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Abstract

Eligibility traces have been shown to speed re-
inforcement learning, to make it more robust
to hidden states, and to provide a link between
Monte Carlo and temporal-difference methods.
Here we generalize eligibility traces ¢df-policy
learning, in which one learns about a policy dif-
ferent from the policy that generates the data.
Off-policy methods can greatly multiply learn-
ing, as many policies can be learned about from
the same data stream, and have been identified
as particularly useful for learning about subgoals
and temporally extended macro-actions. In this
paper we consider the off-policy version of the
policy evaluation problem, for which only one
eligibility trace algorithm is known, a Monte
Carlo method. We analyze and compare this and
four new eligibility trace algorithms, emphasiz-
ing their relationships to the classical statistical
technique known asnportance sampling Our
main results are 1) to establish the consistency
and bias properties of the new methods and 2) to
empirically rank the new methods, showing im-
provement over one-step and Monte Carlo meth-
ods. Our results are restricted to model-free,
table-lookup methods and to offline updating (at
the end of each episode) although several of the
algorithms could be applied more generally.

might want to learn about policies other than that currently
followed by the agent, a process knowrodfspolicy learn-

ing. For example, 1-step Q-learning is often used in an
off-policy manner, learning about the greedy policy while
the data is generated by a slightly randomized policy that
ensures exploration.

Off-policy learning is especially important for research on
the use of temporally extended actions in reinforcement
learning (Kaelbling, 1993; Singh, 1992; Parr, 1998; Di-
etterich, 1998; Sutton, Precup & Singh, 1999). In this case,
we are interested in learning about many different policies,
each corresponding to a different macro-action, subgoal,
or option. Off-policy learning enables the agent to use its
experience to learn about the values and models of all the
policies in parallel, even though it can follow only one pol-
icy at a time (Sutton, Precup & Singh, 1998).

In this paper we consider the natural generalization of the
policy evaluation problem to the off-policy case. That
is, we consider two stationary Markov policies, one used
to generate the data, called thehavior policy and one
whose value function we seek to learn, called theyet
policy. The two policies are completely arbitrary except
that the behavior policy must ®ft meaning that it must
have a non-zero probability of selecting every action in
each state. (The last method we consider has weaker re-
guirements, not even requiring that the behavior policy be
stationary, only non-starving.) This policy evaluation prob-
lem is a particularly clear and pure case of off-policy learn-
ing. Whatever we learn about it we expect to elucidate, if
not directly transfer to, the problem of learning value func-

In remforcerr_lent learning, we generally learn from EXP€4ions and models of temporally extended macro-actions.
rience, that is, from the sequence of states, actions, and

rewards generated by the agent interacting with its environThere are few existing model-free algorithithat apply
ment. This data is affected by the decision-making policyto off-policy policy evaluation. There is a natural one-step
used by the agent to select its actions, and thus we oftemethod, TD(0), but the more general T)( for A > 0,
e”‘?' up learning something that is a function of the ?gem’s Lin this paper we restrict attention to methods that learn di-
policy. For example, the common subproblempaficy  rectly from experience rather than form an explicit model of the
evaluationis to learn the value function for the agent’s pol- environment. Such model-free methods have been emphasized in
icy (the function giving the expected future reward avail- reinforcement learning because of their simplicity and robustness

able from each state—action pair). In general, however, w& Modeling errors and assumptions.



fails because it includes some effect of multi-step transi-2. Importance Sampling Algorithms

tions, which are contaminated by the behavior policy and L . - .

not compensated for in any way. The only prior method®"€ Way Of viewing the special difficulty of off-policy
we know of that uses multi-step transitions appropriatel)),eam'ng isthatitis a m|smat<;h of d|str|but|ons—we'would
is the weighted Monte Carlo method described briefly byI|ke data dra\_/vn from the distribution ofthg tar_get policy but
Sutton and Barto (1998). There are at least three variatior@! We have is data drawn from the distribution of the be-
of Q-learning which use eligibility traces, Watkins'sxy(  navior policy. Importance samplinge.qg., see Rubinstein,
(Watkins, 1989), Peng's Q] (Peng & Williams, 1996), 1981) is a classical technique for handling just this kind of

and naive Q) (Sutton & Barto, 1998). Like 1-step Q- mismatch. In particular, it is for estimating the expected

learning, these are all off-policy methods, but they applyvalue of a random variabbewith distributiond from sam-

only to the special case in which the target policy is deterples’ when the samples are drawn from another distribution
ministic and changing (to always be greedy with respect td! - FOr example, the target _d|s:cr_|but|(_nknould be normal,
the current value function estimate). These methods canndfile the sampling distributiod” is uniform, as below.

