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Abstract

Intelligent systems promise to amplify, augment, and
extend innate human abilities. A principal example is
that of assistive rehabilitation robots—artificial intel-
ligence and machine learning enable new electrome-
chanical systems that restore biological functions lost
through injury or illness. In order for an intelligent ma-
chine to assist a human user, it must be possible for a hu-
man to communicate their intentions and preferences to
their non-human counterpart. While there are a number
of techniques that a human can use to direct a machine
learning system, most research to date has focused on
the contrasting strategies of instruction and reward. The
primary contribution of our work is to demonstrate that
the middle ground between instruction and reward is a
fertile space for research and immediate technological
progress. To support this idea, we introduce the setting
of human-prompted switching, and illustrate the suc-
cessful combination of switching with interactive learn-
ing using a concrete real-world example: human control
of a multi-joint robot arm. We believe techniques that
fall between the domains of instruction and reward are
complementary to existing approaches, and will open
up new lines of rapid progress for interactive human
training of machine learning systems.

Smarter, Stronger, More Productive
Humans make use of automated resources to augment and
extend our physical and cognitive abilities. Machine-based
augmentation is especially prominent in the setting of re-
habilitation medicine—assistive devices like artificial limbs
and cochlear implants have taken on a central role in restor-
ing biological functions lost through injury, illness, or con-
genital complications. In particular, robotic prostheses have
made significant improvements to the quality of life and
functional abilities achievable by amputees (Williams 2011).

However, as prosthetic devices increase in power and
complexity, there is a resulting increase in the complexity of
the control interface that binds a prosthesis to a human user.
Despite the potential for improved abilities, many amputees
find the control of multi-function robotic limbs frustrating
and confusing; non-intuitive control is a principal cause of
prosthesis rejection by amputees (Peerdeman et al. 2011).

Starting with work in the 1960s, a number of increasingly
successful control paradigms have been developed to help

amputees direct their powered robotic prostheses. While
classical control remains the mainstay for current commer-
cial prostheses, machine learning has provided some of
the most successful methods for controlling next-generation
robot limbs. Examples of machine learning for multifunc-
tion prosthesis control include support vector machines, ar-
tificial neural networks, linear discriminant analysis, and re-
inforcement learning (Scheme and Englehart 2011; Micera,
Carpaneto, and Raspopovic 2010; Pilarski et al. 2011, 2012).

The use of artificial intelligence and machine learning is a
natural trajectory for automation: in an applications context,
we strive to make machines more intelligent so that we can
improve our control abilities, achieving greater power and
precision when addressing our goals.

Directing an Intelligent System
One consequence of human-machine collaboration is that
humans must find ways to successfully communicate their
intentions and goals to learning machines. Humans must
take on the challenge of directing intelligent automated
systems. Interaction is one way of addressing this chal-
lenge. Through ongoing interactions, a human can direct and
mould the operation of a learning system to more closely
match his or her intentions. Information from a human
trainer has been shown to allow a system to achieve arbitrary
user-centric goals, improve a system’s learning speed, in-
crease asymptotic performance, overcome local optima, and
beneficially direct a system’s exploration (Judah et al. 2010;
Kaplan et al. 2002; Knox and Stone 2012; Lin 1991–1993;
Pilarski et al. 2011; Thomaz and Breazeal 2008).

It is natural to expect that providing added instructional
information to a learning system will help drive the learn-
ing process (Lin 1992; Thomaz and Breazeal 2008). Inter-
active teaching is a dominant approach to human and ani-
mal learning, and techniques from these biological domains
seem to transfer well to the machine learning case. Build-
ing on a basis in biological learning, many approaches oper-
ate within the framework of reinforcement learning (Sutton
and Barto 1998) and deliver direction by way of generalized
scalar feedback signals known as reward; others provide ex-
plicit instruction in the form of demonstrations, performance
critiques, or semantically dense training interactions.

