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Decision making usually involves choosing among different courses of action over 

a broad range of time scales. For instance, a person planning a trip to a distant 

location makes high-level decisions regarding what means of transportation to use, 

but also chooses low-level actions, such as the movements for getting into a car. The 

problem of picking an appropriate time scale for reasoning and learning has been 

explored in artificial intelligence, control theory and robotics. In this dissertation we 

develop a framework that allows novel solutions to this problem, in the context of 

Markov Decision Processes (MDPs) and reinforcement learning.

In this dissertation, we present a general framework for prediction, control and 

learning at multiple temporal scales. In this framework, temporally extended actions 

are represented by a way of behaving (a policy) together with a termination condi-

tion. An action represented in this way is called an option. Options can be easily



incorporated in MDPs, allowing an agent to use existing controllers, heuristics for 

picking actions, or learned courses of action.

The effects of behaving according to an option can be predicted using multi-time 

models, learned by interacting with the environment. In this dissertation we develop 

multi-time models, and we illustrate the way in which they can be used to produce 

plans of behavior very quickly, using classical dynamic programming or reinforcement 

learning techniques.

The most interesting feature of our framework is that it allows an agent to work 

simultaneously with high-level and low-level temporal representations. The interplay 

of these levels can be exploited in order to learn and plan more efficiently and more 

accurately. We develop new algorithms that take advantage of this structure to 

improve the quality of plans, and to learn in parallel about the effects of many different 

options.
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CHAPTER 1

INTRODUCTION

How should an intelligent agent represent its knowledge of the world in order to be 

able to reason and learn about different courses of action? This is a key, long standing 

question in artificial intelligence (Al), as well as in robotics and control engineering.

For instance, consider a robot docking with its battery charger. Should it plan 

at the lowest level of motor torques for its wheels? Or should it consider high-level 

actions such as “locate charger,” “navigate to charger” and “precise docking?” Both 

levels have their advantages. Reasoning at the higher level allows for short, compact 

plans but might lack the detail necessary to carry out the plan or to optimize it 

further in specific situations. The lower level allows filling in these details but is too 

fine-grained to be used efficiently. Ideally, an intelligent agent should have the ability 

to use both levels, as required by the circumstances it faces. For instance, the agent 

could start with a high-level plan, then refine it into low-level actions. Moreover, the 

agent should be able to reason and acquire knowledge at both levels in parallel, from 

the real experience that it gets by acting in its environment.

Most approaches to action representation use hand crafted knowledge represen-

tations specialized for the specific task under consideration. Over the years, these 

representations have taken many different forms. The Al planning community has 

considered using macro-operators and, more recently, closed-loop sequences of actions 

as the basis for describing the agent’s behavior. Roboticists and control engineers 

have considered methodologies for combining and switching between independently 

designed controllers or behaviors. All these approaches combine in some way the low-
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level actions in the domain into courses of action that can be temporally extended 

(i.e. take a variable, unknown amount of time). Some of these approaches address 

the issues of learning useful courses of actions, and learning how to combine existing 

courses of action in an efficient way.

In this dissertation we address the issue of representing knowledge about actions 

and courses of action within the context of reinforcement learning (RL) and Markov 

Decision Processes (MDPs). Our main goal is to provide a framework for represent-

ing, learning, and reasoning about courses of action that are temporally extended, 

stochastic and contingent of events. This framework should satisfy several criteria:

Expressivity: The representation should be able to include basic kinds of common 

sense knowledge, similar to that used by humans when reasoning at multiple 

temporal scales.

Clarity: The framework for describing actions should be mathematically grounded 

in primitive observations and actions. Many of the frameworks used in Al use 

vague descriptions, which are made to be understandable by humans but have 

no independent meaning for the agent.

Generality: The knowledge representations used to describe courses of actions should 

be relevant for a variety of different tasks, rather than having special-purpose 

representations for a specific task. The knowledge representation should also 

allow the use of the existing body of theory and algorithms from the RL and 

MDP literature, with minimal extensions.

Suitability for planning: The framework should specify methods for building pre-

dictive models for the actions that can be used to make decisions. Using these 

models, the agent should be able to build plans for acting in the environment. 

Rather than working at a fixed time scale, the models and planning methods 

used should allow intermixing and relating of different temporal scales.
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Suitability for learning: The agent should have the ability to learn about the conse-

quences of its courses of action, and to improve its strategy for picking actions 

over time. This is especially important for agents acting in stochastic environ-

ments, and having incomplete knowledge about the environment, which is the 

case we are considering. The knowledge representations adopted by the agent 

should be easy to change based on observations from the environment, in order 

to adapt to new situations, to changes in the environment, and to changes in 

the agent’s own goals.

In this dissertation we elaborate a framework for representing and reasoning about 

temporally extended actions that satisfies these criteria. We do not address the issue 

of selecting a particular level of temporal abstraction for representing the actions. 

We are just providing the ability to represent and reason about actions with different 

time scales.

1.1 Markov Decision Processes and Reinforcement Learning
In this dissertation, we use Markov Decision Processes (MDPs) and reinforcement 

learning (RL) as a theoretical foundation for the study of temporal abstraction. Rein-

forcement learning is a computational approach to automating goal-directed learning 

and decision making (Sutton & Barto, 1998). It encompasses a broad range of meth-

ods for determining optimal ways of behaving in complex, uncertain and stochastic 

environments.

In reinforcement learning, MDPs are used as a formal framework for defining 

the interaction between the agent and its environment. MDPs are a standard, very 

general formalism for studying stochastic, sequential decision problems (Bellman, 

1957; Howard, 1960). In an MDP, an agent interacts with its environment at some 

discrete, lowest-level time scale. On each time step, the agent perceives the state 

of the environment and on that basis chooses a prhuitive action. In response to

3



this action, the environment produces one time step later a numerical reward, and 

the agent finds itself in a new next state. The goal of the agent is to find a way 

of behaving, a mapping of states into actions that maximizes the numerical reward 

signal received over time. Such a mapping is called a policy. The expected long-term 

reward associated with a policy is called a value function.

Many problems from artificial intelligence, control theory and operations research 

can be tackled using this framework. Reinforcement learning has been used success-

fully in a large variety of applications, ranging from elevator dispatching (Crites & 

Barto, 1996) to a world champion backgammon player (Tesauro, 1995), and from 

schedule optimization (Zhang & Dietterich, 1995) to robotic soccer players (Stone & 

Veloso, 1999). MDP planning has also been used successfully to tackle classical Al 

planning tasks (Boutilier et al., 1999).

MDPs and RL provide a good theoretical foundation for grounding the semantics 

of temporally extended actions. Such actions can be described in terms of closed- 

loop policies that are used to pick primitive actions for some duration of time. The 

effects of the actions can be related to the primitive observations and actions of the 

system. This allows the agent to learn about the effects of its courses of action 

by interacting with the environment, without human supervision. RL planning and 

learning algorithms can be used to build knowledge representations for the agent, 

which are clear and expressive. RL and MDPs will allow us to build a framework 

that satisfies the desired criteria enumerated above.

1.2 Kinds of Abstraction

Artificial intelligence typically tackles large, complex problems. Solving such prob-

lems requires adequate representations. Abstraction in classical Al refers to a broad 

range of techniques that attempt to provide a more compact representation for the 

problem at hand, both at the state level and at the action level. Once the problem is
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solved using the new representation, the solution is translated back into the original 

state and action space.

There are two main kinds of abstraction methods in AL State abstraction methods 

attempt to find a different representation of the state space, which makes it easier to 

find a solution. Typically such representations ignore certain details of the original 

state information. Temporal abstraction methods, the subject of this dissertation, 

attempt to find a time scale that is adequate for describing the actions of an Al system 

and the evolution of the system as a result of its actions. Methods for modeling the 

evolution of physical systems at adequate time scales have been formally studied by 

mathematicians and engineers since the 1800s. The previous Al research on temporal 

abstraction methods has not focused as much on modeling an independently evolving 

system. The luain focus has been to represent the actions available to an Al agent 

in a way that allows the agent to build reliable predictive models of the effects of its 

actions, and use these models efficiently to construct plans. A central idea that has 

emerged throughout this research is to combine the low-level actions available to the 

Al system into macro-actions or behaviors. Such macro-actions are typically executed 

during an extended time period. The use of higher-level, temporally extended actions 

allows Al systems to solve the tasks they face in a smaller number of action steps. But 

how should an Al agent decide which extended actions to choose given a particular 

problem? For how long should it execute an extended action? How could it find 

macro-actions that are useful? These questions can be asked in a very clear and 

precise way for systems based on RL.

Like many other Al systems, reinforcement learning systems often use abstraction 

techniques in order to solve large problems efficiently. State abstraction methods have 

been the focus of extensive theoretical research and empirical studies in RL systems 

because they allow RL agents to tackle domains with large discrete or continuous 

state spaces. In such domains, the issue is not only to represent the value function
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compactly (with low memory costs), but also to generalize a limited amount of expe-

rience in order to produce a good approximation of the value function over the entire 

state space. A standard approach is to use some form of function approximation to 

generate a new representation of the state space. The value function is then learned 

using this new representation. This approach has been used successfully in several 

large-scale applications (see, e.g. Crites & Barto, 1995; Lin, 1993; Tesauro, 1995).

Recent RL research has focused more on methods for temporal abstraction (Singh, 

1992b; Singh, 1992a; Kaelbling, 1993b; Kaelbling, 1993a; Dayan & Hinton, 1993; 

Dean & Lin, 1995; Dietterich, 1998; Parr, 1998; Sutton, 1995; Precup & Sutton, 1998; 

Sutton et al., 1999a). All these methods are centered around the idea of defining new, 

temporally extended actions as closed-loop ways of behaving (policies) that terminate. 

Such extended actions can be defined by the designer of the system, based on prior 

knowledge of the task at hand, or can be acquired automatically by the RL agent itself. 

These actions can be used by the RL agent instead of (or in addition to) the primitive 

actions to generate behavior. The agent can also learn predictive models and value 

functions for extended actions, which it can then use to improve its behavior. The 

methods proposed so far differ mainly in the representation used for the temporally 

extended actions, and in the learning algorithms used to acquire knowledge about 

the effects of these actions. A detailed account of the existing methods is given in 

chapter 2.

The research we present in this dissertation also focuses on temporal abstraction. 

Our research builds on the work of Singh (1992b; 1992a), Sutton (1995) and Sutton 

& Pinnette (1985). It is most closely related to the recent research of Parr (1998) and 

Dietterich (1998). We define a simple and explicit representation of extended actions, 

as policies together with a termination condition. Models and value functions for 

such actions can be learned using minimal extensions of traditional RL algorithms. 

Because this representation is very simple, we are able to formulate algorithms that
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improve extended actions and that can learn efficiently about many actions from the 

same real experience.

Some of the frameworks mentioned above combine state and temporal abstraction 

(Dayan & Hinton, 1993; Dietterich, 1998) by constructing a new representation of 

the state space together with a new set of actions. Unlike these methods, we address 

the issue of temporal abstraction independently of the state space representation. 

Our approach can be combined with any existing methods for state abstraction and 

function approximation.

1.3 Contributions
In this dissertation we present a general framework for prediction, control and 

learning at multiple temporal scales. In this framework, temporally extended actions 

are represented by a (partial) policy together with a termination condition. An action 

represented in this way is called an option. Unlike other representations for tempo-

rally extended actions, options are a strict generalization of the primitive actions. 

This enables primitive actions and temporally extended actions to be used inter-

changeably by a learning agent. Options are a very general way to specify extended 

actions, and they can be used to describe both open-loop and closed-loop policies. 

In this dissertation, we show how hierarchical descriptions and other descriptions for 

extended actions introduced in RL research can be mapped into options.

In developing this new framework, we build on the existing theory of Semi-Markov 

Decision Processes (SMDPs). SMDPs are models of continuous-time, discrete-event 

systems. In an SMDP, actions can take variable, stochastic amounts of time. When 

introducing options in an MDP, we obtain a new, related SMDP. SMDP theory 

provides planning and learning methods similar to those used for MDPs, and we can 

use any of these methods to find an optimal policy in the higher-level SMDP defined 

by the options.
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The advantage of transforming the initial MDP is that we usually obtain a con-

siderably smaller SMDP, in which planning and learning can proceed faster. But the 

best long-term rewards that can be obtained in the SMDP are typically lower than 

those that can be obtained in the original MDP. These rewards are limited by the 

quality of the options that the learning agent can execute. So if an agent would have 

to choose between working at the MDP level or at the SMDP level, it would need 

to accept a trade-off between speed of computation and the quality of the solution 

obtained.

In this dissertation we take a different approach to this tradeoff. Instead of re-

stricting the algorithms to act either at the SMDP level or at the MDP level, learning 

and planning can proceed at both levels. Leverage can be gained from inter-relating 

the different time scales at which the system is acting. For instance, consider a policy 

for finding a cup of coffee in an unknown building. Such a policy could use options for 

following corridors and going through doors, and it could be computed fairly quickly. 

But what if, while following a corridor, the agent sees the coffee pot? An SMDP 

solution would still follow the corridor until the end, and then of course the agent 

could choose to come back. Working between MDPs and SMDPs allows the agent 

instead to immediately interrupt the option, and head for the coffee. We elaborate 

an this idea in chapter 8. While following the corridor, the agent can also learn about 

different other destinations that could be of interest later (as we will show in chapter 

5). Such learning is not possible if we only consider the SMDP level. Finally, the 

experience can be used to improve overall navigation performance and each of the 

individual options used.

We propose novel algorithms that work between the MDP and the SMDP level, 

in order to obtain better performance than the SMDP level alone, in a shorter time 

than working at either level.
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One class of algorithms addresses the issue of learning about the consequences 

of options from experience. In the SMDP view, an agent can only learn about one 

option at a time, by executing that option, observing its consequences and adjusting 

its prediction accordingly. This kind of execution can be very expensive, especially 

for options that take a long time to execute, or options that can lead to failure out-

comes. Our new learning algorithms (presented in chapter 5) do not require complete 

execution of an option before learning about it. Instead, we define learning rules that 

use the information obtained after each primitive action executed. In this way, we 

take advantage of the underlying MDP structure. The learning algorithms use the 

information obtained from the transitions that take place on every time step, in order 

to learn about the consequences of all the options that could have caused these tran-

sitions. For instance, our navigation robot can learn about navigating towards the 

coffee pot even from the first step it takes in the right direction, without waiting until 

it actually reaches its destination. And if the copier happens to be near the coffee pot, 

it can learn about navigating toward it while it is actually going for the coffee. There 

are two major advantages to this approach. First, the real experience gathered from 

the environment is used more efficiently, by learning about many options from the 

same data. Second, the options do not have to be executed to completion. This gives 

the learning agent the opportunity to consider many hypothetical options, without 

losing time to gather information about each of them.

Our learning algorithms are an example of a more general RL idea, called off-policy 

learning. Off-policy learning is learning about one way of behaving while following 

a different way of behaving. Prior to this work, off-policy learning was used mainly 

in control algorithms, such as Q-learning (Watkins, 1989), in which the agent learns 

how to behave optimally while taking many sub-optimal, exploratory actions. In this 

work, we use off-policy learning in order to learn about many different ways of behav-

ing while following just one way of behaving. This poses a technical problem that has
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not been studied in depth before: can we use standard RL methods, such as temporal-

difference learning (TD) and eligibility traces, to evaluate the long-term reward of a 

given way of behaving from data generated by a different way of behaving by using 

TD learning (Sutton, 1988) is one of the central ideas of RL, and it allows a learning 

agent to update its predictions about the long-term reward it will obtain based on 

the transitions observed on every time step. Eligibility traces are a mechanism that 

allows such updates to take into account not only immediate information, but also 

information from the more distant future. TD methods with eligibility traces have 

been extensively studied in the case in which the agent learns about its current be-

havior. A few algorithms have been proposed for the control problem of learning the 

optimal policy, but their theoretical properties are not currently known. In this dis-

sertation, we present the first eligibility trace, temporal-difference, off-policy learning 

algorithms for evaluating policies, and prove convergence properties for these algo-

rithms. We apply these algorithms mainly in the context of learning about options, 

but they can be applied for solving other RL problems as well.

Another class of algorithms that we propose and investigate concern changing the 

options available to the agent in order to obtain better performance. One such change 

is based on the simple idea that the agent should not be forced to execute an option to 

completion if a better alternative is available. We allow options to interrupt whenever 

a more promising option can be initiated. This change can be temporary, during the 

actual execution of the options, but it can also be used as part of a new approach 

for determining the best termination conditions for a set of options. Another similar 

algorithm can be used to change the internal way in which an option picks primitive 

actions.
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1.4 Outline

In chapter 2 we review the literature on modeling physical systems at different time 

scales and on describing temporally extended actions in control research, in robotics, 

and in artificial intelligence. We discuss in detail the notion of macro-operators from 

classical Al and the different approaches to temporal abstraction in MDPs and RL, 

because these are especially relevant for our research.

In chapter 3 we introduce options, the main element of our framework for han-

dling temporally extended actions. We show how options can be described explicitly 

through fiat or hierarchical representations. We also develop the links between the 

options framework and other approaches to temporal abstraction described in the RL 

and Al literature.

In chapter 4 we establish the link between options and SMDP theory. In partic-

ular, we introduce predictive models of options, which can be used to model their 

consequences for planning purposes, and summarize basic SMDP learning and plan-

ning methods that can be used to approximate the values and models of options.

In chapter 5 we introduce a new class of algorithms for learning about options, 

called intra-option methods. Intra-option methods have been designed to make ef-

ficient use of the agent’s experience in the environment. Unlike SMDP methods, 

intra-option methods can learn about many options from experience generated by 

just one way of behaving. As we mentioned in the previous section, these learning al-

gorithms have significant advantages over SMDP learning methods in terms of speed 

and fiexibility.

As we mentioned before, intra-option learning methods are examples of off-policy 

learning. In chapters 6 and 7 we study off-policy learning in depth, in a more general 

context. We focus on the problem of policy evaluation, in which the agent is trying 

to predict the long-term reward it can receive while following a specified way of 

behaving. We present the first TD algorithms with eligibility traces for solving this
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general problem, and we illustrate how these algorithms can be applied for learning 

about options.

In chapter 8, we return to the study of the options framework. Whereas in the 

rest of the dissertation, we assume that the set of options is fixed, in this chapter we 

consider changing the options to obtain better performance. We present algorithms 

that allow us to change both the termination conditions and the internal policies of 

the options. These changes can be performed on-line during behavior, to improve 

performance in particular situations.

In chapter 9 we discuss briefly the acquisition of new options. Options can be 

viewed as policies that achieve subgoals; we present one way in which such subgoals 

can be formulated that allows options and models to be transferred from one task to 

another. We discuss some of the problems that arise during transfer and how these 

problems can be avoided.

In chapter 10 we summarize the main contributions of the dissertation and the 

open issues.
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CHAPTER 2

BACKGROUND

Reasoning and learning about temporally extended actions has been studied ex-

tensively in several fields. In this chapter we review the main lines of research on this 

topic from classical Al, control theory and reinforcement learning. We also review the 

conventional reinforcement learning framework, which is used as a theoretical basis 

throughout this dissertation.

2.1 Temporal Abstraction in Classical Al

The problem of using abstraction to facilitate planning has been a key focus of Al 

research since its early days (see e.g., Fikes, Hart, & Nilsson, 1972; Newell & Simon, 

1972). The key idea was to replace the low-level actions available to solve a given task 

by macro-operators, open-loop sequences of actions that can achieve some subgoal.

Different forms of representation have been used for macro-operators. For in-

stance, Sacerdoti (1977; 1974) used procedural nets to represent an action hierarchy. 

Each node represents an action both through a “declarative representation” (analo-

gous to a model) and through a “procedural representation” (analogous to an inter-

nal policy). More recently, Levinson and Fuchs (1994) proposed a decomposition of 

macros into patterns and weights. The patterns are partially matched with states, 

while the weights put an upper bound on the distance to the goal. The pattern-

weight pairs can then be used in a hill-climbing procedure to search for a solution 

to the planning task. The idea of having a representation for the way in which the 

macro-operator picks actions, as well as some predictive model for its consequences, 

is common to many approaches to macro-operators.
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A key issue in the Al research is learning useful macro-operators, which can be 

re-used to solve different planning problems. Korf (1985; 1987) introduced the notion 

of independent and serializable subgoals, which provide a decomposition of a plan-

ning problem. Such subgoals can be solved individually, and then the corresponding 

macro-operators are combined to solve the larger planning problem. Korf proposed 

a generate-and-test approach for constructing the macro-operators. The SOAR sys-

tem used a chunking mechanism, by which action sequences used to solve subtasks 

were memorized as macro-operators (see, e.g., Laird, Rosebloom and Newell, 1986) . 

Such macro-operators were then stored in a table, and no further modifications were 

made. The SOAR research identified a utility problem: a moderate number of macro-

operators speeds up planning significantly, but when too many macro-operators ex-

ist, the cost of choosing the right ones becomes significant, and planning speed slows 

down, even below the performance of using low-level actions.

