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Abstract

We introduce the first algorithm for off-policy
temporal-difference learning that is stable
with linear function approximation. Off-
policy learning is of interest because it forms
the basis for popular reinforcement learning
methods such as Q-learning, which has been
known to diverge with linear function approx-
imation, and because it is critical to the prac-
tical utility of multi-scale, multi-goal, learn-
ing frameworks such as options, HAMs, and
MAXQ. Our new algorithm combines TD(λ)
over state–action pairs with importance sam-
pling ideas from our previous work. We prove
that, given training under any ε-soft policy,
the algorithm converges w.p.1 to a close ap-
proximation (as in Tsitsiklis and Van Roy,
1997; Tadic, 2001) to the action-value func-
tion for an arbitrary target policy. Variations
of the algorithm designed to reduce vari-
ance introduce additional bias but are also
guaranteed convergent. We also illustrate
our method empirically on a small policy-
evaluation problem, showing reduced vari-
ance compared to the most obvious impor-
tance sampling algorithm for this problem.
Our current results are limited to episodic
tasks with episodes of bounded length.

Although Q-learning remains the most popular of all
reinforcement learning algorithms, it has been known
since about 1996 that it is unsound with linear function
approximation (see Gordon, 1995; Bertsekas and Tsit-
siklis, 1996). The most telling counterexample, due to
Baird (1995) is a seven-state Markov decision process
with linearly independent feature vectors, for which
an exact solution exists, yet for which the approxi-

mate values found by Q-learning diverge to infinity.
This problem prompted the development of residual
gradient methods (Baird, 1995), which are stable but
much slower than Q-learning, and fitted value iteration
(Gordon, 1995, 1999), which is also stable but limited
to restricted, weaker-than-linear function approxima-
tors. Of course, Q-learning has been used with linear
function approximation since its invention (Watkins,
1989), often with good results, but the soundness of
this approach is no longer an open question. There
exist non-pathological Markov decision processes for
which it diverges; it is absolutely unsound in this sense.

A sensible response is to turn to some of the other
reinforcement learning methods, such as Sarsa, that
are also efficient and for which soundness remains a
possibility. An important distinction here is between
methods that must follow the policy they are learning
about, called on-policy methods, and those that can
learn from behavior generated by a different policy,
called off-policy methods. Q-learning is an off-policy
method in that it learns the optimal policy even when
actions are selected according to a more exploratory or
even random policy. Q-learning requires only that all
actions be tried in all states, whereas on-policy meth-
ods like Sarsa require that they be selected with spe-
cific probabilities.

Although the off-policy capability of Q-learning is ap-
pealing, it is also the source of at least part of its
instability problems. For example, in one version of
Baird’s counterexample, the TD(λ) algorithm, which
underlies both Q-learning and Sarsa, is applied with
linear function approximation to learn the action-value
function Qπ for a given policy π. Operating in an on-
policy mode, updating state–action pairs according to
the same distribution with which they would be ex-
perienced under π, this method is stable and conver-
gent near the best possible solution (Tsitsiklis and Van



Roy, 1997; Tadic, 2001). However, if state-action pairs
are updated according to a different distribution, for
instance, that generated by following the greedy pol-
icy, then the estimated values again diverge to infinity.
This and related counterexamples suggest that at least
some of the reason for the instability of Q-learning is
the fact that it is an off-policy method; they also make
it clear that this part of the problem can be studied in
a purely policy-evaluation context.

Despite these problems, there remains substantial rea-
son for interest in off-policy learning methods. Sev-
eral researchers have argued for an ambitious extension
of reinforcement learning ideas into modular, multi-
scale, and hierarchical architectures (Sutton, Precup
& Singh, 1999; Parr, 1998; Parr & Russell, 1998; Di-
etterich, 2000). These architectures rely on off-policy
learning to learn about multiple subgoals and multiple
ways of behaving from the singular stream of expe-
rience. For these approaches to be feasible, some effi-
cient way of combining off-policy learning and function
approximation must be found.

