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Abstract— Integrating learned predictions into a prosthetic
control system promises to enhance multi-joint prosthesis use by
amputees. In this article, we present a preliminary study of dif-
ferent cases where it may be beneficial to use a set of temporally
extended predictions—learned and maintained in real time—
within an engineered or learned prosthesis controller. Our
study demonstrates the first successful combination of actor-
critic reinforcement learning with real-time prediction learning.
We evaluate this new approach to control learning during the
myoelectric operation of a robot limb. Our results suggest that
the integration of real-time prediction and control learning may
speed control policy acquisition, allow unsupervised adaptation
in myoelectric controllers, and facilitate synergies in highly
actuated limbs. These experiments also show that temporally
extended prediction learning enables anticipatory actuation,
opening the way for coordinated motion in assistive robotic
devices. Our work therefore provides initial evidence that real-
time prediction learning is a practical way to support intuitive
joint control in increasingly complex prosthetic systems.

I. INTRODUCTION

The natural movement of human limbs relies on the
coordination and scheduling of the multiple actuators that
drive their motion. Synergies (both learned and innate) are
thought to govern the timing and fluid motion of joints,
ensuring that each joint is properly aligned throughout
complex sequences of human movement [1], [2]. Elegant
coordination of this kind is currently missing from most
if not all prosthetic devices, and, in particular, myoelec-
tric prostheses—electromechanical devices that map surface
electromyographic (EMG) signals to control commands for
a robotic appendage. The problem of naturally coordinat-
ing multiple actuators becomes more critical as prosthetic
technology improves to meet the functionality, control, and
feedback needs of amputee users [3]–[6]. New experimental
prosthetic systems have actuation capacities that approach
those of a biological limb [7], [8]. However, even with
surgical advances toward new human-machine interfaces [9],
[10], it remains challenging for amputees to provide a rich set
of signals as control commands for a highly actuated robotic
limb. As amputation becomes more severe, the number of
signals an amputee can provide decreases, further limiting the
functionality and controllability of their myoelectric devices;
the simultaneous proportional control of multiple actuators
is still an open and challenging problem [3], [6].

As suggested by contemporary literature on motor plan-
ning in humans, an important part of coordinating and
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planning actions may be anticipatory movements enabled by
motor predictions in the brain [2], [11], [12]. Predictions
are also thought to be learned as a precursor to motor skill
acquisition in humans, with prediction learning occurring at a
faster timescale than control-related learning [11]. A similar
integration of learned anticipatory predictions into the control
of prosthetic actuators could alleviate some of the barriers to
multi-joint prosthesis use by amputees, especially amputees
with limited signal recording sites on their amputated limbs.

Prediction is not restricted to use by autonomous bio-
logical systems—prediction and anticipation play a major
role in recent advances in automation research, robotics,
and machine intelligence. There is growing international
interest in predictive approaches to robotic control (e.g.,
[13]–[15]), including ideas extended from classical model-
predictive control [16]. Typically, methods for predictive
robot control involve predictions that span only a single
timestep into the future, and most require that predictive
models be computed offline prior to use [17]. In contrast,
recent work by our group has demonstrated computationally
efficient methods for learning and maintaining a large set
of temporally extended predictions in real time [17]–[21].
There are a number of compelling reasons for seeking to
integrate online or offline predictions into a robotic control
system. Of note, predictive representations of state have been
demonstrated to improve the performance and learning speed
of reinforcement learning systems, successfully compressing
(generalizing) large state spaces and enabling data-driven
learning methods with both high representational capacity
and compactness [22]–[24]. Prediction learning is also a key
part of much of the present body of work on real-valued and
classifier-based myoelectric decoding, wherein predictions of
instantaneous motor intent are distilled from the complex
signal space being received from an amputee’s body and their
robotic device [4], [6], [13], [25].

