

below:

i£{r+7c/« «)}-%(<. 0)1 = l•■;+I;p:.-^'^'.o)-%(s,o)|
s'

= K+o) - r; - o)i
i' 4'

< I - W’O}}
s'

+ - maxQ^(s',o'))]|

< Zrf4^maj|Q(s",o")-%(s",o")l
< 7max|Q(s",o")-Q^(s",o")l

S’’ yO

o

5.4 Illustration of Intra-Option Value Learning
Again, we use the rooms gridworld environment presented in Figure 4.1, this time

with a goal state positioned at Gl. At the beginning of each episode, the agent starts

in a random cell inside the rooms. When the agent enters the goal state, it gets a

reward of 1 and the episode ends. In all the experiments the discount parameter was

7 = 0.9 and all the initial value estimates were 0.

In each of the four rooms we provide, as before, two built-in hallway options

designed to take the agent from anywhere within the room to one of the two hallway

cells leading out of the room. The policies underlying the options follow the shortest

expected path to the hallway.

For the first experiment, we applied the intra-option method without selecting the

hallway options. In each episode, the agent started at a random cell and thereafter

selected primitive actions randomly, with equal probability. On every transition, the

66

update (5.9) was applied first to the primitive action taken, then to any of the hallway

options that were consistent with it. The hallway options were updated in clockwise

order, starting from any hallways that faced up from the current state. The value of

the step-size parameter was a = 0.01.

-2

-3

-4

Value of optimal policy
0

True value

Truevalue

Learned value

.earned value

-2

-3

-1
Upper
hallway
option

Left
hallway
option

/ Average
t value of
greedy policy

Option
values
for*

.41----- ,------.----- .------.----- .------.
0 1000 2000 3000 4000 5000 6000

Episodes
10 100 1000 6000

Episodes
Figure 5.2. The learning of option values by intra-option methods without ever
selecting the options. The value of the greedy policy goes to the optimal value (left
panel) as the learned values approach the correct values (as shown for one state, in
the right panel).

This is a case in which SMDP methods would not be able to learn anything about

the hallway options, because these options are never executed. However, the intra-

option method learned the values of these actions effectively, as shown in Figure 5.2.

The left panel shows the value of the greedy policy learned by the intra-option method,

averaged over «S and over 30 repetitions of the whole experiment. The right panel

shows the correct and learned values for the two hallway options that apply in state

G2 from Figure 4.1. Similar convergence to the true values was observed for all the

other states and options.

So far we have illustrated the effectiveness of intra-option learning in a context in

which SMDP methods do not apply. How do intra-option methods compare to SMDP

methods when both are applicable? In order to investigate this question, we used the

same environment, but now we allowed the agent to choose among the hallway options

67

as well as the primitive actions, which were treated as one-step options. In this case,

SMDP methods can be applied, because all the options are actually executed. We

experimented with two SMDP methods: one-step SMDP Q-learning (Bradtke and

Duff, 1995) and a hierarchical form of Q-learning called macro Q-learning (McGovern,

Sutton and Fagg, 1997). The difference between the two methods is that, when taking

a multi-step option, SMDP Q-learning only updates the value of that option, whereas

macro Q-learning also updates the values of the one-step options (actions) that were

taken along the way.

3.5

3

2.5

2

0.5

Intra
0

Absolute error in option values
averaged over the options

0 2000 4000 6000 8000 10000

Episodes

Average
on-line
reward Intra-option value learning

SMDP Q-learning

Macro Q-learning

-2.2 ■

-2.4 -

-2.6 ■

-2.8 •

-3 -I

-3.2 I
-3.4

-3.6

-3.8

2000 4000 6000 8000 10000
Episodes

Figure 5.3. Comparison of SMDP, intra-option and macro Q-learning. Intra-option
methods converge faster to the correct values.

In this experiment, options were selected not at random, but in an e-greedy way

dependent on the current option-value estimates. That is, given the current estimates

Q(s, o), let 0* = argmaxogo., Q(s, o) denote the best valued action (with ties broken

randomly). Then the policy used to select options was

I
if o = o*

otherwise.

68

for all s e 5 and o e O. The probability of a random action, e, was set at 0.1 in all

cases. For each algorithm, we tried step-size values of a = j,|, j, and and then

picked the best one.

Figure 5.3 shows two measures of the performance of the learning algorithms.

The left panel shows the average absolute error in the estimates of Qq for the hallway

options, averaged over the input sets X, the eight hallway options, and 30 repetitions of

the whole experiment. The intra-option method showed significantly faster learning

than any of the SMDP methods. The right panel shows the quality of the policy

executed by each method, measured as the average reward over the state space. The

intra-option method was also the fastest to learn by this measure.

5.5 Conclusions
In this chapter we introduced a new class for learning methods for learning the

models and values of options. Intra-options methods are designed to make very

efficient use of the data generated from an agent’s experience in the environment,

regardless of the behavior that generated the data. Intra-option learning allows an

agent to learn about many different options from the same data. As illustrated in our

experiments, these methods are both more fiexible and more efficient than the SMDP

methods presented in chapter 4. The speed gain of intra-options methods increases if

there is a significant amount of overlap between options in their choices of primitive

actions.

Intra-options learning methods can provide significant speed improvements over

SMDP methods in the case in which real experience is expensive to generate, but

computation can be performed cheaply. This is the typical situation for RL agents.

When using intra-option learning, on should keep in mind that these methods increase

the amount of computation per time step. On every time step, intra-option learning

algorithms could potentially update the information regarding all options. If the agent

69

has many options available, then the amount of computation can become an issue.

Of course, in such situations, the agent can always choose to update information only

for part of the options.

All the intra-option learning methods presented so far were one-step methods. It

would be expected that their speed could be improved even further by using eligibility

traces. However, the topic of eligibility traces for off-policy methods has not been

studied in depth yet. The next two chapters are dedicated to this subject.

70

CHAPTER 6

OFF-POLICY LEARNING: MONTE CARLO METHODS

The intra-opt ion learning methods introduced in the previous chapter have brought

into focus the larger class of olf-policy learning methods. Off-policy learning is key

to learning efficiently if an agent uses many options, because it allows learning about

many options in parallel, from the same real experience. This can generate big

speedups compared to on-policy learning methods, such as SMDP learning, which

can only learn about the option being followed. The ability to learn about many

options in parallel alleviates the utility problem generated by increasing the action

space of the agent.

In RL, off-policy learning has been studied mostly for control problems, in which

the agent learns about the optimal policy for acting in an MDP while following a

different, stochastic policy. The most well-known off-policy learning algorithm is

probably Q-learning (Watkins, 1989). Convergence results have been established for

one-step off-policy learning methods. However, the theory of multi-step and eligibility

trace methods for off-policy learning has not been developed very much.

The intra-option learning algorithms that we presented so far were all one-step

algorithms. Our goal now is to extend these algorithms to include eligibility traces.

Eligibility traces have been shown to speed up temporal-difference learning algorithms

in general (Sutton & Barto, 1998). Using eligibility traces for intra-option methods

should have the same effect.

In order to explore off-policy learning in depth, we are going to consider the

more general case of model-free policy evaluation. It is convenient to consider this

71

case because it is simpler than the option model learning and option value learning

considered in the previous chapter. This allows us to focus on the issue of performing

multi-step off-policy updates. All the ideas that we will develop for policy evaluation

can be easily applied to intra-option learning, with the benefit of even faster learning.

6.1 Policy Evaluation
In this and the next chapter we consider the problem of estimating the state-action

value function Q^, for a given target policy it , from experience generated by following

a different behavior policy b. Both t t and b are fully specified by the probability

distribution of the actions in each state. The two policies are completely arbitrary,

except that the behavior policy must be soft, meaning that it must have a non-zero

probability of selecting every action in each state. We will restrict the discussion

to the episodic framework, in which the agent interacts with the environment in an

infinite sequence of episodes, numbered m = 1,2,3,..., each of which consists of a

finite number of time steps, t = 0,1,2,..., Tm-

The value of a state-action pair is the expected value of the total reward received

starting from that state, taking that action, and following the target policy afterwards:

a) = 4- 7n+2 + ... 4- I = s, at = a, %}, (6.1)

where T is the duration of an episode. In this chapter we focus on Monte Carlo

learning, in which we have samples of such total rewards, but distributed according

to the behavior policy b instead of the target policy t t .

A standard technique for learning expected values from samples when there is a

mismatch between distributions is importance sampling; we apply two variations of it

here. We also introduce a new algorithm that uses importance sampling corrections

while taking advantage of the special structure of MDPs. In the next chapter we

focus on temporal-difference algorithms for solving the same problem.

72

6.2 Importance Sampling

Importance Sampling (Rubinstein, 1981) is a standard technique for estimating the

expected value of a random variable x with distribution d from samples, when the

samples are drawn from another distribution d'. For instance, the target distribution

d could be normal, while the sampling distribution d! is uniform (see Figure 6.1).

d

---------- d’

X

Figure 6.1. Different target and sampling distributions

In its classical form, importance sampling computes the expected value E{x | d}

based on a simple observation:

Ed{x}= [xd{x}dx= [x^^d\x}dx = Ed'[x^^\,
Jx Jx a \X) a'[x)

which leads to the importance sampling estimator:

1 ”

i=l

<^(^i)

d'^XiY

where Xi axe samples selected according to d'. This estimator computes the average

of the sample values, where each sample is weighted differently based on the ratio

of its likelihood of occurring under the two distributions. This weighting gives more

importance to samples that occur rarely under the sampling distribution d' but occur

frequently under the target distribution d. If d and d' are the same, then all the

samples have a weight of 1, and the estimator becomes the usual arithmetic average

of the samples. The importance sampling estimator (6.2) is consistent, meaning that

it converges with probability 1 to Eci{x} as the number of samples goes to infinity,

and unbiased, meaning its expected value after any number of samples is also Ed{x}

(Rubinstein, 1981).

73

A less known variant of this technique is weighted importance sampling, which

performs a weighted average of the samples, with weights The weighted impor-

tance sampling estimator is:

= (6.3)

The weighted importance sampling estimator (6.3) is a consistent but biased estimator

of E{x I d} (Rubinstein, 1981). Nevertheless, his estimator is often faster and more

stable in practice than (6.2). Intuitively, this property is due to the fact that, if an

unlikely event occurs, its weight will be very large, and will cause a large variation

in the classical estimator. In the weighted estimator, the large weight appears in the

denominator as well, and therefore smoothes the variation.

6.3 Applying Importance Sampling to MDPs
In the case of MDPs, the samples come in the form of episodes, which are complete

sequences of states, actions and rewards, ending in a terminal state:

So0on«iair2 • • •

The goal is to estimate the state-action value function Q'^{s, o) for a given state s and

action a. Let M be the number of episodes containing state-action pair (s, a) and t^

be the first time t when (st, at) = (s, a) in the mth of these episodes. Then we define

the first-visit importance sampling estimate for Q’^(s, a) as

•1 M
Q^^{s,a) = — RmWm, (6.4)

where Rm is the return following (s, a) in episode e,

Rm n,„+i + ^rt^+2 + ... +

74

and Wm is the importance sampling weight assigned to episode m:

Wm
def TTt^TTt^

^m+1 ^<m+2 ^’Tm-1

Here, and in the following sections, we denote by t t * = 7r(st, at} and similarly bt =

b{st,at}. Similar estimators can be computed for every-visit Monte Carlo as well.

First-visit estimators have the advantage of being unbiased (Singh & Sutton, 1996),

and therefore we will use such estimators in this dissertation.