Because the problems with current off-policy methods
become apparent in a policy evaluation setting, it is
there that we focus in this paper. In previous work
we considered multi-step off-policy policy evaluation
in the tabular case. In this paper we introduce the first
off-policy policy evaluation method consistent with lin-
ear function approximation. Our mathematical devel-
opment focuses on the episodic case, and in fact on a
single episode. Given a starting state and action, we
show that the expected off-policy update under our
algorithm is the same as the expected on-policy up-
date under conventional TD(λ). This, together with
some variance conditions, allows us to prove conver-
gence and bounds on the error in the asymptotic ap-
proximation identical to those obtained by Tsitsiklis
and Van Roy (1997; Bertsekas and Tsitsiklis, 1996).

1. Notation and Main Result

We consider the standard episodic reinforcement learn-
ing framework (see, e.g., Sutton & Barto, 1998) in
which a learning agent interacts with a Markov deci-
sion process (MDP). Our notation focuses on a single
episode of T time steps, s0, a0, r1, s1, a1, r2, . . . , rT , sT ,
with states st ∈ S, actions at ∈ A, and rewards rt ∈ <.
We take the initial state and action, s0 and a0, to be
given arbitrarily. Given a state and action, st and at,
the next reward, rt+1, is a random variable with mean
ratst and the next state, st+1, is chosen with probabili-
ties patstst+1

. The final state is a special terminal state
that may not occur on any preceding time step.

Given a state, st, 0 < t < T , the action at is selected
according to probability π(st, at) or b(st, at) depending
on whether policy π or policy b is in force. We always
use π to denote the target policy , the policy that we are
learning about. In the on-policy case, π is also used to
generate the actions of the episode. In the off-policy
case, the actions are instead generated by b, which we
call the behavior policy.

In either case, we seek an approximation to the action-
value function Qπ : S × A 7→ < for the target policy
π:

Qπ(s, a) = Eπ
{
rt+1 + · · ·+ γT−1rT | st = s, at = a

}
,

where 0 ≤ γ ≤ 1 is a discount-rate parameter. We con-
sider approximations that are linear in a set of feature
vectors {φsa}, s ∈ S, a ∈ A:

Qπ(s, a) ≈ θTφsa =

n∑
i=1

θ(i)φsa(i),

where θ ∈ <n is the learned parameter vector. The
feature vector for the special terminal state is assumed
to be the zero vector so that the estimated value for
this state is (correctly) zero.

In this paper we restrict our attention to per-episode
updating, meaning that although an increment to θ
is computed on each step, θ is not actually updated
until the end of the episode (by a total increment, ∆θ,
equal to the sum of the increments on each step). The
increments for conventional TD(λ) under per-episode
updating are given by the forward-view equations:

∆θt = α
(
Rλt − θTφt

)
φt,

Rλt = (1− λ)

∞∑
n=1

λn−1R
(n)
t ,

R
(n)
t = rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnθTφt+n,

where φt is a shorthand for φstat , φt = 0 for t ≥ T , and

rt = 0 for t > T . R
(n)
t is called the n-step return and

Rλt is called the λ-return. This forward view can also
be implemented incrementally using eligibility traces
and a backward view (Sutton & Barto, 1998).

The most straightforward way to introduce impor-
tance sampling into linear TD(λ) is to multiply the
increments for each episode by the relative probability
of that episode occurring under the target and behav-
ior policies. If we define the importance sampling ratio

for time t as ρt = π(st,at)
b(st,at)

, then this relative probability

is ρ1ρ2 · · · ρT−1. Let us call this the naive importance



sampling algorithm. Our algorithm instead multiplies
only by the first t importance sampling ratios:

∆θt = α
(
R̄λt − θTφt

)
φtρ1ρ2 · · · ρt, (1)

where R̄λt is defined as Rλt above, except in terms of
the off-policy n-step return:

R̄
(n)
t = rt+1 + γrt+2ρt+1 + · · ·

+ γn−1rt+nρt+1 · · · ρt+n−1

+ γnρt+1 · · · ρt+nθTφt+n

The off-policy n-step return was introduced by Precup,
Sutton and Singh (2000) as part of their per-decision
importance sampling algorithm. They showed that the
importance sampling ratios correct for off-policy train-
ing such that

