
Imagination is more important than knowledge. For knowledge is limited, whereas
imagination embraces the entire world, stimulating progress, giving birth to evolution.

– Albert Einstein, 1931.
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Abstract

In this thesis we propose a computational model of animal behavior in spatial navigation,

based on reinforcement learning ideas. In the field of computer science and specifically

artificial intelligence, replay refers to retrieving and reprocessing the experiences that are

stored in an abstract representation of the environment. Our model uses the replay idea that

existed separately in both computer science and neuroscience. In neuroscience, it refers to

the reactivation of neurons in the hippocampus that were previously active during a learning

task, in such a way that can be interpreted as replaying previous experiences. Therefore, it

is natural to use RL algorithms to model the biological replay phenomena. We illustrated,

through computational experiments, that our replay model can explain many previously

hard-to-explain behavioral navigational experiments such as latent learning or insight ex-

periments. There have been many computational models proposed to model rats behavior

in mazes or open field environments. We showed that our model has two major advantages

over prior ones: (i) The learning algorithm used in our model is simpler than that of pre-

vious computational models, yet capable of explaining complicated behavioral phenomena

in spatial navigation. (ii) our model generates different replay sequences that are consistent

with replay patterns observed in the neural experiments on the rat brain.
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Chapter 1

Introduction

This thesis presents a computational model of certain aspects of how rats navigate through

mazes and open field environments. Many animals can quickly learn to navigate complex

environments, even finding shortcuts with limited experience in the environment. We use

Reinforcement Learning (RL) algorithms and ideas to develop a computational model of

spatial learning. RL has been studied in many other areas, such as behavioral psychology,

statistics, economics, and game theory. However, in our model we only refer to its compu-

tational aspect. So, throughout this thesis every reference to the word RL implicitly refers

to computational RL. The main idea in our model is the “experience replay” idea, hence we

call our model “The Replay Model of Spatial Navigation”.

In RL, experience is defined as a sequence of observations and actions that the agent

receives in the environment. Based on this definition, experience replay refers to the process

of retrieving past experiences that are stored in a world model and re-processing them.

Based on this idea, our replay model works by maintaining a world model that stores real

experiences, and then uses it to retrieve imaginary experiences and relearn from them.

It is also important to distinguish the two uses of the word “model” in this thesis. First,

we use the word “model” to represent a structure that is usually more complicated. This

enables us to further investigate the system, and predict its outcome in various situations.

A computational model of the brain in this sense is a theory suggesting how the brain

works, which can also recreate behavior similar to that in animals, and predict how animals

should behave in certain situations if the model is a correct representation of their brain

functionality. Since it might be impossible to precisely explain how the brain works, a

better model is the one that can recreate more behaviors, while having as simple a structure

as possible. Second, we use the word “model” as in the phrase “world model”, which

refers to the abstract representation of the environment that an artificial agent maintains
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to remember its past experiences and enables it to rehearse previous memories along with

generating novel sequences based on its current estimate of the environment.

Important neural substrates of the spatial navigation ability include the place cells in the

hippocampus, which also sometimes show experience replay. In neuroscience, experience

replay refers to the reactivation of neurons that were firing during a learning task, after the

task is over and the subject is at a rest state. These cells are often reactivated in the same

order as they were active during the learning task, in such a way that can be interpreted as

replaying previous experiences. We show that our replay model is strengthened by these

new findings recorded from rats’ hippocampal neurons during a spatial navigation task.

The three main criteria that we use to evaluate our computational model are:

• Biological plausibility, and showing that our model is constrained by empirical data

from rat hippocampus cells.

• Empirical adequacy, which is established by showing that our model can behave sim-

ilarly to real animals in different behavioral tasks.

• Simplicity, which is shown by comparing our model to some of the main computa-

tional models proposed for spatial navigation and illustrating that our model is still

capable of explaining similar experiments.

I begin this thesis with an overview of the background material necessary to under-

stand the details of our model. The learning algorithm we used in our computational model

is adapted from the temporal-difference learning method in RL and also uses the ideas

presented in the Dyna algorithm for sampling from past memories. We systematically in-

vestigated several memory sampling schemes (inspired from existing RL algorithms and

from empirical data), comparing model predictions with behavioral and neural data. This

requires some background knowledge of RL which we present in Chapter 2. Our model

shows that adding the idea of learning from imagined experiences enables sample-based RL

algorithms to explain a wider range of behavioral experiments that animals can accomplish,

and could inspire other RL algorithms that try to model animal behavior.

In Chapter 3 I overview both the behavioral tasks that rats can accomplish, and the

evidence from their hippocampus neurons showing experience replay. I will later use these

studies to conclude that our model is capable of explaining necessary experiments, and also

is biologically plausible.

In Chapter 4 I look at some of previous computational models that are either proposed

2



to explain spatial navigation tasks, or have used the experience replay idea to explain other

phenomena (the replay model of associated learning).

Our replay model for spatial navigation is described in Chapter 5. It works by having

a world model that stores previous memories the agent has encountered, and then present

them to the agent again during the learning phase. As a result, the agent will be learning

both from the new experience it encounters each time, and also re-learning from samples

of its past experiences. We describe the different components of our model along with the

main learning algorithm, and also present a comparison between our replay model and the

previous models with respect to the basic approach and also the simplicity of each model.

I evaluate our computational model in Chapter 6 based on its ability to show similar

behavior as rats in two different behavioral experiments:

• Latent learning which happens where the rats do not show any signs of learning be-

fore the reward is presented to them, but after they receive the reward they learn more

quickly than the control group which had received the reward from the beginning.

• The Tolman detour task, one of the first experiments showing evidences of “insight”

in rats, where a part of a familiar path in the maze is blocked, and the rats show that

they can remember other blocked paths and avoid them as well.

We illustrate that our computational model can successfully accomplish these tasks and also

present a brief discussion on why other models can or cannot explain these tasks.

Finally, predictions of our replay model along with a brief conclusion are presented in

Chapter 7.
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Chapter 2

Reinforcement Learning:
Background and Inspiration

Our computational model of spatial navigation in rats is based on sample-based Reinforce-

ment Learning (RL) algorithms. In this chapter, I overview the background material neces-

sary to understand the details of our learning algorithm and also describe the origin of the

experience replay idea in RL. Basically, experience replay refers to retrieving old experi-

ences and reprocessing them without needing to take actions. It was originally proposed to

improve learning efficiency.

RL has been studied in many other areas, such as behavioral psychology, statistics,

economics, and game theory. However, in our model we only use the terms, ideas, and

algorithms from computational RL. So, throughout this thesis every reference to the word

RL means the computational RL even if it is not explicitly mentioned.

I begin this chapter by providing a brief overview of the RL problem and the temporal-

difference (TD) algorithm, which we use in our simulations. I also summarize different RL

algorithms for choosing which experiences to retrieve from the world model. I will later

explain how they are used in our computational model and show their similarity to replay

patterns observed in empirical data from rat brains during a navigational task.

2.1 Introduction to Reinforcement Learning

Reinforcement Learning (RL) is a branch of artificial intelligence that provides a compu-

tational framework for solving real-time decision-making problems. RL formalizes the

interaction between an agent and its environment in order to maximize the overall reward

that the agent receives. The agent acts as both a learner and a decision maker. When mod-

eling animal behavior, the agent can represent the whole animal or only its brain (which is

4



Agent

Environment

rtst

at

rt+1

st+1

state reward

action

Figure 2.1: The interaction between RL agent and the environment (Sutton and Barto, 1998)

equivalent to the main control system). The environment includes everything the agent in-

teracts with and cannot control. It provides the outcome of the agent’s actions and rewards

based on agent’s previous states and action. By this definition of environment, the boundary

between the agent and the environment is not necessarily the physical boundary we might

imagine. For example, if we are modeling the brain of a rat trying to escape from a maze as

the RL agent. The decision-making process happens in the agent, but the outcome which is

physically moving the muscles (which might not happen because of physical disabilities),

is considered part of the environment. Each RL problem can be viewed as a series of inter-

actions between the agent and environment, to maximize the total reward. This sequence

starts with the agent being in the initial state, and ends when it reaches certain terminal

states where its location is reset to the initial state. At each time step in between (t) the

agent is at state st and takes an action at. The environment then provides a reward signal

rt+1 and the next state st+1. The interactions between agent and environment are shown in

Figure 2.1.

The ultimate goal is to maximize the reward the agent receives. It is important that the

agent chooses the actions that maximize the overall reward and not the immediate reward.

To achieve this goal, the agent estimates how good choosing an action in each state is.

This evaluation of state-action pairs is based on a function of rewards that the agent will

receive afterwards. This function is usually referred to as the expected return and is formally

defined as a function of future rewards:

rt+1, rt+2, ..., rT

where T is the final time step. The return at time step t is denoted by Rt and is defined as
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the discounted sum of subsequent rewards according to the following equation:

Rt = rt+1 + γrt+2 + γ2rt+3 + ...+ γT−1rT =

T−1∑
k=0

γkrt+k+1

where 0 ≤ γ ≤ 1 is called the discount factor and causes the rewards that are expected in

the future to have less importance. The closer γ is to 1, the greater the effect of states far

from the final state.

The agent follows a policy (π), which determines how it should choose its next actions.

Formally, a policy is a mapping from each state to the probability of selecting each action

in that state. If a policy always chooses the action which is expected to have the highest

return, it is exploiting its current information. However, it might choose another action

that is not the best, in order to explore it and makes its estimate of the environment more

accurate. This action is called an exploratory action, and it is important that the agent (and

any policy) maintains a balance between exploration and exploitation. If the agent does not

explore enough and always chooses the best action based on its current estimate (greedy

policy), it might find a suboptimal solution and stick to it as a final solution without ever

finding the optimal solution. On the other hand, if it explores too much, it will always have

to pay for the non-optimal steps it takes which decreases its final return. Therefore, the

exploration vs. exploitation problem is a key factor for each agent.

A simple but very common policy which we also used in our simulations is called the

ϵ-greedy policy where ϵ is usually a small parameter defining the probability of choosing a

random action (exploratory step). Otherwise, the policy is greedy, meaning that it chooses

the action which is the best according to the current estimation.

The spatial navigation problem is formally categorized as a Markov Decision Process

because it has the Markov property. This property states that the next state and reward of

an action in each state should only depend on the state and action just taken, and not the

entire past trajectory. Formally, if we denote the action and state taken at time t, t − 1, ...

by at, at−1, ... and st, st−1, ... respectively, then in the general case we would have:

Pr{st+1 = s′, rt+1 = r|st, at, rt, st−1, at−1, rt−1, ..., r1, s0, a0}

This equation means that the outcome, which is both the reward and the next state, depends

on all states, actions and rewards experienced so far. However, this is a complicated case

which usually does not occur. For example, in a maze, if we know the state of the rat

(which is its location) and the action it takes, then the next state and reward might be the
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same independent of the path it has taken to reach that location. Therefore we would write:

Pr{st+1 = s′, rt+1 = r|st, at}

This equation suggests that the next state and reward can be determined only by the current

state and action. This property is called the Markov property. Each reinforcement learning

problem with this property is called a Markov Decision Process (MDP). If the state and

action sets are finite, the problem would be called a finite MDP. For instance, the maze

navigation problem is also a finite MDP because it has the Markov property with finite state

and action spaces.

To keep an estimate of how good each state is, the agent maintains a value function

(V (s)) which assigns a value to each state (s). We might also assign a value to each state-

action pair, and update this estimate each time that state-action pair has been chosen. In the

latter case, the value is usually shown by Q(s, a), where s and a belong respectively to the

state space and action space of each state denoted byS and A(s).

2.2 TD Learning

Temporal Difference (TD) learning is one of the key ideas in RL. The idea is to update

the current estimate of value functions based on the difference between the actual reward

observed and the previous estimate.

More specifically, by choosing action at at state st, and going to state st+1 and receiving

rt+1, the general update rule in the simplest version of this algorithm is as follows:

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)]

The main idea behind TD learning which makes it widely used in the RL domain, is that

instead of waiting for the trajectory to be complete before observing the outcome and updat-

ing the values, it updates the current estimate, based in part on the next estimate (V (st+1)).