The use of reward and instruction during interactive learn-
ing has produced a number of important milestones. Previ-



Figure 1: The continuum of interactive training and direction
methods. There are a number of ways that human-generated
signals have been used to direct a learning machine. We
can characterize these interactions as lying within a two-
dimensional space. One dimension corresponds to how ex-
plicit the human signals are and the other corresponds to
the overall bandwidth or information density of the signals.
Most application domains lie along the diagonal between
full autonomy and full control, shown in red.

ous work has shown how trial-and-error machine learning
can be enabled or accelerated through the presentation of
human-delivered rewards and intermediate reinforcements.
Examples include the use of shaping signals (Kaplan et al.
2002), the combination of human and environmental re-
ward (Knox and Stone 2012), multi-signal reinforcement
(Thomaz and Breazeal 2008), and our preliminary work on
human-directed prosthesis controllers (Pilarski et al. 2011).
The presentation of interactive learning demonstrations or
instructions has also been shown to help teach a collection
of viable sub-policies even when a globally optimal policy
is challenging to achieve (e.g., Chao, Cakmak, and Thomaz
2010; Judah et al. 2010; Kaplan et al. 2002; Lin 1991–1993).
As such, leading approaches to the human training of a ma-
chine learner almost exclusively involve the presentation of
new information in the form of instruction or reward. These
human directions and examples supplement the signals al-
ready occurring in a machine learner’s sensorimotor stream.

Work on instruction and reward is representative of a
growing body of literature on interactive learning, and there
are a number of ways that non-interactive human guidance
has been used to direct learning machines. We suggest that
the continuum of human training and direction methods can
be usefully separated along three main axes:

Explicitness: Explicitness describes the degree to which
the signals from a human user contain explicit semantics,
and relates to the detail of voluntary human involvement. At
one end of this axis is reward, as in the reinforcement learn-
ing case of a scalar feedback signal (e.g., Knox and Stone
2012) or a binary shaping signal (e.g., Kaplan et al. 2002).
At the other extreme is instruction in the form of demonstra-
tion learning and supervisory control (e.g., Lin 1991–1993),

performance critiques following a period of action by the
learner (e.g., Judah et al. 2010), and the Socially Guided Ma-
chine Learning of Chao, Cakmak, and Thomaz (2010).

Bandwidth: Bandwidth refers to the rate and density with
which information is passed to a learning system, in terms
of signal frequency, signal complexity (binary, scalar, vec-
tor, nominal), and the number of distinct signalling channels.
Directive information may be as simple as a single binary
reinforcement or shaping signal (Kaplan et al. 2002), can in-
volve multiple signals or signal types being presented to the
learning system (Thomaz and Breazeal 2008), or can involve
processing with verbal or non-verbal cues (Chao, Cakmak,
and Thomaz 2010). Signals may be presented regularly dur-
ing real-time operation (Knox and Stone 2012; Pilarski et
al. 2011), or may be sparse and irregularly spaced with gaps
between signals (e.g., Chao, Cakmak, and Thomaz 2010).

Immediacy: Interaction may vary in terms of its timeli-
ness, from real-time interactions between a human and a
learner, to episodic, asynchronous, or offline interactions.
Highly interactive direction involves instantaneous or imme-
diate feedback signals about what the agent has done or is
about to do (Kaplan et al. 2002; Thomaz and Breazeal 2008;
Knox and Stone 2012). Less interactive direction occurs
when human signals are presented before or after a learner’s
operation—e.g., the a priori presentation of temporally ex-
tended training sequences (Lin 1991–1993) or a posteriori
performance evaluation (Judah et al. 2010). Fixed control
schemes, such as classical PID control and pre-defined re-
ward functions, occupy the far end of the immediacy axis.

We are interested in human-robot control settings where a
machine learner improves through ongoing, real-time inter-
action with the human user over an extended period of time.
Artificial limbs and assistive rehabilitation devices fall into
this category. As such, for the remainder of this work we
will deal with the case of interactive direction and therefore
focus on ideas of bandwidth and explicitness.

