
Incremental Off-policy Reinforcement Learning Algorithms

by

Ashique Rupam Mahmood

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Statistical Machine Learning

Department of Computing Science

University of Alberta

c© Ashique Rupam Mahmood, 2017

Dedicated To Liza

Abstract

Model-free off-policy temporal-difference (TD) algorithms form a powerful component of

scalable predictive knowledge representation due to their ability to learn numerous counter-

factual predictions in a computationally scalable manner. In this dissertation, we address

and overcome two shortcomings of off-policy TD algorithms that preclude a widespread use

in knowledge representation: they often produce high variance estimates and may become

unstable.

The issue of high variance occurs when off-policy TD algorithms use importance sam-

pling (IS), a standard approach to adjusting estimates when the sample and the target

distributions are different. IS performs this adjustment by scaling the estimate by the like-

lihood ratio, also known as the importance sampling ratio. However, this ratio also often

produces high variance in the estimates. We provide two different approaches to overcome

this shortcoming.

The first approach relies on a well-known alternative to the ordinary form of IS, called the

Weighted Importance Sampling (WIS), which is known to produce much less variance but

has been under-utilized in reinforcement learning tasks. The main obstacle to using WIS in

large-scale reinforcement learning tasks is that it is not known how to systematically extend

a simple lookup-table-based estimator such as WIS to parametric function approximation

with real-time computationally scalable updates. We overcome this obstacle by developing

new techniques for deriving computationally efficient equivalent TD updates. This also

allows us to simplify the derivations of some existing computationally efficient algorithms

as well as produce new ones.

In the second approach, we directly address the main factor underlying the high variance

issue: the use of the IS ratios. Ratios play a key role in producing high variance estimation

as they may vary drastically from one sample to another. We show that the ratios can

be eliminated from the updates by varying the amount of bootstrapping, a sophisticated

technique for allowing a spectrum of multi-step TD algorithms. The core idea is to allow

the bootstrapping parameter, which controls the amount of bootstrapping, vary and shrink

in a specific way. The elimination of ratios from the updates using this approach results

directly in the reduction of variance compared to IS-based algorithms while still retaining

the multi-step advantage of TD algorithms. We empirically evaluate the algorithms based

on both approaches using several idealized experiments. We show that the WIS-based algo-

rithms outperform existing off-policy learning algorithms often with an order of magnitude

margin. On the other hand, the bootstrapping-based methods can retain more effectively

the multi-step advantage compared to the IS-based methods despite occasionally shrinking

the bootstrapping parameter.

The issue of instability with off-policy TD algorithms may appear when both function

approximation and bootstrapping are used together, a desirable combination in reinforce-

ment learning tasks. We discuss the key factors responsible for instability by analyzing

the deterministic counterpart of TD updates. We illustrate that the on-policy TD algo-

rithm may also be unstable if the updates are scaled or the bootstrapping parameter is set

differently for different states but remains stable with a state-dependent discount factor.

The TD algorithm can be made stable in all these cases by ensuring that a certain matrix

involved in the deterministic TD update is always positive definite. We provide a system-

atic approach to ensuring positive definiteness of this matrix, which amounts to selectively

emphasizing and de-emphasizing the updates of the stochastic counterpart in a particu-

lar manner. The resulting algorithm, which we call the emphatic TD algorithm, is stable,

do not introduce extra tunable parameters and its additional memory or computational

complexity is negligible.

Finally, we provide computationally efficient methods to perform a search over features

for improving the representation of learning systems. These search methods enable continual

discovery and maintenance of relevant and useful predictions that can be used as a building

block of scalable predictive knowledge representations in long-lived systems.

Preface

Several chapters of this thesis are based on published papers written in collaboration with

other researchers. In the rest of the chapters, the majority of the contributions were origi-

nally produced for this thesis. These are Chapter 2, 3, 4, and 9.

In all the papers I first-authored, I was responsible for composing the manuscript, and

my co-authors assisted me to a great extent with editing. Chapter 5 and 6 are based on

a published paper (Mahmood, Hasselt & Sutton 2014) that originated from our effort to

solve a decades-old problem of combining weighted importance sampling with function ap-

proximation, first recognized by Precup et al. (2000). Sutton first brought the existence of

this problem to my attention and led our effort to solve this problem. I developed the algo-

rithms, wrote the theorem proofs, and conducted the experiments. I discussed extensively

with Hasselt and Sutton during various stages of the development of the algorithms and

the design of the experiments. Hasselt helped me with improving the proofs.

Chapter 7 is based on a published paper (Mahmood & Sutton 2015) which resulted from

our effort to extend the above work to linear computational complexity. The core idea in this

work, which we called usage, is nurtured by a decades-old algorithmic intuition of Sutton.

I developed the algorithms, wrote the theorem proofs and conducted the experiments.

Chapter 8 is based on a paper in preparation (Mahmood, Yu & Sutton 2017). In this

work, I discovered the core idea of the paper, which we called action-dependent bootstrapping.

Yu assisted me extensively in developing the algorithm, correcting the derivations, and

editing the content. Sutton led the joint effort of our group to expand our understanding

of the tree-backup algorithm, which encouraged me to originate this work.

Chapter 9 and 10 are based on a published journal paper (Sutton, Mahmood & White

2016). In this work, Sutton developed the emphatic algorithm and composed the manuscript.

I helped to formulate the expected update of the emphatic algorithm, which Sutton used to

prove its stability. I developed and conducted the experiments. White assisted with editing,

derivations, and proof. The negative result of Section 9.4 was first brought to our atten-

tion by Huizhen Yu through email communication. Section 9.4, 9.6 and 9.7 were originally

produced for this thesis.

Chapter 11 and 12 are based on a published paper (Mahmood & Sutton 2013), where

I developed the algorithms and conducted the experiments. Sutton assisted me in refining

the algorithms and designing the experiments.

Acknowledgements

Due to the excellent support from my friends and colleagues, the days of my PhD studies

have been the best I have ever spent. I wish to express my sincere gratitude to my supervisor

for supporting me as a mentor and a friend throughout my graduate studies. I am fortunate

to have spent so many days with him discussing the philosophy of AI, mind, and life. The

world would greatly benefit from his careful thoughts on the future of AI and humanity.

I am deeply grateful to the members of my final and candidacy examining committees—

Michael Bowling, Patrick Pilarski, Csaba Szepesvari, Remi Munos, Dale Schuurmans, Robert

Holte, and Marek Reformat. The time I spent with them during the exams was among the

most memorable and clarifying moments.

I cannot express enough gratitude to Csaba Szepesvari for teaching me some essential

machine learning concepts and allowing me to check with him from time to time to query

about theoretical puzzles. I am also deeply grateful to Simon Haykin for appreciating and

encouraging my works from the very beginning of my PhD studies.

I owe many thanks to my closest collaborators Thomas Degris, Patrick Pilarski, Hado

van Hasselt, and Huizhen Yu. Many intuitions used in this work can be traced back to our

numerous meetings and email conversations. I am thankful for the support and friendship

during my graduate studies from Hamid Reza Maei, Joseph Modayil, and Harm van Seijen.

I would like to thank Alberta Innovates Technology Futures, National Science and En-

gineering Research Council, Alberta Innovates Centre for Machine Learning, and the Uni-

versity of Alberta for funding my works throughout my PhD studies.

I am thankful to my family members for their unending support. And my deepest

gratitude goes to my wife Farzana Liza Yasmin, without whom this thesis would not have

come into existence. Liza is my greatest influence in pursuing a PhD in AI. This work is

an outcome of our love and perseverance.