Eb
{
R̄λt | st, at

}
= Eπ

{
Rλt | st, at

}
,

where the subscripts on the expectations indicate the
policy in force (i.e., they indicate either off-policy
training, b, or on-policy training, π). Here we extend
this idea to the case of linear function approximation
by including the correction ratios in (1). We are now
ready to state our main result:

Theorem 1 Let ∆θ and ∆θ̄ be the sum of the parame-
ter increments over an episode under on-policy TD(λ)
and importance sampled TD(λ) respectively, assuming
that the starting weight vector is θ in both cases. Then

Eb
{

∆θ̄ | s0, a0

}
= Eπ{∆θ | s0, a0}, ∀s0 ∈ S, a0 ∈ A.

Proof: To simplify the notation, we henceforth take
it as implicit that expectations are conditioned on
s0, a0. Then

Eb
{

∆θ̄
}

= Eb

{ ∞∑
t=0

α
(
R̄λt − θTφt

)
φtρ1ρ2 · · · ρt

}

= Eb

{ ∞∑
t=0

∞∑
n=1

α(1− λ)λn−1(R̄
(n)
t − θTφt)φtρ1ρ2 · · · ρt

}
.

It suffices to show that this is the same as in on-policy
TD(λ), i.e., that, for any n,

Eb

{ ∞∑
t=0

(
R̄

(n)
t − θTφt

)
φtρ1ρ2 · · · ρt

}

= Eπ

{ ∞∑
t=0

(
R

(n)
t − θTφt

)
φt

}
.

Let Ωt denote the set of all possible trajectories
of state-action pairs starting with s0, a0 and going

through time t. Let ω denote one such trajectory and
pb(ω) its probability of occurring under policy b. Then

Eb

{ ∞∑
t=0

(
R̄

(n)
t − θTφt

)
φtρ1ρ2 · · · ρt

}

=

∞∑
t=0

∑
ω∈Ωt

pb(ω)φt

t∏
k=1

ρkEb

{
R̄

(n)
t − θTφt

∣∣∣ st, at}
(given the Markov property)

=

∞∑
t=0

∑
ω∈Ωt

t∏
j=1

paj−1
sj−1,sj b(sj , aj)φt

t∏
k=1

π(sk, ak)

b(sk, ak)

·
(
Eb

{
R̄

(n)
t

∣∣∣ st, at}− θTφt)
=

∞∑
t=0

∑
ω∈Ωt

t∏
j=1

paj−1
sj−1,sjπ(sj , aj)φt

·
(
Eb

{
R̄

(n)
t

∣∣∣ st, at}− θTφt)
=

∞∑
t=0

∑
ω∈Ωt

pπ(ω)φt

(
Eπ

{
R(n)

∣∣∣ st, at}− θTφt)
(using our previous result)

= Eπ

{ ∞∑
t=0

(
R

(n)
t − θTφt

)
φt

}
. �

2. Convergence and Error Bounds

Given Theorem 1, we can apply the analysis of Tsit-
skilis and Van Roy to prove convergence and er-
ror bounds. Their paper (Tsitsiklis & Van Roy,
1997) treated the discounted continuing (ergodic) case,
whereas here we consider the episodic case. Their
results for this case were published in the textbook
by Bertsekas and Tsitsiklis (1996). Gurvitz also ob-
tained similar results, and some of the ideas can be
traced back to his work (Gurvitz, Lin & Hanson, un-
published). Tadic (2001) proved a similar result using
different mathematical techniques, and a less restric-
tive set of assumptions.

Let d : S × A 7→ [0, 1],
∑
s,a d(s, a) = 1 be the

(arbitrary) distribution of starting state–action pairs.
Let Pπ be the state–action pair to state–action pair
transition-probability matrix for policy π. Let Dπ =∑∞
t=0 P

t
πd denote the vector in which Dπ(s, a) is the

expected number of visits to state–action pair s, a
in an episode started according to d. Define the
norm || · ||π over state–action-pair vectors by ||v||2π =∑
s,a v(s, a)Dπ(s, a)v(s, a).