Minton (1988) and Knoblock (1990) addressed the learning of macro-operators in 

conjunction with the pre-conditions under which they succeed or fail. Their work 

identified conditions under which a solution obtained in an abstracted state and 

action space can be indeed executed. Iba (1989) designed a heuristic method for 

automatically acquiring macro actions. The heuristic assumes the use of a value 

function to determine the “goodness” of each state. Sequences of primitive actions 

that lead from one peak in the value function to another peak are grouped together 

to propose a macro, which can later be discarded, based on domain-specific filters.

Drescher (1991) advocated a constructive approach in which knowledge about the 

world is gradually acquired in the form of schemas, elementary models containing 

a context (state), an action and a result (new state). Schemas are built with the 

purpose of capturing “regularities” in the environment. Subsequently, they are also 

used to construct new, composite actions, by sequencing existing primitives.
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More recent work focuses on methods that use closed-loop macros, as well as more 

reactive ways of executing the plans, and re-planning in case of failure. Pierce and 

Kuipers (1994) describe a method for creating an abstraction of the state and action 

spaces for an agent operating in a continuous world. The state space abstraction is 

based on features constructed from the raw input, using a generate-and-test method. 

In this discrete state space, the agent can use primitive actions, as well as open-loop 

and closed-loop behaviors. The closed-loop behaviors are constructed by generaliz-

ing the open-loop behaviors, based on information contained in the models of the 

primitive actions.

Nilsson (1994) proposed a teleo-reactive planning system in which actions with 

variable duration (potentially whole behaviors) are represented through their pre-

images and their post-conditions, expressed in a logical form. These actions are used 

to construct plans, represented as trees with the goal state as the root. Plan execution 

is reactive, and the course of action can be changed based on the conditions in the 

environment. Ryan and Pendrith (1998) proposed a subsumption architecture in 

which low-level behaviors are learned in parallel, using reinforcement learning, and a 

teleo-operator approach is used for higher-level planning.

Some of the recent research even takes into account the assumption of a stochas-

tic, changing environment, in which the plans have to be executed. Probabilistic and 

statistical methods are used to deal with such environments. For instance, Brafman 

and Moshe (1997) advocate the use of “mental models”, a form of behavior modeling 

that includes beliefs, value functions and different decision criteria to improve over 

future behavior. Oates and Cohen (1996) use a statistical methods to detect corre-

lations between variations appearing in multiple streams of data; this technique can 

potentially uncover the effects of actions over different time periods. Rosenstein and 

Cohen (1998) use dynamic maps as models for behaviors, both for prediction and for 

recognition purposes.
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A line of research related to Al planning is qualitative reasoning about physical 

systems (see e.g., De Kleer and Seely Brown, 1984 ; Kuipers, 1979; De Jong, 1994; 

Say & Kuru, 1996 ) in which qualitative descriptions, based on discrete variables 

and events, replace differential equations. In this case, both spatial and temporal 

abstraction are used to ensure the desired degree of generality. These qualitative 

descriptions are designed a priori in order to capture the relevant dynamics of the 

system.

2.2 Temporal Abstraction in Control

Multiple time scales arise naturally in many physical systems, ranging from en-

sembles of mechanisms to fluid flows and plasma evolution. Therefore, the modeling 

and control of such systems have been addressed both by mathematicians and by 

engineers (see, e.g.. Brackbill & Cohen, 1985). Multiple scale systems are often char-

acterized by a fast motion superimposed over a slow motion. If the two motions do 

not influence each other, then the fast motion can be modeled and then eliminated 

to analyze the slow motion.

Multigrid methods for solving partial differential equations (see e.g. McCromick, 

1989) address the issue of numerically solving partial differential equations for phys-

ical systems with large variations in scale. These methods define the resolution of 

the discretization adaptively, for different regions, depending on the speed of the 

variations.

In the control literature, the problem of controlling a system at multiple time 

scales has been addressed by singular perturbation methods (Kokotovic, Khalil & 

O’Reilly, 1986; Naidu & Rao, 1985 ; Naidu, 1988). These methods assume that the 

physical system to be controlled has state variables that have fast and slow variations 

respectively. Initially, the slow variations are ignored, and they are only taken care of
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after the fast variations have been accounted for. Each type of variation is modeled 

separately. This leads to a form of hierarchical control.

The control of hybrid systems represents another research area where temporally 

extended actions and models have been used extensively. Hybrid systems (see, e.g. 

Grossman et. al, 1993; Brockett, 1993; Godbole, Lygeros and Sastry, 1995) contain 

both digital and analog devices that interact with each other. The interaction takes 

place through some interface, which is able to translate the continuous state of the 

analog devices into “events” that can be handled by the digital devices. Most of the 

research in this area is looking at ways of automatically representing the events that 

are important for the system and the separate regimes in which it should be controlled. 

However, most of these methods are restricted in the sense that they assume extensive 

knowledge about the physical system to be controlled, such as the variables that are 

relevant for certain functioning regimes, and the differential equations underlying the 

system. This assumption is often not true for the kinds of tasks tackled by artificial 

intelligence. In particular, many reinforcement learning methods are designed to solve 

problems for which no models are available.

2.3 Reinforcement Learning (MDP) Framework
In this section we briefly review the conventional reinforcement learning framework 

of discrete-time, finite Markov decision processes, or MDPs, which forms the basis 

for our extensions to temporally extended courses of action. In this framework, a 

learning agent interacts with an environment at some discrete, lowest-level time scale 

t = 0,1, 2,.... On each time step the agent perceives the state of the environment, 

St G S, and on that basis chooses a primitive action, at G As^^ In response to each 

action, at, the environment produces one time step later a numerical reward, n+i, and 

a next state, It is notationally convenient to suppress the differences in available 

actions across states whenever possible; we let A = U,s-:s As denote the union of the
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action sets. If <S and A, are finite, then the environment’s transition dynamics are 

modeled by one-step state-transition probabilities,

= Pr{st+i = s' I St = s, at = n},

and one-step expected rewards,

= E{rt+i I St = = o},

for all s,s' e S and a G (it is understood here that = Q ior a >ls). These two 

sets of quantities together constitute the one-step model of the environment

The agent’s objective is to learn an optimal Markov policy^ a mapping from states 

to probabilities of taking each available primitive action, t t  : S x A [0,1], that 

maximizes the expected discounted future reward from each state s;

y’^(s) = E {rt+i -b -frt+2 + I'^rt+i + • • • s* = s, t t }

= E {rt+i + 7y"(st+i) St = s, t t }

= E7r(s,n)U + 7Ep:,,yV) 
oeA L s'

(2-1)

(2.2)

where 7r(s,a) is the probability with which the policy t t  chooses action a G ^s in 

state s, and 'y E [0,1] is a discount-rate parameter. This quantity, V^^s}, is called the 

value of state s under policy t t , and V”' is called the state-value function for t t . The 

optimal state-value function gives the value of a state under an optimal policy:

V*(s) = niaxb’^(s)

= maxE {rt+i + 7y*(st+i) 
aEAs ''

St = s,at = a
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s'
(2.4)

Any policy that achieves the maximum in (2.3) is by definition an optimal policy. 

Thus, given V*, an optimal policy is easily formed by choosing in each state s any 

action that achieves the maximum in (2.4). Planning in reinforcement learning refers 

to the use of models of the environment to compute value functions and thereby to 

optimize or improve policies. Particularly useful in this regard are Bellman equations, 

such as (2.2) and (2.4), which recursively relate value functions to themselves. If we 

treat the values, y’^(s) or V*(s), as unknowns, then a set of Bellman equations, for 

all s e 5, forms a system of equations whose unique solution is in fact or V* as 

given by (2.1) or (2.3). This fact is key to the way in which all temporal-difference 

and dynamic programming methods estimate value functions.

For learning methods, of particular importance is a parallel set of value functions 

and Bellman equations for state-action pairs rather than for states. The value of 

taking action a in state s under policy t v , denoted a}, is the expected discounted 

future reward starting in s, taking a, and henceforth following t t :

a) = E {r,+i + 7r,+2 + 7\+3 H----- s, = s,a, = a.Tr j-

s'

This is known as the action-value function for policy t v . The optimal action-value

function is

Q*(s,a) = max(5’^(s,a)
TT

= r: + 75:pt.maxQ-(3',o').
s'
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Finally, many tasks are episodic in nature, involving repeated trials, or episodes, 

each ending with a reset to a standard state or state distribution. In these episodic 

tasks, we include a single special terminal state, arrival in which terminates the current 

episode. The set of regular states plus the terminal state (if there is one) is denoted

Thus, the s' in in general ranges over the set «S+ rather than just 5 as stated 

earlier. In an episodic task, values are defined by the expected cumulative reward 

up until termination rather than over the infinite future (or, equivalently, we can 

consider the terminal state to transition to itself forever with a reward of zero).

2.4 Prior Work on Temporal Abstraction in Reinforcement 
Learning

MDPs have emerged as useful models for stochastic planning and control problems. 

The ability to reason at the level of temporally abstract actions is key to speeding up 

the learning and planning techniques for MDPs.

Singh (1992a; 1992b) introduced hierarchies of “abstract actions”, which achieve 

different tasks, as well as a hierarchy of models, with variable temporal resolution. 

This research is one of the sources of inspiration for the work presented in this disser-

tation. Singh uses a special purpose gating architecture to switch between abstract 

actions, and specialized learning algorithms for this architecture. We provide a very 

general framework, which allows abstract actions to be treated similarly to primitive 

actions for the purposes of learning and planning in an MDP.

Another source of inspiration for this research is the work of Kaelbling (1993b; 

1993a), who proposed the idea of using subgoals both in order to learn sub-policies, 

and in order to collapse the state space. The initial approach was to learn paths to all 

the possible goals in an environment. Moore, Baird & Kaelbling (1998) extend this 

work by describing an efficient way to determine useful subgoals. The idea of learning 

paths to many subgoals in parallel from the same real experience is also used in the
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intra-option algorithms described in chapter 5, but our algorithm is more general, 

and we prove convergence properties for it.

The starting point of this research is the work on modeling MDPs at multiple 

temporal scales (Sutton & Pinette, 1985; Sutton, 1995). Sutton (1995) introduced 

multi-time models for modeling a policy at several different time scales. But this work 

was limited to learning models for just one policy, while behaving according to that 

policy. In this dissertation we develop algorithms that learn models for many different 

options, even if the data comes from an unrelated behavior. We also deal with the 

complete control problem, in which we do not only evaluate models for options, but 

we also use them in making decisions about which options should be executed.

Our work is also related to the recent work of Parr (1998; Parr & Russell, 1998) on 

hierarchical abstract machines and Dietterich (1998) on MAXQ learning. These are 

two frameworks for learning about temporally extended actions that are very related 

to options. The common idea of all these frameworks is that a temporally extended 

action can be defined as a way of behaving, together with a termination condition. 

The frameworks differ in the details of how a way of behaving is represented. We 

take this idea very literally, and we represent an extended action (option) as a policy, 

together with a (stochastic) termination condition. This is a very simple and gen-

eral formulation, which allows us to develop algorithms for improving options, and 

for learning about many options in parallel. Parr uses finite-state machines to pro-

vide constraints on the internal policy of an extended action. Dietterich uses value 

functions to represent the internal policies of extended actions. Each value function 

depends only on a subset of the variables used to describe the state of the MDP, and 

all value functions are learned at the same time. In chapter 3 we show how options 

can be used to represent extended actions expressed as HAMs or MAXQ hierarchies.

All of these recent frameworks recognize that temporally extended actions together 

with an MDP define a higher-level Semi-Markov Decision Process (SMDP). SMDPs
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have been used as a standard formalism for the study and control of discrete-event 

dynamical systems (Cassandras, 1993; Puterman, 1994). The relationship between 

our work and SMDPs is explored in detail in chapter 4.

A related line of research connects temporal abstraction and state abstraction, 

by constructing abstract representations along both dimensions at the same time. 

Feudal RL (Dayan & Hinton, 1993) is a strictly hierarchical technique, which re-

cursively partitions the state space and the time scale from one level to the next. 

Several approaches use temporal information to determine state representations that 

facilitate learning. The successor representation (Dayan, 1993) represents the state 

of a reinforcement learning system by the states that it can reach. McCallum (1995) 

uses utile suffix memory to represent the state space in environments with hidden 

information. Wiering and Schmidhuber (1998) introduced HQ-learning, a method for 

temporal and state abstraction in Partially Observable MDPs (POMDPs).

Several other learning algorithms have been developed for special classes of MDPs 

and value function representations. For instance, Wixson (1991) uses a variation of 

Q-learning with a modular agent architecture, which allows switching among actions 

that achieve different subtasks. The approach is illustrated in an active vision task.

Ring (1994) uses two different methods for constructing “behavior hierarchies”. 

The first method constructs behaviors as units with randomly chosen weights in a 

neural network. The second approach, the temporal transition hierarchy, constructs a 

neural network representing the behaviors at the lowest level, and the policy choosing 

among them at the higher level.

Karlsson (1997) uses policies operating in subsets of the state space for solving sub-

tasks in a reinforcement learning system, but these policies are not executed serially. 

Instead, choice of primitive action to take is base on weighting the recommendations 

of several policies.
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Meuleau e1 al. (1998) introduce a form of MDP decomposition in which loosely 

coupled MDPs are first decomposed into several value functions, corresponding to 

different tasks, and then the decision is made based on the state in each separate 

MDP. Hauskrecht et. al (1998) demonstrate a method through which an MDP can 

be modified, by reducing the number of states, using the framework of options.

Recent research is also targeted towards finding temporally extended actions au-

tomatically. Drummond (1998) proposes a system that combines RL and case-based 

reasoning, by re-using previously learned pieces to compute the value function for 

new tasks. The most interesting aspect of this work is the method for determining 

the pieces of the value function that can be transferred to new tasks. A computer 

vision technique called a “snake” is used to detect big jumps in the value function. 

These jumps are used to define the boundaries between different pieces.

Thrun and Schwartz (1995) describe a method that attempts to learn temporally 

extended actions that are re-usable when the goal changes. The method constructs 

simultaneously the policy that chooses among the extended actions, the policy inside 

each of these actions and the region of the state space in which each action is appli-

cable. McGovern (1998), Digney (1996) and Andre (1998) also propose methods for 

automatically acquiring macro-actions.

Hierarchical approaches to RL have been successfully integrated with behavior-

based robotics (Brooks, 1986) in several large scale applications (see e.g. Mataric, 

1997; Kalmar, Szepeszvari & Lorincz, 1997; Stone & Veloso, 1998; Asada et. al, 1996;; 

Uchibe et.al, 1996; Digney, 1996). Mahadevan and Connell (1992) demonstrated the 

success of a subsumption-style architecture in which simple behaviors are acquired 

using RL and then are combined (by a pre-wired coordination scheme) to solve a 

complex task. Lin (1993) also used the decomposition of a complex task into smaller 

subtasks, each having its own limited subdomain in the state space and its own reward
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function. A robot can learn a behavior for solving each subtask, and then use RL at 

the higher level as well in order to determine the best combination of sub-behaviors.

Dorigo and Colombetti (1994) used a learning classifier system, implemented using 

a genetic algorithm, and RL to determine the internal policies of behaviors that 

achieve subtasks. Switching among subtasks is determined by the internal (control) 

state of the agent.

Huber & Grupen (1997) use RL and a hybrid discrete event dynamical system to 

learn walking gaits for a robot. At the low level, the robot uses a set of pre-existing 

controllers that can generate collision-free motion and optimize forces and posture. At 

the higher level, reinforcement learning is used to determine which of the controllers 

should be applied, depending on a set of discrete variables describing the state of the 

system. A similar approach is used by Coelho et.al (1998) to learn how to control an 

agent in a non-Markovian environment.

All these robotic applications use controllers in order to learn efficiently in very 

complex domains. These controllers can be viewed as temporally extended actions. In 

this dissertation we develop the theory for learning and planning with such controllers.
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CHAPTER 3

OPTIONS

In this chapter we introduce options, the main element of our framework for tem-

poral abstraction. The term “options” denotes our generalization of primitive actions 

to include temporally extended courses of action. An option is a way of behaving - a 

closed-loop policy for taking action. Options are initiated, make decisions regarding 

which actions to take for some period of time, and then terminate. When an option 

terminates, the agent selects another option to be executed. Examples of options in-

clude complex courses of action, such as picking up an object or traveling to a distant 

city, as well as primitive actions, such as joint torques and muscle activations.

In this chapter we formalize these intuitive ideas, by defining what an option is 

and showing how an option can be specified. We focus on two kinds of representations 

for options: a flat representation, in which an option chooses among actions, and a 

hierarchical representation, in which an option chooses among other options.

The representation of an option tells the agent how the option is executed, but it 

has no information about how good an option is. An agent needs information about 

the long-term reward it can expect from each option in order to decide which options 

to choose. Therefore, we define value functions for options and policies over options, 

analogous to the usual value functions for actions and policies over actions. In the 

following chapters we will focus on algorithms for efficiently computing such value 

functions.
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3.1 Policies and Options

In reinforcement learning, a way of behaving is represented formally by a policy (as 

defined in Section 2.3). Usually a policy specifies a distribution over primitive action 

choices based only on the current state of the environment. Such policies are called 

Markov. In general, policies can be non-stationary, which means that they make 

decisions based on all the states, actions and rewards observed since the beginning of 

time. In order to handle temporally extended courses of action, we use a special case 

of non-stationary policies that has two specific characteristics.

First, we allow a policy to specify actions based on all the events since it was 

initiated. These events are contained in the partial history of the agent. A partial 

history ht^T is the sequence of all states, actions and rewards from time t up to time 

T>t-.

ht,T (st, at, rt+t, st+-i,.. . St }. (3.1)

For ease of notation, we denote ht^t = (st) by Sf We denote by H the set of all 

possible partial histories, and by Ht the set of all possible partial histories from time 

t on.

Second, we introduce a reset action t , which represents the decision to terminate 

a policy. With these extensions, we can define an option as follows:

Definition 1 (Option) An option o is a mapping from partial histories and actions 

to probabilities of taking each action after each partial history:

O'.H^ (4u {t })-> [0,1], (3.2)

where

o^fsta,.. .St}, a) = Pr{at = a | ois initiated at to, {stg, ■ ■ ■ Sj)}

For partial histories containing only one state, the probability of the reset action t  

has to be either 1 or 0: o{st, t } = 1 or o{st, t } — 0, \/st E S.
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Because an option specifies a probability distribution over actions after each partial 

history, the probabilities of all actions must sum to one:

o(ht^T, o) = 1, e H
aeXu{r}

In episodic tasks, the termination of an episode also terminates any option that could 

be executed at that time: t ) = 1 for all partial histories ht,T for which s t  is

a terminal state of the MDP. We will refer to the representation of an option as a 

probability distribution over actions (3.2) as an explicit representation of the option.

For now, we assume that the execution of an option is call-and-return. An option 

o can be initiated in any state s G 5. If o is initiated in s at time t. then the agent 

picks an action at according to the probability distribution o(s, •). If at = t , the 

option o terminates immediately, on the same time step. If at E A, the agent receives 

one time step later a reward and transitions to a new state At time t + 1, 

the agent picks an action according to the probability distribution o{ht^t+i, •)• 

If Ot+i = r, the option o terminates at t + 1. If Ot+i G .4, the agent receives one 

time step later a reward rt+2 and transitions to a new state St+2, and so on. In later 

chapters we will investigate other models of execution as well.

Primitive actions a G A are a special case of options. Each action a corresponds 

to an option that selects a everywhere a is available, and that always lasts exactly 

one step:

o(s, a) = 1 and o((s, a, r, = 1, Vs, r^ s' such that a G and p^g, > 0

o(s, t ) = 1, Vs such that a

Because the primitive actions are options, the agent’s choice at each decision point 

is entirely among options, some of which persist for a single time step, others which 

are temporally extended.
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Another important special case of options is Markov options (Sutton et al., 1998a; 

Sutton et al., 1999a).

Definition. 2 (Markov option) An option is said to he Markov if

o{h, o) = o(s, o),

for all states s e S, for all actions a e {t } and all partial histories h E Ti that 

end in state s.

Markov options include the usual Markov policies used in MDPs. An option corre-

sponding to a Markov policy never terminates: o{s, t ) = 0, Vs E S.

Timeout options are options that terminate after a fixed number of time steps. 

These options are not Markov because the decision to take the reset action t  depends 

on the length of the partial history since the option was initiated, not on the state of 

the system. Such options are very useful for real-time systems in which execution of 

a controller has to be aborted after some time has elapsed even if a target state has 

not been reached.

Given a set of options O, one can define policies over options in a way similar 

to the definition of conventional policies over actions. When initiated in a state, st, 

the Markov policy over options p : 5 x O [0,1] selects an option o E O according 

to probability distribution /z(sf, •)• The option o is then initiated in determining 

actions until it terminates in Stj^k, at which point a new option is selected, according 

to //(sj+fe, •), and so on. In this way a policy over options, p, determines a conventional 

policy over actions, or flat policy, re = f(p}. Henceforth the unqualified term policy 

is used for policies over options, which include fiat policies as a special case.