While offline prediction learning and engineered predictive
control has received much attention in the literature (as noted
above), the integration of real-time prediction learning into
myoelectric control is an area with a number of remaining
open questions. In particular, no studies have been conducted
to evaluate how real-time prediction learning methods can
be deployed in a general sense to enable intuitive multi-
joint prosthetic control. Studies are also needed to objec-
tively assess the costs and benefits of adding a secondary
learning system to engineered or learning-based myoelectric
controllers—online prediction learning entails a new subsys-
tem with related parameters to optimize and balance.

In this article, we therefore seek to provide a first set
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Fig. 1. Schematic showing the flow of information through the experi-
mental setup. A controller forms new robot joint velocity commands using
myoelectric information from the human user, sensor readings from the
robot limb, and predictions from a real-time machine learning system.

of insights and preliminary answers to the following open
questions regarding the integration of real-time prediction
learning into multi-joint myoelectric control:
• Can real-time prediction learning improve the quality

of learned or engineered prosthesis control policies?
• Can real-time prediction learning allow a prosthetic

system to adapt during online operation without the
need to re-learn or re-calibrate its controller?

• Can real-time prediction learning facilitate the control
of multiple actuators that exceed the control dimensions
available to a human user (or effect synergies of the kind
suggested by d’Avella et al. [1])?

• Can the use of temporal extension in real-time predic-
tion learning help a controller plan anticipatory move-
ments for more natural, coordinated multi-joint motion?

• Can the use of real-time prediction learning allow the
compression of prosthetic input signal spaces into fewer
content-rich signals to speed controller learning (as in
low-dimensional embeddings [1], [25])?

• Do the benefits of adding a second learning subsystem
promise to outweigh the increased complexity and op-
timization challenges it entails?

We explore these questions within the context of human-
driven myoelectric control, using control-learning techniques
from continuous-action Actor-Critic Reinforcement Learning
(ACRL). Our intent is not to present the reader with a perfect
control approach for simultaneous joint actuation; rather we
hope to shed new light on the different ways real-time
prediction learning methods can be used to support intuitive
joint control in increasingly complex prosthetic systems.

II. METHODS
As shown in Fig. 1, the context for our experiments was

the real-time human myoelectric control of a multi-joint
robot arm. In this setting, the number of control channel pair-
ings available to the human user was less than the number of
control dimensions enabled on the robot system. Able-bodied
subjects were asked to freely actuate two joints of the robot
arm using classical myoelectric control. The control system
was tasked with learning and maintaining a control policy for

Fig. 2. Experimental setup for these experiments, which includes an
Aldebaran Nao T14 Robot Platform and a DelSys Bagnoli 8 EMG system.

one additional actuator, such that the actuator’s instantaneous
position was appropriate given the user’s action choices.
Suitability of the achieved configuration was evaluated in
terms of a set of real-valued angular targets for the third
joint—desired angles were assigned for all human-controlled
effector positions in advance of the task, as described below.

The control system received joint angle inputs 〈θe, θh, θw〉
from the robot platform (Nao T14, Aldebaran Robotics,
France) and EMG signals 〈Ch1,...,Ch4〉 from a recording
system attached to the human subject (Bagnoli 8 EMG
System with DE3.1 electrodes, DelSys, USA). Output control
commands were actuator velocity signals 〈θ̇e, θ̇h, θ̇w〉. This
experimental setup is shown in Fig. 2. As described in further
detail below, for a subset of the explored control approaches
the controller also received a set of one or more predictions
〈Pe, Ph, Pw, ...〉 learned in real-time during each trial.

Myoelectric control of the robot’s elbow and hand actua-
tors was performed by each subject via conventional linear-
proportional control. Using the specific approach described
previously by Pilarski et al. [20], [26], mean-absolute-value
signals recorded from the biceps, deltoid, wrist flexor and
wrist extensor muscle groups were mapped to joint velocity
commands using the muscle pairings bicep/deltoid and wrist
flexor/extensor, shown as Ch1/2 and Ch3/4 respectively in
Fig. 1. The subjects were free to move the two joints under
their control, but had no direct myoelectric control over the
robot’s wrist actuator.

