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Abstract. We present new theoretical results on planning within the framework
of temporally abstract reinforcement learning (Precup & Sutton, 1997; Sutton,
1995). Temporal abstraction is a key step in any decision making system that
involves planning and prediction. In temporally abstract reinforcement learning,
the agent is allowed to choose among ”options”, whole courses of action that may
be temporally extended, stochastic, and contingent on previous events. Examples
of options include closed-loop policies such as picking up an object, as well as
primitive actions such as joint torques. Knowledge about the consequences of
options is represented by special structures called multi-time models. In this pa-
per we focus on the theory of planning with multi-time models. We define new
Bellman equations that are satisfied for sets of multi-time models. As a conse-
quence, multi-time models can be used interchangeably with models of primitive
actions in a variety of well-known planning methods including value iteration,
policy improvement and policy iteration.

1 Introduction
Model-based reinforcement learning offers a possible solution to the problem of inte-
grating planning with real-time learning and decision-making [20]. However, conven-
tional model-based reinforcement learning uses one-step models [11, 13, 18], that can-
not represent common-sense, higher-level actions, such as picking an object or traveling
to a specified location.

Several researchers have proposed extending reinforcement learning to a higher
level by treating entire closed-loop policies as actions [3–6, 9, 10, 12, 17]. In order to
use such actions in planning, an agent needs the ability to create and handle models
at a variety of different, interrelated levels of temporal abstraction. Sutton [19] intro-
duced an approach to modeling at different time scales, based on prior work by Singh
[17], Dayan [2] and by Sutton and Pinette [21]. This approach enables models of the
environment at different temporal scales to be intermixed, producing temporally ab-
stract models. In previous work [14], we generalized this approach from the prediction
case, to the full control case. In this paper, we summarize the framework of temporally
abstract reinforcement learning and present new theoretical results on planning with
general options and temporally abstract models of options.



Options are similar to AI’s classical “macro operators” [7, 8, 16], in that they can
take control for some period of time, determining the actions during that time, and in
that one can choose among options much as one originally chose among primitive ac-
tions. However, classical macro operators are only a fixed sequence of actions, whereas
options incorporate a general (possibly non-Markov) closed-loop policy and comple-
tion criterion. These generalizations are required when the environment is stochastic
and uncertain with general goals, as in reinforcement learning and Markov decision
processes (MDP).

The predictive knowledge needed in order to plan using options can be represented
through multi-time models [14]. Such models summarize several time scales and have
the ability to predict events that can happen at various unknownmoments. In this paper,
we focus on the theoretical properties of multi-timemodels.We show formally that such
models can be used interchangeably with models of primitive actions in a variety of
well-known dynamic programming methods, while preserving the same guarantees of
convergence to correct solutions. The benefit of using such temporally extendedmodels
is a significant improvement in the convergence rates of these algorithms.

2 Reinforcement Learning (MDP) Framework
First we briefly summarize the mathematical framework of the reinforcement learning
problem that we use in the paper. In this framework, a learning agent interacts with
an environment at some discrete, lowest-level time scale . At each time
step, the agent perceives the state of the environment, , and on that basis chooses a
primitive action, . In response to each primitive action, , the environment produces
one step later a numerical reward, , and a next state, .

The agent’s objective is to learn a policy , which is a mapping from states to prob-
abilities of taking each action, that maximizes the expected discounted future reward
from each state :

where is a discount-rate parameter. The quantity is called the value
of state under policy , and is called the value function for policy . The optimal
value of a state is denoted

The environment is henceforth assumed to be a stationary, finite Markov decision
process. We assume that the states are discrete and form a finite set, .
The latter assumption is a temporary theoretical convenience; it is not a limitation of
the ideas we present.

3 Options
In order to achieve faster planning, the agent should be able to predict what happens if it
follows a certain course of action over a period of time. By a “course of action” wemean
any way of behaving, i.e. any way of mapping representations of states to primitive
actions. An option is a way of choosing actions that is initiated, takes control for some
period of time, and then eventually ends. Options are defined by three elements:



– the set of states in which the option applies
– a decision rule which specifies what actions are executed by the option
– a completion function which specifies the probability of completing the option
on every time step.

is of a slightly more general form than the policies used in conventional reinforce-
ment learning. The first generalization is based on the observation that primitive actions
qualify as options: they are initiated in a state, take control for a while (one time step),
and then end. Therefore, we allow to choose among options, rather than only among
primitive actions.