be applied directly to our simpler but more general policy

evaluation problem, although two of our four new methods d
reduce to Watkins's Q\) in the special case in which the 7%6
target policy is deterministic. X

_ ) _ Figure 1.Different target and sampling distributions
1. Reinforcement Learning (MDP) Notation

In this paper we consider the episodic framework, in whichln its classical form, importance sampling is based on the
the agent interacts with its environment in a sequence ofollowing simple observation:
episodes, numberegh = 1,2,3,..., each of which con-

sists of a finite number of time steps= 0,1,2,..., T Ea{x} = /xd(x)dx _ /Xd(x) d(x)dx
The first state of each episod®, € Sis chosen accord- X x d'(x)

ing to some fixed distribution. Then, at each stephe d(x)

agent perceives the state of the environmeang S, and = Ed’{xm}’

on that basis chooses an actiange A. In response t@,

the environment produces, one step later, a numerical révhich leads to the importance sampling estimator,

ward, rs1 € 0, and a next states1. If the next state ~ Lo, dx) B

is the speciaterminal state then the episode terminates ”i; Id’(Xi)

at timeTy, =t+ 1. We assume here th&tandA are fi-

nite and that the environment is completely characterizeavhere thex; are samples selected accordingitoThis es-

by one-step state-transition probabilitigd,, and one-step  timator computes the average of the sample values, where
expected rewardsg, for all s, € Sanda € A. each sample is weighted differently based on the ratio of its

. in which th iaht beh " likelihood of occurring under the two distributions. This
A stationary way in which the agent might behavepot- weighting gives more importance to samples that occur

icy, is specified by a mapping from states to probabilities Ofrarely under the sampling distributicdi but occur fre-
taking each actiontt: Sx A — [0,1]

X ‘ ) - The value of .takmg guently under the target distributiah If d andd’ are the

actionain s_tates under policyr, denotedQ“(sz a). 1S the same, then all the samples have a weight of 1, and the es-

expected discounted future reward startingsinakinga,  yinat0r hecomes the usual arithmetic average of the sam-

and henceforth followingt ples. The importance sampling estimator (13amsistent
meaning it converges with probability onefg{x} as the
number of samples goes to infinity, andbiased mean-

En{rl +yr2+-4y "t [so=sa = a}. ing its expected value after any number of examples is also
Eq{x} (Rubinstein, 1981).

def

Q(s,a) =

A less well known variant of this techniquevgighted im-
where 0< y < 1 is a discount-rate parameter &ahds the  portance samplingwhich performs a weighted average of
time of termination. The functio@”: Sx A— [0is known the samp|es, with nght%% The Weighted importance
as theaction-value functiorfor policy . The problem  gampling estimator is:
we consider in this paper is that of estimati@f for an
arbitrary target policym, given that all data is generated sn XiM
by a differentbehavior policy b whereb is soft, meaning =17 d"(x)

b(s,a) > 0,¥se SacA. Z{Ll% '



This estimator is a consistent but biased estimat&iygk} one containing the ratios fromto Ty—1. Intuitively, the
(Rubinstein, 1981). Nevertheless, this estimator is ofterweight on reward; should not depend on the future after
faster and more stable in practice than (1). Intuitively, thistime i, only on the history to that point. This is the idea
is due to the fact that, if an unlikely event occurs, its weightbehind theper-decision importance sampling estimator
will be very large and will cause a large variation in the con-

. . . . . M Tm—t tm+k—1
ventional estimator; but in the weighted estimator, the large QPP(s,a) &' 1 s mzm - ml—l T
weight appears in the denominator as well, which smoothes M nMm=1 K=1 " =t 1 bi

the variation. ) _ ) )
This estimator weights each reward along a trajectory ac-

Now consider applying importance sampling to off-policy cording to the likelihood of the trajectory up to that point,
policy evaluation in MDPs. The samples come in the formynder the target and the behavior policy. If the target and
of episodes, which are complete sequences of states, agre behavior policy are the same, the estimator is simply
tions and rewards, ending in a terminal state. We want tahe average of the returns from each episode.