The two dimensional space formed by combining band-
width and explicitness is shown in Figure 1. The bottom
left of this continuum represents fully autonomous opera-
tion (no human direction), while the top right represents full
human control (explicit high-bandwidth supervision; no au-
tomation). The notion of sliding control between a human
and an autonomous system can also be represented on the
continuum shown in Figure 1. As one example, a reduction
in the number or frequency of signals needed from a human
user takes the form of a shift in communication bandwidth
(Figure 1, red arrows pointing left).

A critical region of the bandwidth/explicitness contin-
uum is the spectrum we define as the degree of human di-
rection—the line on the diagonal between full control and
full autonomy (Figure 1, red envelope). This spectrum rep-
resents a natural relationship between the complexity and
semantic content of human-derived signals. As shown by
a survey of recent literature, most human-machine training
and direction work to date has focused on either reward or
instruction—the lower left and upper right regions of the ex-



Figure 2: The setting of human-prompted switching (shown in red) is located in the middle ground between reward feedback
and human instruction. Markers suggest the positions of representative research examples in terms of the bandwidth/explicitness
continuum. Marker relationships are not to scale; locations are only intended to imply general characteristics of the methods.

plicitness/bandwidth continuum. The markers in Figure 2
suggest the position of representative research in terms of
the continuum between full autonomy and full human con-
trol. With few exceptions, the middle of the space between
instruction and reward remains surprisingly unexplored.

In the work that follows, we suggest that—for concrete
applications—the space between instruction and reward em-
bodies a fruitful area for the human direction of machine
learners, encompassing a rich array of techniques that bal-
ance human effort with communication efficiency. To pro-
vide traction in this domain, we now introduce the idea of
human-prompted switching.

Human-Prompted Switching
In many assistive technologies, human direction takes the
form of manual prompts that cause a machine to switch be-
tween its different functions or actions. We call this setting
human-prompted switching. In human-prompted switching,
a user is often faced with the task of controlling a ma-
chine that has more functions than the user can indepen-
dently actuate. In other words, the number of channels that
can be controlled by the user is smaller than the number
of controllable dimensions available within the mechani-
cal or computational system. This disparity may be due
to cognitive, physical, mechanical, or computational con-
straints on the human user’s ability to direct the system. As
such, the human user is required to switch their control be-
tween the system’s different functions, actuating only a sub-
set of the available control dimensions at any given time.
Switching-based interactions of this kind occur frequently in
human-machine contact; notable examples include surgical
robotics, teleoperation and telepresence, semi-autonomous
vehicle control, and assistive biomedical robotics.

Human-prompted switching is a versatile setting for
studying human direction and sliding autonomy in a ma-
chine learning system. Switching prompts by the user are
light in terms of cognitive demand, being less explicit than

most instructional interactions. At the same time, prompting
and switching signals from the user contain more semantic
content than a classical reward signal—a user’s switching
prompts uniquely specify both the correct switching action
and also the timing of a functional shift. As such, human-
prompted switching represents one example of a learning
scenario that lies in a central position between the extremes
of full control and full autonomy (Figure 2).

A key feature of switching-based interactions is that a
user’s control intent is implicitly presented by way of the
user’s switching actions. Directions from the human user
are available in-channel—i.e., within the normal sensorimo-
tor stream of the learning machine. In other words, action
or lack of action by the human side of the human-machine
interface provides an implicit directive to the learner. In
the ideal case, no input (or minimal input) from the user
is required—the fact that the human is interacting with the
system smoothly is positive, reinforcing feedback, and man-
ual changes or non-intuitive use is implicit negative feed-
back that the system needs to adapt its behaviour. Feedback
and reinforcement may therefore be extracted automatically
from the human’s use of the system. This idea has similari-
ties to the work of Kaplan et al. (2002); in their work, confir-
mation or lack of confirmation by a human trainer was used
by a robot learning system to generate alternate proposals
for action sequences.