Similarly, we define the weighted importance sampling estimator (Sutton & Barto,

1998) as

a) S 2-/o t =1
M
m=l

(6.5)

Classical Importance Sampling

V’

50
Weighted Importance Sampling

RMSE
over 200

all states
and

,150
averaged

over
100 MDPs

100

Episodes

(a) Uniform Behavior

RMSE '
over ,

all states'
and ,

actions '
averaged

over
100 MDPs

100 200 300 400 500 600 700 600 900 1000

Episodes

(b) Different Behavior

400

I

1
Ij

350
1 «

300 I \

i i
.250 i \• »

1 •«
200

',50

s
100

i Classical Importance Sampling

50

J
Weighted Importance Sampling

Figure 6.2. Comparison of classical and weighted importance sampling on 100
randomly generated MDPs. On the left, the behavior policy chose 50-50 from the
two actions. On the right, the behavior policy chose with 20-80 probabilities, exactly
opposite to the target policy. In both cases, the weighted algorithm is faster and
more stable.

Figure 6.3 presents an empirical comparison of the classical and weighted im-

portance sampling estimators. The comparison was performed using 100 different

randomly generated MDPs. Each MDP has 100 states, one of which is terminal.

Two actions were available in each nonterminal state, and each action branched to

four next states, with random probabilities (the partition of unity was selected by

75

picking three random split points uniformly randomly from [0,1]). The immediate

rewards for each state-action pair were chosen uniformly randomly, between 0 and 1.

The target policy was to select the first action with 80% probability and the second

action with 20% probability. We used two different behavior policies. In the uniform

behavior case (left panel) both actions were equally likely, whereas in the different be-

havior case, the first action was selected with 20% probability and the second action

with 80% probability, resulting in a policy very different from the target policy. The

initial state of each episode was chosen uniformly randomly from the nonterminal

states. All the MDPs terminated with probability 1, so we used 7 = 1.

Figure 6.3 shows, for each estimator, the root of the total mean squared error be-

tween the estimator and the true action values for the 200 state-action pairs, averaged

over the 100 MDPs. this measure is computed at the beginning of learning, and after

each of the first 1000 episodes. For the weighted importance sampling algorithm,

the graph also includes error bars equal to one standard deviation. For the classi-

cal importance sampling, the maximum standard deviation is on the order of 3000,

therefore we omitted the error bars. This result confirms the fact that the classical

importance sampling algorithm has very high variance, which recommends against

its use in practice. Also, as shown in the figure, the weighted version of the algorithm

is faster and more stable than the classical version. This result was consistent across

all MDPs we experimented with.

6.4 Per-Decision Importance Sampling
Both importance sampling algorithms presented so far require known Markov

behavior policies. They are also inherently Monte Carlo algorithms, because they put

a weight on the total return Rm obtained during an episode. There is no easy way of

implementing either algorithm in an incremental fashion, for instance by performing

TD-like updates after every step of the execution. In order to be able to perform such

76

updates, an algorithm should perform a weighting of each reward r* obtained along

the trajectory followed during the episode.

In this section we present a new algorithm that performs importance sampling

weightings for each decision step along the way. Such a weighting can be computed

if, instead of treating each return as one indivisible sample, we take into account

the fact that the returns come from an underlying MDP. We will focus here on the

Monte Carlo version of the estimator. In the next chapter we present a natural TD

implementation.

In order to justify the estimator, let us examine the term RmWm from equations

(6.4) and (6.5); The terms of the sum can be naturally separated into two parts,

one containing the ratios from tm+i to i - 1, and one containing the ratios from i

to Tpi-i. Intuitively, the weight on reward should not depend on the future after

time i, only on the history to that point. This is the idea behind the per-decision

importance sampling estimator.

(6.6)
m=l fc=l «=tm+l

def 1
M

The estimator weights each reward along a trajectory according to the likelihood of

the trajectory up to that point, under the target and the behavior policy. If the target

and the behavior policy are the same, the estimator is simply the average of the total

returns from each episode. We now show that this estimate is indeed correct:

Theorem 5 The per-decision importance sampling estimator given by (6.6) is

a consistent unbiased estimator ofQ'^(s,a).

Proof: We know that the classical importance sampling estimator is consistent

and unbiased:

E n I St = s,a< = 0,4 = Q’'(s,o).
.k=l / i=f+l I

77

We will show that the per-decision importance sampling estimator has the same

expected value as Let us move the importance sampling correction inside the

sum, and examine the expectation for the fc-th term;

T-l
^Vt+k n I St = S,a< = 0,6

t=t+i

I St, Of,... Sf+fe, Ot+jfe, 6 >.■E

‘^t+k-l I
- --------I St, at,... St+k-x, Ot+k-i
Ot+k-l

= £/< 7 rt+fe7—
6t+i

TTt+fc _ _ ■

bt+k br-i

Since the underlying environment is an MDP, the second factor can be re-written as:

E '^i+k
bt+k

TTT-I
br-i

I St+fe, a^^k, b ?.

The expected value of this term is 1. Therefore,

[\fc=i / i=t+i

Ei
T-t t+k-1

'r’'~'^rt+k n I St = s, Ot =
k=l i=t+l

a, b

which concludes the proof, o

We can also devise a weighted version of the per-decision importance sampling

algorithm. The reason for such a version is to smooth out large variations in the

updates, if unlikely events happen. The idea is simply to divide the estimator by the

sum of the weights during each episode:

^Tm-tm ^k-1.„ , TTr*"’+^“^ 2n
def ^m=l ^k=l I ' <m+fe ri»=fm+l bj

a) — ^k-1 rrtm+fe-l ?[£ (S'!)

This weighted per-decision importance sampling estimator is consistent but biased,

just like the weighted importance sampling estimator

78

Episodes Episodes
(a) Uniform Behavior (b) Different Behavior

Figlire 6.3. Comparison of Classical (Per-Return) and Per-Decision Monte Carlo
Importance Sampling Algorithms

200

250 450

400

350

300

250

200

100

60

RMSEiso
over

all states
and

actlonstoo
averaged

over
100 MDPs

RMSE ’
over

all states '
and

actions ‘
averaged

over '
100 MDPs

150

VVelgh|ed Importance Sarppling

100 200 300 400 500 600 700 800 900 1000
Weighted Importance Sarripling

100 200 300 400 SOO 600 700 600 900 1 000

I Classical Importance Sampling

Per-DecIslon Importance Sampling
Per-Decision Importance Sampling

... Weighted Per-Decision Importance Sampling'

Classical Importance Sampling""

Figure 6.4 presents an empirical comparison of the per-decision algorithms with

the classical (per-return) version, on the same testbed of 100 randomly generated

MDPs (described in detail in section 6.3). The error measure is again the root of

the total mean squared error for all the state-action pairs, averaged over the 100

MDPs. For the weighted per-decision algorithm, we also show error bars equal to one

standard deviation. The standard deviation for the unweighted per-decision was on

the order of 100 in the uniform behavior case (left panel) and on the order of 500 in

the dilferent behavior case (right panel). Since the weighted per-decision estimator

has significantly smaller variance and more stable behavior, we recommend its use

instead of the unweighted version, even though it is not consistently faster (as seen

in the left panel).

6.5 Conclusions
In this chapter we presented Monte Carlo algorithms for policy evaluation, based

on importance sampling corrections. One of the algorithms is a straightforward ap-

plication of importance sampling. The other algorithm, per-decision importance sam-

pling, is a new method, which takes into account the fact that the reward samples

come from an MDP. We have shown that per-decision importance sampling algorithm

79

converges to correct Q-values, like classical importance sampling, and the empirical

results suggest that it is comparable in terms of speed.

Both importance sampling algorithms presented so far build Q-value estimates

from samples of total reward. Since our ultimate goal is to use these ideas in on-line

algorithms for options, we would like to have more on-line, incremental implementa-

tions of these algorithms. This will be the focus of the next chapter.

80

CHAPTER 7

OFF-POLICY LEARNING: TEMPORAL-DIFFERENCE
METHODS

Temporal-Difference (TD) learning is one of the central ideas of reinforcement

learning algorithms (Sutton & Barto, 1998). One advantage of TD methods over

Monte Carlo methods is their natural implementation in an on-line, incremental man-

ner. This allows them to be applicable in infinite-horizon as well as trial-based tasks.

TD methods using eligibility traces are also faster than Monte Carlo methods. In the

case of off-policy learning for policy evaluation, there exists an immediate one-step TD

algorithm. However, there are no known eligibility trace TD algorithms. In this chap-

ter we present two such algorithms. One is a TD implementation of the per-decision

importance sampling presented in the previous chapter. The second algorithm, called

tree backup, extends the one-step algorithm, and has the advantage of converging to

correct values even when the behavior policy is non-Markov or unknown.

7.1 One-Step TD Learning

The one-step TD learning algorithm is based on the Bellman equation for state-

action values:

Q^{s, 52o') (7-1)
a' a'

This equation can be turned into the following update rule:

Q(s(,at) (1 - Q!)<3(s<,at) -ba(r<+i -|-7 52^(^<+i>“)<9(s<+i,a)) (7.2)
a

81

(s,a)

s

Figure 7.1. Backup tree for one-step TD

The backup tree (Sutton & Barto, 1998) for this algorithm is shown in Figure 7.1.

The hollow circles represent the states, and the filled circles represent actions. At each

step along a trajectory, there are several possible choices of action according to the

target policy. The one-step target for the TD update combines the value estimates

for for these actions according to their probabilities of being taken under the target

policy. Then the update moves the value function estimate towards the target.

The one-step algorithm converges with probability 1 to the correct value function

if the learning rate a is decreased appropriately over time. This follows simply

from the general convergence theorem of Jaakkola, Jordan & Singh (1994).

M •

RMSE
over

all states “

Weighted Importance Sampling

One-Step TD

and
actions

averaged
over

100 MDPs
30

0 100 200 300 400 SOO 600 700 600 900 1000
Episodes

(a) Uniform Behavior

Weighted Importance Sampling

One-Step TD

20-

RMSE
over

all states
and

actions
averaged

over
100 MDPs

100 200 300 400 500 600 700 600 900 1000
Episodes

(b) Different Behavior

Figure 7.2. Comparison of One-Step TD and Monte Carlo Importance Sampling

Figure 7.1 contains a simple comparison between the one-step and the weighted

importance sampling algorithms. The comparison was performed on the same set

of 100 randomly generated MDPs used in the experiments reported in the previous

chapter. For the one-step TD algorithm, the step size was a = l/n(s, a), where n(s, a)

82

is the number of first visits to state-action pair (s, o). All the updates were done off-

line, at the end of an episode. This setting eliminates the need to take into account the

effect of the step-size parameter and the difference in speed due to on-line updating

(which is known to be faster in practice). The left panel compares the algorithms for a

uniformly random behavior policy. In this case, the one-step algorithm is significantly

slower than the Monte Carlo algorithm, because it does not take advantage of the

fact that long portions of trajectories are likely to occur under both the target and

the behavior policy. The right panel contains the same comparison for the case of

very different behavior and target policies (80%-20% vs. 20%-80%). In this case,

the importance sampling algorithm has a very small advantage in the beginning of

learning in terms of speed of reducing error, but in the long run the one-step algorithm

is marginally faster.

7.2 Temporal-Difference Per-Decision Importance Sampling
The per-decision importance sampling estimator presented in the previous chapter

can be implemented in a temporal-difference manner.

Algorithm 1 Online, Eligibility-Trace Version of Per-Decision Importance Sampling
1. Update the eligibility traces for all states:

et(s,a) = et_i(s,a)7A^^^^^, Vs, a
o(st, at)

et(s,a) = l,iff t =tm(s, a),

where A G [0,1] is an eligibility trace decay factor.

2. Compute the TD error:

St = ’”<+1 + 7 Qt{st+i, a<+i) - Qt(s<, flt)

3. Update the action-value function:

Qt+i (s, a) •<- Qt (s, a) -h a (s, a) \/s,a

83

An eligibility-trace version of per-decision importance sampling is given by Algo-

rithm 1. The algorithm maintains eligibility traces for each state-action pair in the

usual manner of temporal-difference (TD) algorithms. The only difference is that

here the eligibility trace is multiplied on each step not just by a decay-rate A, but

also by an importance sampling factor This factor corrects for the effect of

the behavior policy. The algorithm shown uses online updating, meaning that the

value estimates are updated on every time step. The offline version would make

the same increments and decrements as shown, but only at the end of each episode.