estimate the action valu@™(s,a) for an arbitrary states

and actiona. Let M be the number of episodes contain- Theorem 1 The per-decision importance sampling esti-
ing state-action paifs,a), and letty, be the first time when mator QP is a consistent unbiased estimator df.Q

(st,&) = (s,a) inthemth of these episodes. Then we define

thefirst-visit importance sampling estimatof Q"(s, a) as The main idea of the proof (in the a_ppendix)_ is to _show
that the expected value of the per-decision estimatétis

the same as the expected value of the classical importance
sampling estimato®'S, which is known to be consistent
and unbiased.

Qsa) z Rt @)

whereRy, is the return following(s, a) in episodam, . i ) o
We can also devise a weighted version of the per-decision

f . ) . o .
Rmd:e ftm+1+vftm+2+---+va tm—1, ., |mpqrtance samplln_g algorithm, S|m|I_ar to the_ welghtgd
_ _ _ _ _ version of classical importance sampling. The idea is sim-
and wm is the importance sampling weight assigned toply to divide the estimator by the sum of the weights during
episodam, each episode:

def Thp+1 T2 TERp—1 Tm—tm  k—1 tm+k—1 g
= dem=12k Y ik M1 B
Bt By BTy 1’ Q"™MW(sa) = e =t L by

z sz—'[m Vk_ I—lFr2+k 1m
wheretg andb; are short fom(s,a) andb(s,a;) respec- m=1 =tm+1 by
tively. Similarly, we define theveighted importance sam- Thisweighted per-decision importance sampling estimator
pling estimator(Sutton & Barto, 1998) as is consistent but biased, just like the weighted importance
sampling estimato®'SW (Precup, 2000).

) % def zm=l Rme

Q(sa W () An eligibility-trace version of per-decision importance
z”hl m sampling is shown in Algorithm 1. The algorithm main-
tains eligibility traces for each state-action pair in the usual
manner of temporal-difference (TD) algorithms. The only
The estimators defined above all consider complete returr@fference is that here the eligibility trace is multiplied on
Rm without breaking down into their constituent rewards; €ach step not just by a decay ratebut also by an impor-
this is the property that leads to their being called Montetance sampling factog— This factor corrects for the
Carlo methods. An estimator that used the way returngffect of the behavior pol|cy The algorithm shown uses
break down into rewards could potentially be more efficientonline updating meaning that the value estimates are up-
than these, or more easily implemented on an incremendated on every time step. Tlodfline version would make
tal, step-by-step basis. In this section we present a new athe same increments and decrements as shown, but only at
gorithm that performs importance sampling weightings forthe end of each episode. The changes are accumulated “on
each decision step along the way. the side” until the end of the episode, the value estimates
remaining unchanged until then. Under offline updating
the algorithm can be made to exactly implement the per-

3. Per-Decision Algorithms

Let us examine the terfR,wn, from equations (2) and (3):

D, Ted | TRATE T decision importance sampling estima@¥tP by choosing
RWin - tZHV Fi by+1 bi_ib  br_1 A =1 anda(s,a) = 1/n(s,a), wheren(s,a) is the number
i=tm m m—

of times state-action pag; a has previously been updated.
The terms of the sum can be naturally separated into twénother choice foix causes the algorithm to exactly im-
parts, one containing thg ratios fromtm; 1 toi—1, and  plement the corresponding weighted estima@®V. The



Algorithm 1 Online, Eligibility-Trace Version of Per-

(sa)
Decision Importance Sampling

1. Update the eligibility traces for all states:

_ (s, a) .
a(sa) = afl(s,a)vhb(st,at), Vsa
a(sa) = 1ifft=tn(sa),

whereh € [0,1] is an eligibility trace decay factor.
Figure 2.Backup diagram for the tree backup algorithm
2. Compute the TD error:

Algorithm 2 Online, Eligibility-Traces Version of Tree
Q(s+1,241) — Qu(s,a)  Backup

1. Update the eligibility traces for all states:

T(S+1,8+1)
& = g +yp )
o Vb(&+1,at+1)