In our problem, we focus on choosing the optimal state-action pairs, so we mainly deal

with action-values (Q(s, a)) instead of state value functions(V (s)). The simplest TD learn-

ing update rule in this case is as follows:

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]

where st and at are current state and actions, st+1, at+1, and rt+1 are respectively the

next state, action (chosen by following the current policy), and reward. This variation

of TD learning is called SARSA, which is the abbreviation of the following sequence:
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st, at, rt+1, st+1, at+1 that is used in the update rule. The complete Sarsa algorithm is

shown below.

Algorithm 1 SARSA algorithm: A version of TD-Learning

Initialize Q(s,a) for all s ∈ S and a ∈ A(s)
Repeat for each episode:

s← current state
a← ϵ-greedy(s,Q)

Repeat for each step of episode :
Take action a, observe r, s′

a′ ← ϵ-greedy(s′, Q)

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]
s← s′ , a← a′

until s is terminal

The idea in this algorithm is that in each step, the agent should look one step ahead and esti-

mate the next action value, then update this estimation based on the reward it just obtained.

One of the powerful mechanisms in RL is called the eligibility traces and can be com-

bined with TD methods for a more efficient algorithm. The idea behind this is that the error

between the current estimation of action values and the actual reward obtained should affect

the action value estimation of all state-action pairs visited prior to this state. Therefore, we

maintain a trace of all state-action pairs that were previously visited and are thus eligible

for an update. If we denote the value of this trace by e(s, a), then the SARSA update rule

can be generalized as follows:

Qt+1(s, a) = Qt(s, a) + αδtet(s, a) : ∀s ∈ S, a ∈ A(s)

where δt is the error between current estimate and the actual reward and is defined as:

δt = rt+1 + γQ(st+1, at+1)−Q(st, at)

As shown, all state-action pairs are being updated according to this rule. However, it

is reasonable to assume that they should not all be affected by the same amount, and those

which have been visited recently should undergo more change. To achieve this, we keep

an array of eligibility traces called e(s, a) initialized as 0. Every time a state-action pair

(s, a) is visited, we increase its corresponding element by 1, and then multiply all elements

in the array by a constant variable 0 ≤ λ ≤ 1, which defines how quickly previous state-

action visits should be forgotten. If λ = 1, this means that all state-action pairs should

be impacted independently of how recently they have been visited. Eligibility traces are
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updated according to the following rule:

et(s, a) =

{
γλet−1(s, a) + 1 if s = st and a =t

γλet−1(s, a) otherwise

Combining this idea with the previous algorithm leads to a Sarsa(λ) algorithm where

the parameter λ shows that we are taking into account the full visited trajectories with their

weights exponentially decreasing by a factor of λ. The complete Sarsa(λ) algorithm is

shown below:

Algorithm 2 Sarsa(λ) Algorithm

Initialize Q(s,a) for all s ∈ S and a ∈ A(s)
Repeat for each episode:

s← current state
a← ϵ− greedy(s,Q)

Repeat for each step of episode :
Take action a, observe r, s′

a′ ← ϵ− greedy(s′, Q)

δ ← r + γQ(s′, a′)−Q(s, a)
e(s, a)← e(s, a) + 1

For all s,a :
Q(s, a)← Q(s, a) + αδe(s, a)
e(s, a)← γλe(s, a)

s← s′ , a← a′

until s is terminal

2.3 RL architectures with replay

2.3.1 Model-based replay

The idea of Dyna was presented for the first time as an AI architecture to integrate the

process of learning and planning together incrementally as the agent is exploring the envi-

ronment in real-time (Sutton, 1990). The term “Dyna” comes from dynamic programming

which is a method for learning the optimal value function.

In the Dyna algorithm, a world model is maintained which includes any information

the agent uses to predict how the environment produces next states and rewards. It can be

deterministic, meaning that for each state and action the next state and reward is stored, and

changed if a new experience is observed. On the other hand, a stochastic model includes

the transition probabilities (the probability that an action in each state will lead to a certain

state) and after each new experience only these probabilities are updated. There is one

key difference between these two that reveals when the environment is changing. If the

environment is deterministic, the model will always contain the latest event experienced

9
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Figure 2.2: Relationship between learning, planning and action (Sutton and Barto, 1998)

by the agent no matter how many times previous events had occurred. However, if the

world model is stochastic and maintains transition probabilities, encountering a change in

the environment for the first time will not greatly affect the model. In this case, deciding

how the agent should store past experiences mainly depend on the nature of the task.

When the agent uses this world model to predict how the environment behaves, it is

planning its next actions. Dyna (Sutton and Barto, 1998) combined the idea of learning,

planning and actions together. Figure 2.2 shows how these steps interact with each other.

The agent uses its experiences to learn value functions using an RL algorithm such as the

previously described TD learning (Direct RL). Experience is also used to update a model

(model learning). This world model is then used for planning, which also uses the same

learning algorithm. The policy uses the learned value function to determine next actions, so

produces new experience again, and completes the cycle.

The following algorithm shows the simplest form of Dyna. As can be seen, after each

time step a reward and next state are observed, the model is updated and then N planning

steps are taken. In the simplest form, each replay step includes choosing a random state and

taking a random action in that state, predicting the outcome based on the world model, and

finally updating the value functions using the same update rule.

2.3.2 Trajectory-based replay

The TD learning algorithms only use new interactions with the environment to learn action

values, and do not include any planning steps. Some experiences might be rare or highly

costly. Therefore, there should be a mechanism for the agent to learn from these experi-

ences efficiently without needing to revisit them. This motivated the idea of experience

replay which was originally due to Lin (1992). In this paper he proposed the experience

replay idea as an extension to previous RL frameworks and showed how it speeds up the
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Algorithm 3 Dyna algorithm using Sarsa updates (Sutton and Barto, 1998)

1: Initialize Q(s, a) and Model(s, a) for all s ∈ Sanda ∈ A(s)
2: loop
3: s← current state
4: a← ϵ− greedy(s,Q)

5: Execute action a; observe resultant state s′ and reward r
6: a′ ← ϵ− greedy(Q, s′)
7: Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(a, a)]
8: Model(s, a)← s′, r
9: for N replay steps do

10: s← random previously observed state
11: a← random action previously taken in s
12: s′, r ←Model(s, a)
13: a′ ← ϵ− greedy(Q, s′)
14: Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(a, a)]
15: end for
16: end loop

learning process in TD-based algorithms with less experience needed. In the original pa-

per, experience replay referred to the process of continuously presenting past experiences

to the learning algorithm. This idea sped up the process of learning optimal values in a sta-

tionary environment. It should be noted that if the environment changes quickly, previous

experiences are irrelevant and replaying them only decreases the learning rate.

In addition to experience replay, the idea of “backward replay” in the RL context was

presented in Lin (1992) and referred to replaying previous experiences in a temporally

backward order. Lin (1992) showed that using this strategy makes experience replay method

more effective.

There is one main difference between experience replay and Dyna: In Dyna a hypothet-

ical state is chosen randomly at each replay step and then the agent uses the same policy to

choose the next action. This means that some sequences can be generated in planning steps

which might have never been experienced. This does not happen in the experience replay

model because the hypothetical steps are sequences that have been previously observed and

stored in the world model.

2.3.3 Prioritized Sweeping

The idea of prioritized sweeping was presented in Moore and Atkeson (1993) and

Peng and Williams (1993). In this idea the replay steps are directed toward the states that

need more learning that are the ones that have led to a greater prediction error. For this
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prioritization scheme, the most recent prediction error obtained for each state is used to

build a priority queue. Every time a state-action pair is visited and the prediction error of

this visit is more than a certain (usually small) threshold ϵ, this state along with all other

states leading to it are placed into the queue. Therefore, the first element of the queue will

always contain the transition that has led to the greatest change. Afterwards, instead of

picking a state-action randomly from a uniform distribution over all experienced states, the

top element of the queue is always retrieved for replay.

Another variation of the prioritized sweeping algorithm was due to

McMahan and Gordon (2005) which only added those states whose value function had

recently changed and not its proceedings.

One difference between prioritized sweeping and the original Dyna idea is that in the

Dyna algorithm, a fixed number of replay steps is repeated in each step of the algorithm.

However in the prioritized sweeping algorithm, the process continues for a fixed large num-

ber, or until the queue has no more elements, which happens when the learning has been

completed and all prediction errors are below a certain threshold.

Although in these papers the authors only proposed prioritized sweeping as a heuristic

and did not provide any mathematical proof for the convergence of the algorithm, they

showed how this enabled the TD learning model to solve real-time problems with even

large state spaces more efficiently than previous RL schemes.

2.3.4 Dyna2 Architecture

In the original Dyna algorithm the world model was represented by a tabular matrix. This

limited its use to only the problems with relatively small state spaces. The Dyna algorithm

was later extended by presenting the Dyna2 (Silver et al., 2008) algorithm to account for

large state spaces using linear function approximation. Silver et al. (2008) showed that

this algorithm converges to a unique solution independent of how samples are generated in

the planning steps. They also presented the algorithm for prioritized sweeping with linear

function approximation (linear prioritized sweeping) and proved that it converges to the

optimal point which was previously only shown empirically.
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Chapter 3

The Psychological Phenomena

In this chapter I present the behavioral and neurobiological phenomena, which I will use

in Chapter 6 to evaluate our computational model of rats navigation. First, the studies

that have reported how rats behave in different mazes or open field environments. These

studies provide a guideline to verify if the computational models can correctly mimic the

main features of animals’ behavior. Second, the studies that have revealed some facts about

how navigation takes place in the brain by looking at the neuronal activities during and

after performing a spatial navigation task. I briefly explain which neurons are believed to

be involved in navigation, and elaborate on the origin of the term “experience replay” in

neuroscience. These studies are later used to show that our model is biologically plausible.

3.1 Selected Behavioral Phenomena in Spatial Navigation

As previously mentioned, in addition to the biological plausibility of a computational model,

we also expect it to be able to behave similarly to animals in navigational tasks. In order to

evaluate different models based on this criteria, we need to establish standard experimental

results that studies have agreed upon, and that computational models try to explain. In this

section I explain these experiments that I later use as a basis for evaluating the behavior of

our navigational model against animals and other computational models.

3.1.1 Acquisition

The first and most important behavior is acquisition, in which the animals learn to go to

a reward location in the environment. The environment does not provide any clue about

the position of the reward or the direction in which the animal should go. The reward is

something the animal is highly motivated to achieve (food when it is hungry, or escaping

from a water maze for rats, etc.). The animals are motivated to find the shortest path toward
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Figure 3.1: Maze configuration in the detour task regenerated in (Alvernhe et al., 2011). A
is the initial state and B is the reward location. The rat first explores all three paths, then
P2 is blocked and it learns to choose the left path in one trial. Similarly, after adding a
blockade at P1 the rat chooses the right path in the next trial.

the goal, and the more experience they get, the fewer errors they make in finding their

paths. The reward is usually placed far from the initial location (for example at the end of a

multiple-T maze)

There are different variations for this experiment which make the task harder. For exam-

ple, placing the animal in different start locations will prevent it from memorizing the series

of actions which have previously led to goal. This forces the animal to learn the structure

of the environment. Another variant is to place the maze itself in different locations at each

day and include several trials. This is called Delayed Matching to Place (DMP) and ensures

that rats only learn their paths within the local environment, without any external clues.

The third alternative is to change the reward location each day, whether it is the escape gate

from a water maze or a food reward. Rats have shown a gradual decrease in the number of

errors they make to find the goal each day, and after a few days they can find the goal after

only one trial (Foster et al., 2000). This suggests that the rats are learning a representation

of the environment which is independent of the goal.

It should also be mentioned that after each trial, subjects are picked up and placed into

the start locations again. This will make them lose track of their origin if they learn relative

distances to the goal, and causes inconsistency which is referred to as the global consistency

problem (Foster et al., 2000).