Wrist targets, denoted θ∗w, were specified as a function
of θe and θh to emulate the configurations achieved by a
natural limb in simple grasping-and-placing functional tasks.
When the user-controlled joints were both moved to within
0.1rad of one of their endpoints, the new values of θe and θh
we used to deterministically select a contingent wrist target
according to a pre-defined function. For example, when the
user effected an open hand and fully extended the robot’s
elbow, the desired wrist pose was set to be palm down (as if
to grab an object resting on a flat surface), while when the
user effected an open hand and bent elbow the desired wrist
configuration was palm up (as if passing the grasped object
to another person).



A. Learning a Control Policy in Real Time using ACRL

ACRL is an approach to control learning that is both com-
putationally suitable for real-time deployment (incremental
and linear in both processing and memory) and also allows
the learning of continuous, real-valued control policies that
are appropriate for robot actuator control. One contribution
of the present work is to assess the feasibility of ACRL
for intuitive multi-actuator control during direct patient-robot
interactions, extending our previous demonstrations with pre-
recorded myoelectric data and offline training [26]. For our
present experiments, the system’s action policy was learned
online using previously described methods for deploying
standard ACRL within the context of myoelectric control
learning [26], optimized as per observations by Degris et al.
[27]. These methods are summarized as follows.

Control actions proposed by the learning system, denoted
a, were sent to the robot as joint velocity signals, in this case
real-valued commands indicating the desired wrist velocity
θ̇w. At each time step, actions were drawn from a normal
distribution; parameters of the normal distribution were func-
tions of the system’s learned weight vectors wµ and wσ as
given by θ̇w ≈ a ← N{µ = wT

µx(s), σ = exp[wT
σ x(s)]},

where x(s) was a linear tile-coded function approximation
of the input signal space s [26]. To allow the system to
better explore the task space during learning, selected actions
persisted for three time steps (∼100ms). The learning system
was presented with a reward signal r, the state approximation
for the current time step x(s), and a state approximation for
the subsequent time step x(s′). Standard temporal-difference
learning was used to update the weight vector v in the critic.
Actor weight vectors wµ and wσ were updated according
to compatible features for the policy parameterization (in
this case, the normal distribution). Replacing eligibility traces
(ev in the critic) and accumulating eligibility traces (eµ, eσ
in the actor) were used to accelerate learning [27]. Trace
decay rates λv, λw and step sizes αv, αµ, ασ (determined
empirically) governed the magnitude of the weight vector
updates. A single step of this incremental learning procedure
was implemented as follows:

1: δ ← r + γvTx(s′)− vTx(s)
2: ev ← min[1.0, λvev + x(s)]
3: v← v + αvδev
4: eµ ← λweµ + (a− µ)x(s)
5: wµ ← wµ + αµδeµ
6: eσ ← λweσ + [(a− µ)2 − σ2]x(s)
7: wσ ← wσ + ασδeσ

B. Real-time Prediction Learning

Another contribution of the present work is to explore
the use of real-time temporally extended prediction learn-
ing to supplement ACRL and conventional joint control
approaches for increased actuation capacity. In recent work,
we described a generalized prediction learning approach
based on reinforcement learning [19], and demonstrated
how learned temporally extended predictions can accurately

forecast signals during robot control by both amputees and
able-bodied subjects [20], [21]. Predictions were phrased as
a linear combination of a learned weight vector, here denoted
vp, and a state approximation xp(s) (n.b., this need not be
the same approximation function used in ACRL learning).
Predictions P for a given signal rp were then computed
using P = vTp xp(sp), where vp was updated on each time
step using the following incremental procedure:

1: δp ← rp + γpv
T
p xp(s

′
p)− vTp xp(sp)