Note that even if a policy is Markov and all of the options it selects are Markov, the 

corresponding flat policy is unlikely to be Markov if any of the options are temporally 

extended. The action selected by the flat policy in state St depends not just on st
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but on the option being followed at that time, and this depends stochastically on the 

partial history hto,t since the policy was initiated at time to-

3.2 Specifying Options
Explicitly specifying the entire probability distribution (3.2) for an option can 

be cumbersome and confusing, especially in large state and action spaces. In this 

section we introduce two alternative ways of specifying an option. The first way is 

by specifying a pre-condition, a way of picking actions, and a post-condition. In this 

case, the specification is still flat, because the three elements are given in terms of 

states and actions. The second way is to deflne a multi-level hierarchy. We show that 

no special-purpose methods are needed to handle the fully hierarchical case. These 

two ways of specifying options are potentially more clear and concise than specifying 

the option explicitly as a probability distribution over partial histories and actions.

3.2.1 Flat Options

A flat option representation is a triple (1,7r,/3), where:

• T C <S is the initiation set, containing the states in which the option may be 

initiated

• TT : X A -> [0,1] is the internal policy, which determines the way in which the 

option picks primitive actions

• fl : 7/ —> [0,1], is the termination condition, which gives the probability that 

the option terminates after each history.

In our previous work (Sutton et al., 1998a; Sutton et al., 1999a) we have used the 

term semi-Markov option to denote options that are represented in this way. If t t  and 

fl make decisions based only on the current state, the option is a flat Markov option.

A flat option {I, %, fl) can be initiated in state s if and only if s e T. If the op-

tion is initiated, then actions are selected according to t t  until the option terminates
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stochastically according to /?. In episodic tasks, termination of an episode also ter-

minates the current option (i.e., /3 maps the terminal state to 1 in all options). More 

precisely, if the option is initiated at time t, then the agent selects action at according 

to the probability distribution 7r(s<, •)• Then the agent receives a reward n+i and 

transitions to a new state At time t -I- 1, the option terminates with proba-

bility j3{ht,t+i} or continues, with probability 1 - ^{ht,t+r)- If the option continues, 

then a new primitive action o<+i is chosen according to the probability distribution

•), and so on. Note that options specified by a fiat representation always take 

at least one time step before terminating. The general definition of options (3.2) does 

not impose this restriction.

As an illustration for the flat representation of options, consider an option for a 

mobile robot to dock with its battery charger. The option might be defined only 

for states 1 in which the battery charger is within sight. A hand-crafted controller 

TT could be initiated in those states and direct the robot during the operation. The 

termination condition would be 1 outside of T and when the robot is successfully 

docked.

The initiation set and termination condition of an option together restrict its 

range of application in a potentially useful way. In particular, they limit the range 

over which the option’s policy has to be defined. For Markov options, for instance, 

it is natural to assume that all states where an option might continue are also states 

where the option might be started (i.e., that {5|/3(s) < 1} C T). In this case, t t  needs 

to be defined only over T rather than over all of «S.

Limiting the initiation set can also limit the number of options that need to be 

considered in every state in which the agent has to make a choice. Given a set of 

options, their initiation sets implicitly define a set of available options (Ds for each 

state s G 5. Having a small number of options in the set Os, Vs, is a way of avoiding 

the increase in deliberation cost due to the use of options.

30



The flat representation of options has the same expressive power as the explicit 

representation, as shown in the following theorem:

Theorem 1 For any flat representation (T, 7r,/3), there exists a unique option o 

whose execution from all states s E S produces the same probability distribution over 

partial histories for any MDP. Conversely, for any option o, there exists a unique 

flat representation {X, t t , whose execution for all states s E 5 produces the same 

probability distribution over partial histories for any MDP.

Proof: For the first part, we consider that {X, t t , fl} is given and construct a mapping 

o : H X A U {t } [0,1] that produces equivalent choices of action. Let h E H be

the current history since option o started. Then we can define o as follows:

o(s, t ) = 1.,\/s^X

o{h,T) — fl{h}

o{h,aj} = (1 - fl{h)}7r{h,aj},^aj E A

We show that o and lfL,T[,fl} produce the same distribution over partial histories 

by induction over the history length k. For k = 0, both representations will stop 

immediately for states s ^X and make the same choices of action by construction for 

s e X.

Assume that o and (T, t t , fl} produce the same distribution for all partial histories 

up to length k. Given a partial history h of length k, ending in by construction o 

and fX,Tx,fl} will make the same choices of action. Then the probability of the next 

partial history is:

Pr{(/i, Oj, rffl s'} 1 h} = o{h, aj}p‘fl^, = (1 - fl{h}}Tr(h, aflp^,

Pr{sjfe I fi} = o(h,T} = fl{h}
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Pr{s/. \h} = l3{h} = o{h,T}

This proves the induction step and concludes the theorem, o

3.2.2 Hierarchical Options

The explicit and flat representations of options provide one level of abstraction on 

top of the primitive actions. So far, we have considered that an option makes choices 

among the primitive actions and the reset action. In this section we deflne hierarchical

options, which make their choices among other options. This extension is natural, 

given the uniform treatment of primitive actions and options in our framework. As 

we show in this section, no special-purpose methods are needed to handle hierarchies 

with multiple levels of options.

Conversely, assume that the explicit mapping o : H x A U {t } [0,1] is given.

Then the corresponding flat representation can be constructed as follows:

Again, in order to prove that o and (T, t t , induce the same distribution over partial 

histories, we use induction over the length of the history k. For A: = 0, by definition 

the two representations stop immediately in the same states. Assume that o and 

(I, TT, produce the same distribution for all partial histories up to length k. Given 

a partial history h of length k, ending in s^, the probability of the next partial history 

is:

/3(h) = o(h, T),Vhe7Z

7r(h, oj) = g 7/ s^jch that o(h,T) 1

X OifT/j 'TJ
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Let O be a set of options. A history over options xt,T is a sequence of states, 

options and rewards:

Xt,T = {stOtrt+kSt+k ■ ■ • s t Ot ),

where oy is optional and denotes the option chosen at sy (the most recent choice 

point) and which is currently executing. Note that, given a partial history ht^Ti 

there can be many different histories over options Xt,T that could have generated htp'. 

Conversely, a history over options can lead to many corresponding partial histories, 

if the options or the environment are stochastic. Given a set of options (9, we denote 

by Ho the set of all possible histories over options.

A hierarchical option representation over a set of options O is a triple o = (T, /x, /3) 

where T C 5 is an initiation set, p, : Ho [0,1] is an internal policy over options, 

and : Ho [0,1] is a termination condition.

For any hierarchical representation of an option, there exists an equivalent ex-

plicit representation, i.e., a representation which generates the same distribution over 

partial histories. We show this formally later in this section.

The definition of hierarchical options mimics exactly the definition of fiat options 

from the previous section. The main difference is that the internal policy chooses 

among general options instead of only among primitive actions. We can also define 

hierarchical Markov options, for which the policy and the termination condition take 

into account only the current state, rather than the whole history since the initiation 

of the option. Later in this chapter we will show that the hierarchical representation 

of options has the same power as the explicit representation.

The hierarchical option representation is extremely general, but somewhat im-

practical, because it keeps track of complete history information, which is extremely 

expensive. For practical purposes, histories are either limited to some small duration 

(as in the case of Markov options), or they are memorized in some parsimonious way 

(e.g. through sufficient statistics).
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Several other hierarchical representations for temporally extended actions have 

been proposed in Al and RL. Now we will show how the action representations they 

propose can be mapped into hierarchical options:

1. Macro-operators have been extensively studied in classical Al (see e.g. Fikes, 

Hart & Nilsson, 1972; Korf, 1985; Laird, Rosenbloom & Newell, 1986; Knoblock, 

1990). A macro-operator is an open-loop sequence of other macro-operators. 

The initiation of a macro operator depends on the state of the system, but the 

action decisions during the execution of the macro operator only depend on the 

macro operators already executed. In our framework, a macro-operator can be 

viewed as a hierarchical option with an open-loop policy for selecting among 

the available sub-options. The history information contains only the options 

executed, without any details about the intermediate states or the rewards 

received.

2. Hierarchical abstract machines (HAMs) (Parr & Russell, 1998; Parr, 1998) are 

hierarchical representations in which the action choice at each level is con-

strained by a finite state machine (or a “program”). The machines on one level 

can call programs from a lower level. If a machine completely specifies the 

choices of action, it can be viewed as an option, for which the internal policy is 

specified by the corresponding finite state machine. Instead of an explicit com-

plete history, each machine keeps track of several internal state variables, in 

addition to the environment variables. These variables represent efficiently the 

part of the history that is relevant for the decision-making process. But HAMs 

allow a user to specify just constraints over the policies, without specifying the 

precise action choices. In this case, just the policy that the HAM finds after 

learning can be represented as an option.
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3. MAXQ (Dietterich, 1998) is an alternative framework for specifying a hierarchy 

of options. Each state is represented by a vector of state variables, and each 

option takes into account only the variables that are relevant for its level. It is 

the task of the system’s designer to specify which variables should be taken into 

account at each level. Options at each level are Markov and they are acquired 

using standard reinforcement learning techniques, such as Q-learning.

Hierarchical options make their choices based on a history over options. It is not 

immediately clear that such options do not need to be treated using special com-

putational methods. We will now show that for any hierarchical option, there is an 

explicit representation that generates the same distribution over histories. This prop-

erty enables us to treat hierarchical options in the same way as flat options, without 

designing special-purpose methods. Executing hierarchical options involves two basic 

operations: sequencing (composition) of two or more options, and stochastic choice 

from the given set of options. We now show that for each of these basic operations, 

there is an explicit representation that generates the same history distribution.

Lemma 1 (Sequencing) For any two options Oi and 02, and for any MDP, there 

exists an option o whose execution from any state s e 5 produces the same distribution 

of histories as the execution of Oi in s, followed by the execution of o^.

Proof: Let ht,T € 7/ be a history obtained by executing O] followed by 02. If no 

additional information is available about the option that is executing, then in general, 

two situations are possible:

1. option 01 might still be executing, in which case it is still picking primitive 

actions;

2. option 01 terminated at some intermediate time step k and 02 has taken over 

from there.
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Using this observation, option o can be specified as follows:

T
o(ht,T,aj) = oi{ht,T,aj')+ ^oi{ht,k,r}o2{hk,T,aj)yaj E A 

k=t
T

o(,ht,T,r} = ^0i(h<,fe,T)o2(hfc,T,T) 
k=t

By this construction, the distribution of actions after any given history is the same 

for o as it is for the execution of oi followed by 02. If two options generate the same 

action choices after each history, then they will generate the same distribution over 

histories, by the same induction argument as the one used to prove theorem 1. o

Corollary 1 For any sequence of options oi... and for any MDP, there exists 

an option o whose execution from any state s e 5 produces the same distribution of 

histories as the execution of the given sequence starting in s.

Proof: The proof is immediate by induction over n. The base case n = 2 is proven 

in lemma 1. For the induction step, consider the set of options Oi,... o„, On+i. From 

the induction hypothesis, the sequence Oi... can be represented explicitly using an 

option o'. Then from theorem 1, the sequence of o', o„+i can be represented explicitly 

by some option o, which proves the corollary, o

Lemma 2 (Stochastic choice) Let O = {o^... On} be a finite set of options and 

ZeZ // : 5 X (9 —> [0,1] be a Markov policy that chooses from the options in O. Then 

there exists an option o such that, for any MDP, the execution of o starting from any 

state s G S generates the same distribution over histories as a single choice of option 

performed in s according to distribution p{s, •).

Proof: Let h G H be the history over primitive actions since p was initiated. Then 

0 should take into account the likelihood of each of the possible options being active,
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given the observed history, and average the suggested choices of action from each 

option. Formally, o can be defined as follows:

o{h,T) = Pr{oi\h}oi{h,T)
OiEO

o{h,aj) = '^PT{aj \oi,h} = '^Pr{oi\h}oi{h,aj}
OiEO OiEO

Because h has been observed, using Bayes rule, we have:

Pr{oj I fi} = //(s,Oi)Pr{h | oj,

where s is the first state of h. The second factor can be computed immediately from 

Oi and from the dynamics of the environment.

By this construction, o makes the same action choices for any history as applying 

/J. for one step. By induction on the length of the history, analogous to theorem 1, o 

and ij, will generate the same distribution over histories, o

Based on these results, we can show that any hierarchical option has an explicit 

representation:

Theorem 2 Let {I, //, be a hierarchical option that chooses from the set O = 

{oi.. .o„}. Then there exists an explicit representation o such that, for any MDP, 

the execution of o from any state s S 5 produces the same distribution of histories as 

the execution of (T, t v , starting in s..

Proof: The proof is based on the results and proof techniques used in lemmas 1 

and 2. Consider a history htpr- We have to determine all the possible histories over 

options that could have generated this real history in the environment. Such histories 

can have from one option to at most T — t options in them, and we have to consider
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all possible breakdown points. So the choice of o for each history can be written as a 

sum of probabilities, taking into account all these possible breakdown points:

k=0
T—t 

o(ht,T,aj) = Pk(hf:r.aj''), 
k=0

where Pk{ht,T,T) and Pk{ht^T,aj} denote the probabilities of taking t  and aj respec- 

tively after ht^r, assuming that k reset points have occurred between t and T.

Let us consider first the situation in which no breakpoint occurred yet (the first 

option picked by o is still executing). This is actually the stochastic choice case 

presented in lemma 2, so Pq can be expressed as follows:

Po(hi,r,a) = Pr{oj | a), Va E A
Oieo

Po(ht^T,T) = Pr{oi I
Oieo

where rt,T is the total discounted reward observed during the period from t to T: 

f't,T = Vt + ... + y'^~^rT. Based on the proof of theorem 1,

Pr{oi I ht,T,/J.} = n(st,Oi)Pr{ht,T | oj.

Now consider the case in which one termination occurred between t and T. In 

this case, the probabilities Pi can be determined analogously to lemma 1:

T
Pi{ht,T,a) = Pr{(sfOin,fcSfcOj) I

fc=t+i 0j,0jec>

T
Pi{ht^T,'T) — Pr{(sfOjri,/;SfeOj) \ k‘}oj[hk,TiT)^((stOirt^kSkOjrk,TST')')

fe=i+l Oj,OjeC>
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The conditional probability of the history over options can be decomposed as follows:

Pr{{stOiVt^kSkOj} I = Pr{oi I Kk, /^}oi{ht,k, T)Pr{oy | {stOirt,kSk}, hk,T^ A*}

= Pr{oi I ht^k, fJ'}oi{ht,k,T}i2({stOirt^kSk}, Oj)Pr{hk,T | oj}

The same unrolling technique can be use for computing any term Pk-

By this construction, and by lemmas 1 and 2, o produces the same distribution of 

histories as o

Corollary 2 ylra?/ hierarchical option o choosing from a given set of hierarchical op-

tions O = {oi... o„} can be represented explicitly by a mapping o : H x X U {r} —> 

[0,1].

Proof: Based on theorem 2, we can successively “flatten” each level of hierarchical 

options, providing the respective explicit representation. The corollary is immediate 

by induction on the number of levels in the hierarchy, o

This theoretical result shows that hierarchies of arbitrary depth can be flattened, 

and therefore treated in the same way as flat options. Therefore, from now on we 

will use the general term “options” regardless whether the representation is flat or 

hierarchical. We will present our theoretical results for the explicit representation of 

options, and indicate any specializations for flat or hierarchical representations.

3.3 Value Functions for Options

So far we have described how options can be specified and executed. But knowing 

how an option is executed is not enough for an agent that is trying to make decisions 

about which options it should choose. In order to make decisions, the agent needs
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long-term predictions about the consequences of behaving according to different poli-

cies over options. Now we generalize the usual state value and action value functions 

to apply to options and policies over options.

Let ^’(Tr, s,t) denote the event of a fiat policy t t  being initiated in s at time t. It 

is also useful to define 5(0,the event of an option o continuing from history h 

at time t, where h is a history ending in st- In continuing, actions are selected as if 

the history had preceded Sf That is, at is selected according to o(h, •)• If the action 

chosen is not the reset action, then the agent receives a reward n+i and transitions 

to a state On the next time step, the action choice will be made according to 

o{{hatrt+ist+i},-}.

Definition 3 The value of a state s € «S under a flat semi-Markov policy t t  is the 

expected return if the policy is initiated in s:

V'^{s} = E\rt+]_^‘yrt+2+'y‘̂rt+3-\----- 5(7r,s,t)}. (3.3)

Definition 4 The value of a state under a policy over options p is the value of the 

state under the corresponding flat policy:

(3.4)

It is natural to generalize action-value functions to op/wn-value functions. Given 

an option o and a policy over options p, let op denote the policy that first follows o 

until it terminates and then starts choosing according to p in the resulting state.

Definition 5 The value of taking option o in state s G T under policy p is:

Q^{s,o) = E\rt^i+'yrt+2 + T‘̂ rt+zA---- 5(o/z,s,t)} (3.5)
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Finally, there are generalizations of optimal value functions to options and to

policies over options. Of course the conventional optimal value functions V* and Q* 

are not affected by the introduction of options; one can ultimately do just as well with 

primitive actions as one can with options. Nevertheless, it is interesting to know how 

well one can do with a restricted set of options that does not include all the actions. 

For example, in planning one might first consider only high-level options in order to 

find an approximate plan quickly. Let O denote a restricted set of options and let 

11(0) be the set of all policies selecting only from options in O.

Definition 6 Given a set of options O, the optimal value function for 0 zs;

1^(5) max V^(s}Men(c>) '■ (3.6)

Definition 7 Given a set of options O, the optimal option-value function for 0 is:

Qo(s,o)= max (5^(s,o) (3.7)

Definition 8 Given a set of options, O, a corresponding optimal policy, denoted pfj,

is any policy that achieves V^, i.e., for which V^o(^s) = lo(s) in all states s E S.

S.4 Conclusions

In this chapter we defined several important components of our framework for 

temporal abstraction in reinforcement learning. We defined options, which are es-

sentially closed-loop, stochastic ways of behaving that terminate. Options can be 

temporally extended, and their choices of action can depend on the whole history of 

events since the option was initiated.

We defined three ways of specifying options. The explicit representation and the 

flat representation describe the options in terms of their choices of primitive actions.
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In the hierarchical representation, options choose from a set of other options. The 

hierarchical representation of options subsumes other representations for temporally- 

extended actions that have been introduced in Al and RL, such as macro-operators, 

hierarchies of abstract machines and MAXQ hierarchies. We showed that any hierar-

chy of options can be mapped into a flat option. This result enables us to treat both 

representations in a uniform way, both for theoretical and for practical purposes.

Finally, we deflned value functions for options and policies over options. These 

value functions are analogous to the state and action value functions used in RL. Es-

pecially important are the optimal value functions for a set of options; knowing these 

value functions allows an agent to behave optimally while choosing from the available 

options. In the next two chapters, we focus on planning and learning algorithms that 

allow an agent to compute efficiently such optimal value functions.
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CHAPTER 4

SMDP METHODS FOR LEARNING AND PLANNING 
WITH OPTIONS

The options framework presented in the previous chapter allows us to specify 

temporally extended courses of action that an agent can execute. But knowing how 

an option is executed is not enough in order to reason about it, or to use it effectively. 

We need information about the consequences of options, and we need algorithms that 

allow us to plan ways of behaving using options.

In this chapter we address the issue of learning and planning with options. In 

particular, we present a class of learning and planning methods called SMDP meth-

ods. These methods are adapted from the theory of Semi-Markov Decision Processes 

(SMDPs), which are used to model continuous-time, discrete-event systems. Our key 

observation is that by introducing options in an MDP we obtain an SMDP. Then 

we can define models of options, analogous to the models of SMDP actions, and we 

can use all the learning and planning methods available in SMDPs. In this chapter 

we illustrate how using SMDP methods and options results in faster learning and 

planning compared to the usual MDP methods.

4.1 SMDPs and Options
How can we compute optimal value functions and optimal policies for different 

sets of options? In order to answer this question, note that options are closely related 

to the actions in a special kind of decision problem known as a semi-Markov decision 

process, or SMDP (e.g., see Puterman, 1994). SMDPs are related to MDPs, but 

more appropriate for modeling discrete-event systems. Formally, an SMDP is a tuple
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Q), where 5 is the set of states, A is the set of actions, TZ is the reward 

function, and Q, is the joint distribution of the next state and the transit time. More 

specifically, if the system is in state s and chooses action a at the current decision 

epoch, then Q{t, s'|s, o) denotes the probability that the next decision epoch occurs 

within time t, and that the system will be in state s' at that time.

An SMDP is usually viewed as a decision process overlaid on top of a natural 

process. The underlying system can change state between decision epochs, but these 

changes do not provide any relevant information to the agent. From this perspective, 

any MDP together with a fixed set of options is an SMDP. The MDP is the natural 

process, and the options are the actions in the SMDP process. Each decision epoch 

occurs at the moment of a reset action, and at that time, the system can choose a new 

option to execute. The reward (TZ) and transition (Q) distributions are well defined 

for each state and option by the underlying MDP and by the option itself. These 

distributions are well defined because MDPs are Markov and every option makes its 

choices based only on events that occurred since the option was initiated. Therefore, 

the next state, reward and transition time depend only on the option and the state 

in which it was initiated. The transit times of options are always discrete, but this is 

simply a special case of the arbitrary real intervals permitted in SMDPs. This result 

can be stated more formally as follows:

Theorem 3 (MDP + Options = SMDP) For any MDP, and any fixed set of 

options defined on that MDP, the decision process that selects among those options, 

executing each to termination, is an SMDP.