Contents

List of Figures 10

List of Tables 12

1 Introduction 3

1.1 Key Ideas and Approaches . 4

1.2 Related Works . 5

1.3 Contributions . 7

2 The Problem Setup and Background 10

2.1 The Agent-Environment Interaction Model 10

2.2 Predictions as General Value Functions (GVFs) 11

2.3 Model-free and Model-based Learning . 14

2.4 Tabular and Linear Function Approximation Settings 14

2.5 Off-line, Per-trajectory, and Real-time Learning Settings 15

2.6 Computational Goals for Learning Algorithms 16

2.7 Bias, Consistency and Mean Squared Error of Average and Ratio Estimators 18

2.8 The Importance Sampling Technique . 22

2.9 Conclusions . 24

3 Algorithmic Equivalences for Incremental Reinforcement Learning 25

3.1 Algorithmic Equivalences . 25

3.2 Equivalences for the Method of Least-Squares 28

3.3 Equivalences for Stochastic Gradient Descent 33

3.4 Counterexamples to Strict Incrementality 37

3.5 Equivalence Techniques and Intuitions . 39

3.6 Conclusions . 41

4 Tabular Off-policy Algorithms for Value Function Estimation 42

4.1 Off-policy Tabular Estimators with Importance Sampling 42

4.2 Discounting-aware Off-policy Estimators . 47

4.3 Reward-Specific Off-policy Estimators . 52

4.4 Incremental Updates of Off-policy Estimators 57

4.5 Discussion and Conclusions . 60

5 Weighted Importance Sampling with Function Approximation 61

5.1 WIS as Weighted Least Squares . 61

5.2 WIS with Linear Function Approximation 62

5.3 WIS2 with Linear Function Approximation 69

5.4 Conclusions . 71

6 Real-Time Weighted Importance Sampling with Bootstrapping 72

6.1 Forming Targets with State-dependent Bootstrapping 72

6.2 Interim Targets for Real-time Updates . 74

6.3 Putting It All Together . 75

6.4 Strictly Incremental Updates with Algorithmic Equivalence Technique . . . 77

6.5 Experimental Results . 82

6.6 Conclusions . 84

7 Weighted Importance Sampling with Linear Computational Complexity 85

7.1 Merging Sample Average and SGD . 86

7.2 Merging WIS and off-policy SGD . 89

7.3 Usage-based Algorithms . 94

7.4 Experimental Results . 99

7.5 Discussion and Conclusions . 102

8 Multi-step Off-policy Learning without Importance Sampling Ratios 103

8.1 Formulation of the Action-value Estimation Task 104

8.2 The Advantage of Multi-step Learning . 105

8.3 Multi-step Off-policy Learning with Importance-Sampling Ratios 107

8.4 Avoiding Importance-Sampling Ratios . 108

8.5 The ABQ(ζ) Algorithm with Gradient Correction and Scalable Updates . . 111

8.6 Experimental Results . 115

8.7 Action-dependent Bootstrapping as a Framework for Off-policy Algorithms 119

8.8 Conclusions . 120

9 Instability of Temporal-Difference Learning Algorithms 121

9.1 Convergence of Expected Updates . 121

9.2 Stability of Stochastic Updates . 124

9.3 Instability Due to Off-policy Updating . 126

9.4 Instability Due to State-Dependent Bootstrapping 128

9.5 Instability Due to Selective Updating . 128

9.6 Stability with Arbitrary State-Dependent Discounting 129

9.7 Oscillation Due to Asymmetric Iteration Matrix 132

9.8 Conclusions . 134

10 An Emphatic Approach to Stable Temporal-Difference Learning 135

10.1 Warping the Update Distribution for Stability 135

10.2 Emphatic Temporal Difference Learning Algorithms 137

10.3 Experimental Results . 139

10.4 Conclusions . 142

11 Representation Search Through Generate and Test 143

11.1 A Simple Representation Search Problem 144

11.2 Search Through a Large Number of Random Features 145

11.3 Search Through Generate and Test . 146

11.4 Discussing Different Combinations of Generate and Test 151

11.5 Conclusions . 152

12 Search as a Complementary Approach to Representation Learning 154

12.1 Search with Unsupervised Learning . 154

12.2 Search with Supervised Learning . 160

12.3 Conclusions . 166

13 Conclusions 167

13.1 Summary . 167

13.2 Future Directions . 168

References 171

List of Figures

2.1 The agent-environment interaction model 11

2.2 Different settings for learning tasks and computational goals for learning

algorithms . 17

4.1 Performance comparison of OIS and WIS estimators 46

4.2 Performance comparison of OIS2 and WIS2 estimators 52

4.3 Performance comparison of PRIS and WPRIS estimators 56

5.1 Performance comparison between OIS-LS and WIS-LS on a toy task 68

5.2 Performance comparison between OIS-LS and WIS-LS on Mountain Car pre-

diction tasks . 69

6.1 Performance comparison of WIS-LSTD(λ) and off-policy LSTD(λ) 83

7.1 Empirical comparison of WIS-based O(n) algorithms 101

7.2 Empirical comparison of usage-based on-policy algorithms 102

8.1 Demonstration of the superiority of multi-step solutions 106

8.2 The effect of the tunable parameters on λ(s, a) under the action-dependent

bootstrapping scheme . 110

8.3 The effect of λ on off-policy Q(λ) solutions and ζ on ABQ(ζ) solutions . . . 110

8.4 Empirical comparison between ABQ(ζ) and GQ(λ) on a two-state off-policy

task . 116

8.5 Empirical comparison between ABQ(ζ) and GQ(λ) on an off-policy Mountain

Car task . 117

8.6 ABQ(ζ) is stable on Baird’s counterexample for different values of ζ. . . . 118

9.1 Instability of TD(λ) with off-policy updating 127

9.2 Instability of TD(λ) with state-dependent bootstrapping 128

9.3 Instability of TD(λ) with selective updating 130

9.4 Oscillation due to asymmetry of TD iteration matrices 133

10.1 Stability of ETD(λ) with off-policy updating 139

10

10.2 Stability of ETD(λ) with state-dependent bootstrapping 140

10.3 Stability of ETD(λ) with selective updating 140

10.4 ETD oscillates less compared to TD on six prediction tasks 141

11.1 The base learning system for the online representation search problem . . . 145

11.2 Representation search through a large number of randomly initialized features147

11.3 A simple representation search method outperforms much larger, fixed rep-

resentations . 150

11.4 Performance of online representation search with different testers 151

11.5 The distribution of weight magnitudes for a fixed representation and search

methods with three different testers . 151

12.1 Representation search improves the performance of unsupervised learning . 159

12.2 Represenation search boosts the performance of supervised gradient-descent

(GD) learning . 165

List of Tables

3.1 The Per-Trajectory Incremental LS algorithm 29

3.2 The Real-Time LS algorithm . 31

3.3 The Real-Time Incremental LS algorithm 33

3.4 The Real-Time SGD algorithm . 34

3.5 The Real-Time Incremental SGD algorithm 37

11.1 A simple online representation search method through generate and test . . 148

12

List of Notations

We use two kinds of variations in the notations using letters: 1) small vs. big letters,

and 2) plain vs. boldfaced letters. Scalars are always in plain letters, vectors in boldfaced

small letters, and matrices in boldfaced big letters. Among the scalars, random variables are

denoted by big letters when greek letters are not used, and constant quantities are always

denoted by small letters.

def
== Equality by definition
I The identity matrix
0 Vector or matrix of all zero elements
1 Vector of all unit elements
[α]i ith element of vector α
[α]sa Element of vector α corresponding to state s and action a
[A]i,: ith row of matrix A
[A]:,j jth column of matrix A
[A]i,j Element of matrix A at row i and column j
[A]sa,s′a′ An element of matrix A with row corresponding to state s, and action a,

and column corresponding to state s′, and action a′

[A]i ith diagonal element of matrix A
α>b Dot product of two vectors: α>b =

∑
i[α]i[b]i

α Scalar step-size parameter
E [·] Expectation of a random variable
Pr {·} Probability of an event
S Set of all states, considered to be discrete and finite
A Set of all actions, considered to be discrete and finite
s, s′, s̄ States
a, a′, ā, b Actions
t Discrete time step
St State at time t
At Action at time t
Rt Reward upon arrival at state St
π A stationary, stochastic policy
π(a|s) Probability of taking action a in state s under policy π
γ Discount factor parameter
γ(·) State-dependent discounting function, allowing variable degree of termination
γt Shorthand for γ(St)
T (t) time step of the first termination following t: T (t) = min {k > t : γk = 0}
vπ(s) Value of state s under policy π
λ Bootstrapping factor parameter
λ(·) State-dependent or (state-) action-dependent bootstrapping function
λt Shorthand for either λ(St) or λ(St, At)

1

φ(·) Feature vector observed for a given state or state-action pair
φt Feature vector observed for a given state or state-action pair at time t
Φ The feature matrix with a feature vector per state in each row

2

Chapter 1

Introduction

An essential component of an intelligent agent is the retention of a vast amount of worldly

knowledge that the agent can use to achieve its own goal. It is equally true for artificial

agents as well as humans. In cricket games a batsman, whose goal can be thought of as

scoring as many runs as possible, can benefit greatly by using the knowledge of the opponent

bowlers, the strategies used by the opponent captains, and the pitch condition of different

cricket grounds. A self-driving car needs to know about roads, pedestrian movements,

traffic rules specific to a certain province, and the consequence of different courses of action

in anomalous situations in order to drive safely toward its destination. When building an

artificial agent, designers typically hard-code such domain knowledge, which requires human

intervention from time to time in order to perform recalibration and maintenance.

Predictions form a grounded and testable knowledge representation. If the knowledge of

an artificial agent is represented in a predictive form, the agent can autonomously test and

maintain it without requiring any human intervention. Such knowledge can be in terms

of predictions of the agent’s sensorimotor observations, conditional on different ways of

behaving. To a self-driving car, a muddy road may simply mean that if it drives along the

road, it may experience more bumps and less friction on the wheels through its sensation.

Such predictive knowledge is inherently grounded in actions and sensations of the agent. It

is also maintainable by the agent itself as it can test its knowledge by following a certain

policy and see if the outcome matches its prediction.

An agent can use one of many machine learning algorithms to learn predictions from

observations. There are batch learning algorithms such as Monte Carlo averages or least-

squares methods that are known for their statistical efficiency. To learn a plethora of

predictions in a scalable way, there are also learning algorithms that updates incrementally

and, thus, are computationally more frugal. Moreover, due to the complexity of the state

space of the real world, it is practical to parameterize the solution and use methods based

on parametric function approximation.

Among machine learning algorithms for learning predictions, a powerful class called

off-policy learning algorithms stands out for the ability of the algorithms to learn about

3

policy-contingent predictions without ever needing to follow the policy in question. This

way the agent can expand enormously the amount of knowledge it can gather. A self-driving

car can learn about the consequence of different ways of driving such as speeding or changing

lanes frequently while in reality the car is following a relatively safer policy. Such conditional

predictions are not only grounded in raw observations, but they also provide the ability to

answer a multitude of what-if questions. In human psychology, such counterfactual thinking

is thought to be of paramount importance for effective planning and decision making (Roese

1997, Baird & Fugelsang 2004).

In this dissertation, we consider the problem of learning off-policy predictions in a com-

putationally scalable manner. A natural remedy to this problem is to resort to incremental

off-policy learning algorithms with function approximation. In recent years, several in-

cremental learning algorithms have been developed based on Temporal Difference (TD)

learning. However, they face two issues: 1) these algorithms tend to have high variance,

and 2) when combined with function approximation, they may cause instability. These pre-

clude the use of incremental off-policy TD algorithms in large-scale practical applications.

This dissertation explores these two shortcomings of off-policy TD algorithms and provides

different solutions to overcome them.

1.1 Key Ideas and Approaches

We adopt the general value function (GVF) framework (Sutton et al. 2011) for representing

off-policy prediction tasks. Under this framework, prediction tasks are represented as GVFs,

which are a generalization of value functions with arbitrary state-dependent discounting.

This expands policy evaluation tasks to a more general specification of predictions with

conditional discounting at arbitrary time horizon. GVFs represent prediction tasks, often

known as predictive questions, in a form that can be learned by one of various learning

algorithms. The guesses produced by a learner are often called predictive answers or, in

short, predictions.

Several ideas played key roles in our analyses and solutions to the high variance and

instability issues in off-policy TD. They include importance sampling techniques, com-

putationally efficient equivalent updates, and the deterministic counterpart of stochastic

updates.

At the heart of off-policy prediction algorithms is a technique known as importance

sampling (Hammersley & Handscomb 1964, Rubinstein 1981). This technique allows using

samples drawn from a distribution different from the distribution under consideration. In

off-policy prediction, importance sampling is used to learn about one policy while following

another policy. The core importance sampling methods have origins in batch learning. The

importance sampling technique relies on scaling the estimates with the likelihood ratio be-

tween the distributions, also known as the importance sampling ratio. As ratios may vary

drastically from samples to samples, they result in high estimation variance and are also

4

the key source of the high variance issue of off-policy TD algorithms. Our approaches to

resolving the high variance issue in off-policy TD revolve around understanding different

importance sampling techniques, adopting superior methods from batch learning, and dis-

pelling an explicit presence of the ratios while keeping the benefits of importance sampling.

Although the core idea behind off-policy prediction is rooted in batch learning, we

eventually want algorithms that work online in a computationally efficient, that is, in an

incremental manner. Of course, we can apply the algorithms for batch learning directly to

online learning, but they will be computationally expensive and not suitable for continual

use. This gap between batch learning algorithms and incremental algorithms can be bridged

by deriving computationally efficient implementations of the batch learning algorithms for

online learning while retaining equivalence of the parameters being computed. Such equiv-

alence techniques have played a key role in this dissertation. We have developed powerful

techniques for producing equivalent incremental updates from batch learning algorithms.

These techniques help us adopt batch learning techniques for importance sampling and pro-

duce their equivalent incremental counterparts as well as understand the existing equivalent

incremental updates better.

Although TD updates are inherently stochastic, they can be analyzed in terms of their

deterministic counterparts. More specifically, for a given stochastic update, there exists a

corresponding expected update with respect to the stationary distribution, and the stability

of stochastic updates is associated with the convergence of the expected updates. This

simplifies vastly the analysis of stability in TD algorithms, and consequently, we adopt it

in our approach. By analyzing the expected updates of the TD algorithm, we look at the

heart of the instability issue, its origin, different cases where instability occurs, and develop

remedies.