The changes are accumulated “on the side” until the end of the episode, the value

estimates remaining unchanged until then. Under offline updating the algorithm can

be made to exactly implement the per-decision importance sampling estimator

by choosing A = 1 and a(s, a) = l/n(s, a), where n(s, a) is the number of times

state-action pair s, a has previously been updated. Another choice for a causes the

algorithm to exactly implement the corresponding weighted estimator, The

algorithm remains consistent under general A and general decreasing a:

Theorem 6 For any soft, stationary behavior policy b, and any A G [0,1] that does

not depend on the action at, Algorithm 1 with offline updating converges w.p.l to Q^,

under the usual step-size conditions on a.

Proof: The proof is structured in two stages. First, we consider the corrected trun-

cated return corresponding to The corrected truncated return sums the rewards

obtained from the environment for only n steps, then uses the current estimate of the

value function to approximate the remaining value:

, , « <+*-1 <+n-l

fe=l Z=<+1 ‘’i <=<4-1

We need to show that is a contraction mapping in the max norm. If

this is true for any n, then by applying the general convergence theorem, the n-step

84

return converges to Q^. Then any convex combination will also converge to Q^. For

example, any combination using a A parameter in the style of eligibility traces will

converge to Q^.

Let Q(s, a, k) denote the set of all possible trajectories of k state-action pairs

starting with (s, a):

Q(s, a, k} = {(so, ao, si, Oi,... afc_i)|so = s,ao = a},

and let tv denote any such trajectory: cv = (s q) Oo , Oi, • • • Sfe-i, Then the ex-

pected value of the corrected truncated return for state-action (s, a) can be expressed

as follows:

I St = s,at = 0,6} =

‘jr
12 I So = s, ao = a, b}y'‘~'^rk H 77

*=1 /=!

-I- Pr{a; | so = s, oo = o, 6}7”Q(s„, a„) fj
uieQ{s,a,n) 1=1

=z E (n n r
*=1 i<;en(4,o,fc) \/=i / 1=1

n ai}] y”Q{Sn, an) n r
,. . . ' 1=1

n fe-1 fe-1
= 537'’“^ E n^’4;:i4,7r(s,,a|)-F7" Q(sn, ^n) R

fc=l weli{s,a,k') /=1 iveQ(a,a,k) J=1

By applying the Bellman equation for iteratively n times, we obtain:

n fe-l
= n p“,-i\,7r(sz, ai)

k=l ijjeQ(.a,a,k) Z=1

Ji
+7" E <5’'(sf+„,at+„)nP4;:i\,7r(s,,a,).

ijjell(s,a,k) <=1

85

Therefore,

maxIB/jji"’ I 6} - O’Cs.a)! < 7" |Q(s,o) - O’(s,o)|.

This means that any n-step return is a contraction in the max norm, and therefore,

by applying theorem 1 of Jaakkola, Jordan and Singh (1994), it converges to Q^.

In the second stage, we show that by applying the updates of Algorithm 1 for n

successive steps, we perform the same update as by using the n-step return The

eligibility trace for state-action pair (s, a) can be re-written as:

et(s,a) =7*-*”’ n r

We have:

n
et-|-fc-i(s, a) =

k=l

fe=l \Z=*+1 J Qf+fe)
n i+Jfe-l t+n-1

fe=i i=t+i r=t+i
= - Q(s„ a,).

Since our algorithm is equivalent to applying a convex mixture of n-step updates, and

each update converges to correct Q-values, algorithm 1 converges to correct Q-values

as well, o

7.3 Tree Backup Algorithm
The importance sampling methods that we have discussed so far all use knowledge

of the probabilities of different actions under the behavior policy in their updates.

Therefore, they require that the behavior policy be known, Markov (purely a function

86

(s,a)

Figure 7.3. Backup diagram for the tree backup algorithm

of the current state) and explicitly represented as action probabilities. However, for

agents that generate behavior using options, none of these may be true. The one-

step TD-learning algorithm, on the other hand, estimates correct Q-values regardless

of the behavior policy being followed. The behavior policy can be non-stationary,

non-Markov and completely unknown, yet the computation is still correct, because

the behavior policy is not used in the updates, the only requirement on the behavior

policy is that it should be non-starving, i.e., that it never reaches a time after which a

state-action pair is never visited again. In this section we introduce a new algorithm,

which combines this advantage with the speed advantages of eligibility traces.

The main idea of the algorithm is illustrated in figure 7.3. At each step along a

trajectory, there are several possible choices of action according to the target policy.

As described in section 7.1, the one-step target combines the Q-value estimates for

these actions, according to their probabilities of being taken under the target policy.

At each step, the behavior policy chooses one of the actions, and for that action, one

time step later, there is a new estimate of its Q-value, based on the reward received

and the value of the next state. The tree backup algorithm then forms a new target,

using the old Q-value estimates for the actions that were not taken, and the new

estimate, for the value that was actually taken. This process can be iterated over

many steps. If we iterate it over n steps, we obtain the n-step tree-backup estimator.

87

, . 1 M <m+n
- w S 7”Q(s<„+n,at„+„) n TTi

m=l »=<m+l
tm+n fc-1 / \

+ £ JJ TTi rfc+7 52 ^(^fe>“)<5(sfc,a) (7.3)
fe=tm+l »=lm+l \)

For n = 1, the tree backup estimator reduces to the familiar one-step TD estimator,

TD(0).

Algorithm 2 Online, Eligibility-Traces Version of Tree Backup_________________
1. Update the eligibility traces for all states:

et(s, o) = e<_i(s, o)7A7r(sf,at), Vs, a
et(s,a) = lifft=tm(s, a)

where A G [0,1] is an eligibility trace decay parameter.

2. Compute the TD error:

St = n+i + 7 52 a)Q(«t+i, o) - Q(st,
ae.4

3. Update the action-value function:

Qt+i(s, a) <r- Qt(s,a) -t Q:et(s, o) (J*, 'is, a

The tree backup estimator also has a simple incremental implementation using

eligibility traces. An online version of this implementation is given by Algorithm 7.3.

In general, A can be chosen as a function of the state St, but cannot depend on the

action o*. A choice of A that is dependent on the state can have empirical advantages.

For example, in the experiments reported in the next section, the eligibility traces

were divided at each step by maxo 7r(st, a). This prevents the traces from decaying

too quickly.

Theorem 7 For any non-starving behavior policy, for any choice of X E [0,1] that

does not depend on the actions chosen at each state, the offline version of Algorithm

2 converges w.p.l to Q^, under the usual conditions on a.

88

Proof: The proof is again in two stages. First we show that a) | bj -

is a contraction, in order to apply again theorem 1 of Jaakkola, Jordan and Singh

(1994). We use a proof by induction.

Let Q be the current estimate of the value function. For n = 1:

max|E{Qf^(s,a) | ft} -Q*(s,a)| =
(i,a) I- J

= max |r,“ + 7 o!}Q{s', a') - r“ - 7 p“s'7r(s', a'}Q'^{s\ o')|

< 7maxlQ(s, fl) - Q^(s, fl)|.
(i.a)

For the induction step, we assume that

max|F;{(5^^(s,fl) 1 b} -Q’^(s,fl)| < 7max|Q^^(s,fl) - Q’^(s,fl)|,

and we show the same holds for <5^+i(s, a}- "We can re-write Q^+i(s, a} as follows:

!
Qn+1(^) = ^<+1 d" 'y 7r(St+i, d)Q(St-)-i, fl)(1 — la'at+i} d" ^a'ai+iQn (^t+1))>

o'€.4

where Ta/ai+i is an indicator variable equal to 1 if fl' = fl^+i and 0 otherwise. Then

we have:

max |E{Q^fi(s, fl) 1 6} - Q’'(s, fl)| =

max|r“ -b7 52p“,' -^o'oe+i)Q(s',o') d-Ta'ot+iQ^®(s', o') | i’}

-y'E.PL'Y.As', a'}Q^ (s', a')\
s' a'

s' a'

E {(1 - a'l - a')) + a') - Q’^s', o'))|i} |

89

< 7max|Q(s,fl) -Q*(s,o)|.
(s,a)

By applying now theorem 1 of Jaakkola, Jordan and Singh (1994), we can conclude

that any n-step return converges to the correct action value.

Since all the n-step returns converge to Q^, any convex linear combination of n-

step returns also converges to Q^. In particular, we can use a fixed A parameter, as

is usually done in TD(A), or even a A parameter dependent on the state.

For the second part of the proof, we show that applying Algorithm 2 (with A = 1)

for n steps is equivalent to using Q^^(s, a). The eligibility trace for state-action pair

(s, a) can be re-written as:

t+k
et+fc(s,o) =7*’ n 7r(si,o/)

By adding and subtracting the weighted action value, %(«<+*, Of+fc)Q(st_,.fc, Ot+Jb) for

the action taken on each step from the return, and regrouping, we have:

n t+k-1 f
n 7r(sz,o,) rt+fe-b7^7r(s<+fe,a)Q(st+fe,a)

fe=l /=<+! \
n

= Q(s<, at) -)- ef+js;(si, at)St+k,
k-l

which concludes the proof, o

7.4 Empirical Comparison
We compared all the algorithms discussed so far on the same benchmark of 100

different random MDPs discussed in chapter 6. The results are presented in figure 7.4.

The left panel presents results using a uniformly random behavior policy. The right

panel contains results for a behavior policy that is very different from the target policy

(see chapter 6 for details of the experimental setup). The results for the one-step TD

algorithm and the importance sampling algorithms have already been discussed in

90

Weighted Importance Sampling

Weighted Per-Decision Importance Sampling

One-Step TDOne-Step TD

Tree Backup

Tree Backup

RMSE
over

all states
and

actions
averaged

over
100 MDPs

RMSE
over

all states
and

actions
averaged

over
100 MDPs

too 200 300 400 SOO 600 700 600 SOO 1000

Episodes
(b) Different Behavior

60
Weighted Per-Decision Importance Sampling

0 too 200 300 400 500 600 700 600 900 1000
Episodes

(a) Uniform Behavior

Figure 7.4. Comparison of all the off-policy learning algorithms on a testbed of 100
random MDPs.

the previous sections. The new results on these graphs are the root mean square

error curves and standard deviations for the tree backup algorithm.

The tree backup algorithm is slower than weighted importance sampling in the

beginning of learning, but it is significantly faster in the long run, as shown in the

graphs. In the second case, the one-step TD method is also faster than the importance

sampling methods in the long run. This is due to the fact that the trials are quite

different from the ones one would obtain under the target policy. Therefore, a lot of

the data is discarded by importance sampling, while the one-step and tree backup

use it more efficiently. The weighted per-decision importance sampling algorithm

comparable or worse to the other algorithms.

The tree backup estimator was uniformly the most efficient of all methods in

the medium and long term, beaten only by weighted importance sampling by small

amounts for small numbers of episodes. In summary, our results strongly favor the

tree backup algorithm, because of its superior overall performance and because of its

weaker requirements of the behavior policy.

91

Figure 7.5. Pull trajectory tree for an MDP

7.5 A Unified View of the Two Multi-Step TD Algorithms
In order to understand better the two multi-step TD algorithms presented so far,

let us consider the full trajectory tree presented in Figure 7.5. The root of the tree

is a state-action pair, and the tree contains all the possible states and actions at

each point. States are represented with hollow circles, and actions with filled circles.

One trajectory through the tree can be obtained by sampling the states at each

branching according to the environment’s transition probabilities, and by sampling

actions according to the behavior policy.