The combination of prompted switching with interac-
tive machine learning can take several forms. In this work
we discuss two cases. In the first case, a system learns
to passively anticipate how a human will switch between
functions. Learned predictions about a user’s switching be-
haviour in different contexts are used to suggest appropriate
controllable functions to the user—the system will switch
only when prompted by the user, but will autonomously se-
lect the switching target. In the second case, the system will
switch functions autonomously according to its observations
about itself and its user. The system takes the initiative in
switching, but can have its actions overridden by a human’s



manual switching actions—if the system delays too long in
switching, the user will manually prompt it to switch func-
tions. In both situations, if the system selects an incorrect
function, the user will manually switch to the correct func-
tion. Human switching signals therefore provide implicit
feedback that can be used by a learning system to both al-
ter its immediate behaviour and update its learning parame-
ters. Prompting also provides a natural way to effect sliding
autonomy—the better a system performs, the less prompting
is required from its human user.

In what follows, we examine the combination of human-
prompted switching and learning via a representative
thought experiment (motor vehicle control) and one imme-
diately applicable case study: recent work by our group on
the human control of an assistive biomedical robot.

Thought Experiment: The Intelligent
Semi-Automatic Transmission

The automobile transmission is an excellent example of an
automated system that can occupy different locations along
the spectrum of human direction. With the manual transmis-
sion found in most sports cars, the human driver is given
full control over when and how the car will shift gears.
Conversely, in cars with automatic transmissions, the car
has full autonomy over the gearbox and the human does
not participate in switching gears. While relatively uncom-
mon, some cars have what is called a semi-automatic trans-
mission, or clutchless manual transmission. With the semi-
automatic transmission, the driver is able to manually switch
gears by pressing a toggle switch; the driver specifies the
need to switch gears, but does not actuate the clutch or ex-
plicitly move the transmission to the desired gear.

We now imagine the intelligent semi-automatic transmis-
sion. It is able to perform a switching action autonomously
in response to observations from its environment (e.g.,
speedometer or tachometer readings). Our intelligent trans-
mission begins with a reasonable policy for switching gears
in different situations. However, at any time the driver may
manually force the system to switch gears using a physi-
cal button on the steering wheel. In order to improve the
car’s performance in different situations—e.g., passing an-
other car or going up hill—the driver uses their input signal
to prompt the system to switch gears. Prompting may occur
if the system delays too long or if it switches to an inap-
propriate gear. Each time the user prompts the system, the
system updates its knowledge about the user’s preferences.

Over time, the learning system within the transmission ad-
justs its policy so that the user is required to provide less and
less manual prompting; control slides from frequent prompt-
ing on the part of the driver to mostly autonomous operation.
However, should the situation change—for example, should
the car now be in a different environment, like icy roads dur-
ing the car’s first winter—the driver may resume prompting
as often as needed to ensure the high performance of the
car. In this collaboration between a human and a machine,
the human is able to optimize the system’s performance by
providing simple, momentary prompts. Learning is a contin-
uous, ongoing process.

Figure 3: A table-top robot arm used to train new amputees.
The multiple functions of the robot are selected and con-
trolled using electrical recordings from three of the user’s
muscles, as processed by a real-time control computer.

Case Study: Dynamic Switching for an
Assistive Biomedical Robot

We now turn to a real-world example that combines learning
and prompting for the human control of a biomedical robot
with multiple functions. As described above, robot arms are
now being used as assistive devices by upper-limb amputees.
Control information for these devices is typically recorded
from the muscle groups on an amputee’s body. As a patient’s
level of amputation increases, there is a corresponding de-
crease in the number of available muscle recording sites; vi-
able control sites on an amputee’s body are often severely
limited in number (Williams 2011).