We require a number of natural assumptions: (1) the
state and action sets are finite; (2) all state–action



pairs are visited under the behavior policy from d; (3)
both behavior and target policies, π and b, are proper ,
meaning that P∞π = P∞b = 0; (4) the rewards are
bounded; and (5) the step-size sequence {αk}∞k=0 sat-
isfies the usual stochastic approximation conditions:

αk ≥ 0,

∞∑
k=0

αk =∞, and

∞∑
k=0

α2
k <∞. (2)

In addition, we require (6) the variance of the product
of correction factors be bounded for any initial state:

Eb
{
ρ2

1ρ
2
2ρ

2
3 · · · ρ2

T

}
< B ∀s1 ∈ S,

which can be assured, for example, by simply bound-
ing the possible episode lengths. Nevertheless, this
remains a limitation of our result, as discussed fur-
ther below. Finally, let Qθ denote the approximate
action–value function (vector) for any parameter value
θ: Qθ(s, a) = θTφsa.

Theorem 2 Under the assumptions 1–6 above,
episodic importance sampled TD(λ) converges with
probability one to some θ∞ such that

||Qθ∞ −Qπ||π ≤ min
θ
||Qθ −Qπ||π

1

1− β
,

where β is the contraction factor of the matrix

M = (1− λ)

∞∑
k=0

λk(γPπ)k+1.

Proof: This result is a restatement of Tsitsiklis and
Van Roy’s result on page 312 of Bertsekas and Tsit-
siklis (1996). The assumptions together with our main
result immediately satisfy the conditions of their proof.
In particular, assumption 6 implies that our impor-
tance sampling corrections do not convert the usual
estimator to one of unbounded variance.

The assumption of bounded variance of the correction-
factor product (6) is restrictive, but not as restrictive
as it might at first seem. In many cases we can as-
sure its satisfaction by considering only “artificial” ep-
siode terminations superimposed on an original pro-
cess. For example, assumption 6 is trivially met if the
trial length is bounded. Even if our original MDP does
not produce bounded length trials, we can consider a
modified MDP that is just like the original except that
all trials terminate after Tmax steps. Sample trajecto-
ries from the original process can be used as trajecto-
ries for the modified process by truncating them after
Tmax steps. Our results assure stable convergence to a
close approximation to the true evaluation function for
the modified MDP and, if Tmax is chosen large enough

compared to γ or the mixing time of the original MDP,
then the solutions to the original and modified MDPs
will be very similar.

In our primary expected application area—learning
about temporally abstract macro-actions—this kind of
artificial termination is the normal way of proceed-
ing. A macro-action consists of a target policy and a
specified condition for terminating the macro-action.
In this application it is not the actual process that
terminates, only the macro-action. Nevertheless, the
problem is formally identical to the one presented in
this paper; our methods and results apply directly to
learning about macro-actions. And in fact, choosing
the termination process is part of designing the macro-
action. Thus we can design the macro-action to have
bounded variance of the correction term by terminat-
ing after Tmax steps, for example, or whenever the
correction factor becomes very large.

Thus, in many applications, the spectre of divergence
due to unbounded variance can be eliminated. Never-
theless, even when bounded, high variance (and thus
slow convergence) can be a major problem. In Sec-
tion 6 we consider how weighted importance sampling
methods might be adapted to reduce variance, or even
remove the need for assumption 6.

3. Restarting within an Episode

The importance sampling correction product in (1)
will often decay very rapidly over time, especially if
the episodes are long or if the behavior and target pol-
icy are very different. Although the episode may be
continuing, little more is learned once the correction
factor becomes very small. In such cases one might
like to pretend a new episode has started from an in-
termediate state of the episode. Of course, the effec-
tive starting distribution will then be different from
d, which might be considered to introduce additional
bias. Nevertheless, this may be desirable because of re-
duced variance. In this section we prove convergence
of this generalized algorithm.

To formalize the idea of starting anywhere within an
episode, we introduce a non-negative random variable
gt, which is allowed to depend only on events up to
(and including) time t. The value gt represents the
extent to which an episode is considered to start at
time t. The function g : Ωt 7→ <+ gives the expected
value of gt for any trajectory up through t. The for-
ward view of the generalized algorithm is

∆θt = α
(
R̄λt − θTφt

)
φt

t∑
k=0

gkρk+1 · · · ρt (3)



Note that this algorithm is identical to the original
importance sampled TD(λ) if g0 = 1 and gt = 0,∀t ≥
1.