3.1.2 Tolman Detour Task

This classical experiment was proposed by Tolman (1948), and showed the first evidence

that rats do not merely learn stimulus-response associations, they build a cognitive map of

their environment which allows them to quickly plan novel paths in the environment. The

original maze configuration for this experiment is shown in Figure 3.1. First, the rats are

14



Figure 3.2: Original result of the latent learning experiment by Tolman (Tolman, 1948).
The HNR group does not receive any rewards. The HR group receives the reward from the
first trial, and the HNR-R group is rewarded only after the 11th trial (shown by the arrow).
The fast drop in the average number of errors show that the pre-exposure to the environment
has affected the learning although it was not shown before presenting the reward.

given enough trials to explore all three different paths. If the middle path is blocked at point

P2, and the rats immediately choose the second shorter path on the left. Alternatively, if the

shortest path is blocked at point P1, then the rats immediately avoid choosing both blocked

paths and go to the right, even though they have only experienced the block while being in

the middle section.

3.1.3 Shortcutting

In an open field experiment and using environmental cues, animals are trained to navigate

to the reward through a long path, while the direct path is hidden or blocked. Once the

blockade is removed and the shorter path becomes available, the animals choose the second

path although they have not previously taken it.

3.1.4 Latent Learning

The idea behind this experiment was originally proposed by Blodgett (1929). The main idea

is that the animal first runs through several trials where no reward is present, and then it is
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exposed to the reward. It does not show any sign of learning before being exposed to the

reward, so this type of behavior is called latent learning. Tolman and Honzik ran this exper-

iment on three different groups of rats in a maze. The first group (HNR) never had a food

reward in any of the trials. The second group (HR) had the reward in a specified location

from the very first trial. The third group (HNR-R), which was the main experimental set,

had the reward in the maze only after the 11th trial. The result of the original experiment

is shown in Figure 3.2. There is a major drop in the number of errors after the 11th trial,

which is faster than the gradual decrease observed in the HR group. This drop suggests

that learning had been occurring even during the trials without any rewards present. Notice

that the first group, which did not receive any reward, also showed a slight decrease in the

number of trials because escaping from the maze is itself a small reward for the animals,

although not explicitly specified.

3.1.5 Spatial Alternation

In this set of experiments, the reward location changes at each trial based on the animal’s

previous actions. For example, in a T-maze configuration, the reward is first presented at the

right arm, but then is presented to the animal only if it chooses the opposite direction of its

previous trial. This is usually challenging for computational models because it removes the

Markov properties of the task by making the problem dependent on the animal’s previous

actions.

3.2 Spatial Navigation in the Brain

3.2.1 Place Cells

There have been many experiments showing that neurons in the dorsal hippocampus are

active when an animal is at a certain location in an environment but not in others. These

units are called place units or place cells since they encode the location of the animal in

the environment. The term place field refers to the place in the environment to which these

units are mapped (O’Keefe and Conway, 1978). This mapping is then used by the brain to

build a cognitive map of the environment. It has been shown that the firing of these cells

indicates that the animal has entered the corresponding place field, regardless of its speed or

head direction (O’Keefe and Burgess, 2005). These place cells are not bound to a specific

environment, but within each environment, their firing is mapped to only a certain portion

of the environment. As shown by O’Keefe and Burgess (2005), some of the place cells
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respond only to the spatial location, whereas others respond to the specific objects or cues

in that location. For example, a small percentage of place fields are considered as “edge

fields,” and fire when the animal is at the edge of the environment (Burgess et al., 1994).

So, each place cell participates in the representation of more than one environment (Burgess

et al., 1994).

There is no detailed explanation for how the mapping from places to place cells is done,

but there are several possibilities. One is that this mapping is only dependent on certain

cues in the environment, meaning that by knowing all the environmental cues (geometri-

cal, sensory, etc.) we can find the corresponding place unit. However, experiments have

revealed that these place cells do not fire only due to external stimuli in the environment

(such as color or smell), although a correlation exists between them. For example, if all the

external environmental cues are removed (light, color, smell, or a food reward) then many

of the place fields are lost, but some continue to fire, and sometimes their firing rate is in-

creased (O’Keefe and Conway, 1978). Another option is that they might also depend on the

animal’s activity in those areas. For example running or pausing will affect the place cell

mappings. However, by ruling out many of these factors (for instance, forcing the animal

to maintain the same speed, or turn in one direction) the same results still hold. This sug-

gests that some of the place cells are encoding the information about the animal’s location,

regardless of external cues in the environment (Alvernhe et al., 2008).

It should be mentioned that “grid cells” are also involved in spatial navigation. Grid

cells are neurons in the entorhinal cortex that fire when the animal is at any of the three

vertices of a grid of triangles (Hafting et al., 2005) that covers the entire two-dimensional

environment. The spacing, orientation and spatial phase of these triangle-shaped grids is

believed to help the animal build a spatial map. In contrast to place cells that fire over

a continuous portion of the environment, these grid cells fire periodically with different

frequencies. There are several theories suggesting that the firing of grid cells at a given lo-

cation is mapped to the place cells centering at that location (O’Keefe and Burgess, 2005).

Since then, many computational models have been proposed to find the underlying mech-

anism of this mapping (Rolls et al., 2006). However, in this work I do not focus on how

place cells form a cognitive map, and rather focus on how this representation can be used

for navigation.
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3.2.2 Experience Replay in the Hippocampus

As mentioned, the firing sequence of place cells was mapped to the sequence of locations

in the environment that the animal had visited. Later, it was observed that these place

cells continued firing in the same sequence even after the task was over and the subjects

were at a rest state (Pavlides and Winson, 1989). More specifically, for a pair of non-

overlapping place fields, their place cells fire in the same order that the rat had visited them

(Skaggs and McNaughton, 1996); and no such firing sequence was recorded before the rat

had experienced those place fields (Pavlides and Winson, 1989; Wilson and McNaughton,

1994; Skaggs and McNaughton, 1996).

This pattern of reactivation was called experience replay and was believed to play a

key role in memory consolidation. It is used in many theories about the role of sleep in

learning (Maquet, 2001) and retrieval of recent memories. It has also been observed that

the firing rate of these patterns was 6-7 times faster than what was observed during the

actual experience on rats (Euston et al., 2007), suggesting that when there is no physical

constraint of actually moving, the brain can replay the experiences 6-7 times faster.

Another study of the rats’ hippocampus activities where they were running in a T-shaped

maze showed that the same experience replay behavior occurred at the decision point where

the animal paused (Johnson and Redish, 2007). More importantly, when the rat was at the

junction point, the replays mostly started from its current location, and swept both stems of

the maze forward. This provided evidence for suggesting that replays also have a role in

decision making. If they were only passive replays of past experiences, they should have

contained the path the animal had taken before decision point. However, replaying both

possible directions forward can suggest that the brain is actively planning.

Evidence suggests that place cells do more than representing current spatial location;

they may show the structure of the environment by storing the connections between states.

Thus, they provide information about available routes in the environment (Alvernhe et al.,

2008) which makes the hippocampus essential for navigation. This role of hippocampus

enables the animal to predict the future states based on current location. If this is the case,

then a change in the structure of the environment (and not current state of the animal) should

be reflected in place fields firing as well. Alvernhe et al. (2008, 2011) tested this hypothesis

and investigated the effect of changing the environment on place cells mapping.

Alvernhe et al. (2008) looked at place cells of rats while they were running through

a familiar maze, and also after adding a new shortcut to the maze. The results indicated
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Figure 3.3: Maze configuration used in the experiment to show the relationship between
relay content and experience (Gupta et al., 2010). Only one of the T-shaped paths is open
at each trial and the rat is rewarded only if it chooses the opposite direction of the last trial
at location T2. Arrows indicate a one-way pathway.

that once the new shorter path became available (which all the subjects found and used it

immediately), the firing rate of place cells (especially in the CA3 region) mapped to those

locations was highly increased. As similar experiment was performed to test the other case:

a barrier was added to an optimal and familiar path which forced the rats to take the longer

path in the maze (Alvernhe et al., 2011). Results were consistent with previous findings,

and indicated that the firing rate of place cells around the location of the blockade was

increased. They adapted quickly to the new obstacle, and chose the detour.

All these experiments strengthened the idea that place cells have a role both in both

embedding information about the connection between states in the environment and build-

ing a cognitive map (since the changes in states connectivity in both cases increased place

cells’ firing rate), and rats’ navigation (since the rats rapidly adapted their behavior to the

change).

One theory explaining the relationship between experience and replays, suggested a cor-

relation between the number of times a sequence of place cells is activated during the task,

and the number of times it is replayed during awake rest states or sleep periods after trials

(Jackson et al., 2006). It was assumed that reactivation should increase with experience.

However, Gupta et al. (2010) showed new behavior in replay patterns which could not be

explained by frequency-based theories. This research suggested that the relation between

replay patterns and experience might not be as straightforward as previously assumed.
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They tested a group of rats on a maze configuration which is shown in Figure 3.3. There

are two paths available (the second one is shown in the dashed line), two decision points:

T1 and T2, and two reward locations (with a food reward): F1 and F2. During the training

sessions, a reward was presented based on the choice point at T2: it was either in the right

path, left path, or alternating between right and left, and this contingency was changed daily.

So within each session, the rats sampled both loops, but how long it has been since a loop

was traversed was based on the reward contingency. They recorded the neural activity of

place cells during the period when the animal paused at reward locations and rest sessions

after each trial session and found three main characteristics in replay content:

• Forward and backward replay

The replayed trajectories contained forward paths (starting from the animal’s current

location and moving forward towards the goal) and backward paths (starting from

reward locations, or from its current location sweeping the path it had just taken.

This backward replay has been observed in previous experiments (Foster and Wil-

son, 2006), but in this case it was specially interesting because the subjects were not

allowed to move backward in the experiment by Gupta et al. (2010). As a result,

these backward trajectories were considered new imaginary trajectories.

• Opposite side replays

When the reward location was changed, although the rat quickly adapted to the

change and moved toward the new location, it still continued replaying the trajec-

tories of the opposite site (old reward location). Specially, Gupta et al. (2010) also

showed a forward replay of trajectories leading to the reward sites, and backward tra-

jectories starting from reward locations. This strengthens the theory that although the

rat is taking the right paths, they keep thinking about the parts that were surprising.

• Shortcut sequences

Another interesting pattern observed was what happened with the shortcut paths,

which are straight paths from F1 to F2 or vice versa. Considering that rats had not

experienced backward trajectories, this observation provides evidence that the hip-

pocampus also generates new trajectories, and does not only exhibit passive replays

of past experiences.
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3.3 Summary

In this chapter two categories of studies on rats were presented. The first section reported

how rats behave in different spatial tasks, and established an empirical testbed for the com-

putational models. We looked at some of the most important ones including acquisition,

finding shortcuts and detours, latent learning, and spatial alternation which we will later

use to show how our computational model behaves.

The second section established the hippocampal place cells are important in encoding

spatial information about the current location of animals in their environment. I also ex-

plained how they are believed to maintain an abstract representation similar to a cognitive

map that contains information about available paths in the environment. I then explained

some experimental results that have shown reactivation of place cells firing after a task or

when the animal is resting or sleeping. These studies suggested that replays are not merely

passive reactivation of firing of previous active place cells, and some novel patterns recorded

from rats’ brains strengthened the theory that replays may play an active role in learning.
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Chapter 4

Related Computational Models

When walking alone in a jungle of
true darkness, there are three things
that can show you the way: instinct
to survive, the knowledge of
navigation, creative imagination.
Without them, you are lost.

Toba Beta, My Ancestor was an
Ancient Astronaut

In this chapter, I review previous computational models that have been proposed to

explain spatial navigation in rats. I use these models later in Chapter 6 and show why

they can or cannot explain various behavioral tasks and demonstrate their differences to our

replay model.

In the second section of this chapter, I describe how the replay idea is used in other

areas. As an example, I illustrate how integrating the replay idea into conventional models

of associative learning enables them to explain many hard-to-explain phenomena.

4.1 Computational Models of Spatial Navigation

Most proposed models use the idea of TD learning described in section 2.2. Though the

implementation might be different, the key idea is to learn based on the error between a

prediction and an observed outcome. Thus, TD-based models are referred to as reward-

based models since they are dependent on a reward signal. These models are capable of

efficiently learning correct optimal values and do not depend on the geographical or topo-

logical structure of the environment as long as the reward location is consistent. However,

once the reward location is changed, the behavior of these models diverges from that of an-

imals. This happens for two reasons: first, the previous value functions become misleading

and guide the agent to wrong directions, which reduces the performance. Second, the agent
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needs to learn new values for each state and cannot use its past knowledge, so it requires

more experience. This is also the opposite of the one-trial learning behavior that the animals

demonstrate in the DMP task.