Both the multi-step algorithms do backups along such trajectories. The per-

decision importance sampling algorithm uses the actual rewards obtained during the

trajectory. Because the sampling at each action ramification is done according to

the behavior policy probabilities, the importance sampling correction is necessary to

ensure correct estimates. The tree backup algorithm considers all possible actions

at each step, not just the one taken. It backs up values according to a cut like the

one represented with the dotted line in figure 7.5. Because all action choices are

considered in the backup, the convergence is guaranteed for any behavior policy that

is non-starving (i.e. takes every action in every state infinitely often).

92

This interpretation suggests that the two algorithms can be combined, without

losing the convergence guarantees. If at a given state, the behavior policy is Markov

and it is known, we can use per-decision importance sampling. If the behavior is

unknown and/or non-Markov, we can use the tree backup algorithm. The mixture

could ensure faster and more stable error reduction than either algorithm alone. We

have not yet explored this idea empirically.

The two multi-step TD algorithms presented here also have an interesting rela-

tionship to multi-step Q-learning. In the control case, both algorithms cut the eligi-

bility trace whenever an exploratory action is taken. Their updates are equivalent to

Watkins’s Q(A) algorithm. Of course, no convergence results have been established

for eligibility trace algorithms in the control case. Our hope is that we will be able to

extend the convergence results presented in the previous sections to the control case.

7.6 Applying Multi-Step OfF-Policy Learning to Intra-Option
Learning

In chapter 5, we presented intra-option learning algorithms, which are a form of

off-policy learning for acquiring the values and models of options. In this section we

present an application of the ideas presented above to learning about the models of

options.

The eligibility trace update used by the tree backup algorithm can be applied

immediately in this case. The only change is that the eligibility traces have to take into

account the probability of the option terminating in each state (as in Sutton, 1995).

Algorithm 3 presents an intra-option mode learning algorithm that uses eligibility

traces.

In order to illustrate the algorithm, we use the same gridworld used in the exper-

iments with one-step intra-option learning (see Figure 4.1). Experience is generated

by selecting randomly in each state among the two possible options and four possible

actions, with no goal state.

93

Algorithm 3 Eligibility Traces Intra-Option Model Learning___________________
1. Initialize r°(o) and p°si(a) to arbitrary values.

2. Initialize traces for all options: eo(s, a) = 0, Vs, a.

3. On every transition s<, at, rt, Sj+i:

(a) Update the eligibility traces for all options and all state-action pairs:

eo(s,fl) 4- eo{s,a}'yX(l - 0o{st}}Tro{st,at),'^s,a
^o^Styat} 4— eo(st, flt)-(-1

(b) Update the models, for all s, a, o:

P°3' (a) <- (a) -b aeo{s, a) ((1 - ^(st+i))7p"^+^ + '«t+l Psts' (at)),

where is an indicator function that has value 1 if s' = s^+i and 0
otherwise.

We compared the results of the algorithm presented above with the SMDP algo-

rithm given by equations (5.1) and (5.2). For the SMDP method, the step-size pa-

rameter was varied so that the model estimates were sample averages, which should

give fastest learning. The results of this method are labeled “SMDP optimized” on

the graphs. We also looked at results using a fixed learning rate. In this case and for

the intra-option methods we tried step-size values of a = |, |, |, and and picked

the best value for each method. For the intra-option updates, we used two values of

A: A = 0 (which gives the algorithm we studied in chapter 5) and A = 1. Figure 7.6

shows the learning curves for all three methods, using the best a values, when a fixed

alpha was used.

All intra-option algorithms were faster than SMDP methods. The algorithm with

A = 1 is the fastest to converge, but asymptotes to a higher error. Note that in the

case of A = 1, the intra-option algorithm is performing similar updates to the SMDP

algorithm, but at the same time it is adjusting more options. In our illustration, at

94

Figure 7.6. Error curves for the reward predictions (left panel) and next-state
predictions (right panel) for the SMDP, one-step intra-option learning, and intra-
option learning with tree backup eligibility traces.

2.5

0.5 lambda = 1

SMDP

0.12

0.08

0.04

0.02

0.16

0.1

laml

SMDP optimized

SMDP

Average 2
error
in the
reward I -5
predictions

optimized
lambda = O'---- __

10000 20000 30000 40000 50000
Number of options

0.14
Average
error
in the
next
state
prediction

0.06

10000 20000 30000 40000 50000
Number of options

iBda = 0 —
lambda = 1

most two options can be updated on every time step, but we anticipate that the effect

would be more pronounced if more options were available for parallel updates.

7.7 Conclusions
In this chapter we presented two novel temporal-difference algorithms for per-

forming off-policy learning with eligibility traces. We proved that these algorithms

converge to correct action values under offline updating in the tabular case. These

are the first convergence results for off-policy learning with eligibility traces. The

tree backup algorithm converges correctly for non-stationary and non-Markov behav-

ior policies, as long as they are non-starving, this algorithm also performed best in

our experiments. We have shown how the tree backup algorithm can be applied for

learning the models of options in an intra-option manner. Using this idea produces

faster learning that one-step intra-option methods.

In the future, it would be interesting to study the theoretical properties of these

algorithms, such as the bias-variance trade-offs, and the relationship of these algo-

rithms to control learning methods, such as Q(A). More empirical experience with

these algorithms would also be useful in understanding their properties.

95

CHAPTER 8

ADAPTING OPTIONS

So far we have assumed that the options are given, and we have focused on methods

for learning and planning with options. Given a set of options, one can use such

methods to find the optimal value function of the SMDP defined by the options.

This value function is typically lower than the optimal value function of the original

MDP problem.

The next step we consider now is to improve the existing options. For example, if

the option is open-the-door, then it is natural to adapt its policy over time to make

it more effective and efficient in opening the door, which may make it more generally

useful. In this chapter we address the issue of adapting a given set of options to

provide a better solution for the task at hand. We present methods for changing the

termination conditions and the policies of the options.

8.1 Interruption
Suppose we have determined the option-value function Q^(s, o) for some policy /z

and for all state-options pairs s, o that could be encountered while following p.. This

function tells us how well we do while following p committing irrevocably to each

option, but it can also be used to re-evaluate our commitment on each step. Suppose

at time t we are in the midst of executing option o. If o is Markov in s, then we can

compare the value of continuing with o, which is Q^(st, o), to the value of terminating

o and selecting a new option according to p, which is = '£,0'

If the latter is more highly valued, then why not terminate 0 and allow the switch?

96

This new way of behaving is indeed better, as shown below. But this is a change in

the termination condition of o and thus requires stepping outside the existing set of

options, outside the SMDP.

We can characterize the new way of behaving as following a policy p! that is

the same as the original one, but over new options, i.e. p'{s, o') = p(s,o), for all

s e iS. Each new option o' is the same as the corresponding old option o except

that it terminates whenever termination seems better than continuing according to

Q^. We call such a p' an interrupted policy. We will now state a general theorem,

which extends the case described above, in that options do not have to be Markov,

and interruption is optional at each state where it could be done. This lifts the

requirement that be completely known.

Theorem 8 (Interruption) For any MDP, any set of options O, and any Markov

policy p : <S x O [0,1], define a new set of options, O', with a one-to-one mapping

between the two option sets as follows: for every o G O we define a corresponding o' G

O', where o'{h, •) = o(h, •) except that for any history h in which Q^{h, o) < ^*^(5),

where s is the final state ofh, we may choose to set o'[h,T) = 1. j4ni/ histories whose

termination conditions are changed in this way are called interrupted histories. Let

p' be the policy over o' corresponding to p: p'(^s,o') = p{^s,o), where o is the option

in O corresponding to o', for all s G S. Then:

1. V>^\s) > y'^(s) forallseS.

2. If from state s E S there is a non-zero probability of encountering an interrupted

history upon initiating p' in s, then > V^(s).

Proof: The idea is to show that, for an arbitrary start state s, executing the option

given by the interrupted policy p' and then following policy p thereafter is no worse

97

than always following policy /z. In other words, we show that the following inequality

holds:

EX(*.<0l«5' + > VM = EM(s,o)K + Zpi'’"‘M!- (si)
o' s' o s'

If this is true, then we can use it to expand the left-hand side, repeatedly replac-

ing every occurrence of on the left by the corresponding +

the limit, the left-hand side becomes V*"', proving that V^' > V''.

Because /z'(s, o') = o)Vs e S, •'n q need to show that

>•:'+(8.2)
a' s'

Let r denote the set of all interrupted histories: F = {h E H : o{h,T) o'{h,T)}.

Then, the left hand side of (8.2) can be re-written as:

E{r-F7''y'‘(s') |5(o',s),h,,/ 0r}+E{r-F7*’V''(s') |f(o',s),^,z er}, (8.3)

where s', r, and k are the next state, cumulative reward, and number of elapsed

steps following option o from s (hss' is the history from s to s'). Trajectories that

end because of encountering a history F never encounter a history in F, and

therefore also occur with the same probability and expected reward upon executing

option 0 in state s. Therefore, we can re-write the second term of (8.3) as:

E {o{h,s>,r)[r + 7*y'‘(s')] + (1 - o(h,y, T))[r -h o)] | f (o', s), E F}.

This proves (8.1) because for all e F, Qo{hsgi,o) < V^(s'). Note that strict

inequality holds in (8.2) if Qo{hss',o) < V^{s') for at least one history hgsi e F that

ends a trajectory generated by o' with non-zero probability, o

98

As one application of this result, consider the case in which // is an optimal policy

for a given set of Markov options O. By planning or learning we can determine

the SMDP optimal value function and the optimal policy achieves it.

This is indeed the best that can be done without changing (9, that is, in the SMDP

defined by but less than the best possible achievable in the MDP, which is V*.

But of course we typically do not wish to work directly in the primitive options

because of the computational expense. The interruption theorem gives us a way of

improving over with very little additional computational expense, by stepping

outside O. The only additional expense is the cost of checking (on each time step)

if a better option exists, which is negligible compared to the combinatorial process

of computing Q^. Kaelbling (1993b) and Dietterich (1998) demonstrated such a

performance improvement by interrupting temporally extended actions based on a

value function found at a higher level, in different settings.

8.2 Examples of Interruption
Figure 8.1 shows a simple example of applying the interruption theorem. The

task is to navigate from a start location to a goal location within a continuous two-

dimensional state space. The actions are movements of length 0.01 in any direction

from the current state. Rather than work with these low-level actions, infinite in

number, we introduce seven landmark locations in the space. For each landmark we

define a controller that takes us to the landmark in a direct path. Each controller is

only applicable within a limited range of states, in this case within a certain distance

of the corresponding landmark. Each controller then defines a flat option: the circular

region around the controller’s landmark is the option’s initiation set, the controller

itself is the policy, and the arrival at the target landmark is the termination condition.

We denote the set of seven landmark options by O. Any action within 0.01 of the

99

Trajectories through
Space of Landmarks /

s

Interrupted Solution
(474 Steps)

J'SMDP Solution
(600 Steps)

Vl^o

SMDP Value Function

2

32

O'
-100'
-200'
-300'
-400'
-500'
-600^

3

Values with Interruption
2

0
-100
-200
-300
-400
-500
-600-

Figure 8.1. Interruption in navigating with landmark-directed controllers. The task
(up) is to navigate from S to G in minimum time using options based on controllers
that run each to one of seven landmarks (the black dots). The circles show the region
around each landmark within which the controllers operate. The thin line shows the
optimal behavior that uses only these controllers run to termination, and the thick
line shows the corresponding interrupted behavior, which cuts the corners. The lower
panels show the state-value functions for the SMDP-optimal and interrupted policies.
Note that the latter is greater.

goal location transitions to the terminal state, 7 = 1, and the reward is —1 on all

transitions, which makes this a minimum-time task.

One of the landmarks coincides with the goal, so it is possible to reach the goal

while picking only from O. The optimal policy within n(C>) runs from landmark to

landmark, as shown by the thin line in Figure 8.1. This is the optimal solution to

the SMDP defined by O and is indeed the best that one can do while picking only

from these options. But of course one can do better if the options are not followed all

the way to each landmark. The trajectory shown by the thick line in Figure 8.1 cuts

100

the corners and is shorter. This is the interrupted policy with respect to the SMDP-

optimal policy. The interrupted policy takes 474 steps from start to goal which, while

not as good as the optimal policy in primitive actions (425 steps), is much better than

the SMDP-optimal policy, which takes 600 steps. The state-value functions, and

V^' for the two policies are also shown in Figure 8.1.