A lack of discrete control sites restricts the number of
prosthesis functions that can be simultaneously controlled
by an amputee (Scheme and Englehart 2011). The standard
approach in this situation is to give an amputee the ability
to manually switch how their available control channels in-
fluence the different joints or functions of their prosthesis.
User switching is therefore a key feature in most commer-
cial prostheses with more than one function.

In recent work, we presented an interactive, learning-
based approach for dynamically switching between the dif-
ferent joints of a robot arm (Pilarski et al. 2012). The plat-
form for our experiments was a table-mounted robot with
motors located at its hand, wrist, elbow, and shoulder joints
(Figure 3). This system was designed by Dawson, Fahimi,
and Carey (2012) to help prepare new amputees for the con-
trol of a powered commercial prosthesis. As in commer-
cial artificial limbs, muscle activity recorded from the user’s
body was converted into control commands for the robot
limb. Two recording channels were combined to control the
velocity of a user-selected joint. A third recording channel
was used as a manual switch to shift control between the
arm’s different joints according to an expert-designed (fixed)
cyclic order. This configuration allowed a user to sequen-
tially control the arm’s four degrees of freedom by contract-
ing and relaxing different muscle groups.



Algorithm 1 Online Learning of General Value Functions

1: initialize: w, e, s,x
2: repeat:
3: observe s
4: x′ ← approx(s)
5: for all joints j do
6: observe joint activity signal rj
7: δ ← rj + γwT

j x
′ −wT

j x
8: ej ← min(λej + x, 1)
9: wj ← wj + αδej

10: x← x′

The prediction of future joint activity pj at any given time is
sampled using the linear combination: pj ← wT

j x

One downside to a switching-based myoelectric control
approach is that a user can spend an unacceptably large por-
tion of their time shifting their control between different
joints or functions. In a 20.7min task with the robot arm, we
found that a skilled non-amputee subject spent more than
10.4min (∼ 50%) of their time switching between different
joints. We explored the use of a machine learning system to
reduce the magnitude of these switching-related delays.

In contrast to systems with a fixed switching order, our
system learned to dynamically adapt the switching sugges-
tions presented to the human user (Pilarski et al. 2012).
By interactively learning the user’s switching preferences,
we hoped to minimize the number of required switching
prompts. In our approach, dynamic switching order sug-
gestions were formed out of learned knowledge about the
user’s control behaviour. Switching prompts and joint actu-
ation by the user provided the interactive direction signals
needed to shape the system’s learning. Human use of the
system’s switching suggestions implicitly confirmed their
correctness; prompting in the form of additional switching
actions served as corrective feedback, reinforcing the user’s
intended switching decision in a given situation.

Learned knowledge took the form of temporally extended
anticipations and predictions about the user’s joint control
preferences and switching prompts. Learning occurred on-
line using a reinforcement learning approach, in this case
an implementation of General Value Functions (Sutton et
al. 2011) and Nexting (Modayil, White, and Sutton 2012).
As described in Algorithm 1, predictions about joint activ-
ity were represented using generalized value functions, and
learned in real time using temporal difference methods. The
weight vectors wj for each general value function were up-
dated at each time step using new information about the cur-
rent state of the system (x′) and the signals of predictive
interest (rj). The binary state vector x′ was approximated
from the real-valued input space s using a tile coding func-
tion approximation method (Sutton and Barto, 1998), here
denoted approx(s). For each joint j, a temporal difference
error signal (denoted δ) was formed using a joint activity
signal rj and the difference between the current and future
predicted values for this signal (computed from the weight
vector using the linear combinations wT

j x and γwT
j x

′, re-
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Figure 4: Predictions about human joint control activity. Our
system learned in real time to anticipate a user’s switching
preferences during their operation of a multi-joint robot arm.
Anticipation is shown in terms of the system’s predictions
about the human’s joint control signals and switching sig-
nals. Shaded areas of the plot indicate human control of a
given joint (the observed signal of interest). The system’s
temporally extended predictions about this control activity
are shown as solid red lines. These results show prediction
accuracy after 15min of online learning.