TD learning with Metric Coordinates

Foster et al. (2000) simulated the firing of 493 place cells which covered the environment

(the same number that they found through experiment) by a Gaussian distribution where

the centers were set to the recorded centers of each place field and the breadth of each field

was set to 0.16 (also the same as the measured value). These values represented the state

of the agent in the environment, and the actions were eight possible directions the agent

could take. The reward signal was set to 1 if the agent was in the specified reward location

at the right time, and 0 otherwise. Using the basic TD-model, the agent tried to learn the

appropriate value function of each state (which was defined by simulated place cell firings)

and was able to show the one-trial learning behavior in a simple acquisition problem, and

also when the start location was changed at each trial.

Foster et al. (2000) added a metric component to the model to learn the coordinate sys-

tem of the environment. This was inspired by dead-reckoning abilities in rats. This ability

provides animals with some information about head direction enabling them to estimate

their current self-motion. This information is provided by cells in the postsubiculum that

their firing represents the head direction of the animals at each moment (Brown and Sharp,

1995). By simulating this information, Brown and Sharp (1995) simulated the direction

in which the agent was moving and the speed. Combining this with the information about

current location which was provided by place cells, the agent could accurately update its

coordinates. Although it did not receive any direct information about the origin of this co-

ordinate system, it was shown that the learned coordinates were stable over different trials.

The metric and TD learning components worked tightly together in such a way that the

metric system provided the direction toward the location that was determined by the TD

component as a goal. However, when there is no reward location available (for instance,

during a DMP task where the agent finds that the reward is no longer at the location it had

previously predicted) the coordinate system generates random exploratory actions. This

system would be goal-independent and enable the agent to use its previous knowledge to

quickly adapt to the new reward locations.
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Modeling the role of working and episodic memory

Animal behavior and spatial navigation are complicated processes and cannot be easily ex-

plained. One of the reasons is that not only does their behavior depend on their current state,

it is also affected by the animal’s past memories. This is troublesome for the computational

models (and specifically RL-based models) since it removes the Markov property condi-

tion of the problem (which requires that the problem depends only on the current state and

action). In RL, this problem can be solved by including the necessary information about

animal’s past decisions in its current state representation. Zilli and Hasselmo (2008) used

this idea and included this information about past decisions in a memory. There were two

types of memory considered: (i)Working Memory (WM) which was defined to be active

only for a short period of time and (ii) Episodic Memory (EM) which stores past memories.

Zilli and Hasselmo (2008) extended the RL models to include these two types of memory

and make the RL model more similar to what animals’ brains do in navigation tasks. In

order to keep the Markov property, they considered these two memory components as part

of the environment and not the agent itself. Therefore at each time step, the agent received

its physical location as its state (S) along with current representation of WM and EM. The

action values were also estimated for all possible combinations of S, WM, and EM instead

of only for possible states. WM contained current state and next action until the action was

actually taken. Therefore, the set of possible WMs defined the policy that the agent was

following.

EM was implemented as a content addressable memory and contained a list of n most

recent states and actions experienced. Moreover, EM was temporarily indexed so that by

retrieving a specific state, the whole trajectory (other states that are temporally close to

it) could be replayed. The rest of learning algorithm was similar to TD, with an ϵ-greedy

exploration policy. Since WM contained short-term states and actions, Zilli and Hasselmo

(2008) suggested that if a task can be solved by only considering the recent experiences,

modeling WM would be sufficient. Otherwise, for tasks that need memories from previous

experiments, EM should be used as well. By incorporating the role of memory systems,

they extended the domain of problems that RL could model to include more complicated

tasks which had a delay imposed.

Modeling hippocampus replays with TD learning

The paper by Johnson and Redish (2005) was the first to suggest that the idea of experience

replay in RL is closely related to the replay of recent memories observed in hippocampal
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cells during sleep or rest periods after a task. In this paper, they used the TD learning model

with replay steps on a simulated multiple-T choice-tasks which contained four T-shaped

choices. A reward was presented only at one arm of the final T. The simulated replay steps

started at a random state that was previously experienced, but chose the action that was

most similar to the change in that state. The error was defined as entering an incorrect arm

of the T mazes.

Johnson and Redish (2005) showed two main effects in their computational model:

First, TD learning algorithms without a replay component, learn more slowly than real

animals. Also by adding replay steps, the learning rate speeds up and becomes more similar

to the learning rate of real animals.

Second, the same path stereotypy behavior which was seen in rats was observed in

the agents as the calculated correlation between the paths they chose increased over time

(Although the performance was still slower than rats’ performace).

Johnson and Redish (2005) predicted that replay should develop with experience. How-

ever, this might not always be the case. For example, by using the idea of prioritized sweep-

ing, with more experience the prediction error that the model generates decreases and as a

result fewer state-action pairs are added to the priority queue, which will result in fewer

replays.

A model of hippocampus function

Burgess et al. (1994) presented a computational model for hippocampus function by ap-

proximating the firing rates of place cells using radial basis functions on a 2-D open field

environment. The navigation is based on a population vector and the vector direction is

then calculated by looking at previous active cells. The direction of navigation is then cal-

culated based on the population vector from goal cells to the agent’s current position. The

model proposed by Burgess et al. (1994) is a five layer neural network in which the layers

are respectively sensory-input hard-wired to the entorhical cells, place cells, subicular cells,

and goal cells which represent the location of the reinforcer. It should be noted that they

also included the head direction of the agent when it encounters the reinforcer, and this

direction is also stored in goal cells layer. The first two layers provide the information from

sensory cues, and the main learning takes place by adjusting weights between the two lay-

ers of place cells and subicular cells. Whenever the agent encounters a reward location, the

specific goal cell (which corresponds to its head direction) receives a reinforcer signal, and

the connections between this cell and the ones in previous layers that were recently active
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are strengthened.

In Burgess et al. (1994), they showed that the implemented agent could solve the ac-

quisition task using brief exploration in the environment. Also, since the modification in

the connections between place and subicular cells was done as the agent was exploring the

environment, their agent was able to successfully perform the latent learning task. Later

they implemented their model on a mobile robot with visual and odometric sensors which

provided input for simulated place cells. The robot was able to successfully navigate in an

open field maze (Burgess et al., 1997).

One of the main concerns in the model proposed by Burgess et al. (1994) was the

representation of cues, which highly affected the learning performance of their agent. As

they mentioned, with four cues present in the environment, the time it took to find the

goal dramatically increased. Another constraint was that the agent’s later performance was

affected if it took a long time to find the goal, and it always takes a long time for the agent

to find the goal in the first trials. This happened because the agent might have reached

the goal from a longer path. Therefore its head direction and the simulated place cells that

were recently active were not necessarily the optimal ones, but were used for learning. Also

this model required that the agent looked at all possible directions when encountering the

goal, in order to update all goal cells for each direction. If this did not happen, the model

predicted that it should affect the navigation performance.

Cognitive mapping with a neural network

Voicu and Schmajuk (2002) proposed a computational model for spatial learning which was

composed of four different components:

• A motivation system, which defines goals for the agent. This motivation system is

very similar to the idea of the reward system in reinforcement learning. However

the slight difference here is that the unexamined locations of the environment were

defined as less-valuable goals. In this way, if the agent does not predict any goal

locations anywhere in the environment, it is motivated to explore states it has not tra-

versed yet. This modified reward system also keeps the balance between exploration

and exploitation.

• An action system, specifying how the agent should choose the next action. This

system works by using the goals defined by the motivation system. The agent should

move either to a goal state or a state that is predicted to reach a goal state. If none of
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them exist, it starts exploring the environment because the motivation system defines

unexplored regions as second order goals.

• A cognitive map, storing connections between locations in the environment which is

implemented by a neural network. A key assumption here is that initially all states

are assumed to be connected to each other, and as the agent explores the environment,

the map becomes more accurate.

• A short-term memory component which acts as a buffer and stores the future path

that the action system has specified to be taken next.

At the beginning, the agent assumes all states are connected and there is no block. Also

the reward location is still unknown, so the motivation system specifies exploratory actions

as goals and it starts exploring the environment, while updating its cognitive map to reflect

blocked links. As soon as the agent reaches a goal state, the reward gets backpropagated

and the connection weights between all states on the path are increased. The change in

connection weights is based on the length of the adjacent nodes to the reward.

Voicu and Schmajuk (2002) showed that their simulated rat could successfully model

the Tolman detour experiment, shortcut task, and latent learning using this model.

4.2 The Replay Idea in Simple Associative Learning

The replay idea is not limited to spatial navigation. It can be used in a variety of other

areas as well. As an example, in this section I briefly explain how we integrated the idea

of replay into the existing model of associative learning. We worked on this project with

Dr. Elliot Ludvig 1, Prof. Jim Kehoe 2, and Prof. Rich Sutton 3. The result was a replay

model that extends the Rescorla-Wagner (RW) model of associative learning to account

for more learning phenomena, which has been hard to explain previously. Our proposed

replay model is a computational model for the rehearsal and consolidation of memory. It

suggests that new information should be integrated with previous memories and both new

and previous experiences should participate in the process of learning.
1Princeton Neuroscience Institute, Princeton University, eludvig@princeton.edu
2School of Psychology, University of New South Wales, j.kehoe@unsw.edu.au
3Department of Computing Science, University of Alberta, rsutton@ualberta.ca
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4.2.1 Specification of the Replay Model

In the original RW model (Rescorla and Wagner, 1972), there is an associative strength (V)

assigned to each stimulus present in the environment, and the predicted outcome is the total

sum of these values defined as V∑ (this is the same as the value function in TD learning

which is an estimation for the total reward). This estimation is calculated based on the

difference between the received reward (r) and V∑ according to the following rule:

∆V = α(r − V∑)

This value is calculated at the end of each trial, and all associated strengths are updated by

this amount.

As an example, we look at the standard blocking procedure. The subjects first receive

reinforced conditioned stimulus (CS) paired with an unconditioned stimulus (US), which

we show as A+ trials. Then this CS is paired with another new CS, while the reinforcer

is still present (AB+). The result is that the subjects completely ignore the presence of

this new CS, and do not respond to it, instead they continue responding to the first CS, as

before. This can be explained by the RW model, by considering that at the beginning of the

A+ phase, the only CS present is A and the term ∆V is positive. Therefore, the associative

strength of A (VA) increases to match the value of r. However, in the next phase, A is a

good predictor of the US, therefore there is no ∆V and the associative strength of B does

not change, this phenomenon is called blocking.

To extend this model with the replay component, we suggested that the real experience

should be used in two ways. First, the agent uses the CS-US pair as in the original RW-

model to update the corresponding associative strengths using a TD learning update rule.

Second, in addition to this direct update, the CS-US pair is stored in the memory, which

represents a world model. After the update rule has been applied to the associative strengths,

a certain number of previous CS-US pairs are retrieved from memory and the same learning

rule is applied to them again. This essentially means that at each step, the agent is actively

learning from both current and past trials.

4.2.2 Behavioral Phenomena Explained by the Replay Model

The simple extension of replay enables the RW model to explain a wide range of experi-

ments. In this section, I explain three main examples: latent inhibition, spontaneous recov-

ery, and retrospective revaluation.
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Latent inhibition occurs when animals are first exposed to a CS without a reinforcer be-

ing present. Afterwards, when the CS is paired with a reward, the subjects show a decrease

in their learning speed compared to the control group which has not been pre-exposed to the

CS (Lubow, 1973; Lubow and Moore, 1959). Since there is no reward present during the

first phase (inhibition), the ∆V value in the original RW model is 0, and nothing is learned.

However with our proposed extension, a world model is also added which stores the A-

trials, and in the next phase (A+ trials) presents them again to the agent. Therefore, during

the acquisition phase the agent is learning from both reinforced (A+) and unreinforced (A-)

trials which slows down the learning.