2: ep ← min[1.0, λep + xp(sp)]
3: vp ← vp + αpδpep

As in the ACRL procedure above, temporal-difference
learning was used to update the weight vector vp. Replacing
eligibility traces (ep) were again used to accelerate learning
[27], where the trace decay rate λp and step size αp (de-
termined empirically) governed the magnitude of the weight
vector updates; γp was the time scale or degree of temporal
extension for each prediction. As such, each learned predic-
tion approximated the exponentially discounted expectation
of a signal with a time scale of 1/(1− γp) time steps [20].
As discussed in our prior work, predictions of this kind
can be specified for arbitrary signal types, and with respect
to different temporal extension levels and control policies
[19]. Using the above ACRL and predictive methods as a
basis, we now examine how a learned set of sensorimotor
predictions can be integrated into the space of input signals
for a myoelectric joint controller.

C. Experimental Comparisons

A principal goal of our study was to suggest and compare
methods for actuating one or more supplementary joints in
response to human actions and intent. We divide the span
of possible methods into direct control policies, wherein
the control actions are a direct pre-scripted mapping from
input signals to joint velocity commands, and learned control
policies, acquired over the course of time (in this case via
ACRL). We further divide the span of methods into reactive
and predictive methods. In the reactive case, only instanta-
neous measurements from the system are used in a control
policy. In the predictive case, temporally abstracted expec-
tations of one or more system signals are given as inputs
to a controller. As evidenced by the breadth of approaches
noted in the literature, the number of possible combinations
of predictive and reactive information into a control policy is
vast. As such, we have limited our preliminary exploration
to the five specific cases described below. For clarity, we
begin with simple cases and incrementally add complexity
in an effort to evaluate the effect of predictive knowledge
and understand its suitability for different scenarios.

1) Direct W-Reactive Control: In our experimental setting
of interest, the actuator target θ∗w is inferred from user control
actions or defined by the user on a moment-by-moment basis.
As the new target is not known until it is reached, one simple
control policy is to observe θ∗w at every point and output an
action a that moves θw as quickly as possible toward the



target angle. This approach assumes that the target angle can
be known and observed by the system at all times.

2) Direct W-Predictive Control: While it is reasonable to
assume that θ∗w can be known during an initial training or
calibration phase, in many cases a measure of the target
angle will be unavailable during deployed operation. One
approach is therefore to learn a prediction of the target signal,
denoted Pw∗, during a training phase and then directly link
this prediction to the system’s action choices during use. Pw∗
was used in place of θ∗w within the controller above, moving
θw as quickly as possible towards the anticipated value of the
target angle. The use of a temporally extended prediction as
a control target was also expected to help reduce or remove
control delays, as compared to the purely reactive case above.

3) Full-Reactive ACRL Control: In cases where the exact
value of θ∗w is unknown or unspecified, it may become
necessary to learn the correct control policy from less specific
feedback signals like a scalar reward signal or human-
delivered good-bad feedback [26], [29]. A first natural ap-
proach to this case is an ACRL controller that is given
as its input a full selection of salient signals from within
the human-robot system: s = 〈θe, θh, θw, θ̇e, θ̇h,Ch1–Ch2,
Ch3–Ch4〉; this control learner received negative rewards
proportional to the difference between the current and target
wrist angles: r = −|θ∗w − θw|, in radians.

4) EH-Predictive ACRL Control: As a predictive exten-
sion of the previous case, we explored the use of predictive
signals regarding the two user controlled joints as input to
the ACRL learner, in addition to the robot’s current wrist
angle: s = 〈Pe, Ph, θw〉; the control learner received reward
as described above. This configuration was also expected to
show greater anticipatory movement than a learner based on
immediate measurements from the user-controlled joints.

5) W-Predictive ACRL Control: Finally, should θ∗w be
available during training, there may be advantages to learn-
ing a control policy that takes into account anticipatory
knowledge about the target angle θ∗w, but does not directly
follow Pw∗ as a target. To examine this idea, we created an
ACRL control learner with an input space s = 〈Pw∗, θw〉; a
prediction of the target wrist angle was available as an input
signal to the learning system. Reward was given as described
above. Faster learning was expected for this approach via its
reduced input state space and predictive compression.