1.2 Related Works

Since the introduction of incremental off-policy prediction algorithms (Precup et al. 2000),

several works acknowledged the importance of adopting off-policy policy evaluation tasks for

representing long-term predictions of sensorimotor events and have put this to work (Sutton

et al. 1999, Sutton et al. 2006, Rafols 2006). The idea of representing long-term predictions

in terms of value functions goes back to as far as the original TD paper (Sutton 1988).

More recently, this idea is formalized by Sutton et al. (2011) under a general framework for

value functions, which we call the general value function (GVF) framework. White (2015)

comprehensively explored this framework.

The high variance issue of ordinary importance sampling is well documented in the

Monte Carlo simulation literature (Kleijnen 1978, Andradóttir 1995, Liu 2001, Robert &

Casella 2004). An alternative to ordinary importance sampling takes a form of weighted

average and is called weighted importance sampling. This method is known for its superior

theoretical properties, such as reduced variance in a large class of problems (Liu 2001) and

5

overall bounded variance (Precup et al. 2001). Moreover, weighted importance sampling

often produces superior empirical performance compared to ordinary importance sampling

(Hesterberg 1988, Casella & Robert 1998, Precup, Sutton & Singh 2000, Shelton 2001, Liu

2001, Koller & Friedman 2009, Paduraru 2013). However, this method is a tabular batch

estimator, lacking a computationally efficient implementation or an extension to parametric

function approximation. For this reason, weighted importance sampling has not been uti-

lized in incremental off-policy TD algorithms. The necessity and the difficulty of utilizing

weighted importance sampling in incremental off-policy TD with function approximation

have been acknowledged more than a decade ago (Precup et al. 2001).

One of the first incremental off-policy TD algorithms for predictions was based on ordi-

nary importance sampling introduced by Precup, Sutton, and Singh (2000). An extension

of this method to linear function approximation was proposed by Precup, Sutton and Das-

gupta (2001), but the high variance issue in this algorithm was readily acknowledged. To

reduce variance, Precup et al. (2005) proposed a class of policies for which off-policy estima-

tion produces minimum variance. This limits the set of allowable behavior policies, hence

cannot be used for off-policy estimation with arbitrary policies.

The phenomenon of algorithmic equivalences between batch and incremental algorithms

has firm roots in reinforcement learning. TD(λ) is one of the first temporal-difference based

incremental algorithms for which an equivalence to a batch algorithm was established (Sut-

ton 1988). For several classical incremental algorithms in reinforcement learning, such as

Sarsa(λ) and different variants of Q(λ), such algorithmic equivalences have been analyzed

(Sutton & Barto 1998). Recently, a new TD(λ) algorithm has been developed that achieves

equivalence with an online algorithm with superior properties than the original TD(λ)

(van Seijen & Sutton 2014). However, such equivalences have not been analyzed for incre-

mental off-policy algorithms that use importance sampling. Moreover, the phenomenon of

algorithmic equivalences for reinforcement learning itself has not been well explored. As

a consequence, no systematic techniques for achieving such algorithmic equivalences have

been developed, and this phenomenon is not well understood.

The instability issue has been demonstrated in a variety of domains and through sim-

ple counterexamples in several works (Bertsekas 1994, Baird 1995, Gordon 1995, Boyan &

Moore 1995, Tsitsiklis & Van Roy 1996). The instability is shown to occur both under

off-policy training (Baird 1995) and selective updating (Tsitsiklis & Van Roy 1996). Baird

proposed to avoid this issue by considering a gradient-descent algorithm based on a differ-

ent objective function than TD (Baird 1995). Later, a gradient-based approach was also

developed for TD updates (Sutton et al. 2009, Maei & Sutton 2010, Maei 2011). However,

these gradient-based TD algorithms are not fully satisfactory as they require the tuning

of an extra step-size parameter and are also susceptible to the problem of high variance

(Defazio & Graepel 2014).

Expected updates played a significant role in the analysis of TD algorithms in many

6

works. Sutton (1988) showed the stability of on-policy TD(λ) by analyzing its expected

update. It is closely related to the ODE corresponding to stochastic processes and has been

widely utilized in the analysis of stochastic approximation methods. However, the source of

the instability issue for TD updates is not fully understood in terms of the expected updates.

Expected updates also did not play a major role in the derivation of TD algorithms.

1.3 Contributions

This dissertation contains a number of contributions toward two different issues of off-policy

learning algorithms, each overcoming a major obstacle to a widespread massive application

of off-policy algorithms for scalable predictive knowledge representation: the high variance

issue of off-policy algorithms and the instability issue of off-policy algorithms. We group

these contributions according to these two obstacles and list them below:

1. Our contributions toward the issue of high variance can be divided further into two

different approaches: those based on the technique of weighted importance sampling,

and those based on bootstrapping-based ideas. We discuss these contributions in the

following:

• WIS2: Our first contribution based on weighted importance sampling is WIS2 , a

tabular estimator that is an improvement over the standard weighted importance

sampling estimator. This estimator forms the basis for more generally applicable

off-policy algorithms we developed in this thesis. WIS2 is introduced in Chapter

4.

• WIS-LS & WIS2-LS: Our second contribution based on weighted importance

sampling is developing a principled approach to extend the tabular weighted

importance sampling estimator to the parametric function approximation. By

applying this technique to the standard weighted importance sampling, we obtain

WIS-LS algorithm, which can be applied to tasks beyond off-policy learning, such

as, general supervised learning tasks where importance sampling is required to

adjust the conditional distribution of the output. By applying this technique

to WIS2, we obtain WIS2-LS algorithm, which we adopt for further extensions.

These algorithms are introduced in Chapter 5.

• WIS-LSTD(λ): represents the culmination of our contributions based on weighted

importance sampling. This algorithm is the fullest extension of the weighted im-

portance sampling technique into parametric function approximation with real-

time updates, and a generalization of WIS2 and WIS2-LS. This contribution is

described in Chapter 6.

• WIS-TD(λ), WIS-GTD(λ), WIS-TO-GTD(λ): Our final contribution based

on weighted importance sampling is a class of algorithms that emerged from our

7

efforts to incorporate the benefits of weighted importance sampling with updates

of linear computational complexity. These algorithms are developed in Chapter

7.

• ABQ(ζ): Our second approach toward overcoming the high variance issue re-

sults to an off-policy algorithm, ABQ(ζ), that varies the amount of bootstrapping

in an action-dependent manner to avoid an explicit use importance sampling ra-

tios. By avoiding an explicit presence of the importance sampling ratios, this

algorithm effectively reduces the estimation variance. This algorithm is intro-

duced in Chapter 8.

• The action-dependent bootstrapping framework: A major contribution

based on our second approach is to utilize action-dependent bootstrapping as

a framework for analyzing some of the existing off-policy algorithms as well as

producing new ones. This framework is developed in Chapter 8.

2. Our main contributions toward the issue of instability are listed below:

• Understanding the instability of TD(λ): We presented a simplified ap-

proach for analyzing the instability of TD updates based on the properties of the

corresponding deterministic updates. This leads to some new understanding of

the instability issue involved with TD(λ). This analysis approach is described in

Chapter 9.

• Emphatic TD: Our most important contribution toward the instability issue of

off-policy algorithms is the development of a new stable off-policy algorithm, we

call the emphatic TD algorithm. In addition, we also provide a systematic way

of developing stable off-policy algorithms. These contributions are described in

Chapter 10.

In addition to these directed efforts, we have also made an additional contribution toward

the understand of incremental learning algorithms. Although not part of the main issues

we address in this thesis, this contribution played a pivotal role in developing a number of

algorithms in this work. We describe it below:

3. Algorithmic equivalence technique: We developed a technique for systematically

developing computationally frugal, incremental algorithms from non-incremental ones

while keeping their outcomes equivalent. We used this algorithmic equivalence tech-

nique to develop WIS-LSTD(λ), WIS-TD(λ), WIS-GTD(λ), WIS-TO-GTD(λ), and

ABQ(ζ). We illustrate this phenomenon of algorithmic equivalence through examples

in Chapter 3 and introduce our most sophisticated technique in Chapter 6.

Finally, we return to our original motivation behind developing incremental off-policy

algorithms, that is, to construct scalable predictive knowledge representation. We address

8

the problem of automatic discovery and retention of units of predictive knowledge repre-

sentation as a search of feature representation. This may facilitate the agent for curating

and retaining useful off-policy predictions as units of predictive knowledge representation.

4. Our main contributions toward addressing the feature discovering and retention prob-

lem are listed below:

• Representation search through generate and test: Our first major contri-

bution is to present the problem of feature discovery and retention as a represen-

tation search problem and introduce a series of incremental and computationally

frugal search algorithms that discover and retain features effectively through the

process of generate and test. This contribution is given in Chapter 11.

• Complimenting representation learning: Our second major contribution

here is to show that our representation search methods can be used complemen-

tarily with existing representation learning approaches, boosting their perfor-

mance. This contribution is described in Chapter 12.

We describe the general value function framework in Chapter 2, which can formally

specify long-term policy-contingent predictions.

9

Chapter 2

The Problem Setup and
Background

In this chapter we define formally the off-policy prediction task. Primarily, we formu-

late the problem of predicting long-term sensorimotor events as off-policy policy evaluation

tasks under the general value function framework. Then we describe different categories of

task settings, depending on whether estimation is performed completely or approximately,

leading to tabular and function approximation settings, or how samples are presented to

and estimates are expected from the learner, leading to off-line, per-trajectory, and real-

time learning settings. Real-time learning with function approximation is the most natural

setting for large-scale prediction. However, it is important to discuss the other settings be-

cause learning algorithms often originate and are well understood in those idealized settings.

Finally, we discuss different computational goals of learning algorithms for these settings.

2.1 The Agent-Environment Interaction Model

At the heart of all reinforcement learning problems is the agent-environment interaction

model. In this interaction model, it is assumed that an agent interacts with the environ-

ment through actions, and in response, the environment changes its state and provides a

reward. Figure 2.1 depicts the simplest model of agent-environment interaction. In this

model, the agent has direct access to the state of the environment. This interaction is usu-

ally formulated using the mathematical framework of Markov Decision Processes (MDPs).

Typically, this model is appended or modified based on the particular problem of interest.

For example, the model is often modified by assuming that the agent does not directly

access the states but rather receives observations or features.

More formally, let S denote the finite state space of the environment and A the finite

action space. At each time step t, the agent is at state St ∈ S and chooses an action

At ∈ A according to a fixed policy µ : A× S → [0, 1], where µ(a|s) def
== Pr {At = a|St = s}

under policy µ. Upon taking the action, the agent transitions to the next state St+1 ∈ S
according to probability p(s′|s, a)

def
== Pr {St+1 = s′|St = s,At = a} and receives a scalar

10

ActionState Reward

St+1

AtSt

Rt+1

Rt

Environment

Agent

Figure 2.1: The agent-environment interaction model where an agent exerts actions and in
response the environment changes states and provides a reward signal.

reward Rt+1 ∈ R. As the agent behaves according to policy µ, we call it the behavior

policy.