In the spontaneous recovery procedure, the subject is first presented with a CS paired

with a US (acquisition) and then receives CS alone trials (extinction). It has been shown

(Napier et al., 1992; Haberlandt et al., 1978) that the animal responds to the CS at the end

of the acquisition phase and also stops responding at the end of extinction phase. However,

as time passes, the animal gradually starts to respond to the CS again. The degree of this

responding is proportional to the duration of time elapsed since the end of the extinction

phase. The more time that passes, the more the animal responds to the CS. This behavior is

again one of the limitations of the RW model, due to the fact that after the extinction phase,

nothing happens to cause a change in the associative strength of A. However by adding the

replay component, both the A+ and A- trials get replayed after the extinction phase, which

causes the gradual re-acquisition of the associative strength of A.

Retrospective revaluation refers to the behavior whereby a subject changes its response

to a CS as a result of being trained with a different CS. The replay model can achieve

this behavior because it is constantly retrieving previous trials from memory and updating

their associative strengths. Examples of this phenomena are backward blocking, backward

condition inhibition, and recovery-after-blocking, which can be explained by our replay

model. For instance, in a recovery-after-blocking experiment, subjects are first trained with

a standard blocking procedure (A+ followed by AB+ trials), then the blocking stimulus (A)

becomes extinct (by receiving A- trials). After this, the subjects gradually start to respond

to the blocked stimulus (B) again (Blaisdell et al., 1999). With the original RW model, the

second stimulus (B) gets blocked, thus its associative strength remains at 0 the whole time.

However, by replaying previous trials, the AB+ trials also get replayed A becomes extinct,

which causes the gradual decrease in the associative strength of B.
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4.3 Summary

In this chapter, I first described the replay model as an extension to the original RW model of

associative learning and briefly explained how it can explain latent inhibition, spontaneous

recovery, and recovery after blocking experiments. Next, I reviewed some of the main

computational models proposed so far for modeling spatial navigation in animals, and also

described some of the behavioral tasks that the models are expected to achieve.
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Chapter 5

The Replay Model of Spatial
Navigation

We are constantly altering our
memories so the past won’t conflict
with the present

In treatment, Season 2, Episode 15

This chapter presents the specifications of our replay model for spatial navigation, in-

cluding its general architecture, description of each of its components, and the learning

algorithm. These details will help better understand the behavior of our model in the com-

putational experiments in Chapter 6. In this chapter, I also provide a discussion about

the similarities and differences between our replay model and the previous computational

models presented in Chapter 4. Our model is based on the Dyna algorithm in RL, a class of

sample-based learning algorithms that works by retrieving past experiences and reprocess-

ing them. The retrieval process can be implemented in different ways which I explain here.

Their effect in a sample experiment will be evaluated in the next chapter.

5.1 General Architecture

The core idea in our replay model is that learning should take place from both real and

imaginary experiences. Therefore, we generate imaginary scenarios from the internal model

of the agent and run the same learning algorithm on these retrieved transitions along with

applying the learning algorithm to real experiences as generated by interactions between

the agent and environment. This idea is based on the Dyna architecture (Sutton and Barto,

1998) (described in Section 2.3.1) which combines the processes of learning, planning, and

acting.
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Figure 5.1: Schematic view of the replay model. The agent’s interactions with the environ-
ment are real experiences, which are used both in the TD learning algorithm and to update
a world model. The world model then generates imaginary experiences and they are used
in the learning process as well.

A schematic view of the model is shown in Figure 5.1. “Real experience” refers to the

agent’s interaction with the environment. The TD learning algorithm uses these experiences

to learn optimal value functions. On the other hand, the real experience is also used to

develop a world model, which generates imaginary trajectories, or as we call them replay

steps, for the agent to rehearse and re-learn between each real interaction with the world

according to the same TD learning approach. A description of each component of the model

is given below.

• The Environment provides an outcome every time the agent executes an action. Ac-

tions are the only way an agent can interact with its environment. This outcome

includes some representation of the next state of the agent in the environment and a

single numerical reward signal at each time step (which might be negative as a pun-

ishment, positive as a reward, or 0). The states and actions are represented with s ∈ S

and a ∈ A(s) (where S is the states space and A(s) is the set of all possible actions in

state s). In a deterministic environment, each action at a given state will lead to a cer-

tain outcome. In a stochastic environment, there is a probability distribution function

for each state-action pair which determines the next state.

• Real Experience refers to an interaction between the agent and its environment. It

consists of four components: current state (st), action(at), reward signal (rt+1), and
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next state (st+1). This interaction is the only source of information about the envi-

ronment for the agent.

• The World Model is maintained by the agent as it experiences the environment. It

keeps some representation of each interaction which has occurred in the past between

the agent and environment, and can be used by the agent to predict the environment’s

properties. The model might be stochastic or deterministic based on the problem. If

the environment is changing and the agent forgets the old information, a deterministic

model could be useful, in which the first time the agent is faced with the new situation,

it replaces the old memories. However, if the environment is noisy, replacing each

new event causes the model to change with each inaccurate outcome which will delay

learning. Therefore, in this case storing the transition probabilities seems a better

option, because the probabilities will reflect the frequency that a specific (st+1, r)

has been observed for each (s, a).

• Imaginary Experience has the same four components as the real experience: state,

action, reward, and next state. However, the difference is that next state and reward

are obtained from the model of the world that the agent maintains instead of the real

environment. Learning from imagined experiences is especially useful if there exist

some rare but important events, or the ones that are highly costly to obtained. In this

case, the world model will remember visiting such experiences for a few times, and

these rare or expensive experiences can be regenerated as many times as needed for

the agent to learn them. This is similar to a situation in which your body shows an

allergic reaction to something you have eaten. Instead of once again eating what you

ate that day, you try to remember what might have caused the problem and associate

the allergic reaction to that specific ingredient to avoid eating that food in the future.

• A TD Learning Component will be used which can be any arbitrary algorithm in

general case, chosen based on the specific task. However, we will use TD learning,

which is one of the core ideas in RL as described in Section 2.2, and is also strength-

ened by the experimental evidence that the brain codes similar TD errors. The TD

learning algorithm suggests that the current estimate of action values should be up-

dated based on the difference between the observed reward and current estimate.
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World Model
Real Experience

(s, a, s′, r′)

TD-learning algorithm

Generate Imaginary Experience

update

learn

learn

Figure 5.2: General structure of the replay model. Real experience is identified by four
elements (st, at, rt+1, st+1) and is used in two paths: to update the world mode and in the
TD learning algorithm. The world model then generates imaginary experiences which are
again presented to the learning algorithm.

5.2 Learning Algorithm

Figure 5.2 shows how our model works. One key part of the model is how the imaginary ex-

periences are generated from the world model. The high-level learning algorithm is shown

in Algorithm ?? which follows the general Dyna structure (Sutton and Barto, 1998). The

algorithm we used in our simulations was SARSA with eligibility traces.

This algorithm mainly consists of two parts for real and imaginary experiences: Lines 4

to 8 show the interactions between environment and the agent. The TD learning algorithm is

applied at line 6 to update the current estimate of action-value function(Q). At line 9, sreplay

is chosen as the initial state for the replay sequence and an imaginary trajectory starts from

that state using the current model of the world, which is updated in line 6. In the original

version of Dyna-Q algorithm (Sutton and Barto, 1998), a new random state is chosen at

each replay step. However, here we choose the initial replay state and then a trajectory is

generated starting from it based on the same policy the agent is following. This trajectory

continues until the replay state reaches the goal state, or Nreplay replay steps have passed.

This is the same for the real trials. The agent is allowed to be in the maze for at most N

time steps. If it has not reached the goal state, its location is reset to the initial state.

The model may contain memories of full trajectories of the past. At each replay step,

the world model may present one full trajectory to the agent to re-learn it. Alternatively, the

agent may store only one-step transitions which gives more freedom in generating replay

34



Algorithm 4 The learning algorithm in Replay Model
1: loop
2: s← initial state
3: repeat
4: a← policy(s)
5: Take action a, observe r, s′

6: UpdateModel(s, a, r, s′)
7: TD-Learning(s,a,r,s’)
8: s← s′

9: sreplay ← Choose an initial state for replay
10: repeat
11: areplay ← policyreplay(sreplay)
12: s′replay, rreplay ←Model(sreplay, areplay)
13: TD-Learning(sreplay, areplay, rreplay, s′replay)
14: sreplay ← s′replay
15: until sreplay is terminal state ||Nr number of replay steps has passed
16: until s is terminal state ||N number of replay steps has passed
17: end loop

Algorithm 5 TD-Learning update rule with eligibility traces

1: δ ← r + γQ(s′, a′)−Q(s, a)
2: e(s, a)← e(s, a) + 1

3: for all s,a do
4: Q(s, a)← Q(s, a) + αδe(s, a)
5: e(s, a)← γλe(s, a)
6: end for
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trajectories. In this case, it is possible to generate some imaginary scenarios which have

never been previously experienced. For example, the agent might have traversed s1 →

s2 → s3 in one episode, and s4 → s2 → s5 in another. But in generating imaginary

experiences, the trajectory s4 → s2 → s3 might be generated which has not been directly

experienced before. This enables the agent to find potential shortcuts by only replaying past

experiences, and is a key feature of the model especially in navigation tasks.

5.3 Relation to previous models

In Chapter 4 I presented a brief overview of previous models that described how the encoded

information in place cells can be used to solve different navigational tasks. In this section, I

point out the similarities and differences between the key ideas of previous models and our

replay model.

Reward-based models lacked the important ability to model latent learning experiments,

because learning only occurred after the agent had received the reward. The significance

of the model proposed by Burgess et al. (1994) was that the connection weights in the

simulated neural network were updated independent of the reward and the agent could learn

even without a reward present. Our model has added this feature by maintaining a world

model that is updated as the agent explores the environment. This world model is learned

even if the agent does not receive a reward and stores information about the transition

steps. This enables our agent to successfully perform the latent learning experiment wherein

previous exposure to the environment enhances learning.

Foster et al. (2000) also incorporated a TD learning component but added a metric com-

ponent to the model which enabled the agent to quickly adapt to the change in the reward

location after learning the old configuration of the environment. In our replay model, we

have a similar TD-component but no special component is added to account for a dynamic

reward location task. In such an experiment, our agent will continue replaying the trajecto-

ries that led to the old reward location which is no longer reinforced. These replay steps will

cause the action-values of states near the old goal state to decrease, which in turn results in

more exploratory actions and finding the new reward location. This means that the same

TD learning algorithm is again used to adapt to the new environment, without needing to

actually execute additional steps which previously caused the models to diverge from the

animals’ behavior in this task.

The same comparison holds for the model proposed by Balakrishnan et al. as well. They
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developed their model based on metric distances to build a cognitive map of the environment

and find available shortcuts in it. We implemented the idea of a cognitive map by having

the world model, which is maintained as the agent explores the environment. In order

to find shortcuts, we again rely on the replay steps which generate imaginary trajectories.

Therefore, the agent will use its world model to connect different paths of the environment

which have been traversed in separate trials, and find available shortcuts.

Voicu and Schmajuk (2002) had also used the idea of storing a cognitive map in their

proposed model. One of the strengths of this model was that the agent could find a shortcut

even in an unexperienced open field environment. This was possible because they assumed

all states are initially connected unless a blocked path is observed. In our model, there is

no initial assumption about states until they are visited for the first time. This enforces the

condition that our agent should first visit the whole environment at least once before finding

shortcuts.

Another difference is that Voicu and Schmajuk (2002) have distinguished between the

two notions of memory and a cognitive map. A cognitive map contains information about

the connection between states, while memory is only used as the short-term buffer storing

the path that the action system chooses to take. However in our model, we used the term

memory as the unit which stores the model of the world which is learned by the agent and

represents an abstract world model similar to the role of cognitive map.

Moreover, once the goal is determined, their agent acts greedily and moves to the states

with higher value. As a result, the rate of exploration decreases once the goal has been

found. Therefore, if there is a change in the environment, the agent might completely

ignore it. For example, if a barrier is added to the shortest path to the goal and is removed

after a while, the agent learns to avoid the barrier, but does not explore enough to find that

it has been removed.

However, since we used the ϵ-greedy action selection method, there is always a small

factor of exploration which will eventually lead the agent to discover the new shorter paths.

