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Adaptive Artificial Limbs: A Real-time Approach
to Prediction and Anticipation

Patrick M. Pilarski, Michael R. Dawson, Thomas Degris, Jason P. Carey,
K. Ming Chan, Jacqueline S. Hebert, and Richard S. Sutton

PREDICTING THE FUTURE has long been regarded as a
powerful means to improvement and success. The ability

to make accurate and timely predictions enhances our ability
to control our situation and our environment. Assistive robotics
is one prominent area where foresight of this kind can bring
improved quality of life. In this article, we present a new
approach to acquiring and maintaining predictive knowledge
during the online, ongoing operation of an assistive robot.
The ability to learn accurate, temporally abstracted predic-
tions is shown through two case studies—able-bodied subjects
engaging in the myoelectric control of a robot arm, and an
amputee participant’s interactions with a myoelectric training
robot. To our knowledge, this work is the first demonstration
of a practical method for real-time prediction learning dur-
ing myoelectric control. Our approach therefore represents a
fundamental tool for addressing one major unsolved problem:
amputee-specific adaptation during the ongoing operation of a
prosthetic device. The findings in this article also contribute
a first explicit look at prediction learning in prosthetics as an
important goal in its own right, independent of its intended
use within a specific controller or system. Our results suggest
that real-time learning of predictions and anticipations is a
significant step towards more intuitive myoelectric prostheses
and other assistive robotic devices.

MYOELECTRIC PROSTHESES

Assistive biomedical robots augment the abilities of am-
putees and other patients with impaired physical or cog-
nitive function due to traumatic injury, disease, aging, or
congenital complications. In this article we focus on one
representative class of assistive robots: myoelectric artificial
limbs. These prostheses monitor electromyographic (EMG)
signals produced by muscle tissue in a patient’s body, and
use the recorded signals to control the movement of a robotic
appendage with one or more actuators. Myoelectric limbs
are therefore tightly coupled to a human user, with control
processes that operate at high frequency and over extended
periods of time. Commercially available devices include pow-
ered elbow, wrist, and hand assemblies from a number of

Cite as: P. M. Pilarski, M. R. Dawson, T. Degris, J. P. Carey, K. M. Chan,
J. S. Hebert, and R. S. Sutton, “Adaptive Artificial Limbs: A Real-time
Approach to Prediction and Anticipation,” IEEE Robotics & Automation Mag-
azine, Vol. 20(1): 53–64, March 2013. DOI: 10.1109/MRA.2012.2229948.

c©2013 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Fig. 1. Example of a commercially available myoelectric prosthesis with
multiple joints and functions. The intuitive myoelectric control of multiple
actuators and functions is a challenging problem.

suppliers (Fig. 1). Research into technologies and surgeries
related to next-generation artificial limbs is also being carried
out internationally at a number of institutions [1]–[10].

Despite the potential for improved functional abilities, many
patients reject the use of powered artificial limbs [1]–[3].
Recent studies point out three principal reasons why amputees
reject myoelectric forearm prostheses. These include a lack
of intuitive control, insufficient functionality, and insufficient
feedback from the myoelectric device [1], [3]. As noted
throughout the literature, the identified issues extend beyond
the domain of forearm prostheses and are major barriers for
upper-body myoelectric systems of all kinds.

Challenges facing myoelectric prosthesis users are currently
being addressed through improved medical techniques, new
prosthetic technologies, and advanced control paradigms. In
the first approach, medical innovation with targeted motor
and sensory reinnervation surgery is opening new ground for
intuitive device control and feedback [8], [11]. In the second
approach, prosthetic hardware is being enhanced with new
sensors and actuators; state-of-the-art robotic limbs now begin
to approach their biological counterparts in terms of their
capacity for actuation [9], [10].

In this article we focus on the third approach to making
myoelectric prosthesis use more accessible—improving the
control system. The control system is a natural area for
improvement, as it links sensors and actuators for both motor
function and feedback. Starting with classical work in the
1960’s, both industry and academia have presented a wide
range of increasingly viable myoelectric control approaches.
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When compared to traditional body-powered hook and cable
systems, myoelectric approaches represent a move toward the
more natural, physiologically intuitive operation of a prosthetic
device. Within the space of myoelectric control strategies,
conventional proportional control is still considered the main-
stay for clinically deployed prostheses—in this approach, the
amplitude of one or more EMG signals is proportionally
mapped to the input of one or more powered actuators.

Despite widespread use, conventional myoelectric control
has a number of known limitations [4]. One primary challenge
for conventional control is the growing actuation capabilities
of current devices. Conventional control is further constrained
by the limited number of signal sources in a residual amputated
limb. This problem becomes more pronounced with higher
levels of amputation; patients who have lost more function
will require more complex assistive devices, but have fewer
discrete sources from which to acquire control information
[2], [4]. Even with advanced function switching, conventional
approaches are only able to make use of a fraction of the
movements available to next-generation devices. Intuitive,
simultaneous actuation of multiple joints using myoelectric
control remains a challenging unsolved problem [2].

Pattern Recognition

The dominant approach for improving myoelectric control
has been the use of pattern recognition techniques. As re-
viewed by Scheme and Englehart [4], the state-of-the-art for
myoelectric pattern recognition relies on sampling a number of
training examples in the form of recorded signals, identifying
relevant features within these signals, and then classifying
these features into a set of control commands. This approach
has been largely implemented in an of�ine context, meaning
that systems are developed and trained and then not changed
during regular (non-calibration) use by an amputee. Demon-
strated offline methods include support vector machines, linear
discriminant analysis, artificial neural networks, and principal
component analysis on time and frequency domain EMG
information [3]–[5]. Offline pattern recognition approaches
are straightforward to deploy, and have allowed amputees
to successfully control both conventional and state-of-the-art
myoelectric prostheses in real time [8]; the training time of
these methods is also realistic for use by amputees.