This relationship among MDPs, options, and SMDPs provides a basis for the 

theory of planning and learning methods with options. In particular, all the SMDP 

planning and learning methods can be applied immediately to the case in which 

temporally extended options are used in an MDP. The remainder of this chapter 

discusses SMDP planning and learning methods. Although our formalism is slightly
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different, these results are in essence taken or adapted from prior work in SMDP 

theory (see, e.g. Puterman, 1994), and reinforcement learning (Bradtke & Duff, 1995; 

Parr & Russell, 1998; Singh, 1992a; Singh, 1992b; Sutton, 1995; Precup & Sutton, 

1997; Precup et al., 1997; Precup & Sutton, 1998; Precup et al., 1998; McGovern 

et al., 1997). A result very similar to theorem 3 was proved in detail by Parr (1998).

4.2 SMDP Planning

Planning with options requires a model of their consequences. Fortunately, the 

appropriate form of model for options is known from existing SMDP theory. For each 

state in which an option may be initiated, this kind of model predicts the state in 

which the option will terminate and the total reward received along the way. These 

quantities are discounted in a particular way. For any option o, let 5(o, s,t) denote 

the event of o being initiated in state s at time t. Then the reward part of the model 

of 0 for any state s G is

’’s = E {n+i + 7n+2 +-----h I*’ ^rt+k I E. (o, s, f) y, (4.1)

where t + k is the random time at which o terminates. The state-prediction part of 

the model of o for state s is;

oo

Pss' =
fc=l

(4.2)

where p(s', k) is the probability that the option terminates in s' after k steps. Thus, 

is a combination of the likelihood that s' is the state in which o terminates together 

with a measure of how delayed that outcome is relative to 7. This kind of model is 

called a multi-time model (Precup & Sutton, 1997; Precup & Sutton, 1998) because 

it describes the outcome of an option not at a single time but at potentially many 

different times, appropriately combined. The definition of p°g, differs slightly from
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that given previously for primitive actions. Under the new definition, the model of 

transition from state s to state s' for an action a is not simply the corresponding 

transition probability, but the transition probability times 7.

Multi-time models can be generalized to handle the case in which options continue 

after a given history. If 5(h, o, t) denotes the event of o continuing after history h 

which ends in state St, then equations (4.1) and (4.2) hold when replacing s with h.

Multi-time models can be used to write Bellman equations for general policies 

and options. For any Markov policy over options fj,, the state-value function can be 

written as:

V'-ts) = E {r„. + • ■ • + | £(/i, s,«)},

where k is the duration of the first option selected by /z. By using the model definition, 

this equation can be rewritten as:

oeo,
= E^5 + E(s') . 

s'

which is the Bellman equation for the state-value function. The corresponding Bell-

man equation for the value of an option o in state s E T is:

Q>^{s,o) = E{n+i + ..- + 7''-'ri+, + 7'U^(W|«^(o,s,i)}

= -----+ ti{st+k,o')Qf^{st+h,o'} f(o,s,t)}
o'CiOs

= < + (4.4)
s' o'eOs

Note that all these equations specialize to the usual Bellman equations used for solving 

MDPs, in the case in which p, is a conventional policy and o is a conventional primitive 

action. Also note that Q^{s, o) = y°^(s).
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Similarly, the optimal Bellman equations can be written for general policies and 

options. For instance, the optimal value function given that options are chosen only 

from the set Clean be expressed as;

VoCs) = mgx£'{r,+,+--- + 7‘ + 7‘Vo(«,+i) I (4.5)

max r° + ^p°„,ViW .
’ L s'

(4.6)

The Bellman equations for the optimal option-value function are:

(5o(s,o) - £7 H------- h 7*" ’■’"f+fc +

= £/{n+i + • • • + 7*"^n+fe + 7'' max Qo{st+k, o') £{o,s,t)},

= ^s + ZP°s' o'). (4.7)
s'

If Vq  and models of the options are known, then optimal policies can be formed 

by choosing in any proportion among the maximizing options in (4.5) or (4.6). Or, if 

Qo is known, then optimal policies can be found without a model by choosing in each 

state s in any proportion among the options o for which Qo(s,o) = max,./ Qq (s ,o ')- 

In this way, computing approximations to or become key goals of planning 

and learning methods with options.

Each of the Bellman equations for options, (4.3), (4.4), (4.5), and (4.7), defines 

a system of equations whose unique solution is the corresponding value function. 

These Bellman equations can be used as update rules in dynamic-programming-like 

planning methods for finding the value functions. Typically, solution methods for 

this problem maintain an approximation of V^{s) or Q*^{s,o) for all states s e 5 

and all options o G Og. For example, synchronous value iteration (SVI) with options 

starts with an arbitrary approximation Vq to and then computes a sequence of 

new approximations {14} by
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H(s) = max r° + p°^,Vk-x{s'} ,Vs G S.
c*

(4-8)
s'e5

The action-value form of SVI starts with an arbitrary approximation Qo to Qo a-^d 

then computes a sequence of new approximations {Qk} by:

o) = r° + p°^, max Qk-i{s', o'), Vs G 5, o G O,. (4.9)
s'es °

Note that these algorithms reduce to the conventional value iteration algorithms in 

the special case that (9 = A. Standard results from SMDP theory guarantee that 

these processes converge for general options: limfc_^oo 14 = and limfc^.oo Qk = Qo 

for all sets of options O.

The plans (policies) found using temporally extended options are approximate 

in the sense that they achieve only V^, which is less than the maximum possible, 

V*. Parr (1998) provides some bounds on the sub-optimality of any given set of 

options. On the other hand, if the models used to find them are correct, then they 

are guaranteed to achieve Vq . This is the value achievement property of planning 

with options. This contrasts with planning methods that abstract over state space, 

which generally cannot be guaranteed to achieve their planned values even if their 

models are correct (e.g.. Dean and Lin, 1995).

4.3 Illustration: Rooms Example

As a simple illustration of planning with options, consider the roorns example, 

a gridworld environment of four rooms shown in Figure 4.1. The cells of the grid 

correspond to the states of the environment. From any state the agent can perform 

one of four actions, up, down, left or right, which have a stochastic effect. With 

probability 2/3, the actions cause the agent to move one cell in the corresponding 

direction, and with probability 1/3, the agent moves instead in one of the other three 

directions, each with probability 1/9. In either case, if the movement would take the
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HALLWAYS
4 stochastic 
primitive actions

right Fail 33% 
of the time

down

8 muiti-step options
(to each room's 2 hallways)

Figure 4.1. The rooms example is a gridworld environment with stochastic cell- 
to-cell actions and room-to-room hallway options. Two of the hallway options are 
suggested by the arrows labeled oj and 02- The labels and indicate two locations 
used as goals in experiments described below.

agent into a wall, then the agent remains in the same cell. The rewards are zero on 

all state transitions.

Target 
Hallway

Figure 4.2. The policy underlying one of the eight hallway options.

Two built-in hallwa-y options are provided in each of the four rooms. These options 

are designed to take the agent from anywhere within the room to one of the two 

hallway cells leading out of the room. A hallway option’s policy t t  follows a shortest 

path within the room to its target hallway while minimizing the chance of stumbling 

into the other hallway. For example, the policy for one hallway option is shown in 

Figure 4.2. The termination condition for each hallway option is zero for states within 

the room and 1 for states outside the room, including the hallway states. Each option 

is also restricted to last at least one time step before terminating. The initiation set
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T comprises the states within the room plus the non-target hallway state leading into 

the room. Note that these options are deterministic and Markov, and that an option’s 

policy is not defined outside of its initiation set. The set of eight hallway options is 

denoted by H. For each option o e H, its accurate model r° and is also provided 

a priori, for all s G T and s' G 5 (assuming there is no goal state). Note that although 

the transition models are nominally large (order |I| x |«S|), in fact they are sparse, 

and relatively little memory (order |2r| x 2) is actually needed to hold the nonzero 

transitions from each state to the two adjacent hallway states. The off-target hallway 

states are exceptions in that they have three possible outcomes: the target hallway, 

themselves, and the neighboring state in the off-target room.

Now consider a sequence of planning tasks for navigating within the grid to a 

designated goal state, in particular, to the hallway state labeled in Figure 4.1. 

Formally, the goal state is a state from which all actions lead to the terminal state 

with a reward of -1-1. The discount factor is 7 = 0.9.

As a planning method, we used SVI as given by (4.8), with various sets of options 

O. The initial value function Fq was 0 everywhere except the goal state, which 

was initialized to its correct value, Vo(G'i) = 1, as shown in the leftmost panels of 

Figure 4.3. This figure contrasts planning with the original actions ((9 = M) and 

planning with the hallway options and not the original actions (0 = 7/). The upper 

part of the figure shows the value function after the first two iterations of SVI using 

just primitive actions. The region of accurately valued states moved out by one cell on 

each iteration, but after two iterations most states still had their initial arbitrary value 

of zero. The lower part of the figure shows the corresponding value functions for SVI 

with the hallway options. In the first iteration all states in the rooms adjacent to the 

goal state became accurately valued, and in the second iteration all the states become 

accurately valued. Although the values continued to change by small amounts over 

subsequent iterations, a complete and optimal policy was known by this time. Rather
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Primitive 
options 
O=A

Hallway 
options 
O=H

Initial Values Iteration #1 iteration #2
Figure 4.3. Value functions formed over iterations of planning by synchronous 
value iteration with primitive actions and with hallway options. The hallway options 
enabled planning to proceed room-by-room rather than cell-by-cell. The area of the 
disk in each cell is proportional to the estimated value of the state, where a disk that 
just fills a cell represents a value of 1.0.

than planning step-by-step, the hallway options enabled the planning to proceed at 

a higher level, room-by-room, and thus be much faster.

This example is a particularly favorable case for the use of multi-step options 

because the goal state is a hallway, the target state of some of the options. Next, 

we consider a case in which there is no such coincidence, in which the goal lies in 

the middle of a room, in the state labeled G2 in Figure 4.1. The hallway options 

and their models were just as in the previous experiment. In this case, planning with 

the hallway options alone could never completely solve the task, because these take 

the agent only to hallways and thus never to the goal state. Figure 4.4 shows the 

value functions found over five iterations of SVI using both the hallway options and 

options corresponding to the primitive actions (i.e., using O = A U H}. In the first 

two iterations, accurate values were propagated from G2 by one cell per iteration by 

the models corresponding to the primitive actions. After two iterations, however, the
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first hallway state was reached, and subsequently room-to-room planning using the

temporally extended hallway options dominated. Note how the state in the lower

right corner was given a nonzero value during iteration three. This value corresponds

to the plan of first going to the hallway state above and then down to the goal; it was 

overwritten by a larger value corresponding to a more direct route to the goal in the 

next iteration. Because of the hallway options, a close approximation to the correct

value function was found everywhere by the fourth iteration; without these options.

only the states within three steps of the goal would have been given non-zero values

by this time.

Primitve 
and 

hallway 
options 

O=AU H

Initial values Iteration #1 Iteration #2

a:a bb^b
________

:: ::::: I ::::: bzs:: ----- -- ■■■■■■
^iiSfliSiSsiSSSMiUSi 

siii:

Iteration #3

::i:BBBBB$:SBBBBB:S:: BBBBBBaaaaB BBBBBaDDBD

Iteration #4 Iteration #5

Figure 4.4. An example in which the goal is different from the subgoal of the hallway 
options. Planning here was done by SVI with options O = AuTi. Initial progress was 
due to the models of the primitive actions, but by the third iteration room-to-room 
planning dominated and greatly accelerated planning.

4.4 Illustration: Random Options
In the rooms example, the options are designed to capture an important feature 

of the environment: hallway states are important for navigation, because they are 

funneling states between different regions of the state space. But options can help to 

speed up planning even if they are not so carefully designed (Precup et al., 1998).
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In order to illustrate this point, consider the task depicted on the left panel of 

figure 4.5. The dynamics of the environment is the same as in the previous example. 

In addition to the four primitive actions, the agent can use four additional higher-level 

options, to travel to each of the marked locations. These locations have been chosen 

randomly inside the environment. Accurate multi-time models for all the options are 

also available.

The agent is repeatedly given new goal positions and it needs to compute optimal 

paths to these positions as quickly as possible. In this experiment, we considered all 

possible goal positions. In each case, the value of the goal state is 1, there are no 

rewards along the way, and the discounting factor is 7 = 0.9. We performed planning 

according to the SVI method, where the starting values are Vo(s) = 0 for all the 

states except the goal state, for which Vo^goal) = 1. In the first experiment, the 

agent was only allowed to use primitive actions, while in the second case, it used both 

the primitive actions and the higher-level options.

The right panel in figure 4.5 shows the average root mean squared error in the 

estimate of the optimal value function over the whole environment. The average 

is computed over all possible positions of the goal state. The use of higher-level 

options introduces a significant speedup in convergence, even though the options 

have been chosen arbitrarily. Note that an iteration using all the options is slightly
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more expensive than an iteration using only primitive actions. This aspect can be 

improved by using more sophisticated methods of ordering the options before doing 

the update.

SVI was used in these examples because it is a particularly simple planning method 

that makes the potential advantage of temporally extended options particularly clear. 

In large problems, SVI is impractical because the number of states is too large to com-

plete many iterations, often not even one. In practice it is often necessary to be very 

selective about the states updated, the options considered, and even the next states 

considered. These issues are not resolved by using temporally extended options, but 

they are not greatly aggravated either. Options provide a tool for dealing with them 

more flexibly. Planning with options need not be more complex than planning with 

actions. In the SVI experiments above there were four primitive options and eight 

hallway options, but in each state only two hallway options needed to be considered. 

In addition, the models of the primitive actions generate four possible successors with 

non-zero probability whereas the multi-step options generate only two. Thus, plan-

ning with the temporally extended options was actually computationally cheaper than 

conventional SVI in this case. In the second experiment this was not the case, but 

the use of multi-step options still did not greatly increase the computational costs. In 

general, of course, there is no guarantee that multi-step options will reduce the overall 

expense of planning. For example, Hauskrecht et al. (1998) showed that adding such 

options may actually slow SVI if the initial value function is optimistic. Research with 

deterministic macro-operators has identified a related “utility problem” (an increase 

in the cost of deliberation) when too many macros are used (e.g., see Etzioni, 1990; 

Minton, 1990; Tambe, Newell, and Rosenbloom, 1990; Greiner and Jurisica, 1992; 

Gratch and DeJong, 1996). Temporal abstraction provides the fiexibility to reduce 

greatly computational complexity, but can also have the opposite effect if used indis-
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criminately. Pruning efficiently the space of options to consider during planning and 

learning will be the topic of future work.

4.5 SMDP Value Learning

The problem of finding an optimal policy over a set of options O can also be 

addressed by SMDP learning methods, as developed by Bradtke and Duff (1995), Parr 

and Russell (1998), Mahadevan et al. (1997), or McGovern, Sutton & Fagg (1997). 

Like in the planning method discussed above, each option is viewed as an indivisible, 

opaque unit. In a given state s, the learning agent can pick an option o and executes 

it until the option terminates, in some state s'. Based on the experience accumulated 

between s and s', an approximate option-value function Q(s, o) is updated. For 

example, the SMDP version of one-step Q-learning (Bradtke & Duff, 1995), which we 

call SMDP Q-leaming, updates after each option termination by:

Q(s,o) Q(s,o) 4-0 r 4-7* max Q(s',o') - Q(s, 0} , (4.10)

where k denotes the number of time steps elapsing between s and s', r denotes the 

cumulative discounted reward over this time, and it is implicit that the step-size 

parameter a may depend arbitrarily on the states, option, and time steps. The 

estimate Q(s, 0) converges to Qo(s, 0) for all s e 6 and 0 e O under conditions 

similar to those for conventional Q-learning (Parr, 1998).

As an illustration, we applied SMDP Q-learning to the rooms example (Figure 4.1) 

with the goal at and at G2 respectively. As in the case of planning, three different 

sets of options were used: A (only the primitive actions), Ti (only the hallway options), 

and Au PL (both primitive and hallway options). In all cases, options were selected 

from the set according to an e-greedy method dependent on the current option-value 

estimates. That is, given the current estimates Q(s, o), let 0* = argmaxoco, Q(s,o)
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Figure 4.6. Performance of SMDP Q-learning in the rooms example with various 
goals and sets of options. After 100 episodes, the data points are averages over groups 
of 10 episodes to make the trends clearer. The step size parameter was optimized to 
the nearest power of 2 for each goal and set of options. The results shown used a = | 
in all cases except that with G = H and Gi (a = ■") and that with O = A U H and 
G2 {a = 1).

denote the best valued action (with ties broken randomly). Then the policy used to 

select options was;

+ if 0 = 0*

otherwise,

for all s G «S and o G (9. The probability of a random action, e, was 0.1 in all the 

experiments. The initial state of each trial was in the upper-left corner. Figure 4.6 

shows learning curves for both goals and all sets of options. In all cases, temporally 

extended options caused the goal to be reached much more quickly, even on the 

very first trial. With the goal at Gi, these methods maintained an advantage over 

conventional Q-learning throughout the experiment, presumably because they did 

less exploration. The results were similar with the goal at G2, except that the H 

method performed worse than the other methods in the long term. This is because 

the best solution requires several steps of primitive actions (the hallway options alone 

find the best solution running between hallways and sometimes stumbling upon G2).

0) =
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For the same reason, the advantages of the A U H method over the A method were 

also reduced.

4.6 Conclusions
In this chapter we developed the link between options and SMDPs. We showed 

that an MDP with a set of options is an SMDP. This enables us to define multi-time 

models of options, similar to the models of actions in an SMDP. We also showed how 

SMDP learning and planning methods could be applied to find a solution faster than 

standard MDP methods.

SMDP methods work at the level of options only, without using any of the informa-

tion about the underlying MDP, or the internal structure of the options. The model 

of execution of the options is also restricted to be call-and-return. In subsequent 

chapters we will present new learning and planning algorithms, which take advantage 

of the underlying MDP structure to obtain better solutions in a more efficient way.
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CHAPTER 5

INTRA-OPTION LEARNING

SMDP methods apply to options, but only when they are treated as opaque indi-

visible units. Once an option has been selected, such methods require that its policy 

be followed until the option terminates. More interesting and potentially more pow-

erful methods are possible by looking inside options and by altering their internal 

structure. In the rest of the dissertation we focus on methods that exploit the MDP 

structure underlying the SMDP defined by the options.

In this chapter we propose an alternative to SMDP learning methods. One draw-

back to SMDP learning methods is that they need to execute an option to termination 

before they can learn about it. Therefore, they cannot be used for non-terminating 

options and can only be applied to one option at a time - the option that is executing 

at that time. However, if we are willing to look at the structure inside the options, 

then we can use special temporal-difference methods to learn usefully about an option 

before the option terminates. We call these intra-option learning methods because 

they learn about an option from a fragment of experience within the option.

Intra-option methods are examples of off-policy learning methods (Sutton & Barto, 

1998). Off-policy learning methods learn about the consequences of one policy from 

data generated by following another, potentially different policy. In general, off- 

policy learning can greatly multiply learning because many policies can be learned 

about at the same time, while only one can be followed. This is true also in the 

case of intra-option methods, which can be used to learn simultaneously about many 

diflferent options from the same experience. Moreover, they can learn about the values
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of executing options without ever executing those options, as long as some action 

selections are made that are consistent with the option. Therefore, they are more 

flexible than SMDP learning, and they make more efficient use of the real experience.

Intra-option methods were introduced by Sutton (1995) for a prediction problem 

with a single unchanging policy. In this chapter we present general intra-option 

learning algorithms for learning models of options and value functions over options 

(Sutton, Precup & Singh, 1998b). These are temporal-difference one-step learning 

algorithms that converge to correct values under standard assumptions. Versions of 

these algorithms using eligibility traces are considered in subsequent chapters.

5.1 Intra-Option Model Learning
In this section we introduce a new method for learning to approximate the model 

r° and of an option o, given experience and knowledge of o. The most straight-

forward approach to learning the model of an option is to execute the option to 

termination many times in each state s, recording the resultant next states s', cu-

mulative discounted rewards r, and elapsed times k. These outcomes can then be 

averaged to approximate the expected values for r° and p°g, given by (4.1) and (4.2). 

For example, an incremental learning rule for this could update its estimates and 

for all a; € «S, after each execution of o initiated in state s and terminated in state 

s', by

fs = + and (5.1)

f,. = & + Q17‘'5«'-py,V^e5+, (5.2)

Ss'x = lif s' = X and is 0 else, and where the step-size parameter, a, may be constant 

or may depend on the state, option, and time. For example, if a is 1 divided by the 

number of times that o has been experienced in s, then these updates maintain the 

estimates as sample averages of the experienced outcomes. However the averaging is
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done, we call these SMDP model-learning methods because they are based on jumping 

from initiation to termination of each option, ignoring what happens along the way. 