Theorem 3 Let ∆θ and ∆θ̄ denote the sum of the pa-
rameter increments of the original importance-sampled
TD(λ) (1) and the generalized version (3) respectively,
Then, for any function, g, there exists an alternate
starting distribution dg such that

Eb
{

∆θ̄ | s0, a0 ∼ d
}

= Eb{∆θ | s0, a0 ∼ dg}.

Proof: To simplify notation, we allow additional sub-
scripts on the expectations to indicate the distribution
from which the initial s0, a0 are selected. Then

Eb,d
{

∆θ̄
}

= Eb,d


∞∑
t=0

t∑
k=0

gk

t∏
j=k+1

ρjα
(
R̄λt − θTφt

)
φt


= Eb,d


∞∑
k=0

∞∑
t=k

gk

t∏
j=k+1

ρjα
(
R̄λt − θTφt

)
φt


=

∞∑
k=0

Eb,d

gk
∞∑
t=k

t∏
j=k+1

ρjα
(
R̄λt − θTφt

)
φt


=

∞∑
k=0

∑
ω∈Ωk

pdb(ω)g(ω)Eb,s0=sk(ω),a0=ak(ω){∆θ},

where Ωk denotes the set of all trajectories ω of length
k and pdb(ω) denotes the probability of each such tra-
jectory occurring under b when starting from d. The
final expectation above is conditional on starting in
the indicated last state and action, sk, ak of ω. It is
convenient now to define Ωk,s,a as the set of all trajec-
tories of length k ending is s, a. Then we can rewrite
the above as

∞∑
k=0

∑
s,a

∑
ω∈Ωk,s,a

pdb(ω)g(ω)Eb,s0=s,a0=a{∆θ}

=
∑
s,a

∞∑
k=0

∑
ω∈Ωk,s,a

pdb(ω)g(ω)Eb,s0=s,a0=a{∆θ}

=
∑
s,a

Eb,s0=s,a0=a{∆θ}
∞∑
k=0

∑
ω∈Ωk,s,a

pdb(ω)g(ω)

= Eb,dg{∆θ},

where

dg(s, a) =

∞∑
k=0

∑
ω∈Ωk,s,a

pdb(ω)g(ω)

is clearly a valid alternative starting distribution. �

We have just proved that restarting in a general way,
at any point during an episode, is equivalent to a con-
ventional at-the-beginning starting distribution. The
latter case we have already proved to converge; thus
so must the generalized algorithm. The only difference
is that the value converged to will now depend on dg,
and thus on b, rather than on d and π alone.

4. Incremental implementation

The algorithm presented in the previous section can
easily be implemented in an incremental, backward-
view fashion, using an eligibility trace vector ~et of the
same dimension as θ. This implementation, which we
used in the experiments that follow, is given in Figure
1.

On every episode:

1. Initialize c0 = g0, ~e0 = c0φ0.

2. On every transition st, at → rt+1, st+1, at+1, for
0 ≤ t < T :

ρt+1 = π(st+1, at+1)/b(st+1, at+1)

δt = rt+1 + γ ρt+1 θ
Tφt+1 − θTφt

∆θt = α δt ~et

ct+1 = ρt+1 ct + gt+1

~et+1 = γ λ ρt+1 ~et + ct+1 φt+1

3. At the end of the episode,

θ ← θ +
∑
t

∆θt

Figure 1. Incremental implementation of importance-
sampled TD(λ)

Theorem 4 The backward-view description given in
Figure 1 is equivalent to the forward-view definition
(3).

Proof: From the algorithm definition,

ct =

t∑
k=0

gk

t∏
j=k+1

ρj .

Therefore, in the forward view, we can re-write the
sum of the updates that occur during an episode as:

T−1∑
t=0

α
(
R̄λt − θTφt

)
φt

t∑
k=0

gkρk+1 · · · ρt

=

T−1∑
t=0

α
(
R̄λt − θTφt

)
φtct.