3. Update the action-value function:
a(sa) = a-1(sayrn(s,a), Vsa
Qui(sa) « Q(sa) +aa(sa)d, Vsa a(sa) = 1ifft=tn(sa)

whereA € [0,1] is an eligibility trace decay parameter.

algorithm remains consistent under genérand general 2. Compute the TD error:

decreasing: O =re1+y ) M(s+1,8)Q(st+1,8) — Qs &)
Theorem 2 For any soft, stationary behavior policy b, and ach
anyA € [0,1] that does not depend on the actian Algo-
rithm 1 with offline updating converges w.p.1 t#,@nder

the usual step-size conditions an

3. Update the action-value function:

Q11(s,a) + Q(sa)+aea(s,a)d, Vsa

The proof of the theorem (see appendix) is an application
of the general convergence theorem of Jaakkola, Jordan,
and Singh (1994).

on the reward received and the estimated value of the next
_ state. The tree backup algorithm then forms a new target,
4. Tree Backup Algorithm using the old value estimates for the actions that were not

The methods we have discussed so far all use the behataken, and the new estimated value for the action that was

ior policy in their updates; they require that it be known,yak?n' Th!s process can be |terlated over many steps. If
. we iterate it oven steps, we obtain the-step tree-backup
Markov (purely a function of the current state), and ex-

plicitly represented as action probabilities. For complexes“maltor

agents, however, none of these may be true. In this sec-, def 1 M tm+n
tion we consider a method that requires nothing of the be@n (5@ = M > ynQ(~°’tm+nv""tm+n)_ [1 ™
havior policy other than that it be non-starving, i.e., that it m=1 =+l
never reaches a time when some state-action pair is never tmtn \/H"‘Jrl k21

visited again. The behavior policy can be nonstationary, + . |_| T
non-Markov, and completely unknown; it does not appear

anywhere in the definition of the estimator or its algorithm.Forn = 1, the tree backup estimator reduces to the familiar
one-step TD estimator, TD(0).

ety y ﬂ(&,a)Q(%a)>

k=tm+1 i=tm+1 aFay

The main idea of the new method, callede backupis
illustrated in Figure 2. At each step along a trajectory, therelhe tree backup estimator also has a simple incremental
are several possible choices of action according to the targé@nhplementation using eligibility traces. An online version
policy. The one-step target combines the value estimatesf this implementation is given by Algorithm 2. In general,
for these actions according to their probabilities of beingh can be chosen as a function of the statebut cannot
taken under the target policy. At each step, the behaviodepend on the actioa. A choice ofA that is dependent
policy chooses one of the actions, and for that action, onen the state can have empirical advantages. For example,
time step later, there is a new estimate of its value, baseih the experiments reported in the next section, the eligibil-
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Figure 3.Average performance of all algorithms. On the left the behavior policy chose 50-50 from the two actions. On the right the
behavior policy chose with 80-20 probabilities exactly opposite those of the target policy.

ity traces were divided at each step by mafs,a). This  get policy was to select the first action with 80% proba-
prevents the traces from decaying too quickly. bility and the second with 20%. The immediate rewards

were chosen uniformly randomly frof,1]. Two differ-
Theorem 3 For any non-starving behavior policy, for any ent behavior policies were used. In theiform behavior
choice ofA € [0, 1] that does not depend on the actions cho-case, both actions were equally likely, whereas indtie
sen at each state, the offline version of Algorithm 2 conferent behaviocase, the first action was selected with 20%
verges w.p.1 to § under the usual conditions an probability and the second with 80% probability, resulting

in a policy very different from the target policy. The initial
The proof of this result (see appendix) relies on showingstate of each episode was always the same. All the MDPs
a contraction property a8, for anyn, and on applying We constructed in this way terminated with probability one;
again the convergence theorem of (Jaakkola et al., 1994).we usedy = 1. As a performance measure of each estima-
tor after each number of episodes, we used the mean square
error between the estimator and the true action values, aver-
aged over the 100 tasks and over the 200 state-action pairs
We obtained empirical results with the explicit estima-within each task (state-action pairs that had never been vis-
tors, Q'S, Q'SW, QPP, and Q°PW, the one-step method, ited were excluded from the averages). This performance
TD(0), and a tree backup method using the normalizatiormeasure is shown for up to 1000 episodes in the two panels
by max1i(s,a) as discussed above. Except for the twoof Figure 3.