D. Testing Procedures

Multiple trials were performed using each of the five
control cases. Each trial began with a 1.7min pre-learning
phase, wherein subjects were allowed to familiarize them-
selves with the control of the robot. To provide a base-
line error value, the wrist actuator was controlled using
the Direct W-Reactive control policy during pre-learning.
21min of machine learning followed pre-learning, during
which the ACRL control learners and/or prediction learners
freely updated their internal weights and policies (n.b., to
provide stable starting values for ACRL cases with predictive
state inputs, prediction learners began their updates during
pre-learning). Throughout learning and pre-learning subjects

remained in full control of the robot’s elbow and hand actu-
ators; however, they were cued by the system to switch their
pose every 5–15s in order to maintain a regular distribution
of poses throughout the trial and allow the fair comparison of
achieved wrist control policies. All subjects gave informed
consent in accordance with the study’s authorization by the
University of Alberta Health Research Ethics Board.

All ACRL systems used the same function approxi-
mation approach; the learners’ input signal space s was
mapped into a binary feature vector using tile coding as
per Pilarski et al. [26]. The real-time prediction learners
used to approximate Pe, Ph and Pw∗ all were presented
with a signal space comprised of s = 〈θe, θh, θ̇e, θ̇h,Ch1–
Ch2, Ch3–Ch4〉. As detailed in previous work [20], signals
were normalized to their maximum ranges prior to use in
function approximation; tile coding approximation involved
two levels of discretization on each signal axis (3 and 5
for ACRL learners and 4 and 9 for prediction learners,
with 5 and 8 overlapping tilings respectively) and a single
bias unit. ACRL learning parameters were set as follows
and remained unchanged for different tests and subjects:
αv = 0.1/m,αµ = 0.005/m,ασ = 0.5αµ (ασ = 0.25αµ
for offline learning), γ = 0.96, λw = 0.3, λv = 0.7; m
denotes the number of non-zero features in the binary feature
vector x(s). Parameters used in real-time prediction were
λp = 0.999, γp = 0.97, and αp = 0.3/m. All weight vectors
were initialized to 0, and and σ was bounded by σ ≥ 0.01.
Learning updates occurred at 30Hz (33ms time steps); all
signal acquisition, control, and computation was done on a
single MacBook Pro 2.53 GHz Intel Core 2 Duo laptop.

III. RESULTS

The five control approaches presented above were com-
pared in terms of the accuracy of their achieved wrist control
policies over the learning phase of each trial, with accuracy
measured in terms of the system’s reward received at each
time step (a reflection of joint control error). Approaches
were also evaluated in terms of the qualitative behaviour of
their final policies (for example, the potential for anticipatory
or preemptive natural movements). In order to assess the
convergence and expected asymptotic performance of the
learning methods during longer trials, we also compared
the performance of the different approaches during iterative
offline learning passes through each of the recorded online
datasets using a simulated wrist actuator.

A. Quantitative Assessments

Figure 3a presents a learning curve comparison for the
predictive and reactive control approaches over ∼20min of
learning. Traces show the reward received by each method,
averaged over four independent trials performed by two sub-
jects; plotted data were binned into 100 time step segments.
As shown, all three ACRL approaches undergo a period of
exploration before slowly converging toward policies that
produce lower error (greater reward). For this number of
runs, no statistically significant quantitative differences in
received reward were observed between the ACRL methods



(a)

(b)

Fig. 3. Comparison of predictive and reactive control learning approaches
(n=4) over the course of ∼20min of online learning, following a 1.7min
pre-learning phase: (a) binned per-time-step reward over time, and (b)
quartile analysis of median values shown over the last 1.7min of learning,
as compared to 1.7min of the direct reactive policy during pre-learning.

after 20min. As seen in Fig. 3a, top trace, Direct W-
Predictive control received more reward in all cases than
ACRL, learned a viable policy in ∼2.5min, and showed con-
tinued performance increases over the course of learning as
the accuracy of its learned wrist target predictions increased.