2.2 Predictions as General Value Functions (GVFs)

Sutton et al. (2011, also see White 2015) introduced the general value function (GVF)

framework to frame predictive questions using the well-established notion of value func-

tions. As the name suggests, GVFs are a generalization of the value function concept in

RL. They provide a powerful framework for open-ended prediction tasks by utilizing the

well-established foundation of value functions and making value estimation algorithms avail-

able for learning predictions. Note that a GVF is not a solution method but rather is a

specification of a predictive question. In the following, we provide the formal description

of the GVF framework, while illustrating how predictions can be represented as GVFs by

working with an example.

For an example of a predictive question, we consider that a robot is attempting to leave

a room without running into a wall too many times. The robot has a particular routine for

exiting the room that is a stationary policy and guarantees that the number of time steps

to leave the room is finite. She is not trying to come up with the optimal way of leaving but

rather is interested to know the consequence of following its current policy. More precisely,

the robot is interested to know how many times she will run into a wall before leaving the

room. We are assuming that the robot has sensors to determine whether she has run into

a wall or has succeeded leaving the room.

This predictive question can be formally represented by the random predictive event

associated with this question. This will also allow us to determine the true answer to this

question so that we can verify the accuracy of any tentative answer. The predictive event

involved here can be described in terms of a random variable that accounts for the number

of times the robot runs into a wall, a random variable that determines the termination of

the event, and the description of the policy the robot is following. All of these affect the

11

true answer to the predictive question. The true answer may also differ depending on where

the robot is located in the room. For example, the robot will likely collide with the wall

less number of times if she is located in front of the doorway as opposed to far away from

it. Therefore, the predictive event depends on the initial situation.

The GFV framework provides the elements required for defining this predictive ques-

tion. It also utilizes the MDP framework and uses states to allow situation-based predic-

tion. A predictive event in GVFs is defined cumulatively in terms of a special signal,

which is also known as a pseudo-reward. At each time step t, the agent, as it tran-

sitions from state St to St+1, receives a pseudo-reward Rt+1 with mean r(s, a, s′) def
==

E [Rt+1|St+1 = s′, At = a, St = s] and bounded variance. This is a generalization of rewards,

and we use these terms interchangeably in this work.

For our predictive question, this pseudo-reward Rt+1 can be the sensor signal that

determines whether the robot has collided with a wall. Each time she collides with a wall,

the signal value is +1, and zero otherwise. Note that in a control task, a collision would not

be typically encoded as a positive reward, as maximizing it would result in more collisions.

This is where GVFs diverges from the conventional value function framework and allows a

more powerful formulation.

Besides the pseudo-reward signal, there are two other components of GVFs: a state-

dependent discounting function γ(s) : S → [0, 1] determining the termination of the pre-

dictive event and the policy, upon which the prediction is contingent. The prediction

event may terminate with probability 1 − γ(s) upon arrival at each state s. Alterna-

tively, γ(s) can be thought as the degree of at s. The prediction event terminates with

certainty when γ(s) = 0. We use the shorthand γt
def
== γ(St). Let Lht denote a trajec-

tory of state, action, and pseudo-reward sequence starting with St and ending with Sh:

Lht
def
== {St, At, Rt+1, St+1, · · · , Rh, Sh}. Here, h > t, that is, trajectories must contain at

least a single transition. Let us define T (t) to be the time step of the first full termina-

tion after time step t, that is, T (t) = min {k > t : γk = 0}. Then a complete trajectory of

a predictive event starting at t is denoted as Lt
def
== L

T (t)
t . We denote the probability of

continuation of a trajectory Lht as γht+1, where γht
def
== Πh

k=tγk.

The prediction is contingent upon the agent following a fixed policy π : A × S → [0,

1], which can be different from the behavior policy µ. We call π the target policy. We

use the shorthands πt
def
== π(At|St) and µt

def
== µ(At|St). We assume that predictive events

terminate almost surely: γ∞t+1 = 0 w.p.1, ∀t. A special case is where, for some states s, a full

termination always occurs: γ(s) = 0. This is similar to episodic settings, where interactions

occur in episodes, and at the end of the episode the agent goes back to and restarts from

a state according to a fixed initial-state distribution. Unlike the episodic setting, the agent

in our setting does not restart after arriving at a terminal state. It is only the predictive

event that terminates. The agent continues to interact with the environment seamlessly

according to the behavior policy.

12

For our predictive question, the state-dependent discounting function γ(·) can be based

on the sensor signal that determines whether the robot succeeds leaving the room. For the

first visited state s where the robot determines she has exited the room, the discount factor

is γ(s) = 0, and it is 1 for all other states. The policy π is simply the routine the robot uses

to exit the room. But it could also be some other stationary policy if the robot was curious

about it. In that case, the robot would be asking the same predictive question, how many

times she runs into a wall, but this time contingent on a policy different than what she is

currently following, forming a counterfactual predictive question.

The predictive event can be given by a random variable defined as the discounted cu-

mulative sum of the pseudo-rewards:

Gt =

T (t)∑
l=t+1

l−1∏
i=t+1

γiRl, (2.1)

which corresponds to the trajectory Lt. This quantity is known as the return. The pseudo-

rewards are also known as cumulants of the return. The true answer to the predictive

question is then given by a general value function, denoted v(s;π, r, γ) for each state s, and

defined as:

v(s;π, r, γ)
def
== Eπ [Gt|St = s] , (2.2)

where Eπ [·|·] stands for the expectation with respect to the probability distribution of Lt

under policy π given that the trajectory starts from a particular state. In the conventional

framework, this is known as the state-value function, as it determines how valuable each

state is. As in action-value functions, which determines the value of each state-action pair,

GVFs may also be formulated in terms of state-action pairs.

For our predictive question, the return Gt stands for the number of times the robot

collided with a wall before leaving the room. Note that as soon as the robot leaves the

room, all the cumulants from that time are fully discounted. Therefore, no collisions after

the exit are taken into account in Gt. Moreover, by defining it in terms of states, the true

prediction is allowed to be different based on where the robot is initially located.

The agent can learn predictions by estimating the general value function v(s;π, r, γ) for

a certain state s using data gathered from its own experience. This task in the conventional

value function framework is known as the policy evaluation or the state-value estimation

task. The experience of the agent is generated by following the behavior policy µ, which

we say to be “off” the target policy π. In a learning task where there is a discrepancy

between the behavior and the target policy, the problem is called the off-policy problem. In

this case, the agent is learning policy-contingent predictions by estimating GVFs off-policy.

When the target policy is the same as the behavior policy, the problem is known as the

on-policy problem.

13

2.3 Model-free and Model-based Learning

A state-value estimation task can be further distinguished based on whether the agent is

assumed to have access to the transition model of the environment. If such a model is

known, it can be utilized in combination with data gathered from experience. Dynamic

programming methods only rely on transition models and do not use data at all (Sutton

& Barto 1998). Some other methods may utilize both to estimate state values (Paduraru

2013).

Methods that use a transition model in estimation are known as model-based methods.

The assumption of having access to the environment’s transition dynamics is unreasonable

for practical and large-scale problems. To apply model-based methods in these problems,

one requires to estimate the model separately from data before estimating state values.

Model estimation is typically a computationally intensive process, and storing the model

typically requires much more memory than that required for storing the state-value esti-

mates. Model-based methods are also subject to model-approximation error.

Methods that do not explicitly maintain the model of the environment are known as

model-free methods. These methods typically require much less memory and computation

compared to model-based methods. However, model-free methods tend to use much more

samples than model-based methods. These methods are often preferred as opposed to

model-based methods due to their simplicity and computational congeniality, which is more

pertinent to large-scale prediction we consider here.

2.4 Tabular and Linear Function Approximation Settings

One of the simplest learning settings for the value estimation problem is where the agent

observes the states. This is often known as the lookup-table or tabular setting because the

values can be stored in a table and looked up by the index of the states.

The tabular setting is contrasted with the function approximation setting. In this setting,

we assume that the agent does not observe the states themselves but rather have access

to a m-dimensional feature vector φ(s) ∈ Rm corresponding to each state s. We use the

notational shorthand φk
def
== φ(Sk). The goal of the learner in the function approximation

setting is to approximate the value of a state s as a linear function of the features: θ>φ(s) ≈
v(s;π, r, γ) by learning the parameter vector θ ∈ Rm.

The function approximation setting specializes to the tabular setting when the feature

vector for a state is a unique standard basis vector. If the feature vectors are standard

basis vectors but not unique, they constitute what is often known as the state-aggregation

setting.

14

2.5 Off-line, Per-trajectory, and Real-time Learning Settings

Often an algorithm is motivated in a simple idealized learning setting, but we seek to apply

that algorithm to a more complicated real-life setting. Sometimes an algorithm efficient

in one learning setting can become expensive in another one. In this section, we describe

different reinforcement learning settings that differ by how the samples are presented to

the learner. We will use these settings in Chapter 3 for illustrative examples of algorithmic

equivalences.

A conceptually simple learning setting for state-value estimation with linear function

approximation is where data samples are available as pairs of trajectories and the feature

vectors corresponding to the initial state of the trajectories: (Lt,φt). It is conceptually

simple because the goal here is to estimate expected returns and the samples are available

in terms of complete trajectories, from which returns can be easily computed. This setting is

also pertinent in conventional tasks. In an episodic task, these trajectories can be collected

after each episode completes. In a continuing task, these trajectories can be collected by

waiting for a long period and computing the returns up to a certain precision.

This setting can be further distinguished depending on the way the learner is expected to

produce an estimate. In supervised learning problems, often an estimate from the learner

is expected only after a complete data set is presented or data becomes available to the

learner only as a complete set. Once the learner is trained on the data set, the learned

estimate is then used to produce predictions on unseen samples without further learning.

We call such settings off-line learning settings.

Definition 1 (The off-line learning setting). A learning setting is called off-line if there is a

clear separation in time between learning and the use of the learned estimate in performance,

that is, the estimate is not learned further when being used.

An example of off-line learning setting is where a set of n samples {(Ltk ,φtk)}nk=1 is

given to the learner at once, where tk denotes the initial time step of the kth trajectory.

The learner is expected to produce a single estimate of the parameter vector θ. Once this

estimate is produced, it is kept fixed and used to predict returns as θ>φt for a given feature

vector φt.

In contrast, some other settings have learning and the use of the learned estimates

occurring simultaneously. We call these settings on-line learning settings.

Definition 2 (The online learning setting). A learning setting is called online if learning

and the use of the learned estimates occur simultaneously, that is, learning does not stop

when the estimate is being used.

As this definition does not precisely determine how estimation and the presentation of

samples for use are interleaved, this allows various forms of online learning settings, for

example, where samples arrive as mini-batches or learned estimates are expected only once

15

in a while. An example of an online learning setting is where the learner is expected to

produce a learned estimate after each sample (Lt,φt) is received. This does not require an

estimate every time step. As we can see, an on-line learning setting is closely related to

how a sample is defined. In the current example, learning occurs on-line on a trajectory-by-

trajectory basis. In the following, we will refer to this setting as the per-trajectory learning

setting.