Though less common, myoelectric pattern recognition sys-
tems can also be trained online, meaning that they continue
to be changed during normal use by the patient. Examples
within the domain of prosthetic control include the use of
artificial neural networks [12] and reinforcement learning [7].
In both cases, feedback from the user or the control environ-
ment was used to continually update and adapt the device’s
control policy. Online adaptation is critical to robust long-
term myoelectric prosthesis use by patients, and is currently
an area of great clinical interest [4], [5]. As discussed by
Scheme and Englehart, and Sensinger et al., there have been
a number of initial studies on adapting control to changes in
the electrical and physical aspects of EMG electrodes (e.g.,
positional shifts and conductivity differences), electromagnetic
interference, and signal variation due to muscle fatigue [4],

[5]. This work has made it clear that myoelectric control must
take into account real-time changes to the control environment,
a patient’s physiology, and their prosthetic hardware. To be
effective in practice, adaptive methods need to be robust, easily
trained, and not a time burden to the patient. However, a
robust, unsupervised approach to online adaptation has yet to
be demonstrated [4].

Prediction in Adaptive Control

A key insight underpinning prior work in adaptive or robust
systems is that accurate and up-to-date predictive knowledge
is a strong basis for modulating control. Prediction has proved
to be a powerful tool in many classical control situations (e.g.,
model predictive control). Although classical predictive con-
trollers provide a noticeable improvement over non-predictive
approaches, they often require extensive offline model design;
as such, they have limited ability to adapt their predictions
during online use.

Prediction is also at the heart of current offline machine
learning and pattern recognition prosthesis control techniques.
Given a context (e.g., moment-by-moment EMG signals),
pattern recognition approaches use information extracted from
their training process to identify (classify) the current situation
as one example from a set of motor tasks. In other words,
they perform a state-conditional prediction of the user’s motor
intent, which can then be mapped to a set of actuator com-
mands. As a recent example, Pulliam et al. used a time-delayed
artificial neural network, trained offline, to predict upper-arm
joint trajectories from EMG data [13]. The aim of their work
was to demonstrate a set of predictions that could be used to
facilitate coordinated multi-joint prosthesis control.

In this article, we present a new approach for acquiring
and maintaining predictive knowledge during the real-time
operation of a myoelectric control system. A unique fea-
ture of our approach is that it uses ongoing experience and
observations to continuously refine a set of control-related
predictions. These predictions are learned and maintained in
real time, independent of a specific myoelectric decoding
scheme or control approach. As such, the described techniques
are applicable to both conventional control and existing pattern
recognition approaches. We demonstrate online prediction
learning in two experimental settings: 1) able-bodied subject
trials involving the online myoelectric control of a humanoid
robot limb and 2) trials involving control interactions between
an upper-limb amputee participant and a myoelectric training
robot. Our online prediction learning approach contributes a
novel gateway to unsupervised, user-specific adaptation. It also
provides an important tool for developing intuitive new control
systems that could lead to improved acceptance of myoelectric
prostheses by upper-limb amputees.

AN APPROACH TO ONLINE PREDICTION
LEARNING FOR MYOELECTRIC DEVICES

Systems that perform online prediction and anticipation are
in essence addressing the very natural question “what will
happen next?” To be of benefit to an adaptive control system,
this question must be posed in computational terms, and its
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answer must be continually updated online from real-time
sensorimotor experience.

There are a number of predictive questions that have a clear
bearing on myoelectric control. Examples of useful questions
include: “what will be the average value of a grip sensor
over the next few seconds?”, “where will an actuator be in
exactly 30 seconds?”, or “how much total myoelectric activity
will be recorded by an EMG sensor in the next 250ms?”
These anticipatory questions have direct application to known
problems for rehabilitation devices—issues like grip slippage
detection, identifying user intent, safety, and natural multi-
joint movement [1], [4]. It is important to note that questions
of this kind are temporally extended in nature; they address the
expected value of signals and sensors over protracted periods
of time, or at the moment of some specific event. They are also
context dependent, in that they rely on the current state and
activity of the system. For example, predictions about future
joint motion may depend strongly on whether an amputee is
playing tennis or driving a car.

A predictive system should be able to express knowledge
about the value of signals that will be observed in the near
future—for instance, the expected value of sensor and actuator
readings over a time frame ranging from the next millisecond
to the next few seconds or minutes (consider the predictive
system demonstrated by Pulliam et al., which learned to
anticipate scalar joint angle signals through offline training
[13]). A system should also be able to predict the outcome
of events with no fixed length, or those that take a variable
amount of time to return an outcome. Anticipations of this
kind represent a common form of knowledge, but one which
falls outside the learning capabilities of most standard pattern
recognition approaches. To date there are few approaches able
to learn this form of anticipatory knowledge for real-valued
signals, and fewer still which can learn and continually update
(adapt) this type of predictive representation during online,
real-time operation.

Reinforcement learning (RL) is one form of machine learn-
ing that has demonstrated the ability to learn in an ongoing,
incremental prediction and control setting [14]. An RL system
uses interactions with its environments to build up expectations
about future events. Specifically, it learns to estimate the
value of a one-dimensional feedback signal termed reward;
these estimates are often represented using a value function—a
mapping from observations of the environment to expectations
about future reward.

RL is viewed as an approach to artificial intelligence, natural
intelligence, optimal control, and operations research. Since
development in the 1980’s, RL algorithms have come to be
widely used in robotics, and have found the best known
approximate solutions to many games; they have also become
the standard model of reward processing in the brain [15].

Recent work has provided a straight-forward way to use
RL for acquiring expectations and value functions pertaining
to non-reward signals and observations [16]. These general
value functions (GVFs) are proposed as way of asking and
answering temporally extended questions about future senso-
rimotor experience. Predictive questions can be defined for
different time scales, and may take into account different

methods for weighting the importance of future observations.
The anticipations learned using GVFs can also depend on
numerous strategies for choosing control actions (policies),
and can be defined for events with no fixed length [16].
Expectations comprising a GVF are acquired using standard
RL techniques; this means that learning can occur in an
incremental, online fashion, with constant demands in terms
of both memory and computation. The approach we develop
in this paper is to apply GVFs alongside myoelectric control.