In the special case in which o is a primitive action, the SMDP model-learning methods 

reduce exactly to those used to learn conventional one-step models of actions.

Let us consider first the case in which o is a deterministic Markov option. Based 

on an execution of o from t to t + k, SMDP methods extract a single training example 

for r° and p°,,. But because o is Markov, it is, in a sense, also initiated at each of 

the steps between t and t + k. The jumps from each intermediate Sf+j to st+k are 

also valid experiences with o, experiences that can be used to improve estimates of

and Or consider an option that is very similar to o and which would 

have selected the same actions, but which would have terminated one step later, at 

t -I- k -1-1 rather than at t + k. Formally this is a different option, and formally it was 

not executed, yet all this experience could be used for learning relevant to it. In fact, 

an agent can often learn about an option from experience that is only slightly related 

(occasionally selecting the same actions) to what would be generated by executing 

the option. This is the idea of off-policy training — to make full use of whatever 

experience occurs in order to learn as much possible about all options, irrespective of 

their role in generating the experience.

Just as there are Bellman equations for value functions, there are also Bellman 

equations for models of options. Consider the intra-option learning of the model of a 

Markov option o = The correct model of o is related to itself by

< = 52 7r(s,a)E{r-F7(l-,d(s'))r",} 
aeA

= 52 +12
ae.Aj s'eS

(5.3)

(5.4)

where r and s' are the reward and next state given that action a is taken in state s.

and

60



P^x = L 0)74(1 - ^{^Ws'x + )^(s')<^«'x}

oe>ij

= E ’^(». “) Z M.'(i - MM. + MS.:} 
ae?tj i'65

for all s, X G 5. How can we turn these Bellman equations into update rules for 

learning the model? First consider that action a* is taken in st and that the way 

it was selected is consistent with 0 = (I, t t ,/0), that is, that Ot vras selected with 

the distribution %(«<, •). Then the Bellman equations above suggest the following 

temporal-difference update rules:

+ a [rt+i + 7(1 - ] (5.5)

and

pIx fstx + Q;[7(1 - ^(s<+i))p?e+ix + 7/3(st+i)<y.e+i^ “ (5.6)

where and f° ate the estimates of p",/ and r°, respectively, and a is a positive 

step-size parameter. The method we call one-step intra-option model learning applies 

these updates to every option consistent with every action taken.

Of course, this is just the simplest intra-option model-learning method. How can 

we lift the assumptions that o, the option learned about, is Markov, deterministic 

and represented by a flat representation ? We consider first learning the models of 

stochastic options. Equations (5.5) and (5.6) apply in this case only if choices of 

action are made according to the distribution 7r(st, •). This is not the case in general 

if diflferent options are executing, and we want to update the models of all options on 

every time step. It is not obvious how to keep track of the actual action distribution 

at state S{.

The solution we adopt here is a standard trick used in off-policy learning methods: 

we increase the size of the models by the number of actions. Therefore, instead of 

keeping track of r" and p°^z we will have one component for each primitive action, r^°
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and p“",. The reward component r"" is the expected cumulative discounted reward 

for starting in state s, performing action a and acting according to o afterwards. 

Similarly, is the expected probability of transition from s to s' when performing 

action a and then acting according to o, discounted appropriately by the duration of 

the sequence ao. The multi-time model of the option can be computed as an average 

of these more explicit models;

a

P°S' =
a

With this change in the models, equations (5.5) and (5.6) can be used to learn each 

component of the models. If action a* is taken in state s*, the models are updated 

by:

4- a [n+i -F 7(1 - ^(s<+i))r" ] (5.7)

and

fstx + «[7(1 - (5.8)

In the general case of options that depend on the partial history since they were 

initiated, there is no direct way for applying intra-option learning to acquire state 

models, because the Bellman equations do not hold inside such options. Of course, 

one can always execute these options to termination and use SMDP model learning. 

The other alternative to consider is to expand the models of the options even further, 

by introducing separate components and for each history. With these changes, 

equations (5.7) and (5.8) hold for these detailed models. Of course, it is impractical to 

keep general models that depend on whole histories. This approach could be practical 

in special cases in which the history can be summarized efficiently, or represented 

using function approximation. More efficient algorithms may be possible in the case 

of hierarchical Markov options. This is a topic for further research.
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5.2 Illustration of Intra-Option Model Learning
As an illustration, consider the application of SMDP and intra-option model-

learning methods to the rooms gridworld environment shown in Figure 4.1. The only 

difference from the previous setup is that there are small negative rewards for each 

action, with means uniformly distributed between 0 and -1. The rewards are also 

perturbed by Gaussian noise with standard deviation 0.1. For this experiment, there 

is no goal state.

The eight hallway options are given as before, but their models are not given 

and must be learned. Experience is generated by selecting randomly in each state 

among the two possible options and four possible primitive actions, with no goal 

state. In the SMDP model-learning method, equations (5.1) and (5.2) were applied 

whenever an option was selected, whereas, in the intra-option model-learning method, 

equations (5.5) and (5.6) were applied on every step to all options that were consistent 

with the action taken on that step. In this example, all options are deterministic, so 

consistency with the action selected means simply that the option would have selected 

that action.

For the SMDP method, the step-size parameter was varied so that the model 

estimates were sample averages, which should give fastest learning. The results of 

this method are labeled “SMDP 1/t” on the graphs. We also looked at results using 

a fixed learning rate. In this case and for the intra-option method we tried step-size 

values of a = j, |, j, and and picked the best value for each method.

Figure 5.1 shows the learning curves for all three methods, using the best a values, 

when a fixed alpha was used. The left panel shows the average and maximum absolute 

error in the reward predictions, and the right panel shows the average absolute error 

and the maximum absolute error in the transition predictions, averaged over the 

eight options and over 30 independent runs. The intra-option method approached 

the correct values more rapidly than the SMDP methods.
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Figure 5.1. Learning curves for model learning by SMDP and intra-option methods.

5.3 Intra-Option Value Learning
We turn now to the intra-option learning of option values, and thus of optimal 

policies over options. Again, in the case of options that depend on the partial history 

since initiation, the SMDP methods described in the previous chapter may be the 

only feasible solution. But in special cases, such as that of Markov options, we can do 

better if we are willing to look inside the options and consider intra-option methods. 

As in model learning, intra-option methods for value learning are potentially more 

efficient than SMDP methods because they extract more training examples from the 

same experience.

It is convenient to introduce new notation for the value of a state-option pair 

given that the option is Markov and executing upon arrival in the state:

o) = (1 - /3(s))Qo(s, o) -b /3(s) maxQ^(s, o'),

Then we can write Bellman-like equations that relate Qo{s, o) to expected values 

of Uq {s '^ o ), where s' is the immediate successor to s after initiating Markov option 

o = (I, TT, jd) in s:
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' QUs,d) = 52 T^{s,a)E[r + yUo{s',o') | s,a}

= r°,+Y^P''ss'Uo{s',o) ,
aeXj s'

where r is the immediate reward upon arrival in s'. Now consider learning methods 

based on this Bellman equation. Suppose action o* is taken in state st to produce 

next state and reward rt+i, and that a* was selected in a way consistent with 

the Markov policy t t  of an option o = That is, suppose that a< was selected

according to the distribution 7r(st, •)• Then the Bellman equation above suggests 

applying the off-policy one-step temporal-difference update:

(5.9)Q(s„ o) <- Q(s„ o) + a (r,+i + 'll!(s,+i, o)) - (3(s,, o) ,

where

C/(s,o) = (l-/3(s))Q(s,o)-h^(s)max(5(s,o')

The method we call one-step intra-option Q-leaming applies this update rule to every 

option 0 consistent with every action taken Ot.

Theorem 4 (Convergence of one-step intra-option Q-learning) For any set of 

deterministic Markov options O, one-step intra-option Q-leaming converges with 

probability 1 to the optimal Q-values, Q^, for every option, regardless of what op-

tions are executed during learning, provided every primitive action gets executed in 

every state infinitely often.

Proof: On experiencing (s, a, r, s'}, for every option o that picks action a in state s, 

intra-option Q-learning performs the following update:

Q(s, o) Q(s, o) -t- ^(s, o)[r -t- ^U{s', o) - Q{s, o)].
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Let a be the action selection by deterministic Markov option o = (I, t t , p}. Our result 

follows directly from Theorem 1 of Jaakkola et al. (1994) and the observation that 

the expected value of the update operator r+7C/(s', o) yields a contraction, as shown 

below:

i£{r+7c/« «)}-%(<. 0)1 = l•■;+I;p:.-^'^'.o)-%(s,o)|
s'

= K+o) - r; - o)i
i' 4'

< I - W’O}}
s'

+ - maxQ^(s',o'))]|

< Zrf4^maj|Q(s",o")-%(s",o")l
< 7max|Q(s",o")-Q^(s",o")l

S’’ yO

o

5.4 Illustration of Intra-Option Value Learning
Again, we use the rooms gridworld environment presented in Figure 4.1, this time 

with a goal state positioned at Gl. At the beginning of each episode, the agent starts 

in a random cell inside the rooms. When the agent enters the goal state, it gets a 

reward of 1 and the episode ends. In all the experiments the discount parameter was 

7 = 0.9 and all the initial value estimates were 0.

In each of the four rooms we provide, as before, two built-in hallway options 

designed to take the agent from anywhere within the room to one of the two hallway 

cells leading out of the room. The policies underlying the options follow the shortest 

expected path to the hallway.

For the first experiment, we applied the intra-option method without selecting the 

hallway options. In each episode, the agent started at a random cell and thereafter 

selected primitive actions randomly, with equal probability. On every transition, the
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update (5.9) was applied first to the primitive action taken, then to any of the hallway

options that were consistent with it. The hallway options were updated in clockwise 

order, starting from any hallways that faced up from the current state. The value of

the step-size parameter was a = 0.01.
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Figure 5.2. The learning of option values by intra-option methods without ever 
selecting the options. The value of the greedy policy goes to the optimal value (left 
panel) as the learned values approach the correct values (as shown for one state, in 
the right panel).

This is a case in which SMDP methods would not be able to learn anything about 

the hallway options, because these options are never executed. However, the intra- 

option method learned the values of these actions effectively, as shown in Figure 5.2. 

The left panel shows the value of the greedy policy learned by the intra-option method, 

averaged over «S and over 30 repetitions of the whole experiment. The right panel 

shows the correct and learned values for the two hallway options that apply in state 

G2 from Figure 4.1. Similar convergence to the true values was observed for all the 

other states and options.

So far we have illustrated the effectiveness of intra-option learning in a context in 

which SMDP methods do not apply. How do intra-option methods compare to SMDP 

methods when both are applicable? In order to investigate this question, we used the 

same environment, but now we allowed the agent to choose among the hallway options
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as well as the primitive actions, which were treated as one-step options. In this case, 

SMDP methods can be applied, because all the options are actually executed. We

experimented with two SMDP methods: one-step SMDP Q-learning (Bradtke and 

Duff, 1995) and a hierarchical form of Q-learning called macro Q-learning (McGovern, 

Sutton and Fagg, 1997). The difference between the two methods is that, when taking 

a multi-step option, SMDP Q-learning only updates the value of that option, whereas 

macro Q-learning also updates the values of the one-step options (actions) that were

taken along the way.
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Figure 5.3. Comparison of SMDP, intra-option and macro Q-learning. Intra-option 
methods converge faster to the correct values.

In this experiment, options were selected not at random, but in an e-greedy way 

dependent on the current option-value estimates. That is, given the current estimates 

Q(s, o), let 0* = argmaxogo., Q(s, o) denote the best valued action (with ties broken 

randomly). Then the policy used to select options was

I
if o = o* 

otherwise.
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for all s e 5 and o e O. The probability of a random action, e, was set at 0.1 in all 

cases. For each algorithm, we tried step-size values of a = j,|, j, and and then 

picked the best one.

Figure 5.3 shows two measures of the performance of the learning algorithms. 

The left panel shows the average absolute error in the estimates of Qq  for the hallway 

options, averaged over the input sets X, the eight hallway options, and 30 repetitions of 

the whole experiment. The intra-option method showed significantly faster learning 

than any of the SMDP methods. The right panel shows the quality of the policy 

executed by each method, measured as the average reward over the state space. The 

intra-option method was also the fastest to learn by this measure.

5.5 Conclusions
In this chapter we introduced a new class for learning methods for learning the 

models and values of options. Intra-options methods are designed to make very 

efficient use of the data generated from an agent’s experience in the environment, 

regardless of the behavior that generated the data. Intra-option learning allows an 

agent to learn about many different options from the same data. As illustrated in our 

experiments, these methods are both more fiexible and more efficient than the SMDP 

methods presented in chapter 4. The speed gain of intra-options methods increases if 

there is a significant amount of overlap between options in their choices of primitive 

actions.

Intra-options learning methods can provide significant speed improvements over 

SMDP methods in the case in which real experience is expensive to generate, but 

computation can be performed cheaply. This is the typical situation for RL agents. 

When using intra-option learning, on should keep in mind that these methods increase 

the amount of computation per time step. On every time step, intra-option learning 

algorithms could potentially update the information regarding all options. If the agent
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has many options available, then the amount of computation can become an issue. 

Of course, in such situations, the agent can always choose to update information only 

for part of the options.

All the intra-option learning methods presented so far were one-step methods. It 

would be expected that their speed could be improved even further by using eligibility 

traces. However, the topic of eligibility traces for off-policy methods has not been 

studied in depth yet. The next two chapters are dedicated to this subject.
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CHAPTER 6

OFF-POLICY LEARNING: MONTE CARLO METHODS

The intra-opt ion learning methods introduced in the previous chapter have brought 

into focus the larger class of olf-policy learning methods. Off-policy learning is key 

to learning efficiently if an agent uses many options, because it allows learning about 

many options in parallel, from the same real experience. This can generate big 

speedups compared to on-policy learning methods, such as SMDP learning, which 

can only learn about the option being followed. The ability to learn about many 

options in parallel alleviates the utility problem generated by increasing the action 

space of the agent.

In RL, off-policy learning has been studied mostly for control problems, in which 

the agent learns about the optimal policy for acting in an MDP while following a 

different, stochastic policy. The most well-known off-policy learning algorithm is 

probably Q-learning (Watkins, 1989). Convergence results have been established for 

one-step off-policy learning methods. However, the theory of multi-step and eligibility 

trace methods for off-policy learning has not been developed very much.

The intra-option learning algorithms that we presented so far were all one-step 

algorithms. Our goal now is to extend these algorithms to include eligibility traces. 

Eligibility traces have been shown to speed up temporal-difference learning algorithms 

in general (Sutton & Barto, 1998). Using eligibility traces for intra-option methods 

should have the same effect.

In order to explore off-policy learning in depth, we are going to consider the 

more general case of model-free policy evaluation. It is convenient to consider this
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case because it is simpler than the option model learning and option value learning 

considered in the previous chapter. This allows us to focus on the issue of performing 

multi-step off-policy updates. All the ideas that we will develop for policy evaluation 

can be easily applied to intra-option learning, with the benefit of even faster learning.

6.1 Policy Evaluation
In this and the next chapter we consider the problem of estimating the state-action 

value function Q^, for a given target policy it , from experience generated by following 

a different behavior policy b. Both t t  and b are fully specified by the probability 

distribution of the actions in each state. The two policies are completely arbitrary, 

except that the behavior policy must be soft, meaning that it must have a non-zero 

probability of selecting every action in each state. We will restrict the discussion 

to the episodic framework, in which the agent interacts with the environment in an 

infinite sequence of episodes, numbered m = 1,2,3,..., each of which consists of a 

finite number of time steps, t = 0,1,2,..., Tm-

The value of a state-action pair is the expected value of the total reward received 

starting from that state, taking that action, and following the target policy afterwards:

a) = 4- 7n+2 + ... 4- I = s, at = a, %}, (6.1)

where T is the duration of an episode. In this chapter we focus on Monte Carlo 

learning, in which we have samples of such total rewards, but distributed according 

to the behavior policy b instead of the target policy t t .

A standard technique for learning expected values from samples when there is a 

mismatch between distributions is importance sampling; we apply two variations of it 

here. We also introduce a new algorithm that uses importance sampling corrections 

while taking advantage of the special structure of MDPs. In the next chapter we 

focus on temporal-difference algorithms for solving the same problem.
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6.2 Importance Sampling

Importance Sampling (Rubinstein, 1981) is a standard technique for estimating the 

expected value of a random variable x with distribution d from samples, when the 

samples are drawn from another distribution d'. For instance, the target distribution 

d could be normal, while the sampling distribution d! is uniform (see Figure 6.1).

d

---------- d’

X

Figure 6.1. Different target and sampling distributions

In its classical form, importance sampling computes the expected value E{x | d} 

based on a simple observation:

Ed{x}= [ xd{x}dx= [ x^^d\x}dx = Ed'[x^^\, 
Jx Jx a \X) a'[x)

which leads to the importance sampling estimator:

1 ”

i=l

<^(^i) 

d'^XiY

where Xi axe samples selected according to d'. This estimator computes the average 

of the sample values, where each sample is weighted differently based on the ratio 

of its likelihood of occurring under the two distributions. This weighting gives more 

importance to samples that occur rarely under the sampling distribution d' but occur 

frequently under the target distribution d. If d and d' are the same, then all the 

samples have a weight of 1, and the estimator becomes the usual arithmetic average 

of the samples. The importance sampling estimator (6.2) is consistent, meaning that 

it converges with probability 1 to Eci{x} as the number of samples goes to infinity, 

and unbiased, meaning its expected value after any number of samples is also Ed{x} 

(Rubinstein, 1981).
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A less known variant of this technique is weighted importance sampling, which 

performs a weighted average of the samples, with weights The weighted impor-

tance sampling estimator is:

= (6.3)

The weighted importance sampling estimator (6.3) is a consistent but biased estimator 

of E{x I d} (Rubinstein, 1981). Nevertheless, his estimator is often faster and more 

stable in practice than (6.2). Intuitively, this property is due to the fact that, if an 

unlikely event occurs, its weight will be very large, and will cause a large variation 

in the classical estimator. In the weighted estimator, the large weight appears in the 

denominator as well, and therefore smoothes the variation.

6.3 Applying Importance Sampling to MDPs
In the case of MDPs, the samples come in the form of episodes, which are complete 

sequences of states, actions and rewards, ending in a terminal state:

So0on«iair2 • • •

The goal is to estimate the state-action value function Q'^{s, o) for a given state s and 

action a. Let M be the number of episodes containing state-action pair (s, a) and t^ 

be the first time t when (st, at) = (s, a) in the mth of these episodes. Then we define 

the first-visit importance sampling estimate for Q’^(s, a) as

•1 M
Q^^{s,a) = — RmWm, (6.4)

where Rm is the return following (s, a) in episode e,

Rm n,„+i + ^rt^+2 + ... +
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and Wm is the importance sampling weight assigned to episode m:

Wm
def TTt^TTt^

^m+1 ^<m+2 ^’Tm-1

Here, and in the following sections, we denote by t t * = 7r(st, at} and similarly bt = 

b{st,at}. Similar estimators can be computed for every-visit Monte Carlo as well. 

First-visit estimators have the advantage of being unbiased (Singh & Sutton, 1996), 

and therefore we will use such estimators in this dissertation.

Similarly, we define the weighted importance sampling estimator (Sutton & Barto,

1998) as

a) S 2-/o t =1
M 
m=l

(6.5)
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Figure 6.2. Comparison of classical and weighted importance sampling on 100 
randomly generated MDPs. On the left, the behavior policy chose 50-50 from the 
two actions. On the right, the behavior policy chose with 20-80 probabilities, exactly 
opposite to the target policy. In both cases, the weighted algorithm is faster and 
more stable.

Figure 6.3 presents an empirical comparison of the classical and weighted im-

portance sampling estimators. The comparison was performed using 100 different 

randomly generated MDPs. Each MDP has 100 states, one of which is terminal. 

Two actions were available in each nonterminal state, and each action branched to 

four next states, with random probabilities (the partition of unity was selected by

75



picking three random split points uniformly randomly from [0,1]). The immediate 

rewards for each state-action pair were chosen uniformly randomly, between 0 and 1. 

The target policy was to select the first action with 80% probability and the second 

action with 20% probability. We used two different behavior policies. In the uniform 

behavior case (left panel) both actions were equally likely, whereas in the different be-

havior case, the first action was selected with 20% probability and the second action 

with 80% probability, resulting in a policy very different from the target policy. The 

initial state of each episode was chosen uniformly randomly from the nonterminal 

states. All the MDPs terminated with probability 1, so we used 7 = 1.

Figure 6.3 shows, for each estimator, the root of the total mean squared error be-

tween the estimator and the true action values for the 200 state-action pairs, averaged 

over the 100 MDPs. this measure is computed at the beginning of learning, and after 

each of the first 1000 episodes. For the weighted importance sampling algorithm, 

the graph also includes error bars equal to one standard deviation. For the classi-

cal importance sampling, the maximum standard deviation is on the order of 3000, 

therefore we omitted the error bars. This result confirms the fact that the classical 

importance sampling algorithm has very high variance, which recommends against 

its use in practice. Also, as shown in the figure, the weighted version of the algorithm 

is faster and more stable than the classical version. This result was consistent across 

all MDPs we experimented with.