We discuss one final reinforcement learning setting, where samples arrive in real-time

as the transitions occur. Hence, samples arrive as a tuple of feature vectors, actions, next

rewards, and next feature vectors (φt, At, Rt+1,φt+1) each time a transition occurs from

time step t to t + 1. In this case, we are interested in making a learned estimate after

each transition. For example, after the first transition, the sample (φ0, A0, R1,φ1) becomes

available, and the learner is expected to produce a learned estimate θ1. Here learning occurs

not only on-line but in real-time as transitions occur from one state to another. We call

this the real-time learning setting.

We discussed different variations of reinforcement learning settings based on how samples

are presented to the learner resulting in three settings: off-line learning, per-trajectory

learning, and real-time learning settings. RL algorithms are typically tied to specific learning

settings. For example, Monte Carlo methods are typically considered in either the off-line

or the per-trajectory learning setting, whereas temporal-difference methods are considered

in the real-time learning setting. It is possible to bring an algorithm well-suited for one

learning setting and adopt it for another in some cases, allowing us to carry forward the

benefits of the former algorithm to the latter setting.

2.6 Computational Goals for Learning Algorithms

When applying an algorithm from one setting into another, the question of memory and

computational complexity becomes relevant. In this section, we explore some natural com-

putational goals for learning algorithms when applied to a particular setting.

Different learning settings impose different computational goals for learning algorithms.

In an off-line learning setting, the goal is typically to use as much computational resource

as possible to get the most out of the data. As training data sets in practical applications

are becoming larger and larger, there is also a pressing need to reduce the computational

burden of off-line learning algorithms. However, sample complexity or data efficiency is more

important and computational goals are more flexible in this setting. As long as computation

completes in a reasonable amount of time requiring a feasible amount of memory, the

computational burden of an algorithm is typically deemed acceptable.

In an on-line learning setting, computational goals play a bigger role. Algorithms with

certain computational goals are more fitting to this setting than others. As data samples ar-

rive one at a time, and a learned estimate is expected before the next sample is presented, it

sets a natural restriction to how much computational resources the learner can use to learn

16

RL Settings/Computational Goals

Off-line Online

Per-trajectory Real-time

Incremental Non-
incremental Incremental Non-

incremental

Figure 2.2: Reinforcement learning problems are categorized in three different settings: off-
line, per-trajectory, and real-time (shown in black), based on how samples are presented
to the learner. Two different computational goals of learning algorithms are incremental
and non-incremental (shown in blue), and their precise definitions depend on computational
and memory requirements as well as the adopted setting. For example, an algorithm that
is incremental in a per-trajectory learning setting may not be incremental in a real-time
learning setting.

and produce the estimate. If samples are arriving continually at a fixed and frequent rate,

often the case in a real-time learning setting, then the learner has a fixed computational

budget between two samples. This computation has to be expended on two computational

elements: the learning element updating the estimate, and the performance element pro-

ducing the prediction. This restriction rules out algorithms that require more and more

computation per-sample as the number of samples increases. The online learning setting

has implications on the memory requirement as well. Algorithms that require more and

more memory as the number of samples increases are infeasible to use. An algorithm with

slowly increasing memory complexity might be workable for a long period, but eventually

has to be intervened.

The most fitting algorithms in such settings would not require more memory and per-

sample computation as the number of samples increases. Sutton and Whitehead (1993)

coined the term strict incrementality for this computational goal.

Definition 3 (Strictly-incremental algorithms). An algorithm is called strictly incremental

if it does not require more memory or per-sample computation as the number of samples

increases.

Throughout this thesis, we focus on achieving algorithms that are strictly incremen-

tal. Algorithms that do not fulfill this computational requirement is called non strictly-

17

incremental algorithm. In the following, we use incremental interchangeably with strictly

incremental.

Incrementality is more relevant in the on-line learning setting and depends on the defini-

tion of samples. For example, an algorithm that is incremental in a per-trajectory learning

setting may not remain incremental in a real-time learning setting. It is because in the

former setting samples arrive as complete trajectories, whereas in the latter setting samples

arrive with transitions. In Figure 2.2, we illustrate these different categories of settings and

computational goals of learning.

2.7 Bias, Consistency and Mean Squared Error of Average
and Ratio Estimators

Almost all the estimators we discuss in this chapter are either in the form of a simple

average:

X̄n =

∑n
k=1Xk

n
, (2.3)

or in the form of a ratio of two simple averages:

X̄n

Ȳn
=

∑n
k=1Xk/n∑n
k=1 Yk/n

=

∑n
k=1Xk∑n
k=1 Yk

. (2.4)

Here, both {Xk}nk=1 and {Yk}nk=1 are sequences of i.i.d. random variables, and Yk is a

dependent variable of Xk such that E[Y1] = 1. Both the average and the ratio are estimating

µx = E[X1]. We call the former estimator the average estimator and the latter the ratio

estimator.

Two most commonly analyzed properties of estimators are their biases and consistencies.

We analyze these two properties for all the estimators we discuss in this chapter.

Bias of an Estimator

A bias of an estimator V with respect to an unknown parameter v is defined as the quantity:

E[V]− v. Based on this definition, an unbiased estimator can be defined as follows.

Definition 4 (Unbiased estimator). Given a constant scalar v ∈ R, an estimator V ∈ R is

called an unbiased estimator of v if and only if

E[V] = v.

In the following, we describe some theoretical properties of these two estimators in terms

of their biases.

18

Lemma 1 (Unbiasedness of average estimator). Given an i.i.d. sequence {Xk}nk=1, the
average estimator defined by 2.3 is an unbiased estimator of µx.

Proof. By taking the expectation of the average estimator, we get

E[X̄n] = E

[∑n
k=1Xk

n

]
=

∑n
k=1 E[Xk]

n
=

∑n
k=1 E[X1]

n
= E[X1]

n

n
= µx. (2.5)

The ratio estimator is generally a biased estimator of µx. However, under fairly general

conditions, it can be shown that the bias of the ratio estimator goes down exponentially

with n to zero. For that, we can use the first-order Taylor expansion of the bias. David and

Sukhatme (1974) achieved this result by assuming that the values Yk takes are bounded

uniformly above zero. Eltinge (1994) weakened the condition by allowing a nontrivial pro-

portion of the values to be zero. Their conditions also required the existence of higher

moments. The following derivation provides an intuition on how the first order Taylor

approximation of the bias is used to achieve this result:

E

[
X̄n

Ȳn

]
− µx = E

[
X̄n − µxȲn

Ȳn

]
(2.6)

= E
[(
X̄n − µxȲn

) (
Ȳn
)−1
]

(2.7)

= E
[(
X̄n − µxȲn

) (
1 + (Ȳn − 1)

)−1
]

(2.8)

= E

[(
X̄n − µxȲn

)(
1 +

∞∑
k=1

(−1)k(Ȳn − 1)k

)]
(2.9)

≈ E
[
X̄n − µxȲn

]︸ ︷︷ ︸
0

−E
[
(X̄n − µxȲn)(Ȳn − 1)

]
(2.10)

= −E
[
(X̄n − µx − µxȲn + µx)(Ȳn − 1)

]
(2.11)

= µxE
[
(Ȳn − 1)2

]
− E

[
(X̄n − µx)(Ȳn − 1)

]
(2.12)

=
1

n
(µx Var[Y1]− Cov[X1, Y1]) . (2.13)

Thus the bias of the ratio estimator is O
(

1
n

)
.

Consistency of an Estimator

The definition of a consistent estimator depends on the definition of almost sure convergence,

which we provide first.

Definition 5 (Almost sure convergence). A sequence of random variables {Xk}nk=1 is said

to converge to another random variable X almost surely if and only if

Pr
{

lim
n→∞

Xn = X
}

= 1.

19

Almost sure convergence of the sequence {Xk}nk=1 is denoted in short by Xn
a.s.−−→ X.

Definition 6 (Consistent estimator). Given a constant scalar v ∈ R, a sequence of real-

valued estimators {Vk}nk=1 is called a consistent estimator of v if and only if Vk
a.s.−−→ v.

The following Lemma known as the strong law of large numbers will be useful for proving

consistency properties of the average and the ratio estimators.

Lemma 2 (Almost sure convergence of average estimator). Given an i.i.d. sequence of
random variables {Xk}nk=1, the average estimator X̄n defined by (2.3) converges almost

surely to µx, that is, X̄n
a.s.−−→ µx.

Lemma 3 (Consistency of average estimator). Given an i.i.d. sequence of random
variables {Xk}nk=1, the average estimator X̄n defined by (2.3) is a consistent estimator
of µx.

Proof. It follows directly from Lemma 2 and Definitions 6.

Lemma 4 (Consistency of ratio estimator). Given two i.i.d. sequences of random vari-

ables {Xk}nk=1 and {Yk}nk=1 and E[Y1] = 1, the ratio estimator X̄n
Ȳn

defined by (2.4) is a
consistent estimator of µx.

Proof. By applying Lemma 3 to X̄n, we have X̄n =
∑n
k=1Xk
n

a.s.−−→ µx, and by applying to Ȳn,

we have Ȳn =
∑n
k=1 Yk
n

a.s.−−→ E[Y1] = 1, respectively. Then it follows that X̄n
Ȳn

a.s.−−→ µx
E[Y1] = µx,

and hence the ratio estimator is a consistent estimator of µx.

Mean Squared Error of an Estimator

The Mean Squared Error of an estimator V with respect to an unknown parameter v is

defined to be the quantity: E[(V − v)2]. MSE can be written in terms of the bias and the

variance of the estimator in the following way:

E[(V − v)2] = E[(V − E[V] + E[V]− v)2] (2.14)

= E[(V − E[V])2] + 2 E[(V − E[V])(E[V]− v)]︸ ︷︷ ︸
0

+E[(E[V]− v)2] (2.15)

= E[(V − E[V])2]︸ ︷︷ ︸
Var[V]

+ (E[V]− v)2︸ ︷︷ ︸
Bias2

. (2.16)

As the average estimator is an unbiased estimator, its MSE is simply its variance:

E[(X̄n − µx)2] = Var[X̄n] = Var

[∑n
k=1Xk

n

]
=

1

n
Var[X1]. (2.17)

20

It is clear from the above that MSE of the average estimator reduces to zero as n→∞.