Formalizing Predictions with GVFs

We use the standard RL framework of states (s 2 S), actions
(a 2 A), time steps t � 0, and rewards (r 2 <) [14]. In
our context, a GVF represents a question q about a scalar
signal of interest, here denoted r for consistency; this question
depends on a given probability function for choosing actions
π : S�A ! [0, 1] and a temporal continuation probability γ :
S ! [0, 1]. A question q may therefore be written as: “given
state s, what is the expected value of the cumulative sum of a
signal r while following a policy π, and while continuing with
a probability given by γ?” Formally, the value function Vq(s)
for our question is defined as follows, where actions are taken
according to π and there exist state-dependent continuation
probabilities 0 � γ(s) � 1 for all s 2 S:

Vq(s) = Eπ

[ ∞∑
k=0

(
k∏
i=1

γ(st+i)

)
r(st+k+1)

∣∣∣∣st = s

]
.

This defines the exact answer to a question when states are
fully observable. In practice, a state is rarely fully observable
or needs to be approximated to represent an answer to a
question. We instead assume that we observe a vector of
features x that depends on the current state s according to
some state approximation function x  approx(s). We can
then present the approximate answer V̂q(s) to a question q as
a prediction Pq that is the linear combination of a (learned)
weight vector w and the feature vector x at time t:

Pq = V̂q(s) = w>
q x

For our work, the approximation function approx(s) was
implemented using tile coding, as per Sutton and Barto [14].
Tile coding is a linear mathematical function that maps a real-
valued signal space into a linear (binary) vector form that can
be used for efficient computation and learning [14].

To facilitate incremental computation, in what follows we
consider the exponentially discounted case of GVFs, where
0 � γ � 1, and γ is the same for all states in the system.
The value for state s is therefore the expected sum of an
exponentially discounted signal r for each future timestep:

Vq(s) = Eπ

[ ∞∑
k=0

γkr(st+k+1)

∣∣∣∣st = s

]
.

The cumulative value inside this expectation is termed the
return. For the purposes of post-hoc comparison, the true
return Rq on a time step t may be computed by recording
future experience over a window of T data points, where
T is large enough that γT approaches zero. The difference
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jPq�Rqj between the predicted and computed return values on
any given time step t is then a measure of the absolute return
prediction error on that time step. In what follows, we discuss
the time scale of a prediction, meaning the time constant of
the return predictions defined by 1/(1 � γ). Predictions and
errors are also presented in temporally normalized form to
allow for visual comparison on a similar scale. For normalized
return predictions (P̄q) and normalized mean absolute return
errors (NMARE), return values are scaled according to the
time constant, e.g., using Pq = P̄q/(1� γ).

Learning Predictions with Temporal-Difference Methods

An application of GVFs to the myoelectric control setting is
depicted in Fig. 2. Here sensorimotor signals from a classical
myoelectric control environment (light grey boxes) are used as
input to a function approximation routine; the resulting feature
vector, and some subset of the input signals, are used to update
a set of GVFs. These GVFs can then be used to predict the
anticipated future value(s) for signals of interest.

For this work, GVFs were implemented as described by
Sutton et al. [16]. Anticipations were then learned in an
incremental fashion during online operation. This was done
using temporal-difference (TD) learning, a standard technique
from RL; for additional detail on TD learning and the TD(λ)
algorithm, please see Sutton and Barto [14], and Sutton [17].
A procedural description of this approach follows.

At the beginning of each experiment, the weight vectors wq

were initialized to starting conditions. On every time step the
system received a new set of observations `s’. As learning
progressed, each GVF was updated with the value of an
instantaneous signal of interest, denoted rq , using the TD(λ)
algorithm. Predictions Pq for the signals of interest rq , q 2 Q,
could then be sampled and recorded online using the linear
combination Pq  wT

q x. Learning proceeded as follows:

1: initialize: w, e, s,x
2: loop
3: observe s
4: x′ ← approx(s)
5: for all questions q ∈ Q do
6: δ ← rq + γqw

T
q x

′ −wT
q x

7: eq ← min(λeq + x, 1)
8: wq ← wq + αδeq

9: x← x′

10: end for
11: end loop

As shown in the procedure above, weight vectors wq for
each GVF were updated using both the state approximation
x′ and the signal of interest rq . For each question q, a
temporal-difference error signal (denoted δ) was computed
using the signal rq and the difference between the current
and discounted future predictions for this signal (wT

q x and
γqw

T
q x

′, respectively). Next, an eligibility trace eq of the
current feature vector was updated in a replacing fashion,
where eq was a vector of the same size as x. The trace eq was
used alongside the error signal δ to update the weight vector
wq for each GVF, with α > 0 as a scalar step-size parameter
and λ as the trace decay rate. Replacing traces were used as a

Fig. 2. Schematic showing how general value functions (GVFs) predict
the expected future value of signals from the sensorimotor space of a
myoelectric control system. Each GVF learns temporally extended predictions
Pq about a specific signal of interest rq . Predictions are learned with respect
to the current state of the system, as represented by the feature vector x. This
feature vector is generated from the observed sensorimotor signal space using
a function approximation routine, shown here as `FXN APP’.

technique to speed learning; for more detail, please see Sutton
and Barto [14].

The per-time-step computational complexity of this pro-
cedure grows linearly with the size of the feature vector,
making it suitable for real-time online learning. Linear compu-
tation and memory requirements are important for myoelectric
control—when using the approach presented above, increasing
the number of control sources or feedback signals leads to only
a linear (and not exponential) increase in the computational
demand of the learning system. Many GVFs can therefore be
learned in parallel and during online real-time operation [18].

CASE STUDY 1: PREDICTION DURING ONLINE CONTROL

As a first application example, we examined the ability
of a GVF-based learning system to predict and anticipate
human and robot signals during online interactions between
able-bodied (non-amputee) subjects and a robotic device (Fig.
3). Specifically, we examined the anticipation of two signal
types: user EMG signals, and the angular position of user-
controlled elbow and hand joints of a robot limb. The robotic
platform for these experiments was a Nao T14 robot torso
(Aldebaran Robotics, France), shown alongside myoelectric
recording equipment in Fig. 3. EMG signals used in device
control and learning were obtained via a Bagnoli-8 (DS-B03)
EMG System with DE-3.1 Double Differential Detection EMG
sensors (Delsys, Boston, USA), and a NI USB-6216 BNC
analog to digital converter (National Instruments Canada).