importe_mce Sar_“p"”g methqu, allwereimple_mented USin%he importance sampling estimator was generally quite
the offline versions of Algorithms 1 and 2, using appropri- o and had high variance. The weighted version per-

ate settings foot andA as discussed earlier. Not all estima- formed much better. Per-decision importance sampling
tqrs have online Versions (Wh'(.:h are potentially more .eﬁ"was relatively efficient in the long run in the uniform behav-

C|'ent), sowe gsed offline VErsions in all cases.to fac,'“taFelor case, but relatively slow in the different behavior case.
direct comparison of the underlying ideas. This choice 'SSurprisineg, the weighted version of per-decision impor-

also convenient because it results in entirely parameter-fret%-mce sampling performed fairly poorly in both cases, al-
algorithms. though still managing to beat the unweighted version in the

We compared the estimators on a suite of 100 randomiglifferent behavior case. The tree backup estimator was uni-
constructed MDPs. Each MDP had 100 nonterminal statefrmly the most efficient of all methods in the medium and
and one terminal state. In each nonterminal state, therl®ng term, beaten only by weighted importance sampling
were two actions available, and each action branched tby small amounts for small numbers of episodes.

4 randon_]I_y selecte_d next states with ran_do_m pI’ObabI|ItIe§n summary,
(the partition of unity was selected by picking three ran-
dom split points uniformly randomly frorf®, 1]). The tar-

5. Empirical Comparison

our results strongly favor the tree backup al-
gorithm, because of its superior overall performance and



because of its weaker requirements of the behavior policy.

6. Unifying Tree Backup and Per-Decision

In order to understand better the two multi-step TD al-

gorithms (tree backup and per-decision importance sam-

pling), consider the full trajectory tree presented in Figure )/ ;
4. The root of the tree is a state-action pair, and the tree con-

tains all the possible states and actions at each point. States

are represented by hollow circles, and actions are repre-

sented by filled circles. One trajectory through the tree can

be obtained by sampling the states at each ramification ac-

cording to the environment’s transition probabilities, and

by sampling actions according to the behavior policy. Figure 4.Full trajectory tree for an MDP

Both multi-step algorithms do backups along such trajecto-

ries. The per-decision importance sampling algorithm usegbout macro-actions compared to one-step methods (Pre-
the actual rewards obtained during the trajectory. Becausgup, 2000).

the sampling at each action ramification is done according

to the behavior policy probabilities, the importance sam-
pling correction is necessary to ensure correct estimateg.aeferences

The tree backup algorithm considers all possible actions aDietterich, T. G. (1998). The MAXQ method for hierarchi-
each step, not just the one taken. It backs up values accord- cal reinforcement learning?roceedings of the Fifteenth
ing to a cut like the one represented with the dotted line International Conference on Machine Learnirdorgan

in Figure 4. Because all action choices are considered in Kaufmann.

the backup, the convergence is guaranteed for any behavior

policy that is non-starving. Jaakkola, T., Jordan, M., & Singh, S. (1994). On the con-

his i . hat th laorith b vergence of stochastic iterative dynamic programming
This interpretation suggests that the two algorithms can be algorithms.Neural Computations, 1185-1201.

combined, without losing the convergence guarantees. If
at a given state, the behavior policy is Markov and it iskaelpling, L. P. (1993). Hierarchical learning in stochas-

known, we can use per-decision importance sampling. If tic domains: Preliminary results Proceedings of the
the behavior is unknown and/or non-Markov, we can use Tenth International Conference on Machine Learning

the tree backup algorithm. This mixture could ensure faster (pp. 167-173). Morgan Kaufmann.

and more stable error reduction than either algorithm alone.