Just like its bias, the calculation of the MSE of the ratio estimator is tricky. Using similar

conditions as was used for the approximation of bias, Eltinge (1994) showed that MSE of

the ratio estimator reduces exponentially with n. The MSE of the ratio estimator can also

be related to the MSE of the average estimator using the first order Taylor approximation

of the variance (Liu 2001). The first-order Taylor approximation of the variance of the ratio

estimator can be written as follows:

Var

[
X̄n

Ȳn

]
= E

[(
X̄n

Ȳn
− E

[
X̄n

Ȳn

])2
]

(2.18)

= E

[(
X̄n − ȲnE

[
X̄n

Ȳn

])2 (
Ȳn
)−2

]
(2.19)

= E
[(
X̄n − µxȲn

)2 (
1 + (Ȳn − 1)

)−2
]

(2.20)

≈ E
[(
X̄n − µxȲn

)2]
(2.21)

= E
[
X̄2
n

]
+ µ2

xE
[
Ȳ 2
n

]
− 2µxE[X̄nȲn]− 2µ2

x + 2µ2
x (2.22)

= E
[
X̄2
n

]
− µ2

x + µ2
xE
[
Ȳ 2
n

]
− µ2

x − 2µxE[(X̄n − µx)Ȳn] (2.23)

= E
[
X̄2
n

]
− µ2

x + µ2
x

(
E
[
Ȳ 2
n

]
− 1
)
− 2µxE[(X̄n − µx)(Ȳn − 1)] (2.24)

= Var[X̄n] + µ2
x Var[Ȳn]− 2µx Cov[X̄n, Ȳn] (2.25)

=
1

n

(
Var[X1] + µ2

x Var[Y1]− 2µx Cov[X1, Y1]
)
. (2.26)

Approximations are applied to remove the O(n−2) terms. The MSE is simply propor-

tional to the variance, because the squared of the bias is O(n−2). Then the MSE of the

ratio estimator can be related to the MSE of the average estimator in the following way:

MSE

[
X̄n

Ȳn

]
≈ Var

[
X̄n

Ȳn

]
(2.27)

≈ 1

n

(
Var[X1] + µ2

x Var[Y1]− 2µx Cov[X1, Y1]
)

(2.28)

= MSE[X̄n] +
1

n

(
µ2
x Var[Y1]− 2µx Cov[X1, Y1]

)
. (2.29)

We denote the estimated MSE in the last expression by EMSE[X̄n]. Using this estimated

MSE, we can characterize when the leading terms in the MSE of the ratio estimator is

smaller than the MSE of the average estimator. The condition that the estimated MSE

of the ratio estimator is less than the MSE of the average estimator can be found in the

following way:

EMSE

[
X̄n

Ȳn

]
−MSE[X̄n] < 0 (2.30)

=⇒ 1

n

(
µ2
x Var[Y1]− 2µx Cov[X1, Y1]

)
< 0 (2.31)

=⇒ µx Cov[X1, Y1] >
µ2
x Var[Y1]

2
. (2.32)

21

Therefore, the condition is that X1 and Y1 are highly positively correlated if µx > 0.

Similarly, if µx < 0, X1 and Y1 need to be highly negatively correlated.

2.8 The Importance Sampling Technique

Importance sampling is a technique for re-adjusting samples to make them appear to be

drawn according to one distribution while they are actually drawn according to another

distribution. This re-adjustment is achieved by scaling samples by the likelihood ratio,

which is also known as the importance sampling ratio. We use the terms the importance

sampling ratio and the importance weight interchangeably.

For a trajectory Lht , the importance weight W h
t given the start state St is defined as

W h
t

def
==

∏h−1
k=t π(Ak|Sk)p(Sk+1|Sk, Ak)∏h−1
k=t µ(Ak|Sk)p(Sk+1|Sk, Ak)

=

∏h−1
k=t π(Ak|Sk)∏h−1
k=t µ(Ak|Sk)

=
h−1∏
k=t

π(At|St)
µ(At|St)

. (2.33)

We define W t
t

def
== 1. Note that the transition probabilities cancel in the numerator and the

denominator. Therefore, we do not need to know the model of the environment in order

to calculate importance weights. We denote the importance weight of a trajectory that

consists only a single transition as

ρt
def
== W t+1

t =
π(At|St)
µ(At|St)

. (2.34)

Therefore, we can rewrite W h
k in the following way:

W h
t =

h−1∏
k=t

W k+1
k =

h−1∏
k=t

ρk. (2.35)

We denote the importance weight of a trajectory ending in a full termination as Wt
def
==

W
T (t)
t .

We require the following assumption for all importance sampling estimators. We call

this the assumption of coverage.

Assumption 1 (Coverage). For any state s and action a and two policies π and µ,
whenever π(a|s) > 0, we have µ(a|s) > 0. Equivalently, whenever µ(a|s) = 0, we have
π(a|s) = 0.

Due to this coverage, it is possible to rescale the samples in such a way as if they were

weighted according to the probability distribution induced by the target policy rather than

by the behavior policy. Following lemmas exemplify that.

22

Lemma 5 (Importance weight). Given Assumption 1, the following holds for h ≥ t:

Eµ

[
W h
t

∣∣St = s
]

= 1. (2.36)

Proof. Using the definition of expectations, we can write:

Eµ

[
W h
t

∣∣St = s
]

=
∑
st=s,
at,···,sh

(∏h−1
k=t π(ak|sk)∏h−1
k=t µ(ak|sk)

)
h−1∏
k=t

µ(ak|sk)p(sk+1|sk, ak) (2.37)

=
∑
st=s,
at,···,sh

(
h−1∏
k=t

π(ak|sk)
) ∏h−1

k=t µ(ak|sk)p(sk+1|sk, ak)∏h−1
k=t µ(ak|sk)

(2.38)

=
∑
st=s,
at,···,sh

h−1∏
k=t

π(ak|sk)p(sk+1|sk, ak) (2.39)

= 1. (2.40)

Here the last step follows because the sum iterates over the support of µ, and it covers the

support of π.

Corollary 1. Given Assumption 1, the following holds:

Eµ
[
ρt
∣∣St = s

]
= 1. (2.41)

Proof. It follows from Lemma 5 with h = t+ 1, and the definition of ρt in (2.34).

Lemma 6 (Adjustment by importance sampling). Given Assumption 1, the following
holds for a random variable X, which is a function of the trajectory Llt, and for constant
integers t, h, l such that h ≥ l > t:

Eµ

[
W h
t X
∣∣St = s

]
= Eπ

[
X
∣∣St = s

]
. (2.42)

Proof. The proof follows similar steps as in the proof of Lemma 5:

Eµ

[
W h
t X
∣∣St = s

]
=

∑
st=s,x,
at,···,sh

x

(∏h−1
k=t π(ak|sk)∏h−1
k=t µ(ak|sk)

)
h−1∏
k=t

µ(ak|sk)p(sk+1|sk, ak) (2.43)

=
∑

st=s,x,
at,···,sh

x

(
h−1∏
k=t

π(ak|sk)
) ∏h−1

k=t µ(ak|sk)p(sk+1|sk, ak)∏h−1
k=t µ(ak|sk)

(2.44)

23

=
∑

st=s,x,
at,···,sh

x
h−1∏
k=t

π(ak|sk)p(sk+1|sk, ak) (2.45)

= Eπ
[
X
∣∣St = s

]
. (2.46)

The last lemma shows that a sample X drawn according to µ can be seen as to be drawn

according to π after scaling with importance weight W h
t in the sense that this scaled sample

is an unbiased estimate under the desired distribution π.

2.9 Conclusions

In this chapter, we described the general value function framework for specifying long-term

policy-contingent predictions and explained it with an illustrative example. GFVs are one of

the most powerful specifications of long-term policy-contingent prediction tasks. Most the

off-policy algorithms we develop in this work use this framework for problem formulation.

In some cases, we have adopted the simpler continuing task setting, which is a special

case under this framework. Moreover, we discuss and provide the background for various

categories of task settings and computational goals of learning algorithms that we will later

use in this thesis.

24

Chapter 3

Algorithmic Equivalences for
Incremental Reinforcement
Learning 1

In this chapter, we establish the notion of algorithmic equivalences for learning algorithms.

Our goal is to understand how to derive equivalent and efficient reinforcement learning al-

gorithms from expensive ones and investigate some of the cases where such derivations are

problematic. Derivation of a computationally efficient algorithm with the same outcomes

as an expensive algorithm is a recurring theme in this thesis. There are precedences of

such equivalences in reinforcement learning prior to this thesis, but typically such equiva-

lences were realized in hindsight, but not through derivations. In some other cases, such

equivalences were fortuitous, lacking a general understanding of such phenomena. In this

chapter, we discuss the elements fundamental to algorithmic equivalences in the context

of reinforcement learning so that computationally efficient algorithms can be obtained sys-

tematically through derivations. We build up our understanding from a series of examples

in different reinforcement learning settings. The novel techniques for deriving algorithms

through algorithmic equivalence are provided in later chapters, whereas this chapter sets

the stage for them.

3.1 Algorithmic Equivalences

Algorithmic equivalences are about having different algorithms with different computational

requirements producing the same outcomes. Such equivalences are quite common in classical

problems of computing science such as string search, sorting, and shortest path problems.

For example, there are several algorithms for sorting a list of items such as bubble sort,

merge sort, and quick sort, each of which produces the same outcome. However, the worst

1The core concepts presented in this chapter are simplifications and illustrations of the ideas developed
in published papers coauthored by this author (Mahmood, van Hasselt & Sutton 2014, Mahmood & Sutton
2015).

25

case computational complexity in terms of the number of items is O(n2) for bubble and

quick sort, whereas it is O(n log n) for merge sort (Cormen 2009).

Algorithmic equivalences play an important role in machine learning problems. Often a

machine learning problem is formulated in terms of optimizing an objective. This objective

is specified either in an asymptotic sense as in mean squared error minimization (Hastie

et al. 2001) or in terms of a finite number of samples as in empirical risk minimization

(Vapnik 1998). Algorithmic equivalences can be achieved in both forms of machine learning

problems.

In machine learning problems with asymptotic objectives, it is possible to have multiple

algorithms with different computational requirements to achieve asymptotic equivalence.

For example, in mean squared error minimization of supervised learning problems, both

the Least-Squares (LS) algorithm and Stochastic Gradient Descent (SGD) can be shown to

converge to the minimum of the mean squared error under some natural conditions (Eicker

1963, Clarkson 1993). Such an equivalence between LS and SGD is often utilized to argue

in favor of using SGD as it is computationally cheaper than LS. However, the equivalence

is only asymptotic, and their rates of convergence are different (Bousquet & Bottou 2008),

providing a trade-off between computational and sample efficiency.

There are many examples of algorithmic equivalences in the finite-sample empirical risk

minimization problems. Many works in the regret minimization literature focus on incor-

porating existing algorithms into generalized frameworks. By doing so, analyses available

for a particular framework become readily applicable to the incorporated algorithms. For

example, SGD has been shown to be an instantiation of Online Mirror Descent (Srebro,

Sridharan & Tewari 2011). Hazan and Kale (2008) showed that the Follow the Regular-

ized Leader (FTRL) and the Follow the Lazy Projected Leader produce identical outcomes.

McMahan (2011) showed that the proximal FTRL and the composite-objective Mirror De-

scent with a certain form of loss and regularizer function produce equivalent outcomes on

a per-sample basis.