Visible differences between control approaches were ob-
served through an analysis of reward values over the last 3k
(1.7min) timesteps of learning. Figure 3b displays a quartile
analysis of the received reward over this period. As shown by
the median values (notch centres) and their 95% confidence
bounds (width of notches), Direct-W Predictive achieved a
better final control policy than all three ACRL methods,
approaching the reward received by the Direct W-Reactive
Controller. Position of the first and third quartile lines
(blue box tops and bottoms, respectively) convey observed
relationships between the different ACRL approaches and
their end-of-run performance.

As suggested by the performance observed during offline
iterative learning (Fig. 4), continued online learning is ex-
pected to improve the tracking performance of the ACRL
learners. Traces in Fig. 4a show the reward received by
each method, averaged over the 16 online data files recorded
from the two subjects; plotted data were binned into 100
time step segments. For this number of runs, salient differ-
ences were observed between ACRL learners during the first
20min of offline learning; W-Predictive ACRL demonstrated

(a)

(b)

Fig. 4. Comparison of predictive and reactive control learning approaches
(n=16) over the course of ∼50min of offline learning (2.5 passes through
21min of logged online learning data, following 1.7min of pre-learning): (a)
binned per-time-step reward over time, and (b) quartile analysis of median
values shown over the last 1.7min of learning.

a statistically significant increase in learning speed over the
other two ACRL approaches. Direct W-Predictive control
maintained performance superiority over the ACRL methods
during offline learning.

B. Quality of the Learned Policies

Figure 5 presents examples of wrist control trajectories
achieved at the end of the learning phase by the Direct W-
Predictive controller and the three ACRL approaches after
both online learning and offline iterative learning. After
17min of learning both predictive and reactive ACRL learn-
ers achieved the desired wrist trajectory, though visible oscil-
lation around the target profile were still visible. Following
2.5 iterations of offline learning the profiles had converged to
tightly track the target trajectory. Stochasticity during early
learning was partly due to the rate of convergence of σ in
the actors’ policies—at 17min, the σ values computed from
wσ at each step were still observed to be ≥ 0.3, leading
to continued exploratory actions around the learned policy
mean µ. As shown in Fig. 5ae, Direct W-Predictive was able
to closely track the wrist target profile, giving much better
qualitative performance than ACRL learners trained for the
same amount of time. However, we did observe small but
noticeable spikes in joint angle near some transition points;
these spikes corresponded to residual errors in the prediction
learner’s forecasts (as Pw∗ was directly mapped to θw).
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(e) (f) (g) (h)
Fig. 5. Comparison of target (grey line) and achieved (red line) wrist trajectories after (a–d) ∼20min of online learning and (e–h) ∼50min of offline
learning. Shown for (a/e) Direct W-Predictive control, (b/f) Full-Reactive ACRL, (c/g) W-Predictive ACRL, and (d/h) EH-Predictive ACRL.

WReactDirect WPredDirect(20min) WPredDirect(3min) WPredACRL(50min)

(a) (b) (c) (d)
Fig. 6. Examples of target (grey), achieved (red), and predicted (dashed blue) wrist trajectories over a 4s period for (a) Direct W-Reactive control, (b–c)
Direct W-Predictive control at the end and start of learning, and (d) W-Predictive ACRL control after 50min of offline learning.