Velocity

0.06-

0.04-

0.02-

0-

Termination
Improved

k121 Steps

,SMDP Solution
210 Steps

0.5 1 1.5

Position
Figure 8.2. Phase-space plot of the SMDP and interrupted policies in a simple
dynamical task. The system is a mass moving in one dimension: a?t+i = Xt + Xj+i,
xt+i = Xt + at — 0.175±f where Xt is the position, Xt the velocity, 0.175 a coefficient
of friction, and the action at an applied force. This continuous system is controlled
at a discrete time scale of 0.001. Two controllers are provided as options, one that
drives the position to x* = 1 and the other to x* = 2. Whichever option is being
followed at time t, its target position x* determines the action taken, according to
at = 0.01(a;* - Xt).

Figure 8.2 shows results for an example using controllers/options with dynamics.

The task here is to move a mass along one dimension from rest at position 0 to at

rest at position 2, again in minimum time. There is no option that takes the system

all the way from 0 to 2, but we do have an option that takes it from 0 to 1, both

at rest, and another option that takes it from any position greater than 0.5 to 2.

Both options control the system precisely to its target position and to zero velocity,

terminating only when both of these are correct to within e = 0.0001. Using just

these options, the best that can be done is to first move precisely to 1 at rest using

101

the first option, then re-accelerate and move to 2 at rest using the second option. This

SMDP-optimal solution is much slower than the corresponding interrupted policy, as

shown in Figure 8.2. Because of the need to slow down to near-zero velocity at 1, it

takes over 200 time steps, whereas the improved policy takes only 121 time steps.

25

50

options!

50

r5

100 10
^50

100
decision
steps

&
Base

15 (reward)

25 (mean time between
weather changes)

--------- 8
Expected
Reward

per 50
Mission

High Fuel

Interruption

SMDP
Planner

Static
Re-planner

Low Fuel

Figure 8.3. The mission planning task and the performance of policies constructed
by SMDP methods, interruption of the SMDP policy, and an optimal static re-planner
that does not take into account possible changes in weather conditions.

Figure 8.3 presents a more complex, mission planning task (Sutton, Singh, Precup

& Ravindran, 1999). A mission is a flight from base to observe as many sites as

possible, from a given set of sites, and return to base without running out of fuel.

The local weather at each site flips from cloudy to clear according to independent

Poisson processes. If the sky at a given site is cloudy when the plane gets there,

no observation is made and the reward is 0. If the sky is clear, the plane gets a

reward, according to the importance of the site. The positions, rewards, and mean

time between two weather changes for each site are given in the left panel of Figure

8.3. The plane has a limited amount of fuel, and it consumes one unit of fuel during

each time tick. If the fuel runs out before reaching the base, the plane crashes and

receives a reward of -100.

The primitive actions are tiny movements in any direction (there is no inertia).

The state of the system is described by several variables: the current position of

the plane, the fuel level, the sites that have been observed so far, and the current

102

weather at each of the remaining sites. The state-action space has approximately

24.3 billion elements (assuming 100 discretization levels of the continuous variables)

and is intractable by normal dynamic programming methods. We introduced options

that can take the plane to each of the sites (including the base), from any position

in the input space. The resulting SMDP has only 874,800 elements and it is feasible

to exactly determine Vo(s') for all sites s'. From this solution and the model of the

options, we can determine Qq {s , o) — r° •+• 53^/ option o and any

state s in the whole space.

We performed asynchronous value iteration using the options in order to compute

the optimal option-value function, and then used the interruption approach based on

the values computed. The policies obtained by both approaches were compared to the

results of a static planner, which exhaustively searches for the best tour assuming the

weather does not change, and then re-plans whenever the weather does change. The

graph in Figure 8.3 shows the reward obtained by each of these methods, averaged over

100 independent simulated missions. The policy obtained by interruption performs

significantly better than the SMDP policy, which in turn is significantly better than

the static planner.

8.3 Termination Iteration
Interruption is a first step in adapting the options for the task at hand. It is com-

putationally inexpensive and easy to apply while acting, without necessarily making

a permanent change of the options. In this section we present a new algorithm for

altering the termination conditions of the options.

The planning version of this algorithm, which we call termination iteration, is

presented below. The main idea is to alternate interruption of options with merging,

which eliminates reset actions whenever the same option would be chosen again. The

goal of merging is to prevent the options from becoming too short, due to interruption.

103

Algorithm 4 Termination Iteration ____________________________

1. Initialization Step: The initial set of options, Oo, is evaluated by computing
the models of the options and then doing SMDP planning. This yields the
initial optimal Q-value function, Qog, and the initial optimal policy ^^o-

2. Iterate the following three steps on the current set of options (9^:

(a) Interruption: all the options are interrupted after histories after which it
is not optimal to continue executing them:

o(h, r) l,Vo such that Q*c,.{h, o) <

where s is the last state of h. This yields a new set of options
(b) Evaluation: the new termination conditions and associated options O'i are

evaluated by recomputing models and SMDP planning, yielding QJ,, and
P’O'.-

(c) Merging: the options are modified to obtain the “longest” duration options
that do not change the behavior of the current optimal policy fi^i :

o{h,r} •(- 0,Vo such that Qoi.{h, o) = Vq z (s),

This yields a new set of options whose Q-values are exactly Q^i .

3. Stopping Condition:

For any set of options O, there exists at least one setting of termination prob-

abilities, which we call the optimal termination probabilities w.r.t O, such that the

associated optimal value for every state is at least as large as the optimal value for that

state under any setting of termination probabilities. An option set derived from O

that has optimal termination probabilities is denoted O*, and the associated optimal

value function Vq . and optimal policy .

Finding some set of optimal termination probabilities is trivial. For instance, we

can define the options such that they always terminate after the first primitive action.

In this case, the value function obtained is the value function of the underlying MDP,

and is the best one can do. However, the computational advantage of options comes

from the options whose expected duration is longer than that of the usual primitive

104

options. Therefore, our goal is to find such a set of optimal termination probabilities

with the longest expected durations. The termination iteration algorithm fulfills this

goal, as we show below.

Theorem 9 (Convergence of Termination Iteration) Let be the sequence

of option sets produced by the algorithm termination iteration algorithm 4- If for some

^Si+i = ^Oi) ^o,+i = ^-Aoo’ option set has optimal terminal

probabilities.

Proof: We prove the theorem by contradiction. If the algorithm has reached

the stopping condition, then for all histories h and all options o G either

Qoi+i{h, o) = or o{h, t } = 1, where h ends in s. This is because the termina-

tion conditions are changed based on the value function and, and the value function

does not change from option set Oi to option set Oi+i.

By the interruption theorem 8, the value function of a set of options is improved

every time when a change in termination probabilities is due to interruption. The

merging step of the algorithm does not change the value function at all. In order to

see this, consider the value function Vq i and . By construction, the termination

probabilities of are less than or equal to those of O[. Therefore, Vq , >

because shorter duration policies can always be pieced together to do at least as well

as longer policies. On the other hand, let be the optimal policy choosing from

options in and p-Oi+i a policy defined over options in (Pf+i, such that poi+i(,s, o') =

Pq ifs, o), where o' is the option corresponding to o. Given the way in which was

constructed, V^i = Therefore, Vq i = This proves that the

value function is improved after every iteration of the algorithm.

Because only interruption improves the value function, we have to show that the

stopping condition implies that no further interruption will yield a better optimal

value function. Let us assume that we increase o(h) to 1 for some option o e

and history h, obtaining a new option o'. kasnxaA that this operation increases the

105

optimal value for some state s (which is the start state of Zi). Let be the optimal

policy obtained just before making this last change, and Vgi be the corresponding

optimal value function. By executing o' in state s and thereafter following the

value of state s increases:

Let us consider an arbitrary state x and divide the trajectories obtained by executing

o' from state s into those that terminate at x and those that continue after x. Then

we have:

£{’■:'+ (s') I £(o', S), s' 7^ x} + B {< + (s') I £(o'. s), s' = i}

> (s, «)-«{< + 7‘V«,„(s') I 5(0, s), s' s:} +

E{< + 7‘[o(h„,T)V(;,„(s') + (1 - o(/.„,o) I 5(0, s),s' = s;}

This must mean that both > Qo^_^_^(hax,o) and o(haa,,r) < 1, which con-

tradicts the stopping condition, o

%S--’

Figure 8.4. Simple MDP in which adding more options can decrease the quality of
the interrupted policy.

This theorem shows that termination iteration will give a solution at least as

good as the optimal SMDP solution for the given set of options. However, there

is no guarantee regarding the amount of improvement obtained in this way. For

instance, consider the example in Figure 8.3. The starting state is S and there are

three deterministic Markov options, marked respectively with solid line, dashed line

106

r

and dotted line in Figure 8.3. The reward in -1 per time step, there is no discounting,

and the values of the terminal states are as marked in the figure. Let us consider the

set formed by the solid line and dashed line options, as well as the set O2 formed

by the dashed line and dotted line options. The first set has a higher SMDP value

function for all the states. However, when termination iteration is performed for this

set, the number of steps necessary to get from state s to the final +10 reward is 3,

so the value of s is 7. When doing termination iteration on O2, only two steps are

necessary to get to the +10 reward. So even though > ^02, for the termination

improved sets, this inequality is reversed. This phenomenon is due to the existence,

in the set O2, of an option which has a good beginning part but a catastrophic finish.

Termination iteration helps to retain only the good part, which helps to obtain a

better value function in the end.

8.4 Illustration of Termination Iteration
As an illustration, we applied the termination iteration algorithm 4 to the rooms

environment presented in Figure 4.1. The goal state is at G2. We use only hallway

options, defined as in our previous experiments. The algorithm converged after three

iterations.

Figure 8.5 shows the termination conditions obtained by applying termination

iteration to the options in the south-east room. Because the goal is at position

G2, the optimal solution with the original options is to run back and forth between

the two hallways G1 and G3, and occasionally stumble upon the goal. By applying

termination iteration, the termination conditions of the options are changed as shown

by the small squares in Figure 8.5. If we consider the trajectories that the option going

to G1 generates‘, we can see that these trajectories would be terminated when they

start getting farther from the goal state. A similar change happens to the trajectories

generated by the option for going to G3. The change of the termination conditions

107

.9.

Option oi going from south-east room to G1
Iteration #1 of termination iteration

Option of going from south-east room to G1
iteration #2 of termination iteration

Option of going from south-east room to G1
Initial termination conditions

Option of going from south-east room to G3
Initial termination conditions

a

Oplion of going from south-east room to G3
Iteration #1 of termination iteration

Option of going from south-east room to G3
Iteration #2 of termination iteration

Figure 8.5. The result of termination iteration in the rooms environment, in the
room containing the goal. The states in which the options terminate immediately
are marked by small squares. The initiation sets of the options are shaded. The two
options available in the room are terminated immediately if the option would take
the agent away from the goal state.

decreases the amplitude of the agent’s oscillations between the two hallways, and the

goal state is reached significantly faster when planning only with the hallway options.

Figure 8.6 shows the termination conditions obtained in the north-west room.

Both options are terminated in all states in which they are not optimal. In this case,

the option to go to state G5 is suboptimal in most states, because it leads away from

the goal. Therefore, this option is basically cut into primitive actions. The option

to go to the hallway G4, which is part of the optimal solution for most states, is

preserved almost intact.

Of course, this is just the most straightforward way to apply termination iteration.