Testing was done with seven able-bodied subjects of varying
age and gender. All were healthy individuals with no neu-
rological or motor impairments. To generate a rich stream
of sensorimotor data in an online, interactive setting, these
participants worked with the robotic platform to complete a
series of randomized actuation tasks. Participants actuated one
of the robot’s arms using conventional myoelectric control
with linear proportional mapping. EMG signals were sampled
and processed according to standard procedures from four
input electrodes affixed to the biceps, deltoid, wrist flexors,
and wrist extensors of a participant’s dominant arm. Pairs of
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Fig. 3. The experimental setup for able-bodied subject trials, including
an Aldebaran Nao T14 robotic platform, laptop computer, analog to digital
converter, and Bagnoli-8 EMG recording system.

processed signals were then mapped into velocity control com-
mands for the robot’s elbow roll actuator and hand open/close
actuator. In each task, one arm of the Nao robot was moved to
display a new gesture consisting of a static angular position
on both hand and elbow actuators. Subjects were asked to
make a corresponding gesture with the robot arm under their
control. Once a subject maintained the correct position for
a period of more than two seconds, a new (random) target
configuration was displayed. Visual feedback to participants
consisted of a front-on view of the robot system. Subjects
performed multiple sessions of the randomized actuation task,
with each session lasting between five and ten minutes. No
subject-specific changes to the learning system were made; all
subjects used exactly the same learning system with the same
learning parameters, set in advance of the trials. To assess the
real-time adaptation of learned predictions, additional testing
was done via longer unstructured interaction sessions, some of
which lasted over one hour and included tasks that produced
moderate muscle fatigue.

As depicted in Fig. 2, the learning system observed the
stream of data passing between the human, the myoelectric
controller, and the robot arm. We created two GVFs for each of
the different signals of interest rq in the robotic system—one
to predict temporally extended signal outcomes at a short time
scale (�0.8s), and one to predict outcomes at a slightly longer
time scale (�2.5s). As done in previous work [7], the learning
system was presented with a signal space consisting of robot
joint angles and processed EMG signals; at every time step,
the function approximation routine mapped these signals into
the binary feature vector x′ used by the learning system. All
signals were normalized between 0.0 and 1.0 according to their
maximum possible ranges. Parameters used in the temporal-
difference learning process were λ = 0.999, γ = f0.97, 0.99g,
and α = 0.033. Weight vectors e and w for each GVF were
initialized to 0. Learning updates occurred at 40Hz, and all
processing related to learning, EMG acquisition, and robot
control was done on a single MacBook Pro 2.53 GHz Intel
Core 2 Duo laptop.

(A) ANTICIPATING ACTUATOR SIGNALS

ELBOW

predictions
HAND

TRUE  
RETURNS

predicted
returns

(B) ANTICIPATING MYOELECTRIC SIGNALS

predictionsEMG

ANTICIPATION
TRUE  
RETURNS

predicted
returns

Fig. 4. Examples of (a) actuator and (b) myoelectric signal prediction
during able-bodied subject trials after ∼10min of online learning. Left:
normalized return predictions (red traces) precede the observed signal activity
(grey lines) by 0.5–2.0s. Right: return predictions (blue traces) are consistent
with the true return as computed post-hoc (grey lines).

Results

We found that predictions learned using our GVF approach
successfully anticipated measured signals after only short pe-
riods of online learning. Figure 4a (left) shows an example of
joint angle prediction for the 0.8s time scale with one subject
after �10min of learning. Here changes to the normalized
return prediction signals P̄q for both the hand (solid red
trace) and elbow (dotted red trace) joints can be seen to
occur in advance of changes to the measured actuator signals
(wide grey lines). Predictions for both joints can be seen to
precede actual joint activity by 0.5–2.0s. The system was also
able to accurately predict myoelectric signals (Fig. 4b, left).
Normalized EMG predictions (red line) rise visibly in advance
of the actual myoelectric events (grey line), and changes to the
processed myoelectric signal were anticipated up to 1500ms
before change actually occurred. The accuracy of predictions
for both actuator and myoelectric signals can be seen in Fig.
4a,b (right). For both slow and fast changes in the signal of
interest, the return prediction (Pq , blue line) largely matched
the true return as computed post-hoc (Rq , grey line), indicating
similarity between learned predictions and computed returns.

As shown in Fig. 5, accurate predictions could be formed in
5min or less of real-time learning. These learning curves show
the relationship between prediction error and training time, as
averaged across multiple trial runs by one of the subjects.
Learning progress for joint angle prediction and myoelectric
signal prediction is shown in terms of the NMARE for the
0.8s time scale, averaged into 20 bins; error bars indicate the
standard deviation (σ) over eight independent trials. After five
minutes of learning, the average NMARE for both actuators
was less than 0.2 radians (11.5o) for the 0.8s time scale and 0.3
radians (17.2o) for the 2.5s time scale. For the prediction of
myoelectric signals, the average NMARE was less than 0.15V,
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Fig. 5. Learning performance during able-bodied subject trials. Predic-
tion learning curves are shown for elbow and hand actuator position (left), and
for the average over all four myoelectric signals (right). Accuracy is reported
in terms of normalized mean absolute return errors, averaged over eight trials.

or 3.0% of the maximum signal magnitude (5V). Prediction
performance continued to improve over the course of an
extended learning episode. These results are representative of
the learning curves plotted for the other participants.

