Prosthetic Devices as Goal-Seeking Agents
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Abstract—In this article we develop the perspective that
assistive devices, and specifically artificial arms and hands,
may be beneficially viewed as goal-seeking agents. We further
suggest that taking this perspective enables more powerful in-
teractions between human users and next generation prosthetic
devices, especially when the sensorimotor space of the pros-
thetic technology greatly exceeds the conventional myoelectric
control and communication channels available to a prosthetic
user. As a principal contribution, we propose a schema for
thinking about the capacity of a human-machine collaboration
as a function of both the human and machine’s degrees of
agency. Using this schema, we present a brief analysis of three
examples from the literature where agency or goal-seeking
behaviour by a prosthesis has enabled a progression of fruitful,
task-directed interactions between a prosthetic assistant and a
human director. While preliminary, the agent-based viewpoint
developed in this article extends current thinking on how best
to support the natural, functional use of increasingly complex
prosthetic enhancements.

I. THE PROSTHETIC FUTURE

Upper-limb prosthetic devices have evolved over the last
several hundred years from crude iron hands to exquisitely
designed bionic body parts [1], [2]. However, despite great
improvements in quality of life for those with lost limbs,
the state-of-the-art has yet to create a satisfactory substitute
for the nearly 1 in 200 Americans living with amputations
[1]-[3]. Significant advances have been made. Extensions
to hardware, software, and interfaces have paved the way
for increasingly more adaptive and functional prosthetic
technologies. Of note, the actuation capabilities of both com-
mercial and experimental powered upper-limb prostheses
far surpass the ability of users to manipulate all available
degrees of control [4]. Advances in software, shared control
between the human and the prosthesis, and machine learning
in the device itself are now needed to fully bridge the gap
between a user and their prosthesis [2], [5].

Prostheses are interesting in part because of the intimate
way control is shared between a human and their device
(Fig. 1); from a technical standpoint, the prosthetic setting
is both challenging and appealing due to the dynamic, non-
stationary nature of human environments [8]. Prosthetic
devices must therefore maintain and update a representation
of their environment, sharing some subset of their perception
of the world with their human user. Modern technology
enables increasingly powerful shared representations. Mus-
cular, neural and osseo-integration allow for direct connec-
tions between the human and the device [1], [2], [9]. On-
board cameras have been shown to facilitate real-time visual
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Fig. 1. Examples of human-prosthesis interaction. Left: a subject with an
amputation using the University of Alberta Bento Arm [6] with conventional
myoelectric control to complete a manipulation task. Right: control of a
supernumerary limb by a non-amputee subject [7].

object tracking and object recognition for grasp pre-shaping
[10]. Microphones and speakers facilitate natural-language
interactions with devices, as seen in related domains [11],
[12]. Sensory feedback and surgical practice have further
evolved to restore sensation to prosthesis users [13], [14].

Future prosthetic devices will receive an unprecedented
density of data about the user, their needs, and their en-
vironment. This stream of data will need to be skillfully
leveraged to enable the coordination of vast numbers of
complementary actuators and functions. As such, and in
addition to advances in communication streams between the
device and the human, prosthetic limbs will soon need to
actively build and improve their representation of the world
around them. Prosthetic limbs will be required to structure
a vast amount of data to better make decisions in support of
their users’ needs and goals.

The principal contribution of this work is therefore to
suggest that a prosthetic device should be an agent—i.e., that
it should be an autonomous system that both has and seeks
goals. In more general terms, we propose that the parts of
a larger information processing system (e.g., both sides of a
tightly coupled human-machine interface) are well thought
of as each being full information-processing systems with
goals. We further suggest that for maximum benefit all parts
of an interface should model the other parts as being goal-
seeking systems. In the remainder of this manuscript we will
develon the intuition behind an asent-based viewnoint.



II. GOAL-SEEKING COMMUNICATION AND CONTROL

There are multiple means by which the human and an
agent—e.g., an assistive robot like a prosthesis—can bene-
ficially interact to achieve the human’s objectives [11], [15],
[16]. In much of the existing literature, one or more feedback
channels are used as a means by which a non-expert can
train, teach, and interact with a system without explicitly
programming it. This shaping allows for the human to learn
how the robot accepts and interprets feedback, and for the
robot to learn what the human’s goals are for their shared
interaction [17]. A selection of representative examples are
briefly surveyed below. Pilarski et al. introduced the use
of actor-critic reinforcement learning for myoelectric limb
control and showed that a user could train a virtual robotic
appendage with a single, scalar reward signal provided by
the user [18]. Knox and Stone explored a wide variety
of strategies for incorporating feedback with environmental
reward. They found that Action Biasing and Control Sharing,
both using feedback as policy modifiers rather than changing
the reward function, produced the best results [19]. Griffith
et al. built on the work of Knox and Stone with Advise,
a framework to maximize the information gained from
human feedback by associating policy labels [20]. Advise
outperformed other modern methods in robustness to noise.
They also explored how other parameters, such as feedback
consistency, affected the performance of a learning agent.
Loftin et al. have further expanded the space of human
interaction through detailed investigation of human teaching
strategies and developed systems which model the human
feedback. Their systems learn in substantially fewer episodes
and with less feedback than other approaches [21].