6.4 Per-Decision Importance Sampling
Both importance sampling algorithms presented so far require known Markov 

behavior policies. They are also inherently Monte Carlo algorithms, because they put 

a weight on the total return Rm obtained during an episode. There is no easy way of 

implementing either algorithm in an incremental fashion, for instance by performing 

TD-like updates after every step of the execution. In order to be able to perform such
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updates, an algorithm should perform a weighting of each reward r* obtained along 

the trajectory followed during the episode.

In this section we present a new algorithm that performs importance sampling 

weightings for each decision step along the way. Such a weighting can be computed 

if, instead of treating each return as one indivisible sample, we take into account 

the fact that the returns come from an underlying MDP. We will focus here on the 

Monte Carlo version of the estimator. In the next chapter we present a natural TD 

implementation.

In order to justify the estimator, let us examine the term RmWm from equations 

(6.4) and (6.5); The terms of the sum can be naturally separated into two parts, 

one containing the ratios from tm+i to i - 1, and one containing the ratios from i 

to Tpi-i. Intuitively, the weight on reward should not depend on the future after 

time i, only on the history to that point. This is the idea behind the per-decision 

importance sampling estimator.

(6.6)
m=l fc=l «=tm+l

def 1
M

The estimator weights each reward along a trajectory according to the likelihood of 

the trajectory up to that point, under the target and the behavior policy. If the target 

and the behavior policy are the same, the estimator is simply the average of the total 

returns from each episode. We now show that this estimate is indeed correct:

Theorem 5 The per-decision importance sampling estimator given by (6.6) is 

a consistent unbiased estimator ofQ'^(s,a).

Proof: We know that the classical importance sampling estimator is consistent 

and unbiased:

E n I St = s,a< = 0,4 = Q’'(s,o).
.k=l / i=f+l I

77



We will show that the per-decision importance sampling estimator has the same 

expected value as Let us move the importance sampling correction inside the 

sum, and examine the expectation for the fc-th term;

T-l
^Vt+k n I St = S,a< = 0,6 

t=t+i

I St, Of,... Sf+fe, Ot+jfe, 6 >.■E

‘^t+k-l I
- --------I St, at,... St+k-x, Ot+k-i
Ot+k-l

= £/< 7 rt+fe7—
6t+i

TTt+fc _ _ ■ 

bt+k br-i

Since the underlying environment is an MDP, the second factor can be re-written as:

E '^i+k 
bt+k

TTT-I 
br-i

I St+fe, a^^k, b ?.

The expected value of this term is 1. Therefore,

[ \fc=i / i=t+i

Ei
T-t t+k-1

'r’'~'^rt+k n I St = s, Ot = 
k=l i=t+l

a, b

which concludes the proof, o

We can also devise a weighted version of the per-decision importance sampling 

algorithm. The reason for such a version is to smooth out large variations in the 

updates, if unlikely events happen. The idea is simply to divide the estimator by the 

sum of the weights during each episode:

^Tm-tm ^k-1.„ , TTr*"’+^“^ 2n
def ^m=l ^k=l I ' <m+fe ri»=fm+l bj 

a) — ^k-1 rrtm+fe-l ?[£ (S'!)

This weighted per-decision importance sampling estimator is consistent but biased, 

just like the weighted importance sampling estimator
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Figlire 6.3. Comparison of Classical (Per-Return) and Per-Decision Monte Carlo
Importance Sampling Algorithms
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Figure 6.4 presents an empirical comparison of the per-decision algorithms with 

the classical (per-return) version, on the same testbed of 100 randomly generated 

MDPs (described in detail in section 6.3). The error measure is again the root of 

the total mean squared error for all the state-action pairs, averaged over the 100 

MDPs. For the weighted per-decision algorithm, we also show error bars equal to one 

standard deviation. The standard deviation for the unweighted per-decision was on 

the order of 100 in the uniform behavior case (left panel) and on the order of 500 in 

the dilferent behavior case (right panel). Since the weighted per-decision estimator 

has significantly smaller variance and more stable behavior, we recommend its use 

instead of the unweighted version, even though it is not consistently faster (as seen 

in the left panel).

6.5 Conclusions
In this chapter we presented Monte Carlo algorithms for policy evaluation, based 

on importance sampling corrections. One of the algorithms is a straightforward ap-

plication of importance sampling. The other algorithm, per-decision importance sam-

pling, is a new method, which takes into account the fact that the reward samples 

come from an MDP. We have shown that per-decision importance sampling algorithm
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converges to correct Q-values, like classical importance sampling, and the empirical 

results suggest that it is comparable in terms of speed.

Both importance sampling algorithms presented so far build Q-value estimates 

from samples of total reward. Since our ultimate goal is to use these ideas in on-line 

algorithms for options, we would like to have more on-line, incremental implementa-

tions of these algorithms. This will be the focus of the next chapter.
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CHAPTER 7

OFF-POLICY LEARNING: TEMPORAL-DIFFERENCE 
METHODS

Temporal-Difference (TD) learning is one of the central ideas of reinforcement 

learning algorithms (Sutton & Barto, 1998). One advantage of TD methods over 

Monte Carlo methods is their natural implementation in an on-line, incremental man-

ner. This allows them to be applicable in infinite-horizon as well as trial-based tasks. 

TD methods using eligibility traces are also faster than Monte Carlo methods. In the 

case of off-policy learning for policy evaluation, there exists an immediate one-step TD 

algorithm. However, there are no known eligibility trace TD algorithms. In this chap-

ter we present two such algorithms. One is a TD implementation of the per-decision 

importance sampling presented in the previous chapter. The second algorithm, called 

tree backup, extends the one-step algorithm, and has the advantage of converging to 

correct values even when the behavior policy is non-Markov or unknown.

7.1 One-Step TD Learning

The one-step TD learning algorithm is based on the Bellman equation for state-

action values:

Q^{s, 52o') (7-1)
a' a'

This equation can be turned into the following update rule:

Q(s(,at) (1 - Q!)<3(s<,at) -ba(r<+i -|-7 52^(^<+i>“)<9(s<+i,a)) (7.2)
a
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(s,a)

s

Figure 7.1. Backup tree for one-step TD

The backup tree (Sutton & Barto, 1998) for this algorithm is shown in Figure 7.1. 

The hollow circles represent the states, and the filled circles represent actions. At each 

step along a trajectory, there are several possible choices of action according to the 

target policy. The one-step target for the TD update combines the value estimates 

for for these actions according to their probabilities of being taken under the target 

policy. Then the update moves the value function estimate towards the target.

The one-step algorithm converges with probability 1 to the correct value function 

if the learning rate a is decreased appropriately over time. This follows simply 

from the general convergence theorem of Jaakkola, Jordan & Singh (1994).
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Figure 7.2. Comparison of One-Step TD and Monte Carlo Importance Sampling

Figure 7.1 contains a simple comparison between the one-step and the weighted 

importance sampling algorithms. The comparison was performed on the same set 

of 100 randomly generated MDPs used in the experiments reported in the previous 

chapter. For the one-step TD algorithm, the step size was a = l/n(s, a), where n(s, a)
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is the number of first visits to state-action pair (s, o). All the updates were done off-

line, at the end of an episode. This setting eliminates the need to take into account the 

effect of the step-size parameter and the difference in speed due to on-line updating 

(which is known to be faster in practice). The left panel compares the algorithms for a 

uniformly random behavior policy. In this case, the one-step algorithm is significantly 

slower than the Monte Carlo algorithm, because it does not take advantage of the 

fact that long portions of trajectories are likely to occur under both the target and 

the behavior policy. The right panel contains the same comparison for the case of 

very different behavior and target policies (80%-20% vs. 20%-80%). In this case, 

the importance sampling algorithm has a very small advantage in the beginning of 

learning in terms of speed of reducing error, but in the long run the one-step algorithm 

is marginally faster.

7.2 Temporal-Difference Per-Decision Importance Sampling
The per-decision importance sampling estimator presented in the previous chapter 

can be implemented in a temporal-difference manner.

Algorithm 1 Online, Eligibility-Trace Version of Per-Decision Importance Sampling
1. Update the eligibility traces for all states:

et(s,a) = et_i(s,a)7A^^^^^, Vs, a 
o(st, at) 

et(s,a) = l,iff t =tm(s, a),

where A G [0,1] is an eligibility trace decay factor.

2. Compute the TD error:

St = ’”<+1 + 7 Qt{st+i, a<+i) - Qt(s<, flt)

3. Update the action-value function:

Qt+i (s, a) •<- Qt (s, a) -h a (s, a) \/s,a
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An eligibility-trace version of per-decision importance sampling is given by Algo-

rithm 1. The algorithm maintains eligibility traces for each state-action pair in the 

usual manner of temporal-difference (TD) algorithms. The only difference is that 

here the eligibility trace is multiplied on each step not just by a decay-rate A, but 

also by an importance sampling factor This factor corrects for the effect of 

the behavior policy. The algorithm shown uses online updating, meaning that the 

value estimates are updated on every time step. The offline version would make 

the same increments and decrements as shown, but only at the end of each episode. 

The changes are accumulated “on the side” until the end of the episode, the value 

estimates remaining unchanged until then. Under offline updating the algorithm can 

be made to exactly implement the per-decision importance sampling estimator 

by choosing A = 1 and a(s, a) = l/n(s, a), where n(s, a) is the number of times 

state-action pair s, a has previously been updated. Another choice for a causes the 

algorithm to exactly implement the corresponding weighted estimator, The 

algorithm remains consistent under general A and general decreasing a:

Theorem 6 For any soft, stationary behavior policy b, and any A G [0,1] that does 

not depend on the action at, Algorithm 1 with offline updating converges w.p.l to Q^, 

under the usual step-size conditions on a.

Proof: The proof is structured in two stages. First, we consider the corrected trun-

cated return corresponding to The corrected truncated return sums the rewards 

obtained from the environment for only n steps, then uses the current estimate of the 

value function to approximate the remaining value:

, , « <+*-1 <+n-l

fe=l Z=<+1 ‘’i <=<4-1

We need to show that is a contraction mapping in the max norm. If

this is true for any n, then by applying the general convergence theorem, the n-step
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return converges to Q^. Then any convex combination will also converge to Q^. For 

example, any combination using a A parameter in the style of eligibility traces will 

converge to Q^.

Let Q(s, a, k) denote the set of all possible trajectories of k state-action pairs 

starting with (s, a):

Q(s, a, k} = {(so, ao, si, Oi,... afc_i)|so = s,ao = a},

and let tv denote any such trajectory: cv = (s q ) Oo , Oi, • • • Sfe-i, Then the ex-

pected value of the corrected truncated return for state-action (s, a) can be expressed 

as follows:

I St = s,at = 0,6} =

‘jr
12 I So = s, ao = a, b}y'‘~'^rk H 77

*=1 /=!

-I- Pr{a; | so = s, oo = o, 6}7”Q(s„, a„) fj
uieQ{s,a,n) 1=1

=z E (n n r
*=1 i<;en(4,o,fc) \/=i / 1=1

n ai} ] y”Q{Sn, an) n r
,. . . ' 1=1

n fe-1 fe-1
= 537'’“^ E n^’4;:i4,7r(s,,a|)-F7" Q(sn, ^n) R 

fc=l weli{s,a,k') /=1 iveQ(a,a,k) J=1

By applying the Bellman equation for iteratively n times, we obtain:

n fe-l
= n p“,-i\,7r(sz, ai)

k=l ijjeQ(.a,a,k) Z=1

Ji
+7" E <5’'(sf+„,at+„)nP4;:i\,7r(s,,a,).

ijjell(s,a,k) <=1
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Therefore,

maxIB/jji"’ I 6} - O’Cs.a)! < 7" |Q(s,o) - O’(s,o)|.

This means that any n-step return is a contraction in the max norm, and therefore, 

by applying theorem 1 of Jaakkola, Jordan and Singh (1994), it converges to Q^.

In the second stage, we show that by applying the updates of Algorithm 1 for n 

successive steps, we perform the same update as by using the n-step return The 

eligibility trace for state-action pair (s, a) can be re-written as:

et(s,a) =7*-*”’ n r

We have:

n
et-|-fc-i(s, a) =

k=l

fe=l \Z=*+1 J Qf+fe)
n i+Jfe-l t+n-1

fe=i i=t+i r=t+i
= - Q(s„ a,).

Since our algorithm is equivalent to applying a convex mixture of n-step updates, and 

each update converges to correct Q-values, algorithm 1 converges to correct Q-values 

as well, o

7.3 Tree Backup Algorithm
The importance sampling methods that we have discussed so far all use knowledge 

of the probabilities of different actions under the behavior policy in their updates. 

Therefore, they require that the behavior policy be known, Markov (purely a function
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(s,a)

Figure 7.3. Backup diagram for the tree backup algorithm

of the current state) and explicitly represented as action probabilities. However, for 

agents that generate behavior using options, none of these may be true. The one- 

step TD-learning algorithm, on the other hand, estimates correct Q-values regardless 

of the behavior policy being followed. The behavior policy can be non-stationary, 

non-Markov and completely unknown, yet the computation is still correct, because 

the behavior policy is not used in the updates, the only requirement on the behavior 

policy is that it should be non-starving, i.e., that it never reaches a time after which a 

state-action pair is never visited again. In this section we introduce a new algorithm, 

which combines this advantage with the speed advantages of eligibility traces.

The main idea of the algorithm is illustrated in figure 7.3. At each step along a 

trajectory, there are several possible choices of action according to the target policy. 

As described in section 7.1, the one-step target combines the Q-value estimates for 

these actions, according to their probabilities of being taken under the target policy. 

At each step, the behavior policy chooses one of the actions, and for that action, one 

time step later, there is a new estimate of its Q-value, based on the reward received 

and the value of the next state. The tree backup algorithm then forms a new target, 

using the old Q-value estimates for the actions that were not taken, and the new 

estimate, for the value that was actually taken. This process can be iterated over 

many steps. If we iterate it over n steps, we obtain the n-step tree-backup estimator.
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, . 1 M <m+n
- w S 7”Q(s<„+n,at„+„) n TTi 

m=l »=<m+l
tm+n fc-1 / \

+ £ JJ TTi rfc+7 52 ^(^fe>“)<5(sfc,a) (7.3)
fe=tm+l »=lm+l \ )

For n = 1, the tree backup estimator reduces to the familiar one-step TD estimator,

TD(0).

Algorithm 2 Online, Eligibility-Traces Version of Tree Backup_________________
1. Update the eligibility traces for all states:

et(s, o) = e<_i(s, o)7A7r(sf,at), Vs, a 
et(s,a) = lifft=tm(s, a)

where A G [0,1] is an eligibility trace decay parameter.

2. Compute the TD error:

St = n+i + 7 52 a)Q(«t+i, o) - Q(st,
ae.4

3. Update the action-value function:

Qt+i(s, a) <r- Qt(s,a) -t Q:et(s, o) (J*, 'is, a

The tree backup estimator also has a simple incremental implementation using 

eligibility traces. An online version of this implementation is given by Algorithm 7.3. 

In general, A can be chosen as a function of the state St, but cannot depend on the 

action o*. A choice of A that is dependent on the state can have empirical advantages. 

For example, in the experiments reported in the next section, the eligibility traces 

were divided at each step by maxo 7r(st, a). This prevents the traces from decaying 

too quickly.

Theorem 7 For any non-starving behavior policy, for any choice of X E [0,1] that 

does not depend on the actions chosen at each state, the offline version of Algorithm 

2 converges w.p.l to Q^, under the usual conditions on a.
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Proof: The proof is again in two stages. First we show that a) | bj -

is a contraction, in order to apply again theorem 1 of Jaakkola, Jordan and Singh 

(1994). We use a proof by induction.

Let Q be the current estimate of the value function. For n = 1:

max|E{Qf^(s,a) | ft} -Q*(s,a)| =
(i,a) I- J

= max |r,“ + 7 o!}Q{s', a') - r“ - 7 p“s'7r(s', a'}Q'^{s\ o')|

< 7maxlQ(s, fl) - Q^(s, fl)|.
(i.a)

For the induction step, we assume that

max|F;{(5^^(s,fl) 1 b} -Q’^(s,fl)| < 7max|Q^^(s,fl) - Q’^(s,fl)|,

and we show the same holds for <5^+i(s, a}- "We can re-write Q^+i(s, a} as follows:

!
Qn+1(^) = ^<+1 d" 'y 7r(St+i, d )Q(St-)-i, fl )(1 — la'at+i} d" ^a'ai+iQn (^t+1) )>

o'€.4

where Ta/ai+i is an indicator variable equal to 1 if fl' = fl^+i and 0 otherwise. Then 

we have:

max |E{Q^fi(s, fl) 1 6} - Q’'(s, fl)| =

max|r“ -b7 52p“,' -^o'oe+i)Q(s',o') d-Ta'ot+iQ^®(s', o') | i’}

-y'E.PL'Y.As', a'}Q^ (s', a')\ 
s' a'

s' a'

E {(1 - a'l - a')) + a') - Q’^s', o'))|i} |
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< 7max|Q(s,fl) -Q*(s,o)|.
(s,a)

By applying now theorem 1 of Jaakkola, Jordan and Singh (1994), we can conclude 

that any n-step return converges to the correct action value.

Since all the n-step returns converge to Q^, any convex linear combination of n- 

step returns also converges to Q^. In particular, we can use a fixed A parameter, as 

is usually done in TD(A), or even a A parameter dependent on the state.

For the second part of the proof, we show that applying Algorithm 2 (with A = 1) 

for n steps is equivalent to using Q^^(s, a). The eligibility trace for state-action pair 

(s, a) can be re-written as:

t+k 
et+fc(s,o) =7*’ n 7r(si,o/)

By adding and subtracting the weighted action value, %(«<+*, Of+fc)Q(st_,.fc, Ot+Jb) for 

the action taken on each step from the return, and regrouping, we have:

n t+k-1 f
n 7r(sz,o,) rt+fe-b7^7r(s<+fe,a)Q(st+fe,a)

fe=l /=<+! \
n

= Q(s<, at) -)- ef+js;(si, at)St+k, 
k-l

which concludes the proof, o

7.4 Empirical Comparison
We compared all the algorithms discussed so far on the same benchmark of 100 

different random MDPs discussed in chapter 6. The results are presented in figure 7.4. 

The left panel presents results using a uniformly random behavior policy. The right 

panel contains results for a behavior policy that is very different from the target policy 

(see chapter 6 for details of the experimental setup). The results for the one-step TD 

algorithm and the importance sampling algorithms have already been discussed in
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Figure 7.4. Comparison of all the off-policy learning algorithms on a testbed of 100 
random MDPs.

the previous sections. The new results on these graphs are the root mean square 

error curves and standard deviations for the tree backup algorithm.

The tree backup algorithm is slower than weighted importance sampling in the 

beginning of learning, but it is significantly faster in the long run, as shown in the 

graphs. In the second case, the one-step TD method is also faster than the importance 

sampling methods in the long run. This is due to the fact that the trials are quite 

different from the ones one would obtain under the target policy. Therefore, a lot of 

the data is discarded by importance sampling, while the one-step and tree backup 

use it more efficiently. The weighted per-decision importance sampling algorithm 

comparable or worse to the other algorithms.

The tree backup estimator was uniformly the most efficient of all methods in 

the medium and long term, beaten only by weighted importance sampling by small 

amounts for small numbers of episodes. In summary, our results strongly favor the 

tree backup algorithm, because of its superior overall performance and because of its 

weaker requirements of the behavior policy.
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Figure 7.5. Pull trajectory tree for an MDP

7.5 A Unified View of the Two Multi-Step TD Algorithms
In order to understand better the two multi-step TD algorithms presented so far, 

let us consider the full trajectory tree presented in Figure 7.5. The root of the tree 

is a state-action pair, and the tree contains all the possible states and actions at 

each point. States are represented with hollow circles, and actions with filled circles. 

One trajectory through the tree can be obtained by sampling the states at each 

branching according to the environment’s transition probabilities, and by sampling 

actions according to the behavior policy.

Both the multi-step algorithms do backups along such trajectories. The per- 

decision importance sampling algorithm uses the actual rewards obtained during the 

trajectory. Because the sampling at each action ramification is done according to 

the behavior policy probabilities, the importance sampling correction is necessary to 

ensure correct estimates. The tree backup algorithm considers all possible actions 

at each step, not just the one taken. It backs up values according to a cut like the 

one represented with the dotted line in figure 7.5. Because all action choices are 

considered in the backup, the convergence is guaranteed for any behavior policy that 

is non-starving (i.e. takes every action in every state infinitely often).
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This interpretation suggests that the two algorithms can be combined, without 

losing the convergence guarantees. If at a given state, the behavior policy is Markov 

and it is known, we can use per-decision importance sampling. If the behavior is 

unknown and/or non-Markov, we can use the tree backup algorithm. The mixture 

could ensure faster and more stable error reduction than either algorithm alone. We 

have not yet explored this idea empirically.