We also observed the adaptation of learned predictions in
response to real-time changes. Perturbations to the task envi-
ronment led to an immediate decrease in prediction accuracy,
followed by a gradual recovery period. After a short learning
period with one able-bodied subject, we transferred the four
EMG electrodes to comparable locations on a second able-
bodied subject. Within a period of less than 5min of use by
the new subject the system had adapted its predictions about
joint motion to reflect the new individual. Similar results were
found for tasks involving gradual or sudden muscle fatigue;
prediction accuracy was found to remain stable during periods
of extended use (>60min of activity). Predictions were also
found to recover their accuracy when a subject began holding
a moderate weight with their controlling arm part way through
a session. These observations reflect preliminary results, and
further study is needed to verify the rate and amount of
adaptation achievable in these situations.

CASE STUDY 2: AMPUTEE CONTROL OF A ROBOT ARM

Having demonstrated the applicability of GVFs for predict-
ing and anticipating sensorimotor signals during able-bodied
subject trials, we next assessed the ability of this approach
to predict robot grip force, actuator position, actuator veloc-
ity, and other sensorimotor signals relating to an amputee’s
interactions with a robotic training prosthesis (Fig. 6).

Two trials were conducted with an amputee participant. The
subject was a twenty-year-old male with a left transhumeral
amputation, injured in a work accident sixteen months prior
to the first trial. Six months prior to the first trial the subject
underwent surgical revision of his limb, involving Targeted
Muscle Reinnervation (TMR) as described by Dumanian et
al. [11], as well as Targeted Sensory Reinnervation (TSR).
The motor reinnervation procedure involved rerouting of the
median nerve to innervate the medial biceps remnant muscle,
and the distal radial nerve to the lateral triceps muscle, in
order to provide additional myoelectric signal control sites for
myoelectric prosthesis control. Sensory reinneration involved
identifying specific median nerve fascicles with high sensory
content, and coapting these fascicles to the intercostal brachial
cutaneous sensory nerve. In a similar fashion, ulnar sensory

Fig. 6. Experimental setup for amputee trials: (a) multi-joint robot arm and
force sensor, (b) participant with Bagnoli-8 EMG system, and (c) schematic
of the Myoelectric Training Tool (MTT) and tactor feedback system.

fascicles with high sensory content were coapted to the sensory
branch of the axillary nerve, and the remainder of the ulnar
nerve trunk was rerouted to the motor branch of the brachialis
muscle. Reinnervation resulted in a widely distributed discrete
representation of digital sensation on the upper arm. A second
trial occurred nine months after the first, wherein we observed
noticeable changes to the subject’s nerve reinnervation and
improvements in his ability to operate a myoelectric device.

The robot platform used by this subject was the Myoelectric
Training Tool (MTT), a clinical system designed to help new
amputees prepare for powered prosthesis use [6]. The MTT
includes a five-degree-of-freedom robot arm that mimics the
functionality of commercial myoelectric prostheses. Signals
from the robotic arm included the load, position, and velocity
of each servomotor. A sensory feedback system was also used
alongside the MTT in order to convey the sense of touch to
the subject; robot grip force was measured and communicated
to the subject via experimental tactors (micro servomotors)
placed over the reinnervated skin of his upper arm. The subject
controlled the robot arm via conventional myoelectric control
with linear proportional mapping. Myoelectric signals from
three of the subject’s reinnervated muscles and two of the
subject’s native muscles were acquired, processed, and used
to both control and switch between the various functions of
the robot arm according to standard practice for the MTT [6].

During his two visits, the participant was asked to perform
a variety of different actuation and sensation tasks with the
MTT. Testing spanned multiple trials and multiple days, and
included periods where the subject could control the MTT
in an unstructured manner. Specific tasks included using
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both reinnervated motor control and sensory feedback to
grip, manipulate, and discriminate between a series of small
compressible objects in the absence of visual and auditory
feedback. The subject also completed multiple trials of a
modified clinical proficiency test known as box-and-blocks—a
common procedure for assessing upper limb function. This test
involved the amputee participant sequentially controlling four
actuators on the robot arm to transfer a series of small objects
between the two compartments of a divided workspace (Fig.
7). For this task, EMG signals from one pair of native muscles
were used to actuate the robot’s elbow, and signals from a
reinneverated muscle pair were used to sequentially actuate the
three remaining degrees-of-freedom on the robot arm (hand
open/close, wrist flexion/extension, and shoulder rotation).
Switching between joints was controlled using a voluntary
EMG switch located on the subject’s third reinnervated muscle
group. For the box-and-blocks task, the subject was given
normal visual and auditory feedback about the system, and
could view displayed information about his EMG signals and
currently selected robot actuators. More detail on the MTT
box-and-blocks task can be found in work by Dawson, Fahimi,
and Carey [6], and Pilarski et al. [19].

Data from these trials provided a rich sensorimotor space to
evaluate our prediction learning methods. The data stream in-
cluded EMG onsets (� 1s in length), transient actuator motion
and velocity readings (<1s) and periods of sustained motion
or gripping actions (1–10s). We again created two GVFs for
each signal of interest, one with a time scale of ∼0.67s and
one with a time scale of ∼2.0s. Subsets of the available
signals were given as input to the function approximation
routine, as outlined above, and as described in related work [7],
[19]. Learning updates occurred at 50Hz. All other parameters
of the learning system, function approximation system, and
computational hardware remained the same as in the previous
case study. Using this configuration, the average computation
time needed to update all GVFs and retrieve predictions at
each time step was approximately 1ms.

Results

As shown in the results that follow, the system was able to
successfully anticipate events initiated by the amputee subject,
including joint angle changes, joint velocity changes, and grip
force fluctuations. Accurate predictions were observed after
5–10min of real-time sampling and learning. To specifically
evaluate GVF performance with respect to iterative offline
learning, data was also recorded and divided into independent
training and testing sets. Iterative training was found to further
improve the accuracy of the system’s predictions.

Figure 8 shows the accuracy and rate of improvement
during offline learning for both hand actuator and grip force
predictions on data from an object manipulation task. This
is shown for the online learning case (a single pass through
16min of sensorimotor training data) and for 2–10 additional
offline learning iterations. Accuracy was evaluated on both the
training data and the previously unseen testing set. Each point
in Fig. 8 represents the average NMARE over the training
or testing data; results are shown for the 0.67s time scale

Fig. 7. The modified box-and-blocks task, wherein an amputee controls
the multiple joints of the robot arm to move a series of small objects across
the central barrier of a divided workspace.