Another difference is that Voicu and Schmajuk (2002) assumed that all parts of the en-

vironment are connected (all weights are initialized as one), unless the agent experiences

otherwise. Therefore, the agent is always overestimating how good the environment is,

while our agent is under-estimating it until it has actually experienced it.

Li et al. (2005) have proposed a slightly different version of the TD learning algorithm

by having different reinforcement centers. However, they have maintained a separate rein-

forcement center for each possible action and at each step chose the “winner” among them.
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This was in essence the same as keeping action values and at each state and choosing the

best action based on a current estimate of action values. Therefore, our model, which main-

tains action values and follows the same TD learning algorithm will also behave similarly

in the test experiments that were proposed in Li et al. (2005).

The model proposed by Zilli and Hasselmo (2008) used “working memory,” to store the

next action to be executed, and “episodic memory” to store past trajectories. The idea of

storing past memories in a memory model is the same as in our model. However, we did not

store the whole trajectories. Instead, only the next state and rewards for each state and action

are stored, which allows the agent to generate novel trajectories by connecting different

states that were experienced separately. The idea of working memory was also helpful in

the spatial alternation task where the reward location changed based on the agent’s previous

decisions, and caused the problem to lose its Markov property. To be able to model this,

we can extend our state representation to include this information, and keep the problem as

a MDP. This idea is also similar to the model by Zilli and Hasselmo (2008) in which the

animal’s current state was determined by its location along with the status of its working

and episodic memory.

The most similar model to our replay model is the model of the hippocampus proposed

by Johnson and Redish (2005). They were the first to use Dyna model in RL, which already

had the idea of learning from imaginary experiences to model reactivation of place cells in

the hippocampus. However, they only showed basic behavioral tasks and did not extend the

model to account for more complicated tasks such as latent learning or finding shortcuts.

Moreover, based on their model they predicted that replay should develop with experience.

However, this might not always hold. For example by using the idea of prioritized sweeping

in our model, with more experience the prediction error decreases and as a result fewer state-

action pairs are added to the priority queue, resulting in fewer replays. As described in the

next section, we look more carefully into the replay content and how it is affects learning.

To sum up, the main advantages of the replay model are two-fold: First, using the single

idea of experience replay which has a biological basis to account for different behavioral

tasks. Second, we use the same TD-based learning rule for both real and imagined scenarios

and also in generating these scenarios from an abstract memory model without needing a

complex data structure, which is a simpler approach than previous work.
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5.4 Retrieval Strategies

A key decision in our model is how trajectories should be chosen for replay, which we refer

to as replay content. In this section, I present the different methods that we explored in our

simulations.

Frequency-Based Strategy

The first and most intuitive strategy is to replay the states based on the number of times they

have been visited. To simulate this, we should maintain the number of times each state has

been visited along with the outcome. The replay steps will then mostly include the most

frequently visited ones.

For example, in a T-shape maze the agent would be replaying the states in the middle

path more often than the other two ends, since it has spent most of its time in this section.

This idea is biologically inspired and has been reported in many studies(e.g. (Pavlides and

Winson, 1989; Jackson et al., 2006)) where place cells that fired the most during the task

were shown to be more likely to continue firing when the task was over.

Recency-Based Strategy

Another idea is to give priority to the states that have been visited more recently.

This has also been shown in hippocampal place cells (Wilson and McNaughton, 1994; Sk-

aggs and McNaughton, 1996). Place cells that were active recently, tend to continue firing

during the rest states following the task as well. This is specifically useful if the environ-

ment is expected to change. In this case the agent will replay the new states more often than

the old ones which helps it to adapt more quickly to the change.

To simulate this, we assign a numerical priority to each state. Every time a state is

visited, we increase its priority by 1 and multiply the priority of others by a constant factor

less than 1. Then we choose the initial replay state from a probability distribution function

based on these priorities. These values can be initialized randomly or all be made equal to

0.

Random Strategy

Computationally the simplest way to choose the initial replay state is at random. This is

also the same as the original Dyna model (Sutton and Barto, 1998). In this case, there is no

priority assigned to states. An imaginary trajectory starts at a state chosen from a random

distribution over previously experienced states.
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Since there is no specific assumption about the changes in the environment nor which

states should be considered more important, this method can be considered as a general

approach.

Backward Strategy

This approach suggests that the agent starts the imagined experience from the reward lo-

cation and chooses one of the states leading to it, then sets its current state to this one and

continues replaying in a backward direction. The interesting point in this approach is that

sometimes in the original experiment, the agent is only allowed to move forward. Thus,

in order to move backward from a sample state S, it has to search the model to find which

states have led to S. It then chooses one of these precedent states (S′) and executes the ac-

tion taking it from S′ to S. This process is then repeated for S′ until it is equal to the maze’s

initial state, or a certain number of replay steps has passed. This behavior was reported in

the experiments done on rats as well (Foster and Wilson, 2006; Gupta et al., 2010). Al-

though rats were not allowed to move in the opposite direction in the maze, this backward

reactivation of hippocampal place cells was observed in their place cells.

Most-Rewarding Strategy

Another variation is to replay the states that were more valuable than others. More for-

mally, this strategy is equivalent to choosing to replay the state with the highest value func-

tion. However, this method will eventually be similar to the replay-from-the-goal-state.

Therefore it makes sense to simulate the trajectories backward, starting from the state with

highest value function and moving backward to the states that are known to be leading to it,

and so on.

Prioritized Sweeping Strategy

Prioritized sweeping is suggested as one of the strategies for choosing replay trajectories

in a Dyna algorithm (Moore and Atkeson, 1993; Lin, 1992), and was described in sec-

tion 2.3.3. The idea was to replay the experiences that were considered to be more surpris-

ing. More specifically, the agent maintains the latest value of all prediction errors, and in

each trial chooses to start replaying from the state with the largest error. The agent con-

tinues simulating the imagined experience from that state until it reaches the goal, or a

maximum number steps have passed. In this way, if the environment changes, the agent is

more often replaying the parts where the experience has been contradicting its model of the
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world. Therefore, it adapts to the new environment more quickly.

5.5 Summary

In this section I presented our replay model, which extends previous TD learning models

by allowing the agent to generate experiences from its model of the world and re-learn from

them again and again. I then compared our model with previous computational models

which tried to simulate behavioral tasks performed by animals in a navigational task. As

mentioned, the main advantage of our model was its simplicity in using same learning al-

gorithm for both real and imaginary scenarios, along with its accordance with biological

evidences for replay patterns recorded from place cells. Finally, I presented different ap-

proaches for generating imaginary scenarios that are inspired by the observed patterns of

replays recorded from rats’ hippocampal cells.

41



Chapter 6

Experiments and Evaluations

This chapter presents how we evaluated our model, and why we consider it as a powerful

computational model of spatial navigation that uses a simple idea, and can explain many

behavioral tasks, while being supported by neurobiological findings.

I first present the environment we used for our computational experiments, and explain

the we will use throughout the rest of this chapter. Then I demonstrate the behavior of

our replay model in two learning tasks including the latent learning and the Tolman detour

experiment. These computational experiments are designed to show certain properties of

the model and how adding the simple idea of experience replay enables the agent to solve

different maze configurations that were considered complex for computational models. For

each of these experiments I also provide a discussion on how previous models can or cannot

achieve the same results.

I will then compare the performance of our replay model using various strategies for

retrieving past experiences and illustrate how recent findings from rats’ brains support our

model and these replay schemes we suggest.

These three approaches (performance in behavioral tasks, being in accordance with

neurobiological data, and having advantages over existing models) form the main evaluation

criteria for our model.

6.1 Experiment Settings

The environment that was used for all experiments in this chapter is a maze domain with a

start state (shown in the figures with a door) and a final state with a reward value of +5. We

formalized the navigation task as a deterministic, finite MDP. The representation of states

and actions is shown in Figure 6.1. Each state represents the approximate location of the

agent in the maze and is represented by an integer corresponding to its index (Figure 6.1a).
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(a) States (b) Actions

Figure 6.1: (a) The Tolman maze configuration with states represented by indexes. The
door shows the initial state and the piece of cheese represents a reward at the goal state.
Shaded areas are blocked. (b) Actions.
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0 1 2 3
...

...
...

...
...

82 82 83 82 81
83 73 84 93 82
84 84 85 84 83
85 85 86 85 84
...

...
...

...
...

Table 6.1: Matrix representation of next states in agent’s world model

0 1 2 3
...

...
...

...
...

13 5 0 0 0
14 0 0 0 0
15 0 0 0 0
...

...
...

...
...

Table 6.2: Matrix representation of rewards in agent’s world model

Actions can have four possible values, as shown in Figure 6.1b. The initial location is shown

by a door, the reward is shown by a piece of cheese, and grey areas represent blocks. The

environment is deterministic, meaning that each action will move the agent one step closer

to that direction, unless there is a block, in which case nothing happens and the agent’s state

remains unchanged. The reward is set to +5 for the case where the agent reaches the goal

state (state 3 in Figure 6.1a) and 0 otherwise.

The agent maintains a model of the world as it experiences the environment. The model

is represented by two matrices, one for remembering next states and one for remembering

received rewards. Each row of the matrix shows the state index and the columns correspond

to the four possible actions. At each step, the agent chooses an action and receives the next

state and reward, and updates the corresponding matrices to the values just received.

Table 6.1 shows a section of the matrix storing next states corresponding to Figure 6.1a.

Each action takes the agent one step in that direction, unless the new state is blocked in

which case the state will remain the same. A one-way path or a door in the environment,

will also be represented as blocks which do not change the agent’s state.

The reward table is shown in Table 6.2. In the environment shown in Figure 6.1a there

is only one reward with value of 5 at state 3, which the agent only receives by going up

at state 13. As shown, all other reward values are set to 0 and there is no punishment for

hitting the walls or blocks.
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Parameter Name Description Value
α learning rate 0.1

αreplay learning rate in replay steps 0.05
λ eligibility traces decay rate 0.94
γ discount factor 0.97
ϵ exploration rate in the policy 0.1

ϵreplay exploration rate in policy for replays 0.4
N Maximum number of time steps 300

Nreplay Maximum number of replay steps 10

Table 6.3: Summary of parameters used in our simulations

Our learning algorithm was shown in algorithm ??. We used the ϵ-greedy action se-

lection method, where ϵ = 0.1 for real experiences (in line 5) and ϵ = 0.4 for imaginary

experiences. This means that the agent is taking more exploratory steps in replays, since

we want it to explore more parts of the environment that are expected to lead to less return

in real experience. Moreover, learning from real interactions with the environment should

have more priority than imaginary steps. So we used different learning rates for the actual

and imaginary steps. A summary of the parameters used in our simulations is presented in

table 6.3.

It is worthwhile distinguishing the different terms we use in this chapter: step, trial, run,

and experiment:

• Each step is defined as taking an action and receiving its outcome, whether this action

changes the agent’s state or not. The word “step” is also equivalent to a time step,

since at each time step the agent is taking exactly one action.

• A trial starts by placing the agent in the initial state, and ends when it reaches the goal

state or has been in the maze for a certain number of steps (which we set to 300).

• A run consists of placing the agent in the maze for 100 trials and looking at the

number of steps until it finds the goal at each trial.

• Each experiment is performed for 100 runs, and the results are averaged.

The computational model of the hippocampus proposed Foster et al. (2000) used the

same TD learning update rule, but also assumed that place cells store the metric coordinates

of the agent.Foster et al. (2000) discussed that when the reward position changes daily and

rats show one-trial learning, they are apparently using their knowledge from previous trials.

In order to use this knowledge, Foster et al. (2000) developed the metric coordinate system
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and associate place cells to their coordinates, which adds the complexity of finding the

origin each day. Compared to this model, we show that there is no need for the extra metric

component, and simply re-learning from past experiences is sufficient to solve problem.

As previously mentioned, the most similar model to ours was proposed by

Johnson and Redish (2005). They used the Dyna-Q algorithm, which uses previously expe-

rienced sequences to speed up the learning. They suggested that replaying past sequences

is strengthened by experimental data from place cell reactivation, but only used this idea

on a simple acquisition task. We extend this model in two different paths. First, we show

how the replay idea can enable the TD learning models to solve the Tolman detour task in

one trial. Second, we evaluate different strategies for generating replay sequences, while

Johnson and Redish (2005) only considered random sampling from previous trajectories.