In the backward view, the eligibility trace at time t is:

~et =

t∑
k=0

ckφk(γλ)t−k
t∏

j=k+1

ρj ,

and the sum of the updates that occur during an
episode is:

T−1∑
t=0

αδt~et =

T−1∑
t=0

αδt

t∑
k=0

ckφk(γλ)t−k
t∏

j=k+1

ρj

=

T−1∑
t=0

αctφt

T−1∑
k=t

(γλ)k−tδk

k∏
j=t+1

ρj

=

T−1∑
t=0

αctφt
(
R̄λt − θTφt

)
. �

5. An Empirical Illustration

To illustrate our algorithm we use the 11 x 11 grid-
world environment depicted in Figure 2. The MDP
is deterministic and has 4 actions, moving up, down,
left or right. If the agent bumps into a wall, it re-
mains in the same state. The four corner states are
terminal. The agent receives a reward of +1 for the
actions entering the bottom-right and upper-left cor-
ners, and −1 for entering the other two corners. All
the other rewards are 0. The initial state is in the
center, and the initial action is chosen randomly to be
right or left. The target policy chooses down 40%
of the time and up 10% of the time, with right and
left chosen 25% of the time. The behavior policy is
similar except with reversed up/down probabilities; it
chooses down 10% of the time and up 40% of the time.
In order to ensure that all the conditions of our con-
vergence theorem are respected, trials are limited to
1000 time steps. However, this upper limit was never
reached during our experiments.

The features used by the function approximator are
overlapping stripes of width 3, parallel to the vertical
axis. There are 13 such stripes. One consequence is
that under the target policy, allactions from the left-
most column have negative value, whereas all actions
from the rightmost column have positive values. The
situation is reversed under the behavior policy.

We implemented the incremental (backward view) ver-
sion of importance sampled TD(λ), with λ = 0 and
λ = 0.9, and updates taking place only at the end of
an episode. Because the results are very similar, we
only present the data for λ = 0.9. The initial parame-
ter of the function approximator was θ0 = ~0.
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Features
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+1

Figure 2. Gridworld MDP used in empirical illustration.
An 11 x 11 grid is overlayed with stripes, each 3 cells wide.
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Figure 3. Trajectory of two elements of the parameter vec-
tor, under our algorithm, converging to their asymptotic
values. The step size α was reduced over time.

Figure 3 shows the parameter values corresponding to
the leftmost and rightmost features, for the down ac-
tion, for a single learning run. We used a decaying
schedule for the learning rate parameter α, starting
with a value of α0 = 2−12 for T = 106 time steps,
then using α0/2 for 2T time steps, α0/4 for 4T time
steps, etc. As predicted by the theory, the parameter
vector converged to the correct value. Similar results
occurred for all elements of the parameter vector and
for all actions.

We also compared our algorithm with the naive impor-
tance sampling algorithm (Section 1). We expected
the naive algorithm to have higher variance than our
approach, due to the higher variance of the impor-
tance sampling correction factors. For each algorithm,
we experimented with fixed values of α between 2−12

and 2−17. For each parameter value, we performed 50



independent runs of 100000 episodes each, saving the
parameter values after every 100 episodes. Figure 4
compares the root mean squared error of the two algo-
rithm,s compared to the asymptotic parameter values,
for each learning rate, averaged over the 50 runs and
over the last 10 data points. As expected, our algo-
rithm showed significantly lower error than the naive
algorithm.

1

1.5

2

-12 -13 -14 -15 -16 -17

2.5

Root
Mean

Squared
Error

log2!

Naive IS

IS TD(")

Figure 4. Comparison of the naive importance sampling al-
gorithm with ours, after 100000 episodes.

6. Possibility of Weighted Importance
Sampling Methods

We have introduced a new, off-policy version of lin-
ear TD(λ) and shown that it converges near the best
solution consistent with its structure. However, ex-
cessive variance remains an issue, and there may be
algorithms that reach the same asymptotic solution
faster or under more general conditions.

One salient possibility is to devise some sort of
weighted importance sampling version of our algo-
rithm. Weighted importance sampling is widely known
to produce lower variance estimates than conventional
importance sampling, at the cost of introducing tran-
sient bias (bias that decreases to zero as the number
of samples increases to infinity).