(bottom trace) and the 2.0s time scale (top trace). As presented
in Fig. 8a, iterative training produced a constant downward
trend in joint angle prediction error (NMARE, with the angular
signal presented in terms of servo control steps). The typical
observed range of this actuator was ∼200 servo steps. Error
on testing data after only one iteration—the online operation
scenario—was found to be less than 7.0% of this total range
(Fig. 8a, right, first data point). The asymptotic error after
multiple training passes was less than 4.0%. As shown in Fig.
8b, similar results were observed for grip force predictions.
The typical range found for the grip force sensor was 0–
1.5V; error on testing data after online training was less than
6.0% of this range (Fig. 8b, right, first data point), with
an asymptotic error after multiple training iterations of less
than 4.5%. Online and asymptotic error is expected to further
decrease with additional data, up to limits imposed by learning
system generalization and the frequency of previously unseen
events in the sensorimotor data.
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(A) ACTUATOR PREDICTION LEARNING CURVES (B) FORCE PREDICTION LEARNING CURVES

2.0s time scale

0.67s time scale

Fig. 8. Learning performance on data from amputee-robot interaction. Shown for (a) actuator joint angle prediction and (b) force prediction during a
grasping task in terms of the average training and testing NMARE over ten learning iterations. Bottom trace: 0.67s time scale. Top trace: 2.0s time scale.

OBSERVATIONS

predictions

ANTICIPATION

Fig. 9. Prediction of grip force, actuator velocity, and actuator position signals from amputee testing data. Shown after 3 learning iterations for time
scales of 0.67s (solid lines) and 2.0s (dotted lines). Normalized return predictions (red lines) anticipate measured activity (grey lines) by 1–3 seconds.

Figure 9 shows a representative example of grip force,
elbow velocity, and elbow joint angle predictions after three
offline learning passes through recorded training data from
object manipulation testing and the blocks-and-box task. Here
the normalized predictions P̄q at two time scales, 0.67s (solid
red lines) and 2.0s (dotted red lines), are compared to the
measured force, velocity, and positional sensor readings (grey
lines); plotted data is binned into 25 timestep intervals. As
was found in the able-bodied study, predicted signals anticipate
changes to the actual measured signals by approximately 1–3s.
Both rapid and slowly changing signals could be successfully
predicted. The computational accuracy of these predictions
was verified by comparing return predictions Pq to the true
computed returns Rq , as done in the previous case study. The
results in Fig. 9 are representative of our observations for the
other signals and tasks in this domain.

As shown by the velocity prediction example in Fig. 9, the
extended nature of exponentially discounted GVF predictions
was found to affect the learning of events with a short duration
relative to a GVF’s time scale. At a prediction time scale of
0.67s, the rise and fall of transient velocity events could be
accurately anticipated by more than 1s; however, normalized
predictions were smoother than the measured signal, as they
took into account velocity data before and after the depicted
motion event. A time scale of 0.25s or less was found to
effectively capture short-duration contours in our velocity data.

DISCUSSION

Our case studies illustrate the potential of online prediction
learning within the setting of myoelectric control. Using
GVFs, it was possible to learn accurate temporally abstracted

predictions about a human’s interactions with a robotic device.
This approach was also well suited to practical real-time im-
plementation; learning updates and predictions were made un-
der real-time computation constraints, and accurate predictions
could be achieved within 5–10min of online learning. In ad-
dition, few application-specific changes and tuning operations
were needed to shift between the different case studies and
signal types presented in this work. Learning was performed
in both an online setting (learning during ongoing experience)
and an offline setting (learning from recorded data); offline
and online predictions shared the same incremental learning
framework. Together these results demonstrate the generality
of the proposed approach—it would be straightforward to
apply our methods to other assistive robotic domains.

The results in Fig. 9 highlight the relationship between
prediction time scales and the temporal characteristics of
sensorimotor events. By choosing prediction time scales ap-
propriate to our events and questions of interest, we found
that the learning system could accurately anticipate both slow
and rapid changes within the sensorimotor stream. Predictions
in this work were formed using an exponentially discounted
weighting of future signals (i.e., a constant γq). Though not
explored here, more complex methods for temporal extension
are possible within the GVF framework [18].

Results from both case studies demonstrate the ability of a
GVF learning approach to maintain and improve the accuracy
of predictions over the course of online learning. Each new
observation seen by the system was used to immediately refine
and update existing predictive knowledge about the robot and
its domain. With a suitable choice of function approxima-
tion methods, weight values learned for one situation could
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contribute to learning about previously unseen situations with
similar state characteristics. One preliminary example was our
ability to transfer electrodes between two able-bodied subjects
in the middle of a learning session. The capacity to actively
maintain prediction accuracy suggests a method for adapting
a device to ongoing changes that occur during the daily
life of an amputee—sweat, fatigue, altered use patterns, or
physical changes to the assistive device and the positions of its
myoelectric sensors. In essence, our methods enable a form of
continuing domain adaptation. Online prediction learning may
therefore provide a basis for rapidly adapting and calibrating
factory-made devices for use by specific individuals.

While our approach performed well during structured and
unstructured laboratory testing, its performance during com-
plex real-life activities still needs to be demonstrated. Subtle
changes to user intent and motor context may be difficult
to discriminate in some real-life activities. As such, online
learning during daily life may require additional external
input signals (e.g., from the environment, the human, or the
robot limb) in order to fully capture the context in which
human actions are occurring. Our prediction and anticipation
methods are not tied to a specific control approach, decoding
scheme, or surgical setting; as such, they are suitable for
both reinnervation patients and amputees using conventional
myoelectric control. However, there may prove to be fun-
damental differences in the sensorimotor signals recorded
in these different domains. Such differences could impact
function approximation choices and the learning speed of the
prediction methods. Further amputee studies are necessary to
investigate these differences.