The two multi-step TD algorithms presented here also have an interesting rela-

tionship to multi-step Q-learning. In the control case, both algorithms cut the eligi-

bility trace whenever an exploratory action is taken. Their updates are equivalent to 

Watkins’s Q(A) algorithm. Of course, no convergence results have been established 

for eligibility trace algorithms in the control case. Our hope is that we will be able to 

extend the convergence results presented in the previous sections to the control case.

7.6 Applying Multi-Step OfF-Policy Learning to Intra-Option 
Learning

In chapter 5, we presented intra-option learning algorithms, which are a form of 

off-policy learning for acquiring the values and models of options. In this section we 

present an application of the ideas presented above to learning about the models of 

options.

The eligibility trace update used by the tree backup algorithm can be applied 

immediately in this case. The only change is that the eligibility traces have to take into 

account the probability of the option terminating in each state (as in Sutton, 1995). 

Algorithm 3 presents an intra-option mode learning algorithm that uses eligibility 

traces.

In order to illustrate the algorithm, we use the same gridworld used in the exper-

iments with one-step intra-option learning (see Figure 4.1). Experience is generated 

by selecting randomly in each state among the two possible options and four possible 

actions, with no goal state.
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Algorithm 3 Eligibility Traces Intra-Option Model Learning___________________
1. Initialize r°(o) and p°si(a) to arbitrary values.

2. Initialize traces for all options: eo(s, a) = 0, Vs, a.

3. On every transition s<, at, rt, Sj+i:

(a) Update the eligibility traces for all options and all state-action pairs:

eo(s,fl) 4- eo{s,a}'yX(l - 0o{st}}Tro{st,at),'^s,a
^o^Styat} 4— eo(st, flt)-(-1

(b) Update the models, for all s, a, o:

P°3' (a) <- (a) -b aeo{s, a) ((1 - ^(st+i))7p"^+^ + '«t+l Psts' (at)),

where is an indicator function that has value 1 if s' = s^+i and 0 
otherwise.

We compared the results of the algorithm presented above with the SMDP algo-

rithm given by equations (5.1) and (5.2). For the SMDP method, the step-size pa-

rameter was varied so that the model estimates were sample averages, which should 

give fastest learning. The results of this method are labeled “SMDP optimized” on 

the graphs. We also looked at results using a fixed learning rate. In this case and for 

the intra-option methods we tried step-size values of a = |, |, |, and and picked 

the best value for each method. For the intra-option updates, we used two values of 

A: A = 0 (which gives the algorithm we studied in chapter 5) and A = 1. Figure 7.6 

shows the learning curves for all three methods, using the best a values, when a fixed 

alpha was used.

All intra-option algorithms were faster than SMDP methods. The algorithm with 

A = 1 is the fastest to converge, but asymptotes to a higher error. Note that in the 

case of A = 1, the intra-option algorithm is performing similar updates to the SMDP 

algorithm, but at the same time it is adjusting more options. In our illustration, at
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Figure 7.6. Error curves for the reward predictions (left panel) and next-state 
predictions (right panel) for the SMDP, one-step intra-option learning, and intra-
option learning with tree backup eligibility traces.
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most two options can be updated on every time step, but we anticipate that the effect 

would be more pronounced if more options were available for parallel updates.

7.7 Conclusions
In this chapter we presented two novel temporal-difference algorithms for per-

forming off-policy learning with eligibility traces. We proved that these algorithms 

converge to correct action values under offline updating in the tabular case. These 

are the first convergence results for off-policy learning with eligibility traces. The 

tree backup algorithm converges correctly for non-stationary and non-Markov behav-

ior policies, as long as they are non-starving, this algorithm also performed best in 

our experiments. We have shown how the tree backup algorithm can be applied for 

learning the models of options in an intra-option manner. Using this idea produces 

faster learning that one-step intra-option methods.

In the future, it would be interesting to study the theoretical properties of these 

algorithms, such as the bias-variance trade-offs, and the relationship of these algo-

rithms to control learning methods, such as Q(A). More empirical experience with 

these algorithms would also be useful in understanding their properties.
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CHAPTER 8

ADAPTING OPTIONS

So far we have assumed that the options are given, and we have focused on methods 

for learning and planning with options. Given a set of options, one can use such 

methods to find the optimal value function of the SMDP defined by the options. 

This value function is typically lower than the optimal value function of the original 

MDP problem.

The next step we consider now is to improve the existing options. For example, if 

the option is open-the-door, then it is natural to adapt its policy over time to make 

it more effective and efficient in opening the door, which may make it more generally 

useful. In this chapter we address the issue of adapting a given set of options to 

provide a better solution for the task at hand. We present methods for changing the 

termination conditions and the policies of the options.

8.1 Interruption
Suppose we have determined the option-value function Q^(s, o) for some policy /z 

and for all state-options pairs s, o that could be encountered while following p.. This 

function tells us how well we do while following p committing irrevocably to each 

option, but it can also be used to re-evaluate our commitment on each step. Suppose 

at time t we are in the midst of executing option o. If o is Markov in s, then we can 

compare the value of continuing with o, which is Q^(st, o), to the value of terminating 

o and selecting a new option according to p, which is = '£,0'

If the latter is more highly valued, then why not terminate 0 and allow the switch?
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This new way of behaving is indeed better, as shown below. But this is a change in 

the termination condition of o and thus requires stepping outside the existing set of 

options, outside the SMDP.

We can characterize the new way of behaving as following a policy p! that is 

the same as the original one, but over new options, i.e. p'{s, o') = p(s,o), for all 

s e iS. Each new option o' is the same as the corresponding old option o except 

that it terminates whenever termination seems better than continuing according to 

Q^. We call such a p' an interrupted policy. We will now state a general theorem, 

which extends the case described above, in that options do not have to be Markov, 

and interruption is optional at each state where it could be done. This lifts the 

requirement that be completely known.

Theorem 8 (Interruption) For any MDP, any set of options O, and any Markov 

policy p : <S x O [0,1], define a new set of options, O', with a one-to-one mapping 

between the two option sets as follows: for every o G O we define a corresponding o' G 

O', where o'{h, •) = o(h, •) except that for any history h in which Q^{h, o) < ^*^(5), 

where s is the final state ofh, we may choose to set o'[h,T) = 1. j4ni/ histories whose 

termination conditions are changed in this way are called interrupted histories. Let 

p' be the policy over o' corresponding to p: p'(^s,o') = p{^s,o), where o is the option 

in O corresponding to o', for all s G S. Then:

1. V>^\s) > y'^(s) forallseS.

2. If from state s E S there is a non-zero probability of encountering an interrupted 

history upon initiating p' in s, then > V^(s).

Proof: The idea is to show that, for an arbitrary start state s, executing the option 

given by the interrupted policy p' and then following policy p thereafter is no worse
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than always following policy /z. In other words, we show that the following inequality 

holds:

EX(*.<0l«5' + > VM = EM(s,o)K + Zpi'’"‘M!- (si)
o' s' o s'

If this is true, then we can use it to expand the left-hand side, repeatedly replac-

ing every occurrence of on the left by the corresponding +

the limit, the left-hand side becomes V*"', proving that V^' > V''.

Because /z'(s, o') = o)Vs e S, •'n q  need to show that

>•:'+(8.2) 
a' s'

Let r denote the set of all interrupted histories: F = {h E H : o{h,T) o'{h,T)}. 

Then, the left hand side of (8.2) can be re-written as:

E{r-F7''y'‘(s') |5(o',s),h,,/ 0r}+E{r-F7*’V''(s') |f(o',s),^,z er}, (8.3) 

where s', r, and k are the next state, cumulative reward, and number of elapsed 

steps following option o from s (hss' is the history from s to s'). Trajectories that 

end because of encountering a history F never encounter a history in F, and 

therefore also occur with the same probability and expected reward upon executing 

option 0 in state s. Therefore, we can re-write the second term of (8.3) as:

E {o{h,s>,r)[r + 7*y'‘(s')] + (1 - o(h,y, T))[r -h o)] | f (o', s), E F}.

This proves (8.1) because for all e F, Qo{hsgi,o) < V^(s'). Note that strict 

inequality holds in (8.2) if Qo{hss',o) < V^{s') for at least one history hgsi e F that 

ends a trajectory generated by o' with non-zero probability, o
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As one application of this result, consider the case in which // is an optimal policy 

for a given set of Markov options O. By planning or learning we can determine 

the SMDP optimal value function and the optimal policy achieves it.

This is indeed the best that can be done without changing (9, that is, in the SMDP 

defined by but less than the best possible achievable in the MDP, which is V*. 

But of course we typically do not wish to work directly in the primitive options 

because of the computational expense. The interruption theorem gives us a way of 

improving over with very little additional computational expense, by stepping 

outside O. The only additional expense is the cost of checking (on each time step) 

if a better option exists, which is negligible compared to the combinatorial process 

of computing Q^. Kaelbling (1993b) and Dietterich (1998) demonstrated such a 

performance improvement by interrupting temporally extended actions based on a 

value function found at a higher level, in different settings.

8.2 Examples of Interruption
Figure 8.1 shows a simple example of applying the interruption theorem. The 

task is to navigate from a start location to a goal location within a continuous two- 

dimensional state space. The actions are movements of length 0.01 in any direction 

from the current state. Rather than work with these low-level actions, infinite in 

number, we introduce seven landmark locations in the space. For each landmark we 

define a controller that takes us to the landmark in a direct path. Each controller is 

only applicable within a limited range of states, in this case within a certain distance 

of the corresponding landmark. Each controller then defines a flat option: the circular 

region around the controller’s landmark is the option’s initiation set, the controller 

itself is the policy, and the arrival at the target landmark is the termination condition. 

We denote the set of seven landmark options by O. Any action within 0.01 of the
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Figure 8.1. Interruption in navigating with landmark-directed controllers. The task 
(up) is to navigate from S to G in minimum time using options based on controllers 
that run each to one of seven landmarks (the black dots). The circles show the region 
around each landmark within which the controllers operate. The thin line shows the 
optimal behavior that uses only these controllers run to termination, and the thick 
line shows the corresponding interrupted behavior, which cuts the corners. The lower 
panels show the state-value functions for the SMDP-optimal and interrupted policies. 
Note that the latter is greater.

goal location transitions to the terminal state, 7 = 1, and the reward is —1 on all 

transitions, which makes this a minimum-time task.

One of the landmarks coincides with the goal, so it is possible to reach the goal 

while picking only from O. The optimal policy within n(C>) runs from landmark to 

landmark, as shown by the thin line in Figure 8.1. This is the optimal solution to 

the SMDP defined by O and is indeed the best that one can do while picking only 

from these options. But of course one can do better if the options are not followed all 

the way to each landmark. The trajectory shown by the thick line in Figure 8.1 cuts
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the corners and is shorter. This is the interrupted policy with respect to the SMDP-

optimal policy. The interrupted policy takes 474 steps from start to goal which, while 

not as good as the optimal policy in primitive actions (425 steps), is much better than 

the SMDP-optimal policy, which takes 600 steps. The state-value functions, and 

V^' for the two policies are also shown in Figure 8.1.
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k121 Steps
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0.5 1 1.5

Position
Figure 8.2. Phase-space plot of the SMDP and interrupted policies in a simple 
dynamical task. The system is a mass moving in one dimension: a?t+i = Xt + Xj+i, 
xt+i = Xt + at — 0.175±f where Xt is the position, Xt the velocity, 0.175 a coefficient 
of friction, and the action at an applied force. This continuous system is controlled 
at a discrete time scale of 0.001. Two controllers are provided as options, one that 
drives the position to x* = 1 and the other to x* = 2. Whichever option is being 
followed at time t, its target position x* determines the action taken, according to 
at = 0.01(a;* - Xt).

Figure 8.2 shows results for an example using controllers/options with dynamics. 

The task here is to move a mass along one dimension from rest at position 0 to at 

rest at position 2, again in minimum time. There is no option that takes the system 

all the way from 0 to 2, but we do have an option that takes it from 0 to 1, both 

at rest, and another option that takes it from any position greater than 0.5 to 2. 

Both options control the system precisely to its target position and to zero velocity, 

terminating only when both of these are correct to within e = 0.0001. Using just 

these options, the best that can be done is to first move precisely to 1 at rest using
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the first option, then re-accelerate and move to 2 at rest using the second option. This 

SMDP-optimal solution is much slower than the corresponding interrupted policy, as 

shown in Figure 8.2. Because of the need to slow down to near-zero velocity at 1, it

takes over 200 time steps, whereas the improved policy takes only 121 time steps.
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Figure 8.3. The mission planning task and the performance of policies constructed 
by SMDP methods, interruption of the SMDP policy, and an optimal static re-planner 
that does not take into account possible changes in weather conditions.

Figure 8.3 presents a more complex, mission planning task (Sutton, Singh, Precup 

& Ravindran, 1999). A mission is a flight from base to observe as many sites as 

possible, from a given set of sites, and return to base without running out of fuel. 

The local weather at each site flips from cloudy to clear according to independent 

Poisson processes. If the sky at a given site is cloudy when the plane gets there, 

no observation is made and the reward is 0. If the sky is clear, the plane gets a 

reward, according to the importance of the site. The positions, rewards, and mean 

time between two weather changes for each site are given in the left panel of Figure 

8.3. The plane has a limited amount of fuel, and it consumes one unit of fuel during 

each time tick. If the fuel runs out before reaching the base, the plane crashes and 

receives a reward of -100.

The primitive actions are tiny movements in any direction (there is no inertia). 

The state of the system is described by several variables: the current position of 

the plane, the fuel level, the sites that have been observed so far, and the current
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weather at each of the remaining sites. The state-action space has approximately

24.3 billion elements (assuming 100 discretization levels of the continuous variables)

and is intractable by normal dynamic programming methods. We introduced options 

that can take the plane to each of the sites (including the base), from any position 

in the input space. The resulting SMDP has only 874,800 elements and it is feasible 

to exactly determine Vo(s') for all sites s'. From this solution and the model of the 

options, we can determine Qq {s , o ) — r° •+• 53^/ option o and any

state s in the whole space.

We performed asynchronous value iteration using the options in order to compute 

the optimal option-value function, and then used the interruption approach based on 

the values computed. The policies obtained by both approaches were compared to the 

results of a static planner, which exhaustively searches for the best tour assuming the 

weather does not change, and then re-plans whenever the weather does change. The 

graph in Figure 8.3 shows the reward obtained by each of these methods, averaged over 

100 independent simulated missions. The policy obtained by interruption performs 

significantly better than the SMDP policy, which in turn is significantly better than 

the static planner.

8.3 Termination Iteration
Interruption is a first step in adapting the options for the task at hand. It is com-

putationally inexpensive and easy to apply while acting, without necessarily making 

a permanent change of the options. In this section we present a new algorithm for 

altering the termination conditions of the options.

The planning version of this algorithm, which we call termination iteration, is 

presented below. The main idea is to alternate interruption of options with merging, 

which eliminates reset actions whenever the same option would be chosen again. The 

goal of merging is to prevent the options from becoming too short, due to interruption.
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Algorithm 4 Termination Iteration ____________________________

1. Initialization Step: The initial set of options, Oo, is evaluated by computing 
the models of the options and then doing SMDP planning. This yields the 
initial optimal Q-value function, Qog, and the initial optimal policy ^^o-

2. Iterate the following three steps on the current set of options (9^:

(a) Interruption: all the options are interrupted after histories after which it 
is not optimal to continue executing them:

o(h, r) l,Vo such that Q*c,.{h, o) <

where s is the last state of h. This yields a new set of options
(b) Evaluation: the new termination conditions and associated options O'i are 

evaluated by recomputing models and SMDP planning, yielding QJ,, and 
P’O'.-

(c) Merging: the options are modified to obtain the “longest” duration options 
that do not change the behavior of the current optimal policy fi^i :

o{h,r} •(- 0,Vo such that Qoi.{h, o) = Vq z (s ),

This yields a new set of options whose Q-values are exactly Q^i .

3. Stopping Condition:

For any set of options O, there exists at least one setting of termination prob-

abilities, which we call the optimal termination probabilities w.r.t O, such that the 

associated optimal value for every state is at least as large as the optimal value for that 

state under any setting of termination probabilities. An option set derived from O 

that has optimal termination probabilities is denoted O*, and the associated optimal 

value function Vq . and optimal policy .

Finding some set of optimal termination probabilities is trivial. For instance, we 

can define the options such that they always terminate after the first primitive action. 

In this case, the value function obtained is the value function of the underlying MDP, 

and is the best one can do. However, the computational advantage of options comes 

from the options whose expected duration is longer than that of the usual primitive
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options. Therefore, our goal is to find such a set of optimal termination probabilities 

with the longest expected durations. The termination iteration algorithm fulfills this 

goal, as we show below.

Theorem 9 (Convergence of Termination Iteration) Let be the sequence 

of option sets produced by the algorithm termination iteration algorithm 4- If for some

^Si+i = ^Oi) ^o,+i = ^-Aoo’ option set has optimal terminal

probabilities.

Proof: We prove the theorem by contradiction. If the algorithm has reached 

the stopping condition, then for all histories h and all options o G either 

Qoi+i{h, o) = or o{h, t } = 1, where h ends in s. This is because the termina-

tion conditions are changed based on the value function and, and the value function 

does not change from option set Oi to option set Oi+i.

By the interruption theorem 8, the value function of a set of options is improved 

every time when a change in termination probabilities is due to interruption. The 

merging step of the algorithm does not change the value function at all. In order to 

see this, consider the value function Vq i and . By construction, the termination 

probabilities of are less than or equal to those of O[. Therefore, Vq , > 

because shorter duration policies can always be pieced together to do at least as well 

as longer policies. On the other hand, let be the optimal policy choosing from 

options in and p-Oi+i a policy defined over options in (Pf+i, such that poi+i(,s, o') = 

Pq ifs, o), where o' is the option corresponding to o. Given the way in which was 

constructed, V^i = Therefore, Vq i = This proves that the

value function is improved after every iteration of the algorithm.

Because only interruption improves the value function, we have to show that the 

stopping condition implies that no further interruption will yield a better optimal 

value function. Let us assume that we increase o(h) to 1 for some option o e 

and history h, obtaining a new option o'. kasnxaA that this operation increases the
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optimal value for some state s (which is the start state of Zi). Let be the optimal 

policy obtained just before making this last change, and Vgi be the corresponding 

optimal value function. By executing o' in state s and thereafter following the 

value of state s increases:

Let us consider an arbitrary state x and divide the trajectories obtained by executing 

o' from state s into those that terminate at x and those that continue after x. Then 

we have:

£{’■:'+ (s') I £(o', S), s' 7^ x} + B {< + (s') I £(o'. s), s' = i}

> (s, «)-«{< + 7‘V«,„(s') I 5(0, s), s' s:} +

E{< + 7‘[o(h„,T)V(;,„(s') + (1 - o(/.„,o) I 5(0, s),s' = s;}

This must mean that both > Qo^_^_^(hax,o) and o(haa,,r) < 1, which con-

tradicts the stopping condition, o

%S--’

Figure 8.4. Simple MDP in which adding more options can decrease the quality of 
the interrupted policy.

This theorem shows that termination iteration will give a solution at least as 

good as the optimal SMDP solution for the given set of options. However, there 

is no guarantee regarding the amount of improvement obtained in this way. For 

instance, consider the example in Figure 8.3. The starting state is S and there are 

three deterministic Markov options, marked respectively with solid line, dashed line
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and dotted line in Figure 8.3. The reward in -1 per time step, there is no discounting, 

and the values of the terminal states are as marked in the figure. Let us consider the 

set formed by the solid line and dashed line options, as well as the set O2 formed 

by the dashed line and dotted line options. The first set has a higher SMDP value 

function for all the states. However, when termination iteration is performed for this 

set, the number of steps necessary to get from state s to the final +10 reward is 3, 

so the value of s is 7. When doing termination iteration on O2, only two steps are 

necessary to get to the +10 reward. So even though > ^02, for the termination 

improved sets, this inequality is reversed. This phenomenon is due to the existence, 

in the set O2, of an option which has a good beginning part but a catastrophic finish. 

Termination iteration helps to retain only the good part, which helps to obtain a 

better value function in the end.

8.4 Illustration of Termination Iteration
As an illustration, we applied the termination iteration algorithm 4 to the rooms 

environment presented in Figure 4.1. The goal state is at G2. We use only hallway 

options, defined as in our previous experiments. The algorithm converged after three 

iterations.

Figure 8.5 shows the termination conditions obtained by applying termination 

iteration to the options in the south-east room. Because the goal is at position 

G2, the optimal solution with the original options is to run back and forth between 

the two hallways G1 and G3, and occasionally stumble upon the goal. By applying 

termination iteration, the termination conditions of the options are changed as shown 

by the small squares in Figure 8.5. If we consider the trajectories that the option going 

to G1 generates‘, we can see that these trajectories would be terminated when they 

start getting farther from the goal state. A similar change happens to the trajectories 

generated by the option for going to G3. The change of the termination conditions
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.9.