In practice, the algorithm can be applied more incrementally. For instance, instead of

doing full planning every time to evaluate the set of options, one could apply SMDP

108

Option of going from north-west room to G4
Initial termination conditions

Option of going from north-west room to G4
Iteration #1 of termination iteration

Option of going from north-west room to G4
Iteration #2 of termination iteration

Option of going from north-west room Io G5
Initial termination conditions

Option of going from north-west room Io G5
Iteration #1 of termination iteration

Option of going from north-west room Io G5
Iteration #2 of termination Iteration

Figure 8.6. The result of termination iteration in the rooms environment, in the
north-west room. One of the options gets very fragmented.

Q-learning, or intra-option learning, and improve the termination conditions as the

agent goes along, even if the value function is not perfect.

8.5 Policy Iteration for Options
Changing the termination conditions of options is a special case of a more general

algorithm, which adapts the policies of the options to whatever task there is at hand.

The planning version of this algorithm, policy iteration for options, is presented below,

for the case of Markov options. The main idea of the algorithm is to change the

internal policy of the options such that it picks the best primitive action with respect

to the current value function.

If the algorithm is iterated until the stopping criterion is met, then it recovers the

optimal policy of the underlying MDP, as we prove below. As a first step, we prove

a more general result, showing that the improvement step leads to a better value

function.

109

Algorithm 5 Policy Iteration for Options___________________________________

1. Initialization: Start with a given set of Markov options Oq .

2. Iterate the following steps:

(a) Evaluation: Compute the models of the options rf and p^°, and the
optimal value function for the current set of options,

(b) Improvement: If for some state, > Qq .^s , o), then
change option o to take a in s;

o(s, o) 1 and o(s, a'} OVa' / a

3. Stopping Condition:

Theorem 10 (Policy Improvement) For any MDP, any set of Markov options

O and any Markov policy p : S x O [0,1], define a new set of options O' with

a one-to-one mapping between the two option sets as follows: for every o € O we

define a corresponding o' E O' where o'(s, •) = o(s, •) except for every state in which

Q^"{s,o') < r^ + Tnay choose to set o{s,a} = 1. Let p' be the

policy over options corresponding to p: p'{s,o'} = p{s,oi), where o is the option in O

corresponding to o', for all s E S. Then {s} > y*‘(s),Vs, and there exists at least

one state for which the inequality is strict.

Proof: The proof is very similar to the proof for the interruption theorem. The

idea is to show that, for an arbitrary state s, executing the option given by the policy

p' and then following policy p thereafter is no worse than always following policy p.

More formally, we have to show that:

o' s' O s'

If this is true, then we can use this inequality to expand the left side, by repeatedly

replacing every occurrence of y^(a;) with p'{x, o')[r°' + Ea:'Pxa:'^^(a?')]- the

limit, the left side becomes V^', proving that > V^. If no changes were made to

110

option o in state s, then rf + = ^4 + Y,si option 0 'Nas,

changed, then from the hypothesis and the fact that o is Markov, we have:

< + 0} = e, +
s' 3' s'

Because //'(s, o') = p{s,o), this proves our theorem, o

Note that if we include the termination action t into the set we consider, and if

we define the model of this action by: rj = V^(s) and p'^^, = 0,Vs' € S, then the

interruption theorem 8, when applied for Markov options, is a special case of the

policy improvement theorem 10.

Theorem 11 (Convergence of Policy Iteration for Options) For any MDP and

any initial set of options O, the policy iteration algorithm 5 converges to the optimal

value function V* for the MDP.

Proof: By theorem 10, every iteration of the algorithm will improve on the previous

value function. In order to prove that when the stopping criterion is met, V^. = V*,

we use a proof by contradiction. Suppose that when the stopping criterion is met,

there is some state s for which a* / a, where a* is the action suggested by the optimal

policy, and a is the primitive action suggested by the best option in s. Then we have:

s' s" s'

> Qo/s.o)-

which means that the algorithm would have continued for one more iteration, o

Of course, in practice the complete planning version of the algorithm is too expen-

sive to apply. However, this is an important theoretical result, because it guarantees

111

that any set of options can be improved Enoch to eventually reach the optimal solu-

tion of the MDP, if that is desired. In practice, one could interleave steps of learning

the models with improving the policies of the options.

8.6 Conclusions
In this chapter we presented methods for changing a given set of options to be

more adequate for the task at hand. These methods are based on looking at the

internal structure of the options and changing it by algorithms inspired by policy

iteration. By applying these changes iteratively, one can improve the options in such

a way as to obtain the best solution possible for the MDP. Changing the termination

conditions of options can be done with minimal additional computation.

112

CHAPTER 9

CREATING NEW OPTIONS FROM SUBGOALS

It is natural to think of options as achieving subgoals of some kind. Then each

option’s policy could be learned to achieve the corresponding subgoals as well as

possible. Given subgoals for options, it is relatively straightforward to design off-

policy intra-option learning methods to learn the policies that achieve those subgoals.

For example, it may be possible to simply apply Q-learning to learn independently

about each subgoal and option (as in Singh, 1992; Lin, 1993; Dorigo & Colombetti,

1994; Thrun & Schwartz, 1995).

On the other hand, it is not clear which is the best way to formulate subgoals

to associate with options, or even what the basis for evaluation should be. One of

the important considerations is the extent to which models of options constructed

to achieve one subgoal can be transferred to aid in planning to achieve another. We

would like a long-lived learning agent to face a continuing series of subtasks that

result in its being more and more capable.

In this chapter we present an approach to the creation of options, based on associ-

ating options with subgoals of achievement. The formalization of subgoals we present

here suffices to illustrate some of the possibilities and problems that arise. A larger

issue that we do not address is the source of the subgoals. We assume that the sub-

goals are given and focus on how options can be learned and tuned to achieve them,

and on how learning toward different subgoals can aid each other. The issue of for-

mulating useful subgoals is investigated currently by several researchers (McGovern,

1998; Moore et ah, 1998; Andre, 1998; Baum, 1998)

113

9.1 Subgoals of Achievement
A simple way to formulate a subgoal is by assigning a subgoal value, g^s), to each

state s in a subset of states Q C 5. These values indicate how desirable it is to

terminate in each state in Q. For example, to learn a hallway option in the rooms

task, the target hallway might be assigned a subgoal value of +1 while the other

hallway and all states outside the room might be assigned a subgoal value of 0. Let

Og denote the set of options that terminate only and always in the states Q in which g

is defined. Given a subgoal-value function g : Q -> 3fi, one can define a new state-value

function, denoted for options o e Og, as the expected value of the cumulative

reward if option o is initiated in state s, plus the subgoal value g{s') of the state

s' in which it terminates (discounted appropriately). Similarly, we can define a new

action-value function Qp(s, a) = for actions a G and options o G Og.

Finally, we can define optimal value functions for any subgoal g:

and

. Finding an option that achieves these maximums (an optimal option for the sub-

goal) is then a well-defined subtask. For Markov options, this subtask has Bellman

equations and methods for learning and planning just as in the original task. For

example, the one-step tabular Q-learning method for updating an estimate Qg{st, at)

of Qg{st,at) is

Qg{st, at) Qg(,st, ot) -)- a rt+i -I- 7maxQp(st+i, at+i) - Qg{st, at) , if st+i Q,

and

114

Qg(st, at) <- Qg{st, at) + a [r^+i + 7^(st+i) - Qg{st, «<)], if St+i € Q.

0.4

0.3

0.2

0.1

RMS Error in
hallway subtask

values
[Qg(s,a) - Q^(s,a)]2

Ql--------- ,------------------1--------- 1--------- 1--------- 1

0 20,000 40,000 60,000 80,000 100,000
Time Steps

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

true values

learned
values Values of G2

for two tasks

lower
hallway
task

0 20,000 40,000 60,000 80,000 100,000

Time Steps
Figure 9.1. Learning subgoal-achieving hallway options under random behavior.
Shown on the left is the error between Qg(s, a) and Q*(s, a) averaged over s G I,
a G A, and 30 repetitions. The right panel shows the learned values for two options
at one state (maximum over action values) approaching their correct values.

As a simple example, we applied this method to learn the policies of the eight

hallway options in the rooms example. Each option was assigned subgoal values of

H-l for the target hallway and 0 for all states outside the option’s room, including the

off-target hallway. The initial state was that in the upper left corner, actions were

selected randomly with equal probability, and there wajs no goal state. The parameters

were 7 = 0.9 and a = 0.1. All rewards were zero. Figure 9.1 shows the learned action

values Qg(s, a) for each of the eight subgoals/options reliably approaching their ideal

values, Qg{s, a).

It is interesting to note that, in general, the policies learned to achieve subgoals

depends in detail on the precise values assigned by g to the subgoal states. For

example, suppose nonzero expected rewards were introduced into the rooms task in

all states, distributed uniformly between 0 and —1. Then a subgoal value of -1-10

(at the target hallway) results in an optimal policy that goes directly to the target

hallway and away from the other hallway, as shown on the left in Figure 9.2, whereas

115

g = o

g = ioBQaSB
BBBBfl

g = i

g = o
Figure 9.2. Two different optimal policies for options given two different subgoal
values at the target hallway. A subgoal value of +10 (left) results in a more direct
policy than a subgoal of +1.

a subgoal value of +1 may result in an optimal policy that goes only indirectly to

the target hallway, as shown on the right in Figure 9.2. A roundabout path may

be preferable in the latter case to avoid unusually large penalties. In the extreme it

may even be optimal to head for the off-target hallway, or even to spend an infinite

amount of time running into a corner and never reach any subgoal state. This is

not a problem, but merely illustrates the flexibility of this subgoal formulation. For

example, we may want to have two options for open-the-door, one of which opens

the door only if it is easy to do so, for example, if is unlocked, and one which opens

the door no matter what, for example, by breaking it down if need be. If we had only

the first option, then we would not be able to break down the door if necessary. If we

had only the second then we would not be able to choose to open the door without

committing to breaking it down if it was locked, which would greatly diminish the

option’s usefulness. The ability to learn and represent options for different intensities

of subgoals, or different balances of outcome values, is an important flexibility.

9.2 Subgoals and Transfer
Subgoals, options, and models of options enable interesting new possibilities for

reinforcement learning agents. For example, we could present the agent with a series

116

r

of tasks as subgoals, perhaps graded in difficulty. For each, the agent would be

directed to find an option that achieves the subgoal and to learn a model of the

option. Although the option and model are constructed based on the task, note

that they can be transferred to any other task. The option just says what to do; if

behaving that way is a useful substep on another task, then it will help on that task.

Similarly, the model just predicts the consequences of behaving that way; if that way

of behaving is a useful substep on another task, then the model will help in planning

to use that substep. As long as the model is accurate for its option it may be useful

in planning the solution to another task. Singh (1992a,b,c) and Lin (1993) provide

some simple examples of learning solutions to subtasks and then transferring them

to help solve a new task.

10

Figure 9.3. A subgoal to which a hallway option does not transfer. The option for
passing from the lower-left room through to the state with subgoal value 10 no longer
works because of the state with subgoal value -1. The original model of this option
is overpromising with respect to the subgoal.

On the other hand, assuring that the models of options remain accurate across

changes in tasks or subgoals is far from immediate. The most severe problem arises

when the new subgoal prevents the successful completion of an option whose model

has previously been learned. Figure 9.3 illustrates the problem in a rooms example.

Here we assume the options and models have already been learned, then a new subgoal

is considered that assigns a high value, 10 to a state in the lower-right room but a

117

low value, —1, to a state that must be passed through to enter that room from the

lower-left room. The —1 subgoal state makes it impossible to pass between the two

rooms if we consider only options that terminate when they reach a subgoal state.

Yet the prior model indicates that it is still possible to travel from the lower-left

room “through” the -1 state to the hallway state and thereby to the 10-valued state.

Thus, planning with this model will lead inevitably to a highly-valued but poor policy.

Such problems can arise whenever the new subgoal involves states that may be passed

through when an option is executed.