We have not yet explored this idea empirically. Parr, R. (1998). Hierarchical control and learning for
Markov decision processe®octoral dissertation, Uni-

The two multi-step TD algorithms also have an interesting . e
versity of California at Berkeley.

relationship to multi-step Q-learning. In their control ver-
sion, both algo_rlthms cut the e|I.gIbI|Ity trace when.ever anPeng, J., & Williams, J. (1996). Incremental multi-step Q-
exploratory action is taken. Their updates are equivalent to learning.Machine Learning22, 283-290

Watkins's Q@) algorithm. ' ' '

Precup, D. (2000). Temporal abstraction in reinforce-
7. Conclusions ment learning Doctoral dissertation, University of Mas-

. _ sachusetts, Amherst. In preparation.
In this paper we presented four novel algorithms for us-

ing eligibility traces in off-policy learning. We proved that Rubinstein, R. (1981). Simulation and the monte carlo

these algorithms converge to correct action values under method NewYork: Wiley.

offline updating in the tabular case. These appear to be

the first convergence results for multi-step off-policy learn-Singh, S. P. (1992). Scaling reinforcement learning by

ing. We also showed that the tree backup algorithm con- learning variable temporal resolution modeRroceed-

verges correctly for non-stationary and non-Markov behav- ings of the Ninth International Conference on Machine

ior policies, as long as they are non-starving. This promis- Learning(pp. 406—415). Morgan Kaufmann.

ing algorithm also performed best in our empirical results.

Preliminary results have shown that it can speed learningutton, R. S., & Barto, A. G. (1998Reinforcement learn-
ing: An introduction MIT Press.



Sutton, R. S., Precup, D., & Singh, S. (1998). Intra-optionenvironment for only steps, then uses the current estimate
learning about temporally abstract actiosoceedings of the value function to approximate the remaining value:
of the Fifteenth International Conference on Machine

Learning(pp. 556-564). Morgan Kaufman. tk=1gg t+n-1

ka_ Itk I_l _+VnQ (S+ns8t4n) |_|

Sutton, R. S., Precup, D., & Singh, S. (1999). Between =1 P =41 D

MDPs and semi-MDPs: A framework for temporal ab-
straction in reinforcement learningArtificial Intelli-  We need to show th&" — Q"is a contraction mapping in
gencell2 181-211. the max norm. If this is true for any, then by applying the
general convergence theorem, tietep return converges
Watkins, C. J. C. H. (1989).Learning with delayed re- to Q™ Then any convex combination will also converge to
wards Doctoral dissertation, Cambridge University. Q™ For example, any combination using\aarameter in
the style of eligibility traces will converge Q™

Appendix Let Q(s,a,k) denote the set of all possible trajectorieskof

state-action pairs starting witls, a):
Proof of Theorem 1: P g wits,2)

We know that the classical importance sampling estimatorQ(s,a, k) = {(so,a0,51,1,- - - S_1,3_1)|S = S,a0 = a},
Q'S is consistent and unbiased:
and let w denote any such trajectory:
T—t T-1 W = (S, a0,S1,81,.--%-1,8-1). Then the expected value
E{ (Z V<lft+k> RS | s=sa=a b} =Q%(sa).  of the corrected truncated return for state-actigm) can
k=1 =1 P be expressed as follows:

We will show that the per-decision importance sampling m . _apl =
estimatorQPP has the same expected value@s. Let us { ls=sa=a } -
move the importance sampling correction inside the sum, n L k=17
and examine the expectation for tkéh term: S S PHolso=sa0=ab} r! o
k=1weQ(sak) =1
{\/‘ i |'| |St s,at—ab} + Pr{w| s =s,a = a,b}y'Q(sh,an) rlg
—t+l w)yeQ(s,a,n)
_ Ter1 Thyk—1 n k—1 k—1
=BV et 2L g A skt Ak a_ - T
{V( bir Bkt %080 Sk 1, Bk l} > 2 (Hpalla b(Sl,aJ)> Y F!H
Thok  Tor_1 k=1weQ(sak) \I= I=
E{bt—+ e |St o, .. S[+kaat+k7b}' n—-1 a —
e H e + 5 [ []rssb(s,a) | V'Q(s,an) |'|
Since the underlying environment is an MDP, the second weasan) \I=1 =1
factor can be re-written as: \/(_1
= rsk ps| ST, &)
Thik  To—1 kZl weg%’ak 1 I_! 1
E{m : —1 |S[+kaat+k7b} ko1
" ) +y' Q(sh,an) |'l pS s TS, &)
The expected value of this term is 1. Therefore, WeQ(s,ak) =
Tt _— By applying the Bellman equation fo@™ iteratively n
{ (z ¢<— rt+k> |—| | s=sa=a, b} times, we obtain:
i~t+1 P \ ot =
thk1 g Q(sa) = Trscq [ Psas TS &)
{ Z Y [ o | s=sa=a, b} k;meg%a,k) ' l_! !
i~t+1 D ‘
T a1
which concludes the proo. +ynw69%ak) Q(St+n @tn) l':! Ps 1 TS, )-