Option oi going from south-east room to G1 
Iteration #1 of termination iteration

Option of going from south-east room to G1 
iteration #2 of termination iteration

Option of going from south-east room to G1 
Initial termination conditions

Option of going from south-east room to G3 
Initial termination conditions

a

Oplion of going from south-east room to G3 
Iteration #1 of termination iteration

Option of going from south-east room to G3 
Iteration #2 of termination iteration

Figure 8.5. The result of termination iteration in the rooms environment, in the 
room containing the goal. The states in which the options terminate immediately 
are marked by small squares. The initiation sets of the options are shaded. The two 
options available in the room are terminated immediately if the option would take 
the agent away from the goal state.

decreases the amplitude of the agent’s oscillations between the two hallways, and the 

goal state is reached significantly faster when planning only with the hallway options.

Figure 8.6 shows the termination conditions obtained in the north-west room. 

Both options are terminated in all states in which they are not optimal. In this case, 

the option to go to state G5 is suboptimal in most states, because it leads away from 

the goal. Therefore, this option is basically cut into primitive actions. The option 

to go to the hallway G4, which is part of the optimal solution for most states, is 

preserved almost intact.

Of course, this is just the most straightforward way to apply termination iteration. 

In practice, the algorithm can be applied more incrementally. For instance, instead of 

doing full planning every time to evaluate the set of options, one could apply SMDP
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Option of going from north-west room to G4 
Initial termination conditions

Option of going from north-west room to G4 
Iteration #1 of termination iteration

Option of going from north-west room to G4 
Iteration #2 of termination iteration

Option of going from north-west room Io G5 
Initial termination conditions

Option of going from north-west room Io G5 
Iteration #1 of termination iteration

Option of going from north-west room Io G5 
Iteration #2 of termination Iteration

Figure 8.6. The result of termination iteration in the rooms environment, in the 
north-west room. One of the options gets very fragmented.

Q-learning, or intra-option learning, and improve the termination conditions as the 

agent goes along, even if the value function is not perfect.

8.5 Policy Iteration for Options
Changing the termination conditions of options is a special case of a more general 

algorithm, which adapts the policies of the options to whatever task there is at hand. 

The planning version of this algorithm, policy iteration for options, is presented below, 

for the case of Markov options. The main idea of the algorithm is to change the 

internal policy of the options such that it picks the best primitive action with respect 

to the current value function.

If the algorithm is iterated until the stopping criterion is met, then it recovers the 

optimal policy of the underlying MDP, as we prove below. As a first step, we prove 

a more general result, showing that the improvement step leads to a better value 

function.
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Algorithm 5 Policy Iteration for Options___________________________________

1. Initialization: Start with a given set of Markov options Oq .

2. Iterate the following steps:

(a) Evaluation: Compute the models of the options rf and p^°, and the 
optimal value function for the current set of options,

(b) Improvement: If for some state, > Qq .^s , o ), then
change option o to take a in s;

o(s, o) 1 and o(s, a'} OVa' / a

3. Stopping Condition:

Theorem 10 (Policy Improvement) For any MDP, any set of Markov options 

O and any Markov policy p : S x O [0,1], define a new set of options O' with 

a one-to-one mapping between the two option sets as follows: for every o € O we 

define a corresponding o' E O' where o'(s, •) = o(s, •) except for every state in which 

Q^"{s,o') < r^ + Tnay choose to set o{s,a} = 1. Let p' be the

policy over options corresponding to p: p'{s,o'} = p{s,oi), where o is the option in O 

corresponding to o', for all s E S. Then {s} > y*‘(s),Vs, and there exists at least 

one state for which the inequality is strict.

Proof: The proof is very similar to the proof for the interruption theorem. The 

idea is to show that, for an arbitrary state s, executing the option given by the policy 

p' and then following policy p thereafter is no worse than always following policy p. 

More formally, we have to show that:

o' s' O s'

If this is true, then we can use this inequality to expand the left side, by repeatedly 

replacing every occurrence of y^(a;) with p'{x, o')[r°' + Ea:'Pxa:'^^(a?')]- the 

limit, the left side becomes V^', proving that > V^. If no changes were made to
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option o in state s, then rf + = ^4 + Y,si option 0 'Nas,

changed, then from the hypothesis and the fact that o is Markov, we have:

< + 0} = e, +
s' 3' s'

Because //'(s, o') = p{s,o), this proves our theorem, o

Note that if we include the termination action t  into the set we consider, and if 

we define the model of this action by: rj = V^(s) and p'^^, = 0,Vs' € S, then the 

interruption theorem 8, when applied for Markov options, is a special case of the 

policy improvement theorem 10.

Theorem 11 (Convergence of Policy Iteration for Options) For any MDP and 

any initial set of options O, the policy iteration algorithm 5 converges to the optimal 

value function V* for the MDP.

Proof: By theorem 10, every iteration of the algorithm will improve on the previous 

value function. In order to prove that when the stopping criterion is met, V^. = V*, 

we use a proof by contradiction. Suppose that when the stopping criterion is met, 

there is some state s for which a* / a, where a* is the action suggested by the optimal 

policy, and a is the primitive action suggested by the best option in s. Then we have:

s' s" s'

> Qo/s.o)-

which means that the algorithm would have continued for one more iteration, o

Of course, in practice the complete planning version of the algorithm is too expen-

sive to apply. However, this is an important theoretical result, because it guarantees
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that any set of options can be improved Enoch to eventually reach the optimal solu-

tion of the MDP, if that is desired. In practice, one could interleave steps of learning 

the models with improving the policies of the options.

8.6 Conclusions
In this chapter we presented methods for changing a given set of options to be 

more adequate for the task at hand. These methods are based on looking at the 

internal structure of the options and changing it by algorithms inspired by policy 

iteration. By applying these changes iteratively, one can improve the options in such 

a way as to obtain the best solution possible for the MDP. Changing the termination 

conditions of options can be done with minimal additional computation.
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CHAPTER 9

CREATING NEW OPTIONS FROM SUBGOALS

It is natural to think of options as achieving subgoals of some kind. Then each 

option’s policy could be learned to achieve the corresponding subgoals as well as 

possible. Given subgoals for options, it is relatively straightforward to design off- 

policy intra-option learning methods to learn the policies that achieve those subgoals. 

For example, it may be possible to simply apply Q-learning to learn independently 

about each subgoal and option (as in Singh, 1992; Lin, 1993; Dorigo & Colombetti, 

1994; Thrun & Schwartz, 1995).

On the other hand, it is not clear which is the best way to formulate subgoals 

to associate with options, or even what the basis for evaluation should be. One of 

the important considerations is the extent to which models of options constructed 

to achieve one subgoal can be transferred to aid in planning to achieve another. We 

would like a long-lived learning agent to face a continuing series of subtasks that 

result in its being more and more capable.

In this chapter we present an approach to the creation of options, based on associ-

ating options with subgoals of achievement. The formalization of subgoals we present 

here suffices to illustrate some of the possibilities and problems that arise. A larger 

issue that we do not address is the source of the subgoals. We assume that the sub-

goals are given and focus on how options can be learned and tuned to achieve them, 

and on how learning toward different subgoals can aid each other. The issue of for-

mulating useful subgoals is investigated currently by several researchers (McGovern, 

1998; Moore et ah, 1998; Andre, 1998; Baum, 1998)
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9.1 Subgoals of Achievement
A simple way to formulate a subgoal is by assigning a subgoal value, g^s), to each 

state s in a subset of states Q C 5. These values indicate how desirable it is to 

terminate in each state in Q. For example, to learn a hallway option in the rooms 

task, the target hallway might be assigned a subgoal value of +1 while the other 

hallway and all states outside the room might be assigned a subgoal value of 0. Let 

Og denote the set of options that terminate only and always in the states Q in which g 

is defined. Given a subgoal-value function g : Q -> 3fi, one can define a new state-value 

function, denoted for options o e Og, as the expected value of the cumulative 

reward if option o is initiated in state s, plus the subgoal value g{s') of the state 

s' in which it terminates (discounted appropriately). Similarly, we can define a new 

action-value function Qp(s, a) = for actions a G and options o G Og.

Finally, we can define optimal value functions for any subgoal g:

and

. Finding an option that achieves these maximums (an optimal option for the sub-

goal) is then a well-defined subtask. For Markov options, this subtask has Bellman 

equations and methods for learning and planning just as in the original task. For 

example, the one-step tabular Q-learning method for updating an estimate Qg{st, at) 

of Qg{st,at) is

Qg{st, at) Qg(,st, ot) -)- a rt+i -I- 7maxQp(st+i, at+i) - Qg{st, at) , if st+i Q,

and
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Qg(st, at) <- Qg{st, at) + a [r^+i + 7^(st+i) - Qg{st, «<)], if St+i € Q.
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Figure 9.1. Learning subgoal-achieving hallway options under random behavior. 
Shown on the left is the error between Qg(s, a) and Q*(s, a) averaged over s G I, 
a G A, and 30 repetitions. The right panel shows the learned values for two options 
at one state (maximum over action values) approaching their correct values.

As a simple example, we applied this method to learn the policies of the eight 

hallway options in the rooms example. Each option was assigned subgoal values of 

H-l for the target hallway and 0 for all states outside the option’s room, including the 

off-target hallway. The initial state was that in the upper left corner, actions were 

selected randomly with equal probability, and there wajs no goal state. The parameters 

were 7 = 0.9 and a = 0.1. All rewards were zero. Figure 9.1 shows the learned action 

values Qg(s, a) for each of the eight subgoals/options reliably approaching their ideal 

values, Qg{s, a).

It is interesting to note that, in general, the policies learned to achieve subgoals 

depends in detail on the precise values assigned by g to the subgoal states. For 

example, suppose nonzero expected rewards were introduced into the rooms task in 

all states, distributed uniformly between 0 and —1. Then a subgoal value of -1-10 

(at the target hallway) results in an optimal policy that goes directly to the target 

hallway and away from the other hallway, as shown on the left in Figure 9.2, whereas
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g = o
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BBBBfl

g = i

g = o
Figure 9.2. Two different optimal policies for options given two different subgoal 
values at the target hallway. A subgoal value of +10 (left) results in a more direct 
policy than a subgoal of +1.

a subgoal value of +1 may result in an optimal policy that goes only indirectly to 

the target hallway, as shown on the right in Figure 9.2. A roundabout path may 

be preferable in the latter case to avoid unusually large penalties. In the extreme it 

may even be optimal to head for the off-target hallway, or even to spend an infinite 

amount of time running into a corner and never reach any subgoal state. This is 

not a problem, but merely illustrates the flexibility of this subgoal formulation. For 

example, we may want to have two options for open-the-door, one of which opens 

the door only if it is easy to do so, for example, if is unlocked, and one which opens 

the door no matter what, for example, by breaking it down if need be. If we had only 

the first option, then we would not be able to break down the door if necessary. If we 

had only the second then we would not be able to choose to open the door without 

committing to breaking it down if it was locked, which would greatly diminish the 

option’s usefulness. The ability to learn and represent options for different intensities 

of subgoals, or different balances of outcome values, is an important flexibility.

9.2 Subgoals and Transfer
Subgoals, options, and models of options enable interesting new possibilities for 

reinforcement learning agents. For example, we could present the agent with a series
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of tasks as subgoals, perhaps graded in difficulty. For each, the agent would be 

directed to find an option that achieves the subgoal and to learn a model of the 

option. Although the option and model are constructed based on the task, note 

that they can be transferred to any other task. The option just says what to do; if 

behaving that way is a useful substep on another task, then it will help on that task. 

Similarly, the model just predicts the consequences of behaving that way; if that way 

of behaving is a useful substep on another task, then the model will help in planning 

to use that substep. As long as the model is accurate for its option it may be useful 

in planning the solution to another task. Singh (1992a,b,c) and Lin (1993) provide 

some simple examples of learning solutions to subtasks and then transferring them 

to help solve a new task.

10

Figure 9.3. A subgoal to which a hallway option does not transfer. The option for 
passing from the lower-left room through to the state with subgoal value 10 no longer 
works because of the state with subgoal value -1. The original model of this option 
is overpromising with respect to the subgoal.

On the other hand, assuring that the models of options remain accurate across 

changes in tasks or subgoals is far from immediate. The most severe problem arises 

when the new subgoal prevents the successful completion of an option whose model 

has previously been learned. Figure 9.3 illustrates the problem in a rooms example. 

Here we assume the options and models have already been learned, then a new subgoal 

is considered that assigns a high value, 10 to a state in the lower-right room but a
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low value, —1, to a state that must be passed through to enter that room from the 

lower-left room. The —1 subgoal state makes it impossible to pass between the two 

rooms if we consider only options that terminate when they reach a subgoal state. 

Yet the prior model indicates that it is still possible to travel from the lower-left 

room “through” the -1 state to the hallway state and thereby to the 10-valued state. 

Thus, planning with this model will lead inevitably to a highly-valued but poor policy. 

Such problems can arise whenever the new subgoal involves states that may be passed 

through when an option is executed.

A simple idea is to alter the subgoal formulation such that subgoal states can 

be passed through: stopping in them and collecting the subgoal value is optional 

rather than required. In this case, an option is obtained as the solution to an optimal 

stopping task (see, e.g. Puterman, 1994). An optimal stopping task is defined as an 

MDP in which there is a value for stopping specified in some states. If the agent 

decides to stop, it collects this terminal value. If it continues to act, it collects the 

usual rewards. Such a formulation prevents the problem illustrated in Figure 9.3.

Finally, note that in order to plan successfully, the models of the options, do not 

necessarily have to be accurate, just non-overpromising (Precup & Sutton, 1998). 

In other words, they do not have to predict the correct outcome, just an outcome 

whose expected value is less than or equal to the value of the correct outcome. This 

finesse may enable important special cases to be handled simply. For example, any 

new subgoal involving states Q that all have the same subgoal value, can probably be 

safely used for transfer. The sort of problem shown in Figure 9.3 can never occur in 

such cases either.
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CHAPTER 10

CONCLUSIONS AND FUTURE WORK

10.1 Contributions
In this thesis we presented a general framework for describing temporally extended 

actions in the context of reinforcement learning and MDPs. This framework applies 

to stochastic environments, and it enables us to express temporally extended actions 

in the form of closed-loop policies and goal-oriented behavior, in a more general way 

than what has been possible in classical Al approaches to temporal abstraction.

Options and models of options are a form of knowledge representation that is 

expressive, clear and suitable for learning and planning. The models of options are 

computed from observations of the environment and therefore can be interpreted 

and changed by the agent without the need for human intervention. SMDP theory 

provides the foundation of the theory of options. In this dissertation we showed 

how a set of options in an MDP defines a related SMDP. This connection to SMDP 

theory provides a rich set of planning and learning methods, convergence results, and 

a natural and general way of predicting the effects of options.

The most interesting feature of the options framework is that it allows an agent to 

work simultaneously with high-level and low-level temporal representations. In ad-

dition to reasoning and learning about options, the agent can examine their internal 

structure in order to make predictions, learn and plan at multiple temporal scales. 

In this dissertation we presented several novel algorithms that take advantage of the 

internal structure of options. For instance, intra-option learning algorithms use this 

structure in order to learn efficiently about many options from the same real experi-

ence. Intra-option learning is an example of off-policy learning, a general approach for
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learning about the effects of one way of behaving while behaving in a different way. 

Off-policy learning is key to the efficiency of learning in a system that can potentially 

consider many options. We described off-policy learning algorithms that have strong 

convergence guarantees and are also very efficient in practice.

We also presented new algorithms for improving options by changing their ter-

mination conditions and their internal policies. These algorithms enable an agent to 

start with a generic set of options and then tune it to improve its performance on any 

given task.

Our research suggests that options can enable faster learning and planning in 

complex environments, as well as in the case in which an agent is faced with a whole 

family of tasks that it has to solve. Options are a way of representing the actions 

available to the agent at an appropriate time scale. In many environments, a solution 

to a task can contain a long series of actions, but a much shorter sequence of options. 

This means that a solution in terms of options can be computed much faster by a 

planning algorithm, since there are fewer decisions to consider. Options also have the 

side effect of compressing the state space, because we only need value predictions for 

states in which options terminate.

Options also provide an easy and principled way of providing prior knowledge 

for a learning agent. In many domains of interest, people know useful controllers 

or heuristics for acting, or they can guess useful subgoals that can represent steps 

towards a solution. Options are a natural way to specify such knowledge.

Options are very useful in the case in which an agent is not faced with just one 

task, but with a series of tasks that are related. In this case, options can represent 

solutions to subtasks that can be saved and reused over time. For instance, a robot 

might need to navigate to different destinations in a building. Having options such 

as following a corridor or going up and down stairs would be useful in this case for 

going to any destination.
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The options framework allows us to go beyond the usual view in which an agent 

learns a single policy to solve a particular task. The framework enables learning and 

prediction about many ways of behaving, which can be useful in different situations 

and at different stages of learning. This research can be viewed as a first step towards 

a general architecture for constructing representations that facilitate learning.

10.2 Future Research Directions
There are many research areas that offer a lot of promise for future work:

Finding better state representations: Action and perception are intimately 

related. Objects can be described by the opportunities that they afford for 

action. For instance, the most salient feature of a chair is the fact that it can 

be used to sit on. Doors can be opened and closed, and they are used to pass 

between rooms. Models of options capture knowledge about the temporally 

extended effects of options. Such models can form the basis for representing 

concepts, in a way that can be understood by the system, and validated by 

acting in the world. For instance, consider a robot learning to recognize its 

battery charger. The most useful concept for it is the set of states from which it 

can successfully dock, and this is exactly what would be produced by the model 

of a docking option. Such action-oriented concepts can be learned and tested 

by the robot without external supervision.

Parametric representations for options and their models: There are many 

reasons for which one would want a parametric representation of options. First, 

people usually find it natural to specify controllers or behaviors depending on 

parameters. Having parametric representations of options would enable them 

to do this in a more natural way. Second, parametric representations of op-

tions would facilitate parametric representations of their models. Models are 

the primary way of encoding predictive knowledge about the effects of options.
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They enable reasoning about options and using options for solving tasks. In 

this thesis we assumed that models are constructed specifically for each option. 

The only generalization that can occur is over states. This leads to an explo-

sion in the number of models if an agent has a lot of options, which in turn 

slows down planning. One way to alleviate this utility problem is to repre-

sent options and their models parametrically. In this case, a model is a function 

from states and some parametric representation of options, to predictions about 

the intermediate reward and the transition after execution. Finding good ways 

of representing options and models, and determining how to do learning and 

planning with such models could be a key step in solving the utility problem.

Special hierarchical learning methods: In this thesis we have shown that hier-

archies of options with multiple levels can be flattened and treated as one-level 

hierarchies. However, more efficient learning algorithms can be obtained by 

designing special methods for hierarchies with multiple levels of options. For 

instance, in the case of intra-option learning algorithms for hierarchical Markov 

options, one can prioritize the order in which the options are updated, from 

bottom up, such that the computation is more efficient than just ffattening 

the hierarchy at every point. Other special-purpose computational tricks can 

probably be used for other multiple-level hierarchies of options.

Using function approximation and state abstraction with options: Most 

of the illustrations in this thesis used flnite discrete MDPs. But the options 

framework allows the use of state abstraction and function approximation to 

deal with exponentially large and continuous state spaces. The simplest way in 

which this can be done is to use standard methods in order to represent value 

functions and models of options. More empirical experience using such methods 

with options would be very useful.
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Evaluating sets of options: As we have shown in some of the illustrative examples, 

options can speed up planning significantly, but with a loss in the quality of 

the solution obtained. Of course, the quality of the solution can be improved 

by methods such as termination and policy iteration. But in this case, the 

final solution varies in quality as well, as seen in chapter 8. Moreover, sets of 

options have different utilities at different stages of learning. For instance, in 

the beginning of learning, options that help the agent explore its state space 

can be very useful, even if they do not provide a lot of reward in the long 

run (and therefore would not be part of the optimal policy). It would be very 

interesting to formulate mathematical criteria describing the utility of different 

sets of options depending on the stage of the learning process and the learning 

or planning algorithms being used. This would enable comparisons between 

different sets of options, and facilitate finding good sets of options.

Creating options and finding subgoals: In chapter 9 we illustrated one way of 

creating new options, by formulating an optimal stopping task over the state 

space. But the terminal states and their values are hand-picked by the designer 

of the system. In general, we would like a system to find such states and values 

automatically. There are heuristics that can be used in special cases, such as 

using funneling states as subgoals (McGovern, 1998). The issue of finding good 

subgoals is intimately related with the problem of evaluating different sets of 

options. There are many interesting questions regarding the utility of subgoals 

and the automatic creation of subgoals. We have not addressed such questions 

in this dissertation, but we believe that the options framework provides a good 

language for formulating these questions in a clear and precise way.

Solving POMDPs by using options: Consider an agent inside a long featureless 

corridor. If there are no salient features to distinguish different positions, the
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agent will suffer from a hidden state problem. But if it uses an option that 

takes it all the way to the end of the corridor, where the state can be observed 

exactly, then there is no problem with being inside the corridor. As long as 

there is some way of behaving that takes the agent between fully observable 

states, the problem can be treated as an SMDP. In general, options and models 

of options may help avoid partial observability.
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