Prediction and Anticipation in Practice

There are several areas where the online prediction approach
presented in this article promises to significantly improve
amputee experiences with myoelectric control. Enhanced pro-
prioceptive feedback to patients is one area where temporally
extended predictions hold potential benefit. Proprioception is
an important goal, as it allows an amputee to know where
their prosthetic device is in space without visual confirmation;
force and position feedback are cited as being requisites for
patient acceptance [1]. With this objective in mind, tactile and
auditory user feedback systems may benefit from incorporating
temporally extended predictions about the motor consequences
of a user’s current commands. GVFs are able to provide
context-dependent predictions of this type in a timely fashion.

A second area of impact for online prediction learning
is enhanced failure forecasting. Grip slippage prevention is
one representative example [1]. Advance knowledge of force,
velocity, and position signals from a robotic prehensor could
be used to estimate when a grasped object is about to unin-
tentionally slip. The controller could then respond and prevent
the failure by adjusting grip force and grip stiffness, or alert
the user to the impending slip using tactile feedback. The use
of foresight also allows a controller to avoid unintentional
collisions between a prosthesis and its environment, and to
anticipate mechanical, thermal, and electrical damage to the
device. Sudden changes in prediction accuracy may also

help detect and identify alterations in a system, for example
transient changes to EMG signals, shifts in electrode positing,
and other challenges to clinical robustness as identified by
Scheme and Englehart [4].

A final area of utility for the approach presented in this
article is facilitating the intuitive control of multifunction
myoelectric devices. As discussed above, one of the major
barriers to intuitive myoelectric control is a disparity between
the number of EMG recording sites on an amputee’s body
and the control complexity of their artificial limb [2], [4].
This discrepancy between sensor and actuator spaces will only
widen as limb technology becomes more advanced. GVFs
provide a mechanism to improve multifunction control through
the anticipation of a user’s intent. Extended predictions about
a user’s control behaviour and their motor objectives can be
used to prioritize control options for the user, modulate ac-
tuator stiffness and compliance, or directly coordinate natural
timings for the simultaneous movement of multiple joints. The
use of GVF predictions to streamline an amputee’s control
interactions in this way is the subject of ongoing studies by our
group, and our preliminary results indicate tangible benefits for
switching-based prosthetic control [19].

Final Thoughts: A Basis in the Brain

The view that online, adaptive predictions are important to
control has an additional basis in human biology and motor
learning [20]. As described by Flanagan et al. and Wolpert et
al., predictions are learned by human subjects before they gain
control competency [20], [21]. There is a strong relationship
between sensorimotor prediction and control in the human
brain, with anticipated future consequences being viewed as a
fundamental component for generating and improving control
[21]. Online prediction error, as represented by the human
dopamine system, is also believed to play a key role in adap-
tively regulating behaviour [22], and has been successfully
modelled by the same reinforcement learning algorithms we
have used in this article [15]. Finally, it has been suggested that
motor awareness and the feeling of “executing an action” stem
from anticipatory predictions in the brain, as opposed to actual
muscle movement [23]. These observations from human motor
control further suggest that online prediction and anticipation
could positively impact the functionality, intuitiveness, and
feedback of multifunction myoelectric devices.

CONCLUSION

This article demonstrated an online approach to acquiring
and continuously updating a set of predictions and anticipa-
tions about a human user and their assistive biomedical device.
The ability to learn accurate, temporally abstracted predictions
was shown through two case studies: able-bodied subjects
engaging in the myoelectric control of a humanoid robot
arm, and an amputee participant controlling an experimental
myoelectric training robot. In both scenarios, it was possible
for a real-time machine learning system to provide advance
knowledge about signals such as actuator position, grip force,
and myoelectric activity. Our approach was able to learn accu-
rate predictions in both settings, and could do so without the
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need to significantly alter the learning system for each specific
domain or signal of interest. To our knowledge, this work is
the first demonstration of a practical method for online, real-
time prediction learning in the context of myoelectric control.
As such, our approach is a fundamental tool for addressing
one major unsolved problem in the domain of artificial limbs:
amputee-specific adaptation during ongoing use. The findings
in this article provide a starting point for research into long-
term control adaptation. They also contribute a first explicit
look at online prediction learning as an important goal in
its own right, independent of its integration within a specific
controller, myoelectric decoder, or prosthetic device. Predic-
tion and anticipation hold promise for improving myoelectric
control. Future work will extend the present study to complex
real-world activities, explore the use of prediction learning
to supplement existing myoelectric control architectures, and
comprehensively evaluate prediction-based control adaptation
with a population of amputees.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from the Al-
berta Innovates Centre for Machine Learning, the Natural
Sciences and Engineering Research Council, Alberta Innovates
– Technology Futures, and the Glenrose Rehabilitation Hos-
pital. We also thank Joseph Modayil and Adam White for a
number of very useful discussions, and Michael Stobbe for
his technical assistance and the photographs used in Figure 1.
Informed subject consent was acquired in both case studies
as per ethics approval by the University of Alberta Health
Research Ethics Board.

REFERENCES

[1] B. Peerdeman, D. Boere, H. Witteveen, R. Huis in `t Veld, H. Hermens,
S. Stramigioli, H. Rietman, P. Veltink, and S. Misra, “Myoelectric forearm
prostheses: State of the art from a user-centered perspective,” J. Rehabil.
Res. Dev., vol. 48, no. 6, pp. 719–738, 2011.

[2] T. W. Williams, “Guest editorial: Progress on stabilizing and controlling
powered upper-limb prostheses,” J. Rehabil. Res. Dev., vol. 48, no. 6,
pp. ix–xix, 2011.

[3] S. Micera, J. Carpaneto, and S. Raspopovic, “Control of hand prostheses
using peripheral information,” IEEE Rev. Biomed. Eng., vol. 3, pp. 48–68,
2010.

[4] E. Scheme and K. B. Englehart,“Electromyogram pattern recognition for
control of powered upper-limb prostheses: State of the art and challenges
for clinical use,” J. Rehabil. Res. Dev., vol. 48, no. 6, pp. 643–660, 2011.

[5] J. Sensinger, B. Lock, and T. Kuiken, “Adaptive pattern recognition of
myoelectric signals: exploration of conceptual framework and practical
algorithms,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 17, no. 3,
pp. 270–278, 2009.