The conventional reinforcement learning setting also requires that a policy’s deci-
sion probabilities at time should be a function only of the current state . This type of
policy is calledMarkov. For the policy of a option, , we relax this assumption, and we
allow the probabilities of selecting a sub-option to depend on all the states and actions
from time , when the option began executing, up through the current time, . We call
policies of this more general class semi-Markov.

The completion function can also be semi-Markov. This property enables us to
describe various kinds of completion. Perhaps the simplest case is that of a option that
completes after some fixed number of time steps (e.g. after 1 step, as in the case of
primitive actions, or after steps, as in the case of a classical macro operator consisting
of a sequence of actions). A slightly more general case is that in which the option
completes during a certain time period, e.g. 10 to 15 time steps later. In this case, the
completion function should specify the probability of completion for each of these
time steps. The case which is probably the most useful in practice is the completion of a
option with the occurrence of a critical state, often a state that we think of as a subgoal.
For instance, the option pick-up-the-object could complete when the object
is in the hand. This event occurs at a very specific moment in time, but this moment
is indefinite, not known in advance. In this case, the completion function depends on
the state history of the system, rather than explicitly on time. Lastly, if is always ,
the option does not complete. This is the case of usual policies used in reinforcement
learning.

Options are typically executed in a call-and-return fashion. Each option can be
viewed as a “subroutine”which calls sub-options, according to its internal decision rule.
When a sub-option is selected, it takes control of the action choices until it completes.
Upon completion, transfers the control back to . also inherits the current time
and the current state , and has to decide if it should terminate or pick a new sub-
option.

Two options, and , can be composed to yield a new option, denoted , that first
follows until it terminates and then follows until it terminates, also terminating the
composed option .

4 Models of Options
Planning in reinforcement learning refers to the use of models of the effects of actions
to compute value functions, particularly . We use the term model for any structure
that generates predictions based on the representation of the state of the system and on
the course of action that the system is following.



In order to plan at the level of options, we need to have a knowledge representation
form that predicts their consequences. The multi-time model of a option characterizes
the states that result upon the option’s completion and the truncated return received
along the way when the option is executed in various states [14]. Let be an -vector
and a scalar. The pair is an accurate prediction for the execution of semi-Markov
option in state if and only if

(1)

and
(2)

where is the random variable denoting the time at which terminates when executed
in , and denotes the unit basis -vector corresponding to . is called the
state prediction vector and is called the reward prediction for state and option .

We will use the notation “ ”, as in , to represents the inner or dot product
between vectors. We will refer to the -th element of a vector as . The transpose
of a vector will be denoted by .

The predictions corresponding to the states are always . If the option never
terminates, the reward prediction is equal to the value function of the internal policy
of the option, and the elements of are all .

The state prediction vectors for the same option in all the states are often grouped
as the rows of an state prediction matrix, , and the reward predictions are often
grouped as the components of an -component reward prediction vector, . form
the accurate model of the option.

A key theoretical result refers to the way in which the model of a composed option
can be obtained from the models of its components.

Theorem 1 (Composition or Sequencing). Given an accurate prediction for
some option applied in state and an accurate model for some option , the
prediction:

and (3)

is an accurate prediction for the composed option when it is executed in .

Proof. Let be the random variable denoting the time at which completes, and be
the random variable denoting the time at which completes. Then we have:



The equation for follows similarly.

A simple combination of models can also be used to predict the effect of probabilis-
tic choice among options:

Theorem 2 (Averaging or Choice). Let be a set of accurate predictions for the
options executed in state , and let be a set of numbers such that .
Then the prediction defined by:

and (4)

is accurate for the option , which chooses in state among sub-options with prob-
abilities and then follows the chosen until completion.

Proof. Based on the definition of ,
The equation for follows similarly.

These results represent the basis for developing the theory of planning at the level
of options. The options map the low-level MDP in a higher-level semi-Markov decision
process (SMDP) [15], which we can solve using dynamic programming methods. We
will now go into the details of this mapping.

5 Planning with Models of Options
In this section, we extend the theoretical results of dynamic programming for the case in
which the agent is allowed to use an arbitrary set of options, . If is exactly the set of
primitive actions, then our results degenerate to the conventional case. We assume, for
the sake of simplicity, that for any state , the set of options that apply in , denoted ,
is always non-empty.However, the theory that we present extends, with some additional
complexity, to the case in which no options apply in certain states.