C. Capacity for Preemptive Movement

The degree of motor anticipation displayed by each
method provides another important area for comparison.
Figure 6 shows representative results indicating the ability
of each method to provide preemptive actuator motion. As
shown in Fig. 6a, the Direct W-Reactive policy suffers from
a minor but consistent delay inherent to the robot control
setting. Conversely, the anticipatory information used in the
Direct W-Predictive controller, Fig. 6bc, provided proactive
motion that occurred in advance of the change in the target
wrist trajectory; the predictive controller consistently started
wrist motion before the target policy changed, arriving at
the desired target shortly after the human-controlled elbow
and hand joints ceased moving. In Fig. 6bc, predictions of
the target trajectory (dotted blue trace) precede both the
effected robot actuator position (red trace), and the target
trajectory (grey trace). Predictive ACRL approaches also
showed potential for preemptive motion, as depicted in Fig.
6d. More work is needed to quantitatively compare the
amount of anticipation achievable by predictive and reactive
ACRL methods following asymptotic convergence.

IV. DISCUSSION

Can real-time prediction learning improve the quality
of learned or engineered prosthesis control policies? Our
results suggest that direct predictive control learning may
provide a way to quickly develop control policies for supple-
mentary prosthetic joints. Direct predictive control was able
to learn a reasonable wrist-actuation policy in only 2.5min,
and consistently improved this policy to the point that it
compared favourably to a direct reactive control policy with
full persistent knowledge of the target trajectory. However,
a direct predictive approach is only viable in cases where a
joint target function is explicitly available to a system during
calibration or training. For cases where only a surrogate or
simplified representation of the target trajectory is available
(in the form of either a reward/success signal or a compressed
target signal), both reactive and predictive ACRL controllers
were found to be able to learn a viable target policy from a
scalar reward signal and low-complexity combinations of dif-
ferent instantaneous and anticipatory input signals. A learned
approach like ACRL also appears suitable for cases where
the specifics of the human-machine system are unknown,
or where it is challenging to distill the system’s dynamics



into a concrete mapping between target configurations and
individual actuator commands. Our three ACRL approaches
learned in a timeframe amenable to human use, suggesting
they may be suitable for use in patient-based trials. We also
expect that with additional training and/or experience re-use,
ACRL learning could result in policies that are superior to
those of direct predictive controllers. While a direct mapping
from prediction to motor commands will transmit any errors
made by the real-time prediction learner (Fig. 5ae), ACRL
with an objective function should be able to learn a policy
that takes into account spurious predictions (Fig. 6d); this
expectation needs to be extensively tested in future work.

Can real-time prediction learning allow a system to adapt
during online operation without relearning its controller?
Based on our results, we expect the use of two independent
learning systems may allow a controller to adapt to real-
time changes without a time consuming re-calibration pro-
cess. Prediction learning progressed much faster than control
learning in our study, as in studies of human motor learning
[11]. Our ACRL controllers learn a policy that is contingent
on predictions; when changes occur in the user or their
device, these predictions can be automatically updated and
maintained by the independent prediction learner without the
need to change the policy learned by the ACRL system.
This approach also promises to benefit existing prosthetic
pattern recognition approaches, where temporally extended
predictions can serve as adaptive inputs to a standard classi-
fier. Detailed analysis of learning rates and the capacity for
real-time adaptation of predictive and reactive ACRL control
learning approaches is an important area for further study.

Can real-time prediction learning facilitate the control
of multiple prosthetic actuators and effect synergies? While
wrist targets in our study were specified as a simple function
of two user-controlled joints, it is easy to imagine settings
where there is no clear way to map user-achieved poses
to high-dimensional multi-actuator configurations, or where
target configurations are subjective and need to be defined
by the user through methods such as human-delivered re-
ward [26], [29], [30] and kinesthetic teaching [31]. Our
presented methods are amenable to reward functions pro-
vided in terms of binary success/failure feedback, and cases
where human users provide scalar reward indicating their
approval/disapproval so as to train abstract, user-defined
control policies (e.g., using the techniques of Knox and Stone
[29], as supplemented for ACRL by Vien and Ertel [30]). It
is also reasonable for a device’s user to desire target poses
that take into account movement history, poses that vary or
change over time (i.e., have a progression or desired non-
static trajectory), and poses that depend on additional state
information such as grip force or explicit user cues (e.g.,
vocal commands). These extensions seem reasonable with
more varied input signal spaces and function approximation
strategies, and are open areas for future work.