III. AGENCY

We now turn to the specific case of a human interacting
directly with a prosthetic device, and define a schema for
thinking about the levels of agency that each side of the
human-machine interface may obtain. In what follows, we
will refer to the human as the director, and their prosthesis
or other assistive device as the assistant. For the purposes of
our present discussion, we define agency as the ability of an
autonomous system to have and seek to achieve goals. This
definition is similar to the Belmont Report (1979), wherein
a system assumes agency if it is “capable of deliberation
about personal goals and of acting under the direction of
such deliberation” [22]. Hallmarks of agency include the
ability to take actions, have sensation, persist over time,
and improve with respect to a goal; these hallmarks give
rise to an agent’s ability to predict, control, and model its
environment (including other agents).

Agency is not easily identified as present or absent in
a non-human system. As one contribution of the present
work, we therefore attempt to identify one viable schema
for thinking about agency in a prosthetic setting. Figure 2
presents this schema, where each level includes and extends
the capabilities of the preceding levels as follows:

1) Mechanism: The system acts in a fixed or prede-
termined way in response to the state or stimulus. For
example, the standard case of a body-powered prosthesis, or
a conventional mvoelectric controller that nrocesses EMG
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Fig. 2. Levels of goal-seeking agency during human-prosthesis interaction.
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signals via a fixed linear proportional mapping to create
control commands for the prosthetic actuators [23]. Even
mechanistic systems may be considered to have a degree of
agency—goals may be present in the form of error measures
or simple homeostatic control feedback loops.

2) Adapts over time: A changing mechanism. In addition
to acting mechanistically, the system has the capacity to
adapt or change in response to the situation and signals
perceived from the other agent. One clear way of thinking of
this case is a system that gradually acquires knowledge about
its situation in the form of changing parameters, thresholds,
or forecasts about how to act and what will happen in the
future (i.e., prediction and control learning). Adaptation can
occur over scheduled periods of time, as in the supervised
learning of a pattern recognition classifier, or during ongoing
experience [2], [24].

3) Has a goal: The system has defined goals or objec-
tives, with the intent to maximize or optimize some measure
of its own situation. One way that goals may be defined
is in the form of scalar signals of reward (success), as
in the computational and biological reinforcement learning
literature [25]. This level of agency is the common case for
the director—the human user of a commercially available
myoelectric or mechanical prosthesis.

4) Models the other agent as adapting: The agent views
the other agent as changing and building up expectations (for
example, predictions) during ongoing interaction, and in re-
sponse to the signals it generates. This alters the way the first
agent presents signals to the second agent. An example of
this level of interaction is an amputee (the director) training
a pattern recognition controller (the assistant), knowing that
assistant is adapting to the signals the director generates.

5) Models the other agent as having a goal: The agent
views the other agent as not only changing in response to
received signals, but also as having its own objectives. This
may be viewed as the agent having at least a preliminary
“theory of mind,” further altering the way one agent presents
signals to the other agent. Viewing another agent as an
adaptive, goal-seeking system enables more advanced forms
of direction, collaboration, and instruction.

Figure 3 wuses this schema to depict three example
combinations for the director and assistant that can be readily
identified from the contemporary literature. The ultimate
case is when both systems accurately think of the other as
havine a goal and makine predictions to achieve that goal.
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Fig. 3.  Combined levels of agency and the resulting capacity. a) The
standard setting for prosthetic control, where the director utilizes a fixed
mechanism; b) the case demonstrated by Edwards et al. [26], and in
commercially deployed pattern recognition, wherein the human interacts
with a prosthetic system known to acquire, maintain, and use predictions
(knowledge) in control; c) the case where the assistant has knowledge-
supported goals and the director views the assistant as having knowledge-
supported goals—for example, reward-based training of a myoelectric
controller by Pilarski et al. [18]. (n.b., boxes need not be equal in scale.)

In the examples that follow, we assume that a human
director has a set of goals that relate to their task, needs, and
environmental setting. Defining the goal of the assistant is
not always straightforward, but one possible and immediate
goal for the assistant is gaining the approval of the director.
Approval may be communicated to the assistant via any of
the normal communication channels between the two agents,
or through a privileged channel dedicated to reward. Like
an assistant in the corporate sense, a goal-seeking prosthetic
assistant would strive to maximize approval, but would also
have its own goals that may be overridden by directions
from the user. For example, the assistant may have the goal
to protect itself at the onset (to prevent its motors from
overheating during use or its battery from running dead),
but in order to secure the user’s approval, have the capacity
to align its behaviour over time to the user’s goals as they
become clear to the agent. How the goals of the director
and assistant can come to align in a general sense is an
interesting problem for future discussion.