Proof of theorem 2: Theref
The proof s structured in two stages. First, we consider the eretore,
corrected truncated return correspondin@@. The cor- (n) AT e
rected truncated return sums the rewards obtained from thréax|E{ | b} Q(sa)| < WY(TS\%XIQ(S, a)—Q"(s,a)|.



This means that any-step return is a contraction in and we show the same holds f@ﬁfl(s,a). We can re-
the max norm, and therefore, by applying theorem 1 ofwrite nJrl(s,a) as follows:
Jaakkola, Jordan and Singh (1994), it converge&3to

B _ !
In the second stage, we show that by applying the updates nr1($3) =i +yagATr(&+1,a)
of Algorithm 1 forn successive steps, we perform the same p TR p
: ,a)(1-1y +ly ,a)),
update as by using thestep returrR™. The eligibility (Qa1, @) (1 latay) + lata 1 Qn (81, )
trace for state-action pafs, a) can be re-written as: wherely,, , is an indicator variable equal to 1af = a1
and 0 otherwise. Then we have:

b’ maXIE{Qn+1 $a) | b} —Q(s,a)| =

We have: max|rs +V§ (O Z n(s,a)

E ’ S/ a’)+| , QTB(SI,aI) | b
&+k-1(S,@)0t1k-1(s,@) = { aat+1 a'ag 1 }

M s

& —1$=yY P Y 1(s,a)Q(s,a)|
i ”ﬁ T (b y SR o - vmaxfz pajz n(s,a)
&\ o) T b(sac) et °
Q(St4+k-1,8t4+k-1)) E{ |a’at+1 Q(s,a)—Q'(s,a))+
n t+k— l t+n—1 +ly QTB S/,a _QT[ S/,al b
= z ek I_l +VnQ (St+n,t4n) I_l E a2 (Qn ),T (S, )b} |
K=1 LAY LAY < yr(TSlg)x|Q(s, a) —Q'(s,a)|.
_Q(Staat) X .
_ Rt( ) Qls,a) By applying now theorem 1 of Jaakkola, Jordan and Singh

(1994), we can conclude that anystep return converges

. . . . . . to the correct action value.
Since our algorithm is equivalent to applying a convex mix-

ture of n-step updates, and each update converges to coSince all then-step returns converge @", any convex lin-
rect Q-values, algorithm 1 converges to correct Q-values asar combination ofi-step returns also converges@d. In

well. o particular, we can use a fixex parameter, as is usually
Proof of Theorem 3: ggt]ee in TDQ), or even aA parameter dependent on the

The proof is again in two stages. First we show that

E{QIB(S, a) | b} — QM is a contraction, in order to apply For the second part of the proof, we show that applying
again theorem 1 of Jaakkola, Jordan and Singh (1994). Walgorithm 2 (with A = 1) for n steps is equivalent to using
use a proof by induction. Q!B(s,a). The eligibility trace for state-action pafs, a)

Let Q be the current estimate of the value function. Forcan be re-written as:

n=1: t+k
ask(sa) =y [] n(s,a)
maxE{Qi®(sa) | b} ~ Qs )| = o
, By adding and subtracting the weighted action value,
r(n’ax|r +VZ pEeTi(s,a)Q(s &) TStk 34k) Q(Sk, 2k) for the action taken on each step
s from the return, and regrouping, we have:
—r$—yy pi(s,a)Q(s,a)
7a’ n _lt+k—1
<ymaxQ(s.a) — Q"(5 ). Q=2+ 3 ¥ [T a0 (e

+Y ;T[ St+k> @) Q(St+k> @) — Q(Strk—1,Bt1k-1))
For the induction step, we assume that
5 . =Q(s,a) + z +k(%, ) dt4k,
@725|E{Qn (sa) |b} —Q(sa)| < =
Q(sa)l, which concludes the prooé.
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<ymaxQfP(s.a) -