For example, in our earlier work with table-lookup ap-
proximations (Precup, Sutton and Singh, 2000), we
discussed an importance sampling estimate

QISN (s, a) =

∑N
i=1Riwi
N

,

where each Ri is a return in an episode under the be-
havior policy after an occurrence of state–action pair
s, a, and the weight wi is a product of importance sam-
pling correction ratios ρt+1ρt+2 · · · ρT−1 (where t is the
time of occurrence of s, a, and T the last time, within
the episode). As in the current paper, this weight is
chosen such that the product Riwi has the proper

expected value for the target policy, i.e., such that
Eb{Riwi} = Qπ(s, a). By the law of large numbers,
QISN converges w.p.1 toQπ(s, a), if the Ri are bounded.
But the wi might have infinite variance, and so QISN
might also have unbounded variance. However, the
corresponding weighted version of this tabular impor-
tance sampling estimator,

QISWN (s, a) =

∑N
i=1Riwi∑N
i=1 wi

,

which also converges to Qπ w.p.1, has variance which
goes to zero asN grows, as we now show. First we need
an additional definition and some standard results (e.g.
Durrett, 1996):

Definition 1 A sequence of eN converges in proba-
bility to H iff, for any ε > 0,

lim
N→∞

Pr{|eN −H| > ε} = 0.

Theorem 5 Weak Law of Large Numbers. Let
{Xi}∞i=1 be a sequence of i.i.d. random variables
such that E{|Xi|} < ∞, then the estimator eN =
1
N

∑N
i=1Xi converges in probability to E{Xi}.

(Under these same hypotheses, the stronger law of
large numbers (convergence w.p.1) also holds, but we
will not need it for our result.)

Theorem 6 If |eN | is bounded, then convergence in
probability of eN to H implies that limN→∞ var(eN ) =
0.

Proof: Suppose that |eN | ≤ C, for some constant C.
This also implies that |H| ≤ C and that |eN−H| ≤ 2C.

Pick any ε > 0. Then:

var(eN ) ≤ E{(eN−H)2} ≤ ε2+4C2·Pr{|eN−H| > ε}.

Now take the limit as N →∞. Since the eN converge
in probability, the rightmost term goes to zero and so
limN→∞ var(eN ) ≤ ε2.

But this is true for any ε > 0, so the theorem follows.�

Using these we can show:

Theorem 7 For γ < 1, var(QISWN ) goes to zero as N
goes to infinity.

Proof: First we show convergence in probability.
We can write the estimator as a “top” part over a
“bottom” part (dropping the s, a everywhere):

QISWN =
TN
BN



where

TN =
1

N

N∑
i=1

Riwi and BN =
1

N

N∑
i=1

wi.

Because E{wi} = 1 is finite, we can apply the weak law
of large numbers twice here to show that TN converges
in probability to Qπ and BN converges in probability
to 1. Thus we know that the top is very close to Qπ

except for a tiny probability and the bottom is very
close to 1 except for a tiny probability. Now we can
ignore what happens with tiny probability; that will
correspond to the tiny probability with which QISWN

is allowed to be significantly different from Qπ. So
consider the cases when top and bottom are very near
Qπ and 1 respectively. If we pick the “very near” close
enough, then we can also bound the difference of the
ratio TN

BN
from Qπ

1 . So we get that QISWN is arbitrarily
close to Qπ except for an arbitrarily small probability,
i.e., QISWN converges in probability to Qπ.

Now we seek to apply Theorem 6, for which we need
only to show that |QISWN | is bounded. From its defini-
tion, |QISWN | can clearly be no greater than the largest
possible |Ri|. For bounded individual rewards and
γ < 1, we have |Ri| < rmax

1−γ . Thus, Theorem 6 ap-

plies and so limN→∞ var(QISWN ) = 0.�

Thus, in the tabular case the weighted algorithm has
vanishing variance. The same cannot be said for the
conventional importance sampling algorithm. It seems
plausible that a similar pattern of results could hold
for the case with linear function approximation. To
explore this possibility would of course require some
form of weighted importance sampling that was con-
sistent with function approximation.
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