IV. IMPROVEMENT THROUGH INTERACTION

So far we have considered the setting in which a com-
munication channel is opened up between the director and
the assistant. Communication will improve the lot of both
systems. If the receiver’s reward is not improved by the
information received, then it will ignore the information. If
the sender’s reward is not improved by what the receiver
does with the information, then the sender will not send
it. The sender can send any of many possible things. It
follows that the sender should vary its communication to
find the information to send that results in both systems
improving with respect to their goals. One example of a
simple progression is shown in Fig. 4.

We suggest that the most general and powerful way for
this mutual improvement to happen is when the two sides
are both goal-seeking systems and the discovered interaction
is good for both (in either the short or long terms). This
is in line with viewnoints from of the field of interactive
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Fig. 4. An example progression wherein the combined ability of the
director and assistant approaches its full capacity via ongoing human-
machine interaction. Over time and through better modelling of each others’
behaviour and the environment, the systems build up communicative capital
(shown as ticked boxes) that can be used to achieve their goals. One natural
type of communicative capital is knowledge in the form of predictions.

machine learning (surveyed in Section II), wherein a non-
expert director interactively trains a reinforcement learning
agent to perform according to the director’s goals in a
new or previously unspecified environment. In these forms
of interactive learning, the director must be aware of the
mechanisms that shape the agent’s choices, so as to be able
to use that knowledge to stage better interactions. How-
ever, progressive improvement is possible even in existing
myoelectric control systems where the assistant lacks explicit
goals (Fig. 2, Levels 1 or 2). We present three representative
cases of incremental improvement below, corresponding to
the cases shown in Fig. 3 (a—c).

A. Mechanisms: Conventional Myoelectric Control

Conventional myoelectric control interactions between
someone with an amputation and their prosthesis is a stan-
dard case of a goal-seeking agent (the director) interacting
with a mechanistic assistant (Fig. 3, a). In this setting, the
only agent capable of progressive change is the director,
who learns to better use the mechanism to achieve their
goals. The capacity of the complete system is therefore a
function of the director’s ability to learn, improve, and adapt,
with a fixed (but potentially significant) contribution from
the nature of the assistant. A comparable analogy is an elite
athlete adapting to their sporting equipment. We know from
clinical experience that training is a large part of successful
myoelectric control by people with amputations.

B. Learning: Predictively Enhanced Myoelectric Control

There are multiple examples of prosthetic director-
assistant interactions where the director views the assistant
as adapting (specifically, as making predictions or control
forecasts) and the assistant acquires knowledge about the
director to better execute the director’s intention (the pro-
gression depicted in Fig. 4) [2], [24], [26]. A first example
is commercial pattern recognition, wherein the director is
able to engage a training phase to inform the assistant about
the right motions to perform in response to their myoelectric
commands. The director becomes more skilled at providing
clear training commands, in part because of their knowledge
that the assistant is learning from their demonstrations. A
second examole is adantive switchine [261. wherein the



assistant learns and makes ongoing predictions about how a
user will switch between the many functions of a prosthetic
device. In adaptive switching, the director improves their
ability to quickly execute tasks based on the assistant’s
switching suggestions; at the same time, the assistant im-
proves its suggestions based on ongoing observations about
the director’s actions and preferences [26].

C. Goals: Reward-Based Myoelectric Control

Goal-seeking behaviour in prosthetic assistants is less
prevalent. However, previous work by Pilarski et al. demon-
strated how both predefined and also human-delivered re-
ward could be delivered to a goal-seeking assistant to gradu-
ally improve the control capabilities of a myoelectric control
interface [18], [27]. By using a goal-seeking reinforcement
learning agent to control the joints of a prosthesis, informed
by implicitly or explicitly acquired predictions about future
movement, the director-assistant team was found to be able
to progressively achieve greater levels of simultaneous multi-
joint myoelectric control. In these studies by Pilarski et al.,
the approval and disapproval was delivered by the director to
the assistant with full knowledge of the assistant’s learning
capacity. Extensions of these initial studies to more complex
settings are in progress, and should inform whether or not
this form of goal-seeking by the assistant holds merit for
daily-life myoelectric control by people with amputations.

V. CONCLUSION

In this work we developed a schema for thinking about
the levels of agency that are present during human-prosthesis
interaction, and suggested how increasing the agency of a
prosthesis (the assistant) may improve the capabilities of its
human user (the director). Using this schema, we examined
three examples of myoelectric control with varying degrees
of agency on the part of the prosthesis. While this work
is preliminary, and further studies are needed to examine
the impact of agency on prosthetic control capacity, we
believe that a goal-seeking viewpoint on assistive technology
contributes unique and complementary ideas to the future
development of a highly functional prosthetic devices.
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