6.2 Performance Criteria

The four methods we use in the rest of this chapter to illustrate the behavior and performance

of our agent are described below:

• Action values

After the agent has completed learning a maze, the action values should be close to

optimal and reflect this learning. We show the maximum action value of all states by

a color ranging from white to black. Larger values have a darker color, so we expect

the states that are closer to the goal to have a darker color, and this color should reflect

the distance between each state and the reward location.

• Average number of steps to goal

To eliminate the effect of the agent’s random behavior and obtain more accurate re-

sults, we ran each experiment for 100 runs. In each run the agent was allowed to run

through the maze for a maximum of 300 trials. We then averaged the number of steps

until the agent reached the final state over the 100 runs. In each diagram the confi-

dence interval is shown below and above the average line, which shows the standard

error of the data. We expect that at the first episodes the agent takes longer to find

the goal. This should gradually decrease to eventually reach the optimal solution (i.e.

the length of the shortest path from initial state to the goal).

• Average number of steps to learn the optimal path
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Figure 6.2: Simulated maze configuration of the Tolman maze. The agent starts at the initial
state shown by a door and runs through the maze to find the reward (shown as a piece of
cheese) at the goal state. Once it passes one of three one-way doors at the decision point, it
cannot go back.

In some experiments, the environment changes and the agent has to learn the new

optimal path in only one trial after observing the change. Therefore, to evaluate the

efficiency of learning we look at the number of steps (in one trial) that the agent takes

in order to correctly update all value functions so that the optimal path is found.

• Action values of the decision point

In some experiments, there exists a decision point where the agent chooses to take a

critical action. In such experiments, to show exactly how learning has occurred, we

provide the action values of each action at this decision point before and after the test

run of the experiment to be able to exactly show how learning has occurred.

6.3 Exploration and Goal Finding

In the first experiment we show two main behaviors of our model: (i) Adding replay steps

in each trial improves the learning rate, and (ii) the more experience the agent has, the faster

it learns.

We simulated the maze proposed by Tolman and Honzik (1930). In this experiment,

Tolman and Honzik (1930) placed several groups of rats in a maze similar to that in Fig-

ure 6.2. They then let them find the shortest path from their start location to a goal, which

was a food reward. In the original experiment, the decision point is surrounded by three

one-way doors, so that once the animal has selected which path to choose, it cannot go back

and change its decision. We used the same setting for our simulation, so that once the agent

enters one of the three paths, the backward path is blocked.

47



Figure 6.3: Illustration of the result of the replay model on a simple acquisition task. Colors
show the maximum action value at each state after the agent has learned all three paths.
Darker colors show higher value. Comparing the relative darkness of each path shows that
the agent has learned the correct ranking based on each path’s length.

We ran two different agents, one using our model, and one using only Sarsa (without

replay steps) and compared the learning rate between them in Figure 6.4. Each trial starts

with putting the agent in the initial state and letting it find the goal, or until a certain number

of trials (which was set to 100 here) has passed. We repeated this for 100 runs (each run

included 100 episodes) and the results show the average number of trials (over 100 runs) to

the goal at each episode. The standard deviation of these values is also shown by the error

lines below and above the average line.

Figure 6.3 shows the maximum action value (Q(s,a)) for each state after the agent using

the replay model has completed its learning (100 episodes). As the figure shows, the values

are higher near the goal and gradually decrease as we move away from the goal. Since we

are using the ϵ-greedy action selection, we can guarantee that with enough trials all three

paths are explored enough and the action values reach their optimal values.

Discussion

In this classical experiment, Dyna is used to speed up learning. The number of trials that

the TD model needs to properly learn the maze is usually more than what animals need

(Johnson and Redish, 2005). One way to improve the learning efficiency is to add replay

steps as suggested in the Dyna algorithm. Comparing the two diagrams in Figure 6.2 shows

that the number of trials necessary to update all action values and find the optimal path has

considerably reduced in the case where the agent is allowed to replay.

Moreover, Figure 6.2 shows that, much like animal behavior, the number of steps the

agent takes decreases over time until it reaches the optimum, which is 10 for the shortest
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Figure 6.4: Performance of the replay model on the Tolman maze with and without having
replay steps. Shown is the average number of trials to the goal on the Tolman maze shown
in Figure 6.2. It shows that having replays speed up the learning process. The shaded area
represents the standard error.

path.

6.4 Latent Learning

The goal in this experiment is to show that pre-exposure to the environment even without

a reward being present affects the learning, as seen in the experiments on rats (Tolman and

Honzik, 1930). For this experiment, we simulated a latent learning experiment proposed by

Tolman (1948). Tolman used the term Latent Learning to describe the behavior when an

animal does not show any signs of learning until after the reward is presented. The overall

procedure is to let the agent first run through several trials where there is no reward present,

and then present the reward.

6.4.1 Simulation results of our model

The parameters and the algorithm used are similar to those used in the previous section,

except for the reward which is not presented right away for the test groups. We have three

groups here: The control group (Group 0) receives the reward from the first trial and the two

test groups receive the reward on 10th and 20th trials respectively (we call them Group 10

and Group 20). Figure 6.5 shows the average number of trials for 100 runs in each group.

Group 0 shows a gradual decrease in the number of steps to the goal, and finds the optimal

path after about 30 steps. Group 10 does not show any sign of learning before the reward
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Figure 6.5: Performance of the replay model on a simulated version of the Tolman latent
learning experiment. Group 0, 10, and 20 receive the reward at the first, 10th, and 20th trial
respectively. The slope of the diagram increases as the agent has more time to develop the
model before presenting the reward.

is presented in the 10th trial. However, once the reward is added, the number of steps to

the goal quickly decreases to reach the optimal value. This takes about 15 steps. Similarly,

the third group (Group 20) does not show any learning before the 20th trial, but shows a

fast decrease in the number of steps to the goal and can find the optimal path in the 30th

trial (after 10 trials from receiving the reward.) In order to compare the rate of learning

for these groups, we ran a paired-t test on the slope of diagrams, and the results showed

that the slopes of Group 10 and Group 20 are significantly more than the slope of Group

0. However the slopes of Group 10 and 20 were statistically similar. This shows that the

world model is completely learned before the 10th trial, and the more trials the agent gets

after learning the model does not affect the learning.

Discussion

When there is no reward present, all action values remain at 0. In this phase, the agent is

only exploring the environment randomly. No sign of learning can be observed. However,

the agent is learning the world model, which is represented by the transition matrix. There-

fore, the more training the agent has before receiving the reward, the more it explores the

environment and the more complete its world model becomes. Once the reward is added

and the agent finds its location, it starts updating the value functions. Meanwhile, the agent

is replaying previous experiences. The replay steps are retrieved from its world model but

now have the reward at the goal state as well. Therefore, in the replay steps the agent recalls
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all the paths it has explored before, and follows them to the goal, while updating their action

values. Based on this explanation, there are two key aspects of the model responsible for

showing the latent learning behavior:

• The world model, storing the transitions between states, which is being developed

even before the reward is present.

• The replay steps after the reward is presented, which enable the agent to quickly

update action values of all state-action pairs which are generated by the model learned

in previous step.

Once all the transitions between states in the model are learned, additional training will

not affect the agent’s world model, so having Group 30 or more will not further speed up

the learning.

6.4.2 Comparison to previous computational models

The model proposed by Zilli and Hasselmo (2008) focused on incorporating the role of

memory in the model and using it to solve the tasks which involved a delay conditioning.

The main learning algorithm was a TD algorithm with eligibility traces but the states also

included the state of working and episodic memory as well. Therefore, the learning was

driven only if the reward was present, so the model by Zilli and Hasselmo (2008) could not

perform the latent learning task.

Burgess et al. (1994) modeled place cells by radial basis functions and used a five layer

network. The connection weights of this network did not depend on the reward; they were

updated as the agent explored the environment. Therefore, Burgess et al. (1994) could

achieve the latent learning experiment on an open field environment. However, their model

highly depended on the cue representation (the first two layers of the network mapped the

input data from sensory cue to place fields), and the agent could not navigate through a

maze with narrow pathways. Moreover, the goal cells also contained information about the

agents head direction, which required the simulated rat to turn and explore all directions

once reaching to the goal, and update their associated weights.

Voicu and Schmajuk (2002) proposed their model based on building a cognitive map

which stored connections between states, and a motivation system which defined explor-

ing undiscovered areas of the map as having a small reward. Therefore the agent could

complete its world model even without an actual reward present, and could perform the

latent learning task. However, the idea of adding an artificial reward signal to encourage
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exploration does not have a strong biological basis. On the other hand, in our model the

agent only explores the environment to find the goal location and does not require this extra

assumption. Besides, they forced the agent to explore each path at least 10 times in the

pre-exposure phase, while our model does this automatically due to the ϵ − greedy action

selection policy.

6.5 Insight and Reasoning

This experiment was proposed by Tolman and Honzik (1930) to show evidence of insight

and reasoning in rats, which then became a measure for computational models aiming to

mimic animal behavior. The experiment procedure is as follows. The maze configuration is

similar to Figure 6.2. As shown on the figure, there is a decision point with three one way

doors, so that once the agent chooses a path it cannot change it.

The subjects have enough time to explore all three different paths, and eventually learn

to quickly choose the middle (shortest) path. Then a blockade is added, as we show in

Figure 6.6. After the subjects encounters this blockade, they learn not only to avoid it,

but also to avoid the left path as well, although they never directly experienced that it was

also blocked. Moreover, this update in their decision making occurred at the very next

trial, having experienced the blockade only once. Therefore, this experiment suggests that

a reasoning process is taking place in rats’ brain which cannot be explained with classical

conditioning learning theories.

6.5.1 Detour

We simulated this experiment with our model, and Figure 6.7 shows a maximum of action

values both before and after the agent experiences the blockade. It can be seen that the

values of both blocked paths has decreased while the values of states in the right path are

unchanged.

We also presented the action values of the decision point before and after the trial where

the rat faces the blockade in Figure 6.8. It shows that after the training phase, the order

of choosing actions is respectively up, left, right, and down based on the action values.

However, after the blockade is added and the agent has had enough time for replay, the

values of going left and up have decreased and going right has now become the best action.

It should be mentioned that action value of going down is always the second best option

(both before and after adding the blockade). This is because of the three one-way doors

which prevent the agent from changing its decision once it chooses right, left, or up. But
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Figure 6.6: Simulated maze configuration for the Tolman detour experiment: The wall
indicates the obstacle added to the common section of middle and left paths after the agent
has explored all three paths sufficiently.

(a) (b)

Figure 6.7: Illustrating how the replay model reproduces the main effect of the Tolman
insight experiment. Shown is them maximum action value at each state (a) before and (b)
after adding the blockade for one trial. Darker colors show higher value. Decreased values
in (b) show that the values of both blocked paths have decreased although the agent only
experienced the newly added obstacle while being in the middle path.
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Figure 6.8: Showing how the replay model can correctly show the insight behavior in rats.
Shown are the action values at the decision point before and after adding the blockade. Be-
fore the blockade is added going up is the best action, while after experiencing the obstacle
for one trial its action value decreases and going right becomes the best action.

going down is not an irreversible choice, and only delays the reward for two steps. There-

fore, going down is always the second best option for the agent. Moreover, the action value

of going down from the decision point depends on the value of the best action, and therefore

is decreased after adding the blockade.

Discussion

The model is updated when the agent faces the blockade and is then stuck between it and

the one-way door, so that it cannot explore other parts of the maze. However, it continues

to retrieve trajectories from its updated world model and reprocess them. This includes

reprocessing paths leading to the blockade, as if it is experiencing it again, so it will result

in a decrease in the values of both blocked paths. In this experiment, replay is an essential

part. Without replay steps, the agent would only update the action values of the path which

it is currently in, and could not generalize it to the other path. Replay steps here provide a

mechanism for reasoning and remembering past experiences to integrate them with the new

information.