[6] M. R. Dawson, F. Fahimi, and J. P. Carey, “The development of a
myoelectric training tool for above-elbow amputees,” Open Biomed. Eng.
J., vol. 6, pp. 5–15, 2012.

[7] P. M. Pilarski, M. R. Dawson, T. Degris, F. Fahimi, J. P. Carey,
and R. S. Sutton, “Online human training of a myoelectric prosthesis
controller via actor-critic reinforcement learning,” in Proc. 2011 IEEE
Int. Conf. Rehabilitation Robotics (ICORR), Zurich, Switzerland, pp. 134–
140.

[8] T. A. Kuiken, G. Li, B. A. Lock, R. D. Lipschutz, L. A. Miller,
K. A. Stubblefield, and K. B. Englehart, “Targeted muscle reinnervation
for real-time myoelectric control of multifunction artificial arms,” JAMA,
vol. 301, no. 6, pp. 619–628, 2009.

[9] L. Resnik, M. R. Meucci, S. Lieberman-Klinger, C. Fantini, D. L. Kelty,
R. Disla, and N. Sasson, “Advanced upper limb prosthetic devices:
implications for upper limb prosthetic rehabilitation,” Arch. Phys. Med.
Rehabil., vol. 93, no. 4, pp. 710–717, 2012.

[10] M. S. Johannes, J. D. Bigelow, J. M. Burck, S. D. Harshbarger, M. V.
Kozlowski, and T. Van Doren, “An overview of the developmental process
for the modular prosthetic limb,” Johns Hopkins APL Tech. Dig., vol. 30,
no. 3, pp. 207–216, 2011.

[11] G. A. Dumanian, J. H. Ko, K. D. O’Shaughnessy, P. S. Kim, C. J.
Wilson, and T. A. Kuiken, “Targeted reinnervation for transhumeral am-
putees: current surgical technique and update on results,” Plast. Reconstr.
Surg., vol. 124, no. 3, pp. 863–869, 2009.

[12] D. Nishikawa, W. Yu, H. Yokoi, and Y. Kakazu, “On-line learning
method for EMG prosthetic hand control,” Electron. Comm. Jpn. Pt. III,
vol. 84, no. 10, pp. 35–46, 2001.

[13] C. Pulliam, J. Lambrecht, and R. F. Kirsch, “Electromyogram-based
neural network control of transhumeral prostheses,” J. Rehabil. Res. Dev.,
vol. 48, no. 6, pp. 739–754, 2011.

[14] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction.
Cambridge, MA: MIT Press, 1998.

[15] B. Seymour, J. P. O’Doherty, P. Dayan, M. Koltzenburg, A. K. Jones,
R. J. Dolan, K. J. Friston, and R. S. Frackowiak, “Temporal difference
models describe higher-order learning in humans,” Nature, vol. 429,
no. 6992, pp. 664–667, 2004.

[16] R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski, A. White,
and D. Precup, “Horde: a scalable real-time architecture for learning
knowledge from unsupervised sensorimotor interaction,” in Proc. 10th
Int. Conf. Autonomous Agents and Multiagent Systems (AAMAS), Taipei,
Taiwan, 2011, pp. 761–768.

[17] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Mach. Learn., vol. 3, no. 1, pp. 9–44, 1988.

[18] J. Modayil, A. White, and R. S. Sutton, “Multi-timescale nexting in a
reinforcement learning robot,” in Proc. Int. Conf. Simulation of Adaptive
Behaviour (SAB), Odense, Denmark, 2012, pp. 299–309.

[19] P. M. Pilarski, M. R. Dawson, T. Degris, J. P. Carey, and R. S.
Sutton,“Dynamic switching and real-time machine learning for improved
human Control of assistive biomedical robots,” in Proc. 4th IEEE RAS
& EMBS Int. Conf. Biomedical Robotics and Biomechatronics (BioRob),
Roma, Italy, 2012, pp. 296–302.

[20] D. M. Wolpert, Z. Ghahramani, and J. R. Flanagan, “Perspectives and
problems in motor learning,” Trends Cogn. Sci., vol. 5, no. 11, pp. 487–
494, 2001.

[21] J. R. Flanagan, P. Vetter, R. S. Johansson, and D. M. Wolpert, “Prediction
precedes control in motor learning,” Current Biology, vol. 13, no. 2,
pp. 146–150, 2003.

[22] J. Zacks, C. Kurby, M. Eisenberg, and N. Haroutunian, “Prediction error
associated with the perceptual segmentation of naturalistic events,” J.
Cogn. Neurosci., vol. 23, no. 12, pp. 4057–4066, 2011.

[23] M. Desmurget, K. Reilly, N. Richard, A. Szathmari, C. Mottolese,
and A. Sirigu, “Movement intention after parietal cortex stimulation in
humans,” Science, vol. 324, no. 5928, pp. 811–813, 2009.

AUTHORS

Patrick M. Pilarski, Department of Computing Science, University
of Alberta, Edmonton, AB, Canada. E-mail: pilarski@ualberta.ca.
* Corresponding author.

Michael Rory Dawson, Glenrose Rehabilitation Hospital, Edmonton,
AB, Canada. E-mail: mrd1@ualberta.ca

Thomas Degris, INRIA Bordeaux Sud-Ouest, Talence Cedex, France.
E-mail: thomas.degris@inria.fr

Jason P. Carey, Department of Mechanical Engineering, University
of Alberta, Edmonton, AB, Canada. E-mail: jason.carey@ualberta.ca

K. Ming Chan, Division of Physical Medicine & Rehabilitation, University
of Alberta, Edmonton, AB, Canada. E-mail: kming@ualberta.ca

Jacqueline S. Hebert, Division of Physical Medicine & Rehabilitation,
University of Alberta, Edmonton, AB, Canada. E-mail: jhebert@ualberta.ca

Richard S. Sutton, Department of Computing Science, University
of Alberta, Edmonton, AB, Canada. E-mail: rsutton@ualberta.ca