spectively). Next, a trace ej of the current feature vector was
updated in a replacing fashion, where ej was an eligibility
trace vector with λ as the corresponding eligibility trace de-
cay rate. This trace ej was used alongside the error signal δ
to update the weight vector wj for each value function. Here
α > 0 was a scalar step-size parameter. Learned predictions
pj for each signal rj were sampled from the weight vector
wj and current feature vector x according to pj = wT

j x.
Four predictions were learned in parallel, with one pre-

diction for the motion of each user-driven joint. By ranking
the magnitude of these predictions prior to manual switching
by the user, the learning system was able to form an adap-
tive switching order. In other words, simple relationships be-
tween the predictions were used to formulate the system’s
switching suggestions. These suggestions depended on both
context and learned knowledge about a user’s preferences.
Learning updates occurred in real time (every 20ms), and
took into account an observation space comprised of all four
joint angles on the robot arm and 28 other sensors relating
to the robot arm and the human’s recorded muscle activity.
For a full description of the learning mechanisms and ex-
perimental procedures summarized in this case study, please
see Pilarski et al. (2012).

Figure 4 shows an example of the system’s predictions af-
ter 15min of real-time learning from its interactions with a
human user. The predictions made by the learner correctly
matched the true (computed) observations, and rank order-
ing these predictions accurately anticipated the next joint
or joints to be used by the human. We compared the sys-
tem’s adaptive (dynamic) switching order to both the expert-



designed switching order mentioned above, and the optimal
switching order as computed post-hoc from the interaction
data. Our dynamic switching approach was found to signifi-
cantly decrease the switching time and number of switching
prompts required from a human user. The switching orders
generated by the learning system indicated a 14% decrease
in switching time on the target task, as compared to the op-
timal fixed switching order computed for this data (a sav-
ings of 1.5min out of the total 20.7min task time). When
compared to the fixed, expert-designed switching order, the
dynamically generated switching order indicated a potential
decrease of 16% (1.7min) in total transition time. This ad-
vantage is expected to increase as the number of actuators or
control options in the switching order increases.

In this case study, the user retained control over switch-
ing actions and their timing. Learning allowed the system
to anticipate the user’s needs, streamlining the control inter-
face. As learning progressed, the system was able to reduce
the number of manual switching prompts required from the
user. In 70% of all switching events in the testing data, the
user’s desired switching choice appeared first in the dynami-
cally generated switching order, requiring only a single man-
ual prompt to achieve control of the desired joint (Pilarski
et al. 2012). In the remaining 30% of all switching events,
the user’s desired choice appeared second or third in the
dynamic switching order, requiring one or more additional
switching prompts to achieve control of the desired joint.
Based on our observations about the average time needed
for a user to deliver multiple switching prompts, increasing
the first-choice suggestion accuracy to 100% would have led
to an additional time savings of 1.47min. Thus, even with a
perfect oracle for switching suggestions, transitions would
still have occupied 7min (30%) of the 21min task time.

To further improve these savings and allow switching
time to approach zero, the requirement for manual switching
prompts would need to be reduced and eventually removed.
As was suggested by our thought experiment on the intelli-
gent semi-automatic transmission, this requires a learning
system that is able to initiate switching actions in an au-
tonomous or semi-autonomous way, and that can directly
impact both the nature and timing of switching events. Our
preliminary results indicate that switch timing can be pre-
dicted to a high degree of certainty using the same learning
methods described in this case study. We therefore believe
that it would be straightforward to shift the described exper-
iments into a setting where the system takes on some degree
of autonomy over the switching actions.