6.5.2 Comparison to previous computational models

As previously mentioned, the model proposed by Zilli and Hasselmo (2008) included the

working and episodic memory in order to explain delay conditioning tasks. The update rule

was TD, which needs more than one trial to converge to the optimal solution. Therefore,

Zilli and Hasselmo (2008) could not achieve the one-trial learning observed in rats.

54



The computational model proposed by Burgess et al. (1994) has two main limitations

in explaining this experiment. First, as mentioned earlier, the model cannot be used in a

maze environment with narrow pathways. The radial basis functions provide a mechanism

for the agent to find the shortest path, but do not work well if there are walls and blocks in

the path. Second, one trial is not sufficient for all the necessary connections to be updated.

The model proposed by Voicu and Schmajuk (2002) is capable of solving this detour

problem by noticing that the world model is stored as a canvas. Thus, when the agent

encounters the blockade, this changes all the connections weights of nodes leading to it

in the network. Therefore, the update process takes place at the same time for all the

nodes. However, this is slightly different from experimental data that showed that the place

cells which are spatially close to each other fire at the same time. Therefore, only the

connection weights of one trajectory are updated each time. That is the inspiration behind

our model which updates the weights by replaying each sequence separately, and not all

value functions at the same time.

6.6 Replay Content

The question we focus on in this part is the content of replay, how it is related to experience,

how it affects learning efficiency, and how patterns observed in empirical data can be gen-

erated by our model. So far, replay scenarios have been chosen randomly with a uniform

distribution over all states previously experienced, which have thus been incorporated into

the world model. However, experimental results (Gupta et al., 2010) suggest that the con-

tent of replayed trajectories is not always randomly chosen from past experiences. Gupta

et al. (2010) tested the subjects on a maze which had two loops. The rats received the re-

ward only if they alternated between these two paths and did not choose the same direction

at each trial. By looking at the recorded replay patterns of the rats’ brains both at the pause

intervals during the task and at rest intervals after it, Gupta et al. (2010) found three main

patterns that had not been reported in any of the studies that we briefly repeat here:

• The replay trajectories sometimes started from the animal’s current location and

moved forward toward the goal, and sometimes started from goal locations and con-

tinued backward, even if the animals had only experienced the maze in one direction.

• Although the rats learned to alternate between the left and right paths, their replay

patterns included trajectories of the other side of the maze, although they had not

experienced it recently.
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• There was a shortcut between the two reward locations of the maze which the rats

never experienced because each time they reached at the goal locations they were

picked up and placed at the initial state of the maze again. However, the replay

patterns included this shortcut path which was a novel trajectory.

Previous studies had observed different patterns:

• The first evidence of replays in the hippocampus were associated with

the frequency that each of these paths had fired during the experiment (Pavlides and

Winson, 1989; Jackson et al., 2006). This suggests that the start state of replays can

be set to be the one that had been visited the most.

• Singer and Frank (2009) reported that the paths that were associated with a reward

were replayed more often than the other paths. This suggests that we choose the one

with higher value as the start state of replay trajectories and move backward.

None of the previous computational models of the hippocampus included various replay

patterns except for the TD learning model of the hippocampus proposed

by Johnson and Redish (2005). However, they only considered random sampling from

previous trajectories and did not consider other strategies for choosing replay states.

In this section we evaluate different replay schemes and show their effect on learning.

We use the same setting as the Tolman detour task as in previous section, and compare

the number of steps until the correct values at the decision state have been learned (by

correct value we mean that the value of going right is higher than other actions). The only

difference between an imaginary and real experience is that we set the ϵ = 0.4 for replay

steps and ϵ = 0.1 for real experience. This is because real experiences might be costly to

obtain, so it would be wise to exploit more, and let the imaginary experiences have a more

exploration rate to choose rare samples that have not yet been experienced often.

We compared different strategies for choosing replay content in this part. First, the

agent starts its imagined experiences from its current location and replays forward until it

meets the goal or a maximum number of 30 replay steps have passed. More formally, in

each trial, after the agent executes an action and observes the next state and the immediate

reward, it starts simulating a path from its internal model of the world. This path starts from

its current location and it simulates next actions and rewards similar to the real experiences

until it reaches the goal. This pattern was seen in actual recordings from reactivation of

hippocampal place cells during rest states (Gupta et al., 2010) and was thought to be the

main pattern of replay.
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Figure 6.9: Evaluating the performance of our replay model with different retrieval strate-
gies. Figure shows the number of steps until correct path is found in the Tolman detour task
with forward replays starting from a random state and backward replays with prioritized
sweeping

The second option would be to choose the states that have been visited the most. These

are the states in the shortest path, which is now blocked. By starting a trajectory from this

location and moving either backward or forward, the agent will not be able to replay the

values of left path, so this strategy is not helpful in this case.

Another option is to start the imagined experience from the reward location and move

backward. What is interesting about this situation is that the agent has only experienced

the environment in one direction. So in order to move backward from a sample state s, the

agent has to search the model to find which states have led to s. It then chooses one of them

(s′) and executes the action (a′), taking it from s′ to s. This process is then repeated for s′

until it is equal to the maze’s start location, or 30 replay steps has passed. This behavior

was reported in the experiments done on rats as well (Gupta et al., 2010). Although rats

were not allowed to move in the opposite direction in the maze, they could observe this

backward reactivation of hippocampal place cells. In this case, learning the correct values

is equivalent to updating the value function of both the left and middle paths. Both paths are

blocked and do not lead to the reward location. Therefore, regardless of how many times

the agent replays from the reward location, it cannot update the values of these two paths.

So this strategy is not suitable for this case.

However, we can use the prioritized sweeping strategy instead. Prioritized sweeping is

suggested as one of the strategies for sampling in the Dyna algorithm (Moore and Atkeson,

1993; Lin, 1992). The idea is to start replays from the states that were considered to be more

surprising. More formally, the agent maintains the latest value of all prediction errors,

and in each trial chooses to start replaying from the largest one. It continues simulating
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imagined experiences from that state until it reaches the goal, or a maximum number of 30

steps have passed. In this way, if the environment changes, the agent is more frequently

retrieving the past experiences that have been in contradiction to its world model.

We compared these two strategies on the Tolman detour task. The results are in Fig-

ure 6.9 which shows that prioritized sweeping in this maze environment has led to faster

learning, because it directs the replays towards the states that need more learning.

6.7 Summary and Conclusion

In this chapter we provided our implementation details and our environment settings that

we used to evaluate the performance of our replay model in two behavioral tasks includ-

ing the Tolman detour task, and latent learning. We then discussed the advantages of our

replay model over previous computational models of spatial navigation. Previous models

(presented in Chapter 4) had two main limitations: Some lacked a sufficient neurobiolog-

ical basis, and relied on computational methods that made them rather complicated and

reduced their robustness in explaining new behavioral experiments. Others were based on

the evidence in rats’ brains, but could not explain some of the complex phenomena such as

latent learning or detour. In contrast, in this section we illustrated how our model uses the

simple and intuitive idea of replay, which is also in accordance with empirical data, and can

explain the behavioral tasks mentioned.
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Chapter 7

Conclusion and Future Directions

In this thesis we proposed a computational model for spatial navigation based on sample-

based RL algorithms. Our model was inspired by the experience replay seen in hippocampal

neurons. We reviewed some recent experiments that showed how neurons that were active

during a learning task tend to continue firing when the animal is sleeping or even during the

rest intervals between trials. This inspired us to use a similar replay idea proposed in Dyna

to model spatial navigation. Our model worked by keeping previous experiences in a world

model and using them to generate imaginary experiences. This process of generating imag-

inary sequences was then continued, and learning conducted on both real and imaginary

experiences.

The highlights of our work can be summarized as follows:

• We established experience replay as an idea in RL with promising neurobiological

evidence that can bridge the gap between AI and neuroscience.

• We showed, through simulations, that adding the experience replay extension to

sample-based learning algorithms can explain many previously hard-to-explain be-

havioral navigational experiments such as latent learning or insight experiments.

• Our computational model was flexible in terms of parameter settings, and the behav-

ioral results we presented did not depend on specific parameters.

• We systematically investigated several replaying schemes and assessed them both

computationally and according to existing empirical evidence.

• We simulated different replay schemes observed in recent findings, which have not

been considered in any previous computational model of navigation.
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• Our model re-used the same learning algorithm on both real and imaginary experi-

ences, which enhanced its simplicity and made it a more promising model for ex-

plaining the learning process in the brain.

• Learning from imagination can be an inspiration to other RL algorithms trying to

model animal behavior. Its computational benefit was proved previously, and in thesis

we presented potential neural and behavioral evidence for it.

Based on our model, we make several testable predictions that can be justified through

experiments, and also propose potential paths for future computational models of spatial

navigation:

• Relationship between experience frequency and replay

Previous theories suggested that the re-firing of place cells in the hippocampus will

increase with experience, and considered these replays as a passive function of pre-

vious experiments. However, we suggest that these replays play an active role in

learning a behavioral task. For example, the idea of prioritized sweeping suggests

that the trajectories which need more learning are replayed more often. Therefore,

observing the patterns of replay during the training trials of subjects on a T-shaped

maze can verify whether they are only replaying the most frequent sequence (main

stem) or the decision point (which is more important in the learning process).

• Effect of small changes in the environment

Another experiment is to present a small (which can also be negative) reward in

another location in the maze, after the agent has completely learned the environment.

Such a small surprising event will not change the agent’s behavior, but will make the

agent think more about it. The result is a small prediction error around that particular

state in the maze, while there is almost zero error in all other locations because the

learning has been completed. In this case, if the patterns of replay follow a prioritized

sweeping strategy, they should occur around this new reward location. However, if

the agent is replaying the most rewarding parts of the maze, this change should not

affect its replay content since the most rewarding part is still the old higher reward

value.

This small reward should have two features: First, it should only be presented for a

limited time and not end the trial. Otherwise the agent will spend the rest of the trial

at this location and be unwilling to move on to the main reward. Second, the reward
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value should be determined in such a way that during the steps from this location to

the main reward, its discounted value goes below the threshold which is set to 0.001

for our experiments.

This procedure can be verified by adding a small surprising event (e.g., a shock) in the

other loop of the maze. The rat does not normally take this path, but will eventually

experience it because of its exploratory actions. Recording hippocampal place cells

firing during the pause periods after receiving the final reward can verify whether the

rat is imagining that small event, or imagining the most rewarding parts of the maze.

This experiment allows us to suggest that if we come across an unexpected event

which is not as important as other parts of our usual daily patterns, we do not need

to repeat that action and receive the same unpleasant reward. It is sufficient to think

about it until the event and its consequences are no longer considered surprising and

unexpected.

• Hippocampal Lesions

As described previously, replay is the main reason that our agent updates its world

model correctly and learns to avoid both blocked paths in the detour task (section 6.5.1)

without explicitly experiencing them. If the agent is not allowed to replay, we predict

that it cannot learn the correct path and quickly avoids both blocked paths. This hy-

pothesis can be verified in two ways. First, causing a temporary and reversible lesion

in the hippocampus after a learning task, will prevent the animal from replaying. By

removing this lesion the next day, the animal will be able to navigate through the

maze again, without having done any replay steps. There are two drawbacks to this

method: causing damage to the hippocampus, even if it is a reversible damage, is ill-

advised and could permanently damage some place cells. Therefore, not being able

to solve the maze does not imply the necessity of replay steps. Besides, the agent still

can perform some replay steps during the task, and causing the hippocampal lesion

does not prevent all replays.

The second approach is to prevent the animals from experience replay by keeping

them busy in another task that needs constant attention. This method is more feasible

and also can be done on humans as well as other animals. The procedure should begin

by letting the subjects experience the main experiment, and then presenting another

competing task that requires their active attention. This will eliminate the replay

steps that are assumed to be occurring most often during rest intervals. A control
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group is allowed to rest after the main task. This leaves the control group free to have

replays. Evaluating and comparing the two groups’ performance after this period

will be a good indicator of the experience replay effect. Moreover, there are very few

experiments in this field performed on humans. Therefore such an experiment can

lead to very interesting results.

To sum up, this work is only the start of a path to building more human-like agents and

discovering the underlying mechanism of the brain. Our work suggests that the replay idea

has a potential neurobiological and computational basis, and can be a promising approach

for future research.
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