In reinforcement learning problems, algorithmic equivalences appear asymptotically as

well as in a finite-sample form. Many reinforcement learning algorithms can be shown to

converge to the same asymptotic solution. For example, the original TD(λ) and the gradient-

based TD algorithms converge to the minimum of the mean squared projected Bellman error

(Sutton et al. 2009, Maei 2011). The most profound influence of algorithmic equivalences

in reinforcement learning is in the per-sample form. Due to such equivalences, it is possible

to apply some of the well-known supervised learning algorithms to reinforcement learning

problems in a computationally efficient manner. For example, two classical reinforcement

learning algorithms: TD(λ) with accumulating traces and TD(λ) with replacing traces

produce the same outcome as two different forms of Monte Carlo algorithms (Sutton 1988,

Singh & Sutton 1996). Later LSTD(λ) was also shown to achieve equivalence with the

supervised LS algorithm (Boyan 2002).

26

In this thesis, we consider algorithmic equivalences that occur on a per-sample basis. We

are specifically interested in developing algorithmic ideas in supervised learning problems

and applying them to reinforcement learning problems in a computationally efficient man-

ner. We complete this section by providing a simple example of algorithmic equivalences.

Example of algorithmic equivalence: Sample average

Consider a process generating a series of samples {Xk}∞k=1, Xk ∈ R, one at a time. We

would like to compute the sample average of these numbers after each sample is presented.

The sample average for n samples is defined as

Vn
def
==

X1 +X2 + · · ·+Xn

n
. (3.1)

We could use (3.1) directly to compute sample averages every time a new sample is

presented. However, it will require retaining all the samples seen so far, and the cost for

computing sample averages will increase as more samples are seen. It is possible to compute

sample average more efficiently. One way would be to compute and store incrementally the

sum of the samples and the number of samples seen so far:

Sn
def
== Sn−1 +Xn; Cn

def
== Cn−1 + 1. (3.2)

Then the sample average after each sample can be computed by dividing the sum by

the number of samples: Vn = Sn
Cn

. After a new sample arrives, both the summation and the

number of samples would be updated to recompute the sample average.

Yet another way is to compute the sample average directly using the previous average:

Vn =
Sn
Cn

=
Sn−1 +Xn

Cn
=
Cn − 1

Cn

Sn−1

Cn−1
+
Xn

Cn
=

(
1− 1

Cn

)
Vn−1 +

Xn

Cn
(3.3)

= Vn−1 +
1

Cn
(Xn − Vn−1) . (3.4)

These three different ways of computing sample averages lead to three different algo-

rithms with different computational and memory requirements. For n samples, the first

algorithm requires O(n2) total computation and O(n) memory. Therefore, each time a

sample arrives, more computation and memory are being required to recompute the av-

erage. The second and the third algorithms require total O(n) computation and do not

require storing past samples, needing only O(1) memory at all time. The exact amount of

memory and computation is slightly different between the second and the third algorithms.

This example constitutes one of the simplest occurrences of algorithmic equivalences for

learning algorithms. It is also an example of deriving computationally efficient algorithms

from an expensive one. In this case, the derivation of the second algorithm is trivial, and

the derivation of the third algorithm is also straightforward. However, for more compli-

cated algorithms, derivation of equivalent efficient algorithms can become difficult, or even

impossible.

27

3.2 Equivalences for the Method of Least-Squares

In this section, we explore algorithms that compute the least-squares solution in different

reinforcement learning settings and derive strictly-incremental algorithms with equivalent

outcomes in different online learning settings.

The method of least-squares is best motivated in an off-line learning setting. Given a set

of n samples {(Gtk ,φtk)}nk=1, the goal is to compute the parameter vector θ that minimizes

the total squared error:

θn = arg min
θ

1

n

n∑
k=1

(
Gtk − θ>φtk

)2
. (3.5)

Let us define Φn ∈ Rn×m to be a matrix, where the ith row is φ>ti , and gn ∈ Rn a

column vector containing the returns. Hence,

Φ>n = [φt1 , · · · ,φtn] (3.6)

g>n = [Gt1 , · · · , Gtn] . (3.7)

Then the solution can be computed in the following way:

θn =
(
Φ>nΦn

)−1
Φ>n gn, (3.8)

assuming Φ>nΦn is invertible. This matrix may not always be invertible. This problem can

be avoided by computing the solution in the following way:

θn =
(
Φ>nΦn + εI

)−1
Φ>n gn, (3.9)

where I ∈ Rm×m is the identity matrix, and ε > 0 is a regularization parameter. We call

this the Least-Squares (LS) algorithm.

Let us consider using the LS algorithm in the per-trajectory learning setting. In this

case, the learner is expected to produce a series of learned estimates: {θk}∞k=1, where

the kth estimate is produced after the kth sample (Gtk ,φtk) is received. A naive way of

using LS in this setting would be to use (3.9) after each sample is presented. When n

samples are presented, using (3.9) would require O(nm2) to compute Φ>nΦn + εI, O(m3)

to compute the matrix inversion, O(nm) to compute Φ>n gn, and O(m2) to compute the

final matrix-vector multiplication. Hence, the total per-sample computation is O(nm2)

considering n � m. Using LS this way also requires retaining all the samples seen so far.

Therefore, the input memory complexity of LS is O(nm2). Both the memory and per-

sample computation increases with the number of samples. The LS algorithm is not strictly

incremental when applied to the per-trajectory learning setting.

However, through a small modification we can derive an algorithm that can be computed

strictly incrementally in the per-trajectory learning setting. Note that both the matrix

28

Algorithm Per-Trajectory-Incremental-LS(A, b, G, φ)

A← A + φφ>

b← b +Gφ
θ ← A−1b
return (θ,A,b)

Table 3.1: The Per-Trajectory Incremental LS algorithm: It computes the least-squares
solution strictly incrementally on a per-trajectory basis.

Φ>nΦn and the vector Φ>n gn can be computed strictly incrementally in the following way:

An = Φ>nΦn + εI =

n∑
k=1

φtkφ
>
tk

+ εI = An−1 + φtnφ
>
tn ; A0 = εI, (3.10)

bn = Φ>n gn =

n∑
k=1

Gtkφtk = bn−1 +Gtnφtn ; b0 = 0. (3.11)

Therefore, after each sample (Gtn ,φtn) is received, An ∈ Rm×m and bn ∈ Rm can be

computed based on this sample, An−1, and bn−1. Then the estimate can be computed as

θn = A−1
n bn. (3.12)

This way we only need to store An ∈ Rm×m and bn ∈ Rm, and its per-sample computation

is O(m3), neither of which depend on the number of samples. Therefore, this modified

algorithm is strictly incremental in the per-trajectory learning setting. We call this algo-

rithm Per-Trajectory Incremental LS and summarize it in Table 3.1. We can generate the

sequence of estimates {θk}∞k=1 by invoking Per-Trajectory Incremental LS after each new

sample is received:

(θ1,A1,b1)← Per-Trajectory-Incremental-LS(A0,b0, Gt1 ,φt1),

(θ2,A2,b2)← Per-Trajectory-Incremental-LS(A1,b1, Gt2 ,φt2),

...

(θn,An,bn)← Per-Trajectory-Incremental-LS(An−1,bn−1, Gtn ,φtn).

From (3.10) and (3.11) it is clear that the Per-Trajectory Incremental LS produces the same

outcomes as the batch LS algorithm described by (3.9).

Now, let us consider using the Per-Trajectory Incremental LS in the real-time learning

setting. After t transitions, the available data in this setting is φ1, A1, R2,φ2, · · · , At, Rt+1,

φt+1. On the other hand, Per-Trajectory Incremental LS expects a sequence of trajectories

as inputs. How can we use the available data so that the LS algorithm can be applied? One

way would be to produce a sequence of overlapping trajectories from the single trajectory

available in the real-time setting. Then from each of these trajectories, a return can be

29

computed. An additional complication is that, the trajectory might not be complete at

a particular time step t + 1. This can be resolved by computing interim returns in the

following way:

Gt+1
1 = R2 + γ2R3 + γ2γ3R4 · · ·+

t∏
k=2

γkRt+1 +
t+1∏
k=2

γkPt+1,

Gt+1
2 = γ2R3 + γ2γ3R4 · · ·+

t∏
k=2

γkRt+1 +

t+1∏
k=2

γkPt+1,

...

Gt+1
t = Rt+1 + γt+1Pt+1,

where Gt+1
k is the corrected truncated return from state Sk computed using data up to step

t+ 1. A guess Pt+1 is used as a proxy for the data not seen so far. This guess can be based

on prior estimates. Then these interim returns can be passed to Per-Trajectory Incremental

LS in sequence to produce the estimate θt+1. If a termination occurs at time step t + 1,

that is γt+1 = 0, then Pt+1 is fully discounted and the effect of the guess on the return goes

away.

Interim returns defined in the above form are often called n-step backups. Interim returns

can be much more complex, for example, in the form of an exponentially weighted average

of different multistep backups. In that case, the effect of the guess may not completely go

away even upon full termination. Such targets are called bootstrapping targets, as they are

formed by bootstrapping on value estimates for other states. We avoid such intricacies here

by considering only simple n-step backups and assuming that the guesses are independent

of the estimates.

The process of computing a learned prediction after t + 1 time step using the Per-

Trajectory Incremental LS algorithm is given in Table 3.2. We call this Real-Time LS , as

it produces learned estimates on a real-time basis. However, this algorithm is not strictly

incremental. After t transitions, it requires O(t) input memory and O(t) work memory for

storing t interim returns. At each time t when a sample arrives, the computational com-

plexity of Real-Time LS is O(t) for computing the interim returns and O(t) for invoking

the Per-Trajectory Incremental LS algorithm t times. Clearly, the memory and per-sample

computation of this algorithm increase as samples increase. Although Per-Trajectory In-

cremental LS is strictly incremental in the per-trajectory learning setting, directly invoking

it does not produce a strictly incremental algorithm in the real-time learning setting.

Due to the overlapping and incremental nature of interim returns, it is actually possible

to derive a strictly incremental algorithm that produces the same outcomes as the Per-

Trajectory Incremental LS. The key is to write At and bt recursively using only the newest

sample. The matrix At can already be computed strictly incrementally on a real-time basis

using (3.10). In order to compute bt strictly incrementally, let us first consider a simplified

30

Algorithm Real-Time-LS((γ1,φ1) , {(Rk, γk,φk)}t+1
k=2, Pt+1)

G1 ← G2 ← · · · ← Gt ← 0
Gt ← Pt+1

for k from t downto 1 do
Gk ← Rk+1 + γk+1Gk+1

end for
A← εI, b← 0
for k = 1 to t do

(θ,A,b)← Per-Trajectory-Incr-LS(A,b, Gk,φk)
end for
return θ

Table 3.2: The Real-Time LS algorithm: It computes the least-squares solution on a real-
time basis but not strictly incrementally.

case where there is no discounting and guesses: γi = 1, Pi = 0, ∀i > 0. Then we can write

bn as follows:

bt =

t∑
k=1

Gt+1
k φk =

t∑
k=1

(
t∑
i=k

Ri+1

)
φk. (3.13)

In the real-time learning setting, we seek incrementality in terms of transitions. There are

two summations in the above expression, where the outer summation iterates over different

interim returns and the inner summation iterates over different transitions within a return.