Given a set of options , we define a policy to be a mapping that, for any state
specifies the probability of taking each option from . The value of is defined

similarly to the conventional case, as the expected discounted reward if the policy is
applied starting in :

(5)

The optimal value function, given the set , can be defined as

(6)

for all , where is the set of policies that can be defined using the options from
. The value functions are sometimes represented as -vectors, and , with each

component representing the value of a different state.



The value function of any Markov policy satisfies the Bellman evaluation
equations:

for all (7)

where is the probability of choosing option in state when acting according
to and is the accurate prediction for sub-option in state . We will show that,
similarly to the conventional case, is the unique solution to this system of equations.

Similarly, the optimal value function given a set of options satisfies the Bellman
optimality equations:

for all (8)

As in the conventional case, is the unique solution of this set of equations, and there
exists at least one deterministic Markov policy that is optimal, i.e., for which

.
We will now present in detail the proofs leading to these theoretical results. The

practical consequence is that all the usual update rules used in reinforcement learning
can be used to compute and when the agent makes choices among options. We
focus first on the Bellman policy evaluation equations.

Theorem 3 (Value Functions for Composed Policies). Let be a policy that, when
starting in state , follows option and, when the option completes, follows policy .
Then

(9)

Proof. According to the theorem statement, . The conclusion follows immedi-
ately from the composition theorem.

Theorem 4 (Bellman Policy Evaluation Equation). The value function of anyMarkov
policy satisfies the Bellman policy evaluation equations (7).

Proof. Using the averaging rule and the fact that is Markov, we have:

We can expand using (9), to obtain the desired result (7).

We now prove that the Bellman evaluation equations have a unique solution, and
that this solution can be computed using the well-known algorithm of policy evaluation
with successive approximations: start with arbitrary initial values for all states
and iterate for all : , where is the option suggested
by in state .

Proof. For any option and any starting state , there exists a constant such that
, where denotes the of a vector: .

The value of depends on and on the expected duration of when started in . For



any option , we show that the operator is a contraction with
constant . For arbitrary vectors and , we have:

where denotes the of a vector: . Therefore,
The result follows from the contraction mapping

theorem [1].

So far we have established that the value functions of Markov option policies have
similar properties with the Markov policies that use only primitive actions. Now we es-
tablish similar results for the optimal value function that can be obtained when planning
with a set of options.

Theorem 5 (Bellman Optimality Equation). For any set of options , the optimal
value function satisfies the Bellman optimality equations (8).

Proof. Let be an arbitrary policy which, at time step 0, in state , chooses
among the available options with probabilities .

where is the expected discounted return from state on. Since ,
using the definition of , we have:

Since is arbitrary, due to the definition of ,

On the other hand, let . Let be the policy that
chooses at time step 0 and, after ends, in state , switches to a policy such that

. exists because of the way in which was defined. From
(9), we have:

Since , we have:

Since is arbitrary, it follows that



The following step is to show that the solution of the Bellman optimality equa-
tions (8) is bounded and unique, and that it can be computed through a value iteration
algorithm: start with arbitrary initial values and iterate the update:

.

Proof. For any set of actions let us consider the operator which, in any state ,
performs the following transformation: Let and
be two arbitrary vectors. Then we have:

where . Similarly,

Therefore, ,

where . Therefore is a contraction with constant . The results
follow from the contraction mapping theorem [1].

So far we have shown that the optimal value function is the unique bounded
solution of the Bellman optimality equations. Nowwe will show that this value function
can be achieved by a deterministic Markov policy:

Theorem 6 (Value Achievement). The policy defined as

achieves .

Proof. For any arbitrary state , we have:

Since , .

In order to find the optimal policy given a set of options, one can simply compute
and then use it to pick actions greedily. Another popular planning method for com-

puting optimal policies is policy iteration, which alternates steps of policy evaluation
and policy improvement. We have already investigated policy evaluation, so we turn
now to policy improvement:

Theorem 7 (Policy Improvement Theorem). For any Markov policy defined using
options from a set , let be a new policy which, for some state , chooses greedily
among the available options, and then follows

Then .



Proof. Let be the option chosen by in state . Then, from (7),

Given a set of options such that is finite for all , the policy iteration algorithm,
which interleaves policy evaluation and policy improvement, converges to in a finite
number of steps.

The final result relates the models of options to the optimal value function of the
environment, .

Theorem 8. If is an accurate prediction for some option in state , then

We say that accurate models are non-overpromising, i.e. they never promise more that
the agent can actually achieve.