Can the use of temporal extension in real-time prediction
learning help a prosthetic controller plan anticipatory move-
ments for coordinated multi-joint limb motion? We showed
that the use of real-time predictions allowed both direct

and learned controllers to initiate anticipatory motions that
help remove control and mechanical delays, moving joints
preemptively in advance of changes to the target joint con-
figuration. Interestingly, the reactive ACRL controller was
also found to exhibit motor anticipation on some transitions.
Our observations suggest that this behaviour was enabled
by information contained in the movement of the user-
controlled joints; as some joints move more slowly than
others (in this case, our robot’s hand actuator), the controller
learned to pick up on sight motor cues in the environment
that signalled an impending transition. As the level of task
richness increases (e.g., toward the complexity of daily
functional tasks) we expect that both reactive and predictive
controllers should be able to increase their ability to forecast
complex motor trajectories. Additional state information, for
example abstracted historical features of motor activity, may
enable improved long-term forecasting during control. As
suggested in our previous work [20], signal-based predictive
planning of this kind is expected to help enable natural or
synergistic multi-joint motion in high-dimensional actuator
spaces when an amputee’s control channels are precious and
limited; the capacity for computationally efficient ongoing
prediction learning also facilitates multi-joint control polices
that respond to and compensate for ongoing variations that
occur in a patient’s signals and their use of an assistive
device’s multiple functions [21].

Can real-time prediction learning allow the compression
of a large input state space into content-rich signals to
speed controller learning? The use of prediction is known to
potentially abstract a large and possibly more complex state
space into one or more clear and information-rich signals
that can be used by a control learning system [22]–[24].
As one example from the present study, the W-Predictive
ACRL learner compressed the complete user-control state
space into a scalar approximation of the target function that
increased the learning speed of the ACRL system (as shown
in Fig. 4). Our preliminary comparison of W-Predictive
ACRL with the other ACRL methods indicates that there may
be learning advantages to adding additional input signals into
a prediction learner’s state space instead of adding them to
that of a predictively coupled ACRL or other control learner.
Whether similar levels of compression can be achieved by the
careful manual design of a function approximation system
for a single learner remains to be tested.

Do the benefits of adding a second learning subsystem
promise to outweigh the increased complexity and optimiza-
tion challenges it entails? As discussed above, our results
indicate a number of potential advantages to using separate
prediction learning and control learning subsystems. These
advantages include the capacity for unsupervised real-time
adaptation, anticipatory movements, and improved control
learning speeds. The use of a separate prediction learning
system also allows temporally extended predictions to be
made simultaneously at different timescales, providing ad-
ditional controller state information that cannot be captured
effectively in the standard implementation of an ACRL
control learner or most conventional control approaches.



V. CONCLUSIONS

The comparisons presented in this article serve as a pre-
liminary survey of different cases where it may be pragmatic
to include a set of temporally extended predictions—learned
and maintained in real time—in the input space of a direct or
learned prosthesis controller. Building on other approaches
where a predictive model is either hand engineered or learned
in an offline setting, we here provide a way to acquire and
maintain a temporally abstract predictive model during the
ongoing operation of a human-robot system, and then use this
predictive model to support real-time multi-joint control.

Our study contributes a first successful deployment of
ACRL in concert with real-time prediction learning. We
demonstrated this new control-learning approach during the
live myoelectric control of a multi-joint robot limb, and
validated our online observations with extended offline ex-
periments. Our initial results suggest that coupling prediction
learners and control learners may be a viable way to speed
control policy acquisition, allow unsupervised adaptation
in deployed myoelectric controllers, and drive synergistic
actuators that extend the control dimensions available to a
human user. Finally, our study shows that both learned and
direct predictive controllers have the capacity to perform
anticipatory and coordinated actuator movements. These
results provide a starting place for research into more natural
control interfaces for multi-actuator prostheses.
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