Taken as whole, our experiments with dynamic switch-
ing on the robot arm indicated a clear area of application for
learning within the context of prompted switching. We are
currently evaluating our dynamic switching approach with
a population of upper-limb amputees, and are preparing to
translate our techniques to a second problem domain involv-
ing a dexterous hand prosthesis with multiple grip patterns.
In addition to time savings, we expect dynamic switching
to reduce user frustration and cognitive load, and qualita-
tive studies with users are underway. Future work will ex-
pand our amputee studies to include sliding autonomy with
system-initiated switching.

Figure 5: Example of application switching on a Mac OS X
desktop environment. Switching is a common aspect of our
day-to-day human-computer interaction.

Between Instruction and Reward
In the work presented above, we explored one specific ex-
ample of interactive machine learning in the middle ground
between instruction and reward. Instead of trying to increase
the number or magnitude of human interactions with the sys-
tem during learning, we suggest that instruction can occur
implicitly from human prompting within the sensorimotor
stream. In other words, the action or lack of action by the hu-
man side of the human-machine interface provides implicit
feedback. By combining prompted switching and learning, a
human retains the ability to exert direct control over their as-
sistive device. At the same time, the learning system is able
to adapt its choices and actions to better meet the human’s
control intentions, without the need for training information
or explicit direction from the user. The human’s use or disuse
of a proposed function or mode becomes a directive signal
to the learner.

A similar approach is widely used in existing personal
computing interfaces (Figure 5). Mobile and desktop com-
puters include mechanisms to prioritize, promote, and high-
light control options that are frequently or recently deployed
by a user—e.g., applications, contacts, or menu options. On-
line learning of the kind described in the present work pro-
vides one clear way to extend interface adaptation mecha-
nisms into the domain of real-time human-robot interaction,
and to give existing techniques the ability to interpret con-
text and human intent at greater levels of detail.

Prompted machine learning has the added advantage that
human direction does not need to be demarcated into periods
of training and execution. The amount of prompting required
can also change over time, opening up the possibility for
reducing the required direction (or getting more out of the
same level of direction) as learning progresses. Put differ-
ently, the combination of interactive learning with prompt-
ing allows human input to shift over time with respect to the
signalling continuum formed by bandwidth and explicitness
(Figure 1). Prompted switching therefore facilitates a nat-
ural approach to sliding autonomy, incrementally reducing
the cognitive and supervisory load on a human user.

The key message of the case study presented above is that
prompted machine learning has powerful and immediate ap-
plication to real-world problem domains. One readily acces-
sible domain is video conferencing and robot gaze control,
following the recent work of Denk (2012). Another domain
is the task of efficiently switching between applications or



menus on a personal computer or mobile computing device,
as discussed above (Figure 5). However, the potential utility
of learning in a prompted switching setting is not limited to
standard assistive tasks and robotic platforms. More whim-
sical examples include the human control of a distributed
swarm of flying semiautonomous vehicles, actuation of a
non-physiological prosthesis (for example, a robotic octo-
pus arm or a telescoping gripper), and augmenting cognitive
abilities with a tightly coupled memory or computation de-
vice. As such, we suggest that there is an exciting space of
applied research to be found between the cases of instruction
and reward; regions of this space may be immediately ex-
plored using a combination of switching and real-time ma-
chine learning. In addition, we believe prompted machine
learning can be combined with existing interactive learning
approaches for added benefit.

Conclusions
Artificial intelligence and machine learning provide the tools
to amplify human capacity, bringing power and precision to
our control of assistive technologies. The principal contribu-
tion of our work is to show that the middle ground between
instruction and reward is an important territory for human-
machine collaboration. To support this idea, we introduced
a setting that balances between the extremes of full auton-
omy and full control: human-prompted switching. The com-
bination of prompted switching with interactive machine
learning works in practice to streamline the operation of
a multi-joint robot arm, and is immediately applicable to
other challenging real-world problems. Prompting also en-
ables a natural form of sliding autonomy. Based on these
observations, we believe that human-prompted switching—
and other methods that occupy the space between instruction
and reward—will soon yield powerful new ways for humans
to direct their assistive machines.
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