Proof. Assume that the agent can use and all the primitive actions in the environment.
Let , where is the optimal policy of the environment. Then we have:

6 Illustrations
The theoretical results presented so far show that accurate models of options can be
used in all the planning algorithms typically employed for solving MDPs, with the
same guarantees of convergence to correct plans as in the case of primitive actions. We
will now illustrate the speedup that can be obtained when using these methods in two
simple gridworld learning tasks.
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Fig. 1. Empty gridworld task. Options allow the error in the value function estimation to decrease
more quickly

The first task is depicted on the left panel of figure 1. The cells of the grid correspond
to the states of the environment. From any state the agent can perform one of four
primitive actions, up, down, left or right. With probability 2/3, the actions cause
the agent to move one cell in the corresponding direction (unless this would take the



agent into a wall, in which case it stays in the same state). With probability 1/3, the
agent moves instead in one of the other three directions (unless this takes it into a wall,
of course). There is no penalty for bumping into walls. In addition to these primitive
actions, the agent can use four additional higher-level options, to travel to each of the
marked locations. These locations have been chosen randomly inside the environment.
Accurate models for all the options are also available. Both the options and their models
have been learned during a prior randomwalk in the environment, using Q-learning [22]
and the -model learning algorithm [19].

The agent is repeatedly given new goal positions and it needs to compute optimal
paths to these positions as quickly as possible. In this experiment, we considered all
possible goal positions. In each case, the value of the goal state is 1, there are no rewards
along the way, and the discounting factor is . We performed planning according
to the standard value iteration method, where the starting values are for all
the states except the goal state, for which . In the first experiment, the
agent was only allowed to use primitive actions, while in the second case, it used both
the primitive actions and the higher-level options.

The right panel in figure 1 shows the average root mean squared error in the estimate
of the optimal value function over the whole environment. The average is computed
over all possible positions of the goal state. The use of higher-level options introduces
a significant speedup in convergence, even though the options have been chosen arbi-
trarily. Note that an iteration using all the options is slightly more expensive than an
iteration using only primitive actions. This aspect can be improved by using more so-
phisticated methods of ordering the options before doing the update. However, such
methods are beyond the scope of this paper.
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Fig. 2. Example Task. The natural options are to move from room to room
In order to analyze in more detail the effect of options, let us consider a second

environment. In this case, the gridworld has four “rooms”. The basic dynamics of the
environment are the same as in the previous case. For each state in a room, two higher-
level options are available, which can take the agent to each of the hallways adjacent
to the room. Each of these options has two outcome states: the target hallway, which
corresponds to a successful outcome, and the state adjacent to the other hallway, which
corresponds to failure (the agent has wandered out of the room). The completion func-
tion is therefore for all the states except these outcome states, where it is . The
policy underlying the option is the optimal policy for reaching the target hallway.

The goal state can have an arbitrary position in any of the rooms, but for this illus-
tration let us suppose that the goal is two steps down from the right hallway. The value
of the goal state is 1, there are no rewards along the way, and the discounting factor
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Fig. 3. Value iteration using primitive actions and higher-level options

is . We performed planning again, according to the standard value iteration
method, with the same setting as in the previous task.

When using only primitive actions, the values are propagated one step on each itera-
tion. After six iterations, for instance, only the states that are within six steps of the goal
are attributed non-zero values. Figure 3 shows the value function after each iteration,
using all available options. The area of the circle drawn in each state is proportional
to the value attributed to the state. The first three iterations are identical to the case in
which only primitive actions are used. However, once the values are propagated to the
first hallway, all the states in the rooms adjacent to the hallway receive values as well.
For the states in the room containing the goal, these values correspond to performing
the option of getting into the right hallway, and then following the optimal primitive
actions to get to the goal. At this point, a path to the goal is known from each state in
the right half of the environment, even if the path is not optimal for all the states. After
six iterations, an optimal policy is known for all the states in the environment.

7 Discussion

Planning with multi-time models converges to correct solutions significantly faster than
planning at the level of primitive actions. There are two intuitive reasons that justify
this result. First, the temporal abstraction achieved by the models enables the agent to
reason at a higher level. Second, the knowledge captured in the models only depends
only on the MDP underlying the environment and on the option itself. The options and
multi-timemodels can therefore be seen as an efficient means of transferring knowledge
across different reinforcement learning tasks, as long as the dynamics of the environ-
ment are preserved.

Theoretical results similar to the ones presented in this paper are also available for
planning in optimal stopping tasks [1], as well as for a different regime of executing



options, which allows early termination. Further research will be devoted to integrating
temporal and state abstraction, and to the issue of discovering useful options.
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