A simple idea is to alter the subgoal formulation such that subgoal states can

be passed through: stopping in them and collecting the subgoal value is optional

rather than required. In this case, an option is obtained as the solution to an optimal

stopping task (see, e.g. Puterman, 1994). An optimal stopping task is defined as an

MDP in which there is a value for stopping specified in some states. If the agent

decides to stop, it collects this terminal value. If it continues to act, it collects the

usual rewards. Such a formulation prevents the problem illustrated in Figure 9.3.

Finally, note that in order to plan successfully, the models of the options, do not

necessarily have to be accurate, just non-overpromising (Precup & Sutton, 1998).

In other words, they do not have to predict the correct outcome, just an outcome

whose expected value is less than or equal to the value of the correct outcome. This

finesse may enable important special cases to be handled simply. For example, any

new subgoal involving states Q that all have the same subgoal value, can probably be

safely used for transfer. The sort of problem shown in Figure 9.3 can never occur in

such cases either.

118

CHAPTER 10

CONCLUSIONS AND FUTURE WORK

10.1 Contributions
In this thesis we presented a general framework for describing temporally extended

actions in the context of reinforcement learning and MDPs. This framework applies

to stochastic environments, and it enables us to express temporally extended actions

in the form of closed-loop policies and goal-oriented behavior, in a more general way

than what has been possible in classical Al approaches to temporal abstraction.

Options and models of options are a form of knowledge representation that is

expressive, clear and suitable for learning and planning. The models of options are

computed from observations of the environment and therefore can be interpreted

and changed by the agent without the need for human intervention. SMDP theory

provides the foundation of the theory of options. In this dissertation we showed

how a set of options in an MDP defines a related SMDP. This connection to SMDP

theory provides a rich set of planning and learning methods, convergence results, and

a natural and general way of predicting the effects of options.

The most interesting feature of the options framework is that it allows an agent to

work simultaneously with high-level and low-level temporal representations. In ad-

dition to reasoning and learning about options, the agent can examine their internal

structure in order to make predictions, learn and plan at multiple temporal scales.

In this dissertation we presented several novel algorithms that take advantage of the

internal structure of options. For instance, intra-option learning algorithms use this

structure in order to learn efficiently about many options from the same real experi-

ence. Intra-option learning is an example of off-policy learning, a general approach for

119

learning about the effects of one way of behaving while behaving in a different way.

Off-policy learning is key to the efficiency of learning in a system that can potentially

consider many options. We described off-policy learning algorithms that have strong

convergence guarantees and are also very efficient in practice.

We also presented new algorithms for improving options by changing their ter-

mination conditions and their internal policies. These algorithms enable an agent to

start with a generic set of options and then tune it to improve its performance on any

given task.

Our research suggests that options can enable faster learning and planning in

complex environments, as well as in the case in which an agent is faced with a whole

family of tasks that it has to solve. Options are a way of representing the actions

available to the agent at an appropriate time scale. In many environments, a solution

to a task can contain a long series of actions, but a much shorter sequence of options.

This means that a solution in terms of options can be computed much faster by a

planning algorithm, since there are fewer decisions to consider. Options also have the

side effect of compressing the state space, because we only need value predictions for

states in which options terminate.

Options also provide an easy and principled way of providing prior knowledge

for a learning agent. In many domains of interest, people know useful controllers

or heuristics for acting, or they can guess useful subgoals that can represent steps

towards a solution. Options are a natural way to specify such knowledge.

Options are very useful in the case in which an agent is not faced with just one

task, but with a series of tasks that are related. In this case, options can represent

solutions to subtasks that can be saved and reused over time. For instance, a robot

might need to navigate to different destinations in a building. Having options such

as following a corridor or going up and down stairs would be useful in this case for

going to any destination.

120

The options framework allows us to go beyond the usual view in which an agent

learns a single policy to solve a particular task. The framework enables learning and

prediction about many ways of behaving, which can be useful in different situations

and at different stages of learning. This research can be viewed as a first step towards

a general architecture for constructing representations that facilitate learning.

10.2 Future Research Directions
There are many research areas that offer a lot of promise for future work:

Finding better state representations: Action and perception are intimately

related. Objects can be described by the opportunities that they afford for

action. For instance, the most salient feature of a chair is the fact that it can

be used to sit on. Doors can be opened and closed, and they are used to pass

between rooms. Models of options capture knowledge about the temporally

extended effects of options. Such models can form the basis for representing

concepts, in a way that can be understood by the system, and validated by

acting in the world. For instance, consider a robot learning to recognize its

battery charger. The most useful concept for it is the set of states from which it

can successfully dock, and this is exactly what would be produced by the model

of a docking option. Such action-oriented concepts can be learned and tested

by the robot without external supervision.

Parametric representations for options and their models: There are many

reasons for which one would want a parametric representation of options. First,

people usually find it natural to specify controllers or behaviors depending on

parameters. Having parametric representations of options would enable them

to do this in a more natural way. Second, parametric representations of op-

tions would facilitate parametric representations of their models. Models are

the primary way of encoding predictive knowledge about the effects of options.

121

They enable reasoning about options and using options for solving tasks. In

this thesis we assumed that models are constructed specifically for each option.

The only generalization that can occur is over states. This leads to an explo-

sion in the number of models if an agent has a lot of options, which in turn

slows down planning. One way to alleviate this utility problem is to repre-

sent options and their models parametrically. In this case, a model is a function

from states and some parametric representation of options, to predictions about

the intermediate reward and the transition after execution. Finding good ways

of representing options and models, and determining how to do learning and

planning with such models could be a key step in solving the utility problem.

Special hierarchical learning methods: In this thesis we have shown that hier-

archies of options with multiple levels can be flattened and treated as one-level

hierarchies. However, more efficient learning algorithms can be obtained by

designing special methods for hierarchies with multiple levels of options. For

instance, in the case of intra-option learning algorithms for hierarchical Markov

options, one can prioritize the order in which the options are updated, from

bottom up, such that the computation is more efficient than just ffattening

the hierarchy at every point. Other special-purpose computational tricks can

probably be used for other multiple-level hierarchies of options.

Using function approximation and state abstraction with options: Most

of the illustrations in this thesis used flnite discrete MDPs. But the options

framework allows the use of state abstraction and function approximation to

deal with exponentially large and continuous state spaces. The simplest way in

which this can be done is to use standard methods in order to represent value

functions and models of options. More empirical experience using such methods

with options would be very useful.

122

Evaluating sets of options: As we have shown in some of the illustrative examples,

options can speed up planning significantly, but with a loss in the quality of

the solution obtained. Of course, the quality of the solution can be improved

by methods such as termination and policy iteration. But in this case, the

final solution varies in quality as well, as seen in chapter 8. Moreover, sets of

options have different utilities at different stages of learning. For instance, in

the beginning of learning, options that help the agent explore its state space

can be very useful, even if they do not provide a lot of reward in the long

run (and therefore would not be part of the optimal policy). It would be very

interesting to formulate mathematical criteria describing the utility of different

sets of options depending on the stage of the learning process and the learning

or planning algorithms being used. This would enable comparisons between

different sets of options, and facilitate finding good sets of options.

Creating options and finding subgoals: In chapter 9 we illustrated one way of

creating new options, by formulating an optimal stopping task over the state

space. But the terminal states and their values are hand-picked by the designer

of the system. In general, we would like a system to find such states and values

automatically. There are heuristics that can be used in special cases, such as

using funneling states as subgoals (McGovern, 1998). The issue of finding good

subgoals is intimately related with the problem of evaluating different sets of

options. There are many interesting questions regarding the utility of subgoals

and the automatic creation of subgoals. We have not addressed such questions

in this dissertation, but we believe that the options framework provides a good

language for formulating these questions in a clear and precise way.

Solving POMDPs by using options: Consider an agent inside a long featureless

corridor. If there are no salient features to distinguish different positions, the

123

agent will suffer from a hidden state problem. But if it uses an option that

takes it all the way to the end of the corridor, where the state can be observed

exactly, then there is no problem with being inside the corridor. As long as

there is some way of behaving that takes the agent between fully observable

states, the problem can be treated as an SMDP. In general, options and models

of options may help avoid partial observability.

124

BIBLIOGRAPHY

Andre, D. (1998). Learning hierarchical behaviors. NIPS’98 Workshop on Abstrac-
tion and Hierarchy in Reinforcement Learning.

Asada, M., Noda, S., Tawaratsumida, S., & Hosada, K. (1996). Purposive behav-
ior acquisition for a real robot by vision-based reinforcement learning. Machine
Learning, 23, 279-303.

Baum, E. (1998). Manifesto for an evolutionary economics of intelligence. In
C.M.Bishop (Ed.), Neural networks and machine learning. Springer-Verlag.

Bellman, R. E. (1957). A Markov Decision Process. Journal of Mathematical Me-
chanics, 6, 679-684.

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-theoretic planning: Structural
assumptions and computational leverage. Journal of Artificial Intelligence Research,
11, 1-94.

Brackbill, J. U., & Cohen, B. I. (Eds.). (1985). Multiple time scales. Academic Press.

Bradtke, S. J., & Duff, M. 0. (1995). Reinforcement learning methods for continuous-
time Markov Decision Problems. Advances in Neural Information Processing Sys-
tems 7(pp. 393-400). MIT Press.

Brafman, R. I., & Tennenholtz, M. (1997). Modeling agents as qualitative decision
makers. Aritifcial Intelligence, 94, 217-268.

Brockett, R. W. (1993). Hybrid models for motion control systems. In H. Trentelman
and J. Willems (Eds.), Perspectives in control,, 29-54. Birkhauser.

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, 14-23.

Cassandras, C. G. (1993). Discrete event systems. Modelling and performance anal-
ysis. Irwin and Aksen.

Crites, R. H., & Barto, A. G. (1996). Improving elevator performance using reinforce-
ment learning. Advances in Neural Information Processing Systems 8: Proceedings
of the 1995 Conference (pp. 1017-1023). MIT Press.

Dayan, P. (1993). Improving generalization for temporal difference learning: The
successor representation. Neural Computation, 5, 613-624.

125

Dayan, P., & Hinton, G. E. (1993). Feudal reinforcement learning. Advances in
Neural Information Processing Systems 5 (pp. 271-278). Morgan Kaufmann.

Dean, T., & Lin, S.-H. (1995). Decomposition techniques for planning in stochastic
domains. Proceedings of IJCAI’95.

DeJong, G. F. (1994). Learning to plan in continuous domains. Artificial Intelligence,
65, 71-141.

Dietterich, T. G. (1998). The MAXQ method for hierarchical reinforcement learning.
Proceedings of the Fifteenth International Conference on Machine Learning. Morgan
Kaufmann.

Digney, B. L. (1996). Emergent hierarchical control structures: Learning hierarchi-
cal/reactive relationships in reinforcement learning environments. From Animals to
Animats 4: SAB’96 (pp. 363-373). MIT Press.

Dorigo, M., & Colombetti, M. (1994). Robot shaping: Developing autonomous
agents through shaping. Artificial Intelligence, 71, 321-370.

Drescher, G. L. (1991). Made-up minds. A constructivist approach to artificial in-
telligence. MIT PRess.

Drummond, C. (1998). Composing functions to speed up reinforcement learning
in a changing world. Machine Learning: ECML98. 10th European Conference on
Machine Learning, Chemnitz, Germany, April 1998. Proceedings (pp. 370-381).
Springer.

Etzioni, 0. (1990). Why PRODIGY/EBL works. Proceedings of the Eighth National
Confemce on Artificial Intelligence, AAAI (pp. 916-922).

Fikes, R., P.E.Hart, & Nilsson, N. J. (1972). Learning and executing generalized
robot plans. Artificial Intelligence, 3, 251-288.

Godbole, D. N., Lygeros, J., & Sastry, S. (1995). Hierarchical hybrid control: A case
study. Hybrid Control II {pp. 166-190). Springer-Verlag.

Gratch, J., & DeJong, G. (1996). A statistical approach to adaptive problem solving.
Artificial Intelligence.

Greiner, R., & Jurisica, I. (1992). A statistical approach to solving the EBL utility
problem. Proceedings of the Tenth National conference on Artificial Intelligence (pp.
241-248).

Grossman, R. L., Nerode, A., Ravn, A. P., & Rischel, H. (Eds.). (1993). Hybrid
systems, vol. 736 of Lecture Notes in Computer Science. Springer-Verlag.

Hauskrecht, M., Meuleau, N., Boutilier, C., Kaelbling, L. P., & Dean, T. (1998).
Hierarchical solution for Markov Decision Processes using macro-actions. Proceedings
of the Fourteenth International Conference on Uncertainty In Artificial Intelligence.

126

Howard, R. (1960). Dynammic programming and Markov Decision Processes. MIT
Press.

Huber, M., & Grupen, R. A. (1997). A feedback control structure for on-line learning
tasks. Robotics and Autonomous Systems, 22, 303-315.

Iba, G. A. (1989). A heuristic approach to the discovery of macro-operators. Machine
Learning, 3, 285-317.

Jaakkola, T., Jordan, M., & Singh, S. (1994). On the convergence of stochastic
iterative dynamic programming algorithms. Neural Computation, 6, 1185-1201.

J.A.Coelho, J., Araujo, E. G., Huber, M., & Grupen, R. A. (1998). Dynamical cat-
egories and control policy selection. Proceedings of the ISIC/CIRA/ISAS’98 Con-
ference. IEEE.

Kaelbling, L. P. (1993a). Hierarchical learning in stochastic domains; Preliminary
results. Proceedings of the Tenth International Conference on Machine Learning
(pp. 167-173). Morgan Kaufmann.

Kaelbling, L. P. (1993b). Learning to achieve goals. Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence (pp. 1094-1098). Morgan
Kaufmann.

Kalmar, Z., Szepesvari, C., &: Lorincz, A. (1997). Module based reinforcement
learning for a real robot. Proceedings of the Sixth European Workshop on Learning
Robots (pp. 22-32).

Karlsson, J. (1997). Learning to solve multiple goals. Doctoral dissertation. Univer-
sity of Rochester.

Kleer, J. D., & Brown, J. S. (1984). A qualitative physics based on confluences.
Artificial Intelligence, 24, 7-83.

Knoblock, C. A. (1990). Learning abstraction hierarchies for problem solving. Pro-
ceedings of the Eighth National Conference on Artificial Intelligence, AAAI’9O.

Kokotovic, P, Khalil, H. K., & O’Reilly, J. (1986). Singular perturbation methods
in control: Analysis and design. Academic Press.

Korf, R. E. (1985). Learning to solve problems by searching for macro-operators.
Pitman Publishing Ltd.

Korf, R. E. (1987). Planning as search: A quantitative approach. Artificial Intelli-
gence, 33, 65-88.

Kuipers, B. J. (1979). Commonsense knowledge of space; Learning from experience.
Proceedings of IJCAI-79 (pp. 499-501).

127

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in SOAR; The
anatomy of a general learning mechanism. Machine Learning, 1, 11-46.

Levinson, R., & Fuchs, G. (1994). A patter-weight formulation of search knowledge
(Technical Report UCSC-CRL-94-10). University of California, Santa Cruz.

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning, 8, 293-321.

Lin, L.-J. (1993). Reinforcement learning for robots using neural networks. Doctoral
dissertation, Carnegie Mellon University.

Mahadevan, S., & Connell, J. (1992). Automatic programming of behavior-based
robots using reinforcement learning. Artificial Intelligence, 55, 311-365.

Mahadevan, S., Marchallek, N., Das, T. K., & Gosavi, A. (1997). Self-improving fac-
tory simulation using continuous-time average-reward reinforcement learning. Pro-
ceedings of the Fourteenth International Conference on Machine Learning (pp. 202-
210). Morgan Kaufmann.

Mataric, M. (1997). Reinforcement learning in the multi-robot domain. Autonomous
Robots, 4, 73-83.

McCallum, A. K. (1995). Reinforcement learning with selective perception and hidden
state. Doctoral dissertation. University of Rochester.

McCormick, S. F. (1989). Multilevel adaptive methods for partial differential equa-
tions. Society for Industrial and Applied Mathematics.

McGovern, A. (1998). acQuire-macros: An algorithm for automatically learning
macro-actions. NIPS’98 Workshop on Abstraction and Hierarchy in Reinforcement
Learning.

McGovern, A., Sutton, R. S., &: Fagg, A. H. (1997). Roles of macro-actions in accel-
erating reinforcement learning. Grace Hopper Celebration of Women in Computing
(pp. 13-17).

Meuleau, N., Hauskrecht, M., Kim, K.-E., Peshkin, L., Kaelbling, L. P., Dean, T., &
Boutilier, C. (1998). Solving very large weakly coupled Markov Decision Processes.
Proceedings of the Fifteenth National Conference on Artificial Intelligence.

Minton, S. (1988). Learning search control knowledge. An explanation-based ap-
proach. Kluwer Academic Publishers.

Moore, A. W., Baird, L., & Kaelbling, L. P. (1998). Multi-Value-Functions: Effi-
cient automatic action hierarchies for multiple goal MDPs. NIPS’98 Workshop on
Abstraction and Hierarchy in Reinforcement Learning.

128

M.Uchibe, M.Asada, &: K.Hosada (1996). Behavior coordination for a mobile robot
using reinforcement learning. Proceedings of the lEEE/RSJ International Conference
on Intelligent Robots and Systems (pp. 1329-1336).

Naidu, D. S. (1988). Singular perturbation methods in control systems. London, UK:
Peter Peregrinus Ltd.

Naidu, D. S., & Rao, A. K. (1985). Singular perturbation analysis of discrete control
systems. No. 1154 in Lecture Notes in Mathematics. Springer-Verlag.

Newell, A., & Simon, H. A. (1972). Human problem solving. Prentice-Hall.

Nilsson, N. J. (1994). Teleo-reactive programs for agent control. Journal of Artificial
Intelligence Research, 1, 139-158.

Oates, T., & Cohen, P. R. (1996). Searching for planning operators with context-
dependent and probabilistic effects. Proceedings of the Thirteenth National Confer-
ence on Artificial Intelligence (pp. 863-868).

Parr, R. (1998). Hierarchical control and learning for Markov Decision Processes.
Doctoral dissertation. Computer Science Division, University of California, Berkeley,
USA.

Parr, R., &: Russell, S. (1998). Reinforcement learning with hierarchies of machines.
Advances in Neural Information Processing Systems 10. MIT Press.

Pierce, D., & Kuipers, B. (1994). Learning to explore and build maps. Proceedings
of the Twelfth National Conference on Artificial Intelligence.

Precup, D., & Sutton, R. S. (1997). Multi-Time models for reinforcement learning.
ICML ’97 Workshop: The Role of Models in Reinforcement Learning.

Precup, D., & Sutton, R. S. (1998). Multi-time models for temporally abstract
planning. Advances in Neural Information Processing Systems 10 (Proceedings of
NIPS’97) (pp. 1050-1056). MIT Press.

Precup, D., Sutton, R. S., &: Singh, S. (1997). Planning with closed-loop macro
actions. Working Notes of the AAAI Fall Symposium ’97 on Model-directed Au-
tonomous Systems (pp. 70-76).

Precup, D., Sutton, R. S., & Singh, S. (1998). Theoretical results on reinforcement
learning with temporally abstract options. Machine Learning: ECML98. 10th Euro-
pean Conference on Machine Learning, Chemnitz, Germany, April 1998. Proceedings
(pp. 382-393). Springer.

Puterman, M. L. (1994). Markov Decision Processes: Discrete stochastic dynamic
programming. Wiley.

Ring, M. (1994). Continual learning in reinforcement environments. Doctoral dis-
sertation, University of Texas at Austin.

129

Rosenstein, M. T., & Cohen, P. R. (1998). Concepts from time series. Proceedings
of the Fifteenth National Conference on Artificial Intelligence.

Rubinstein, R. (1981). Simulation and the Monte Carlo method. New York: Wiley.

Ryan, M., & Pendrith, M. D. (1998). RL-TOPS: An architecture for modularity
and reuse in reinforcement learning. Proceedings of the Fifteenth Intermnational
Conference no Machine Learning. Morgan Kaufman.

Sacerdoti, E. D. (1974). Planning in a hierarchy of abstraction spaces. Artificial
Intelligence, 5, 115-135.

Sacerdoti, E. D. (1977). A structure for plans and behavior. Elsevier North-Holland.

Say, A. C. C., & Kuru, S. (1996). Qualitative system identification: Deriving struc-
ture from behavior. Artificial Intelligence, 83, 75-141.

Singh, S., & Sutton, R. S. (1996). Reinforcement learning with replacing eligibility
traces. Machine Learning.

Singh, S. P. (1992a). Reinforcement learning with a hierarchy of abstract models.
Proceedings of the Tenth National Conference on Artificial Intelligence (pp. 202-
207). MIT/AAAI Press.

Singh, S. P. (1992b). Scaling reinforcement learning by learning variable temporal
resolution models. Proceedings of the Ninth International Conference on Machine
Learning (pp. 406-415). Morgan Kaufmann.

Stone, P., & Veloso, M. (1999). Team-partitioned, opaque-transition reinforcement
learning. Robo Cup-98: Robot Soccer World Cup II. Springer Verlag.

Stone, P., & Veloso, M. (in press). A layered approach to learning client behaviors
in the RoboCup soccer server. Applied Artificial Intelligence.

Sutton, R. S. (1988). Learning to predict by the method of temporal differences.
Machine Learning, 3, 9-44.

Sutton, R. S. (1995). TD models: Modeling the world as a mixture of time scales.
Proceedings of the Twelfth International Conference on Machine Learning (pp. 531-
539). Morgan Kaufmann.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction.
MIT Press.

Sutton, R. S., & Pinette, B. (1985). The learning of world models by connectionist
networks. Proceedings of the Seventh Annual Conference of the Cognitive Science
Society (pp. 54-64).

130

Sutton, R. S., Precup, D., & Singh, S. (1998a). Between MDPs and Semi-MDPs:
learning, planning, and representing knowledge at multiple temporal scales (Technical
Report 98-74). University of Massachusetts, Amherst, MA 01003.

Sutton, R. S., Precup, D., & Singh, S. (1998b). Intra-option learning about tem-
porally abstract actions. Proceedings of the Fifteenth International Conference on
Machine Learning (pp. 556-564). Morgan Kaufman.

Sutton, R. S., Precup, D., & Singh, S. (1999a). Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intelligence,
112, 181-211.

Sutton, R. S., Singh, S., Precup, D., & Ravindran, B. (1999b). Improved switching
among temporally abstract actions. Advances in Neural Information Processing
Systems 11 (Proceedings of NIPS’98 (pp. 1066-1072). MIT Press.

Tambe, M., Newell, A., & Rosenbloom, P. (1990). The problem of expensive chunks
and its solution by restricting expensiveness. Machine Learning.

Tesauro, G. J. (1995). Temporal difference learning and TD-Gammon. Communi-
cations of the ACM, 38, 58-68.

Thrun, S., & Schwartz, A. (1995). Finding structure in reinforcement learning.
Advances in Neural Information Processing Systems 7 (pp. 385-392). MIT Press.

Watkins, C. J. C. H. (1989). Learning with delayed rewards. Doctoral dissertation.
Psychology Department, Cambridge University, Cambridge, UK.

Wiering, M., & Schimdhuber, J. (1998). HQ-Learning. Adaptive Behavior, 6, 219-
246.

Wixson, L. E. (1991). Scaling reinforcement learning techniques via modularity.
Proceedings of the Eighth International Conference on Machine Learning (pp. 368-
372). Morgan Kaufmann.

Zhang, W., & Dietterich, T. G. (1995). A reinforcement learning approach to job-
shop scheduling. Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence (pp. 1114-1120).

131