When a new transition occurs, the above expression will use the new sample O(t) times to

compute bt+1, as this new sample needs to contribute to each interim return. In order to

reduce the computation involving the new sample to O(1), we need the outer sum to iterate

through different transitions.

The following identity enables us to switch the order of the two summations, so that the

outer summation iterates over transitions, bringing us closer to a real-time incrementality

(Graham et al. 1989, page 36).

Lemma 7 (Double-summation identity). For t ≥ 1, the following holds:

t∑
a=1

t∑
b=a

f(a, b) =

t∑
a=1

a∑
b=1

f(b, a),

where the function f : N × N → Rc×d, with c, d ≥ 1, takes two natural numbers as
inputs and produces a matrix as an output.

Note that, by allowing c, d ≥ 1, the function f can produce a vector or a scalar as well.

31

By applying Lemma 7 to (3.13), we then get:

bt =
t∑

k=1

(
t∑
i=k

Ri+1

)
φk =

t∑
k=1

k∑
i=1

Rk+1φi =
t∑

k=1

Rk+1

k∑
i=1

φi. (3.14)

This way we now have the new sample involved only in the outer summation. The inner

summation does not have to be recomputed after each transition because the new sample

is involved in it only O(1) times. The inner summation can be computed incrementally as:

ek =
k∑
i=1

φi =
k−1∑
i=1

φi + φk = ek−1 + φk; e0 = 0.

Then the vector bt can be updated incrementally as:

bt =

t∑
k=1

Rk+1ek =

t−1∑
k=1

Rk+1ek +Rt+1et = bt−1 +Rt+1et.

For interim returns with arbitrary discounting and guesses, we can apply Lemma 7 in a

similar manner and bring the summation over transitions outside:

bt =
t∑

k=1

Gt+1
k φk (3.15)

=

t∑
k=1

 t∑
i=k

i∏
j=k+1

γjRi+1 +

t+1∏
j=k+1

γjPt+1

φk (3.16)

=
t∑

k=1

k∑
i=1

k∏
j=i+1

γjRk+1φi +
t∑

k=1

t+1∏
j=k+1

γjPt+1φk (3.17)

=
t∑

k=1

Rk+1

k∑
i=1

k∏
j=i+1

γjφi + γt+1Pt+1

t∑
k=1

t∏
j=k+1

γjφk (3.18)

=
t∑

k=1

Rk+1ek + γt+1Pt+1et, (3.19)

where et can be updated incrementally as

et =
t∑

k=1

t∏
j=k+1

γjφk = γt

t−1∑
k=1

t−1∏
j=k+1

γjφk + φt = γtet−1 + φt; e0 = 0. (3.20)

Then a strictly incremental update of bt can be derived in the following way:

bt =

t−1∑
k=1

Rk+1ek +Rt+1et + γtPtet−1 − γtPtet−1 + γt+1Pt+1et (3.21)

=

t−1∑
k=1

Rk+1ek + γtPtet−1 +Rt+1et + γt+1Pt+1et − Pt (et − φt) (3.22)

32

Algorithm Real-Time-Incremental-LS(φ, R, γ, P, γ′, P ′,A,b, e)

A← A + φφ>

e← γe + φ
b← b + (R+ γ′P ′ − P) e + Pφ
θ ← A−1b
return (θ,A,b, e)

Table 3.3: The Real-Time Incremental LS algorithm: It computes the least-squares solution
strictly incrementally on a real-time basis.

= bt−1 + (Rt+1 + γt+1Pt+1 − Pt) et + Ptφt. (3.23)

The resulting algorithm is given in Table 3.3. We call this algorithm the Real-Time

Incremental LS algorithm. This algorithm requires only O(1) input and work memory and

O(1) computation. We can produce a series of learned estimates by invoking the Real-Time

Incremental LS algorithm using new samples each time a transition occurs:

(A0,b0, e0)← (εI,0,0),

(θ2,A1,b1, e1)← Real-Time-Incremental-LS(φ1, R2, γ1, P1, γ2, P2,A0,b0, e0),

(θ3,A2,b2, e2)← Real-Time-Incremental-LS(φ2, R3, γ2, P2, γ3, P3,A1,b1, e1),

...

(θt+1,At,bt, et)← Real-Time-Incremental-LS(φt, Rt+1, γt, Pt, γt+1, Pt+1,At−1,bt−1, et−1).

From the above derivation, it is evident that the sequence of estimates {θk}∞k=1 computed

by the Real-Time Incremental LS algorithm are equivalent to those computed by the Real-

Time LS algorithm.

Strictly incremental computation of the least-squares solution on a real-time basis is not

novel. Boyan (2002) showed that LSTD(1) without discounting computes the least-squares

estimate at the end of each episode. Geist and Scherrer (2014) used Lemma 7 to develop

several least-squares-based RL algorithms with strictly incremental updates and real-time

equivalences. Their algorithms differ by the way bootstrapping estimates are used in place

of the guesses. The trace vector en we obtained in our Real-Time Incremental LS algorithm

is known as the accumulating traces and is present in most forms of least-squares algorithms

with strictly incremental updates.

3.3 Equivalences for Stochastic Gradient Descent

We explore how to derive stochastic gradient descent (SGD) incrementally on a real-time

basis. LS and SGD are fundamentally different in the way they are updated. LS arises from

batch learning settings, whereas SGD is inherently rooted in online learning settings. On the

33

Algorithm Real-Time-SGD(θ1, (γ1,φ1) , {(Rk, γk,φk, αk−1)}t+1
k=2, Pt+1)

G1 ← G2 ← · · · ← Gt ← 0
Gt ← Pt+1

for k from t downto 1 do
Gk ← Rk+1 + γk+1Gk+1

end for
θ ← θ1

for k = 1 to t do
θ ← θ + αk

(
Gk − θ>φk

)
φk

end for
return θ

Table 3.4: The Real-Time SGD algorithm: It computes estimates on a real-time basis, but
not strictly incrementally.

other hand, LS involves straightforward summations whereas SGD involves a complex form

of exponentially moving average. In the per-trajectory learning setting, the SGD update is

as follows:

θt = θt−1 + αt

(
Gt − θ>t−1φt

)
φt, (3.24)

where αt > 0 is a scalar step-size parameter chosen at step t. The sequence of step sizes is

often chosen to be constant or reduced with time using a deterministic schedule. As with LS,

we can apply SGD directly in the real-time learning setting by taking a single trajectory and

converting them into overlapping interim returns. The complete process is given in Table

3.4. We call this algorithm Real-Time SGD. Just like Real-Time LS (Table 3.2), Real-Time

SGD requires increasing memory and per-sample computation as the number of samples

increases.

In order to update θt incrementally in real-time, we have to unroll θt completely and

find a way to express it in terms of the current sample, θt−1 and other parameters that can

be computed and combined using O(1) computation. We again consider the simpler case

of no discounting and guesses. We denote the estimate after t + 1 time steps as θt+1 and

the kth estimate the Real-Time SGD produces internally with horizon t + 1 as θt+1
k . It is

clear that θt+1 = θt+1
t+1. Then we can unroll θt+1 as follows:

θt+1 = θt+1
t+1 = θt+1

t + αt

(
Gt+1
t − φ>t θt+1

t

)
φt (3.25)

=
(
I− αtφtφ>t

)
︸ ︷︷ ︸

Ft

θt+1
t + αtG

t+1
t φt (3.26)

34

=

n∑
k=1

(
t∏

i=k+1

Fi

)
︸ ︷︷ ︸

Ftk+1

αkG
t+1
k φk +

(
t∏
i=1

Fi

)
θ1, where Fk = I− αkφkφ>k ,

(3.27)

=
t∑

k=1

Ft
k+1αk

(
t∑
i=k

Ri+1

)
φk + Ft

1θ1, where Ft
k =

t∏
i=k

Fi. (3.28)

The estimate of SGD involves double summations as well. In this case, we also have prod-

ucts of matrices involved, producing a complex form of exponentially moving average. By

applying Lemma 7 again, we get:

θt+1 =

t∑
k=1

t∑
i=k

Ft
k+1αkRi+1φk + Ft

1θ1 (3.29)

=
t∑

k=1

k∑
i=1

Ft
i+1αiRk+1φi + Ft

1θ1 (3.30)

=
n∑
k=1

Rk+1F
n
k+1

k∑
i=1

Fk
i+1αiφi︸ ︷︷ ︸
ek

+Ft
1θ1 (3.31)

=
t∑

k=1

Rk+1F
t
k+1ek + Ft

1θ1 (3.32)

= Ft

t−1∑
k=1

Rk+1F
t−1
k+1ek + FtF

t−1
1 θ1 +Rt+1et (3.33)

= Ftθt +Rt+1et (3.34)

= θt +Rt+1et − αtθ>t φtφt. (3.35)

The trace vector et can be incrementally updated in the following way:

et =
t∑
i=1

Ft
i+1αiφi = Ft

t−1∑
i=1

Ft−1
i+1αiφi + αtφt = Ftet−1 + αtφt (3.36)

= et−1 − αte>t−1φtφt + αtφt. (3.37)

Therefore, in the general case of interim returns with arbitrary discounting and guesses,

the parameter vector θn+1 can be incrementally updated as:

θt+1 = θt+1
t+1 = θt+1

t αt

(
Gt+1
t − θt+1

t
>
φt

)
φt (3.38)

=
(
I− αtφtφ>t

)
︸ ︷︷ ︸

Ft

θt+1
t + αtG

t+1
t φt (3.39)

=
t∑

k=1

(
t∏

i=k+1

Fi

)
αkG

t+1
k φk +

(
t∏
i=1

Fi

)
θ1 (3.40)

35

=

t∑
k=1

Ft
k+1αk

 t∑
i=k

i∏
j=k+1

γjRi+1 +

t+1∏
j=k+1

γjPt+1

φk + Ft
1θ1 (3.41)

=
t∑

k=1

k∑
i=1

Ft
i+1φiαi

k∏
j=i+1

γjRk+1 +
t∑

k=1

Ft
k+1φkαk

t+1∏
j=k+1

γjPt+1 + Ft
1θ1 (3.42)

=
t∑

k=1

Rk+1F
t
k+1

k∑
i=1

Fk
i+1φiαi

k∏
j=i+1

γj︸ ︷︷ ︸
ek

(3.43)

+ γt+1Pt+1

t∑
k=1

Ft
k+1φkαk

t∏
j=k+1

γj + Ft
1θ1 (3.44)

=

t∑
k=1

Rk+1F
t
k+1ek + γt+1Pt+1et + Ft

1θ1, (3.45)

where the trace vector is update as

et =
t∑
i=1

Ft
i+1φiαi

t∏
j=i+1

γj = γtFt

t−1∑
i=1

Ft−1
i+1φiαi

t−1∏
j=i+1

γj + αtφt (3.46)

= γtFtet−1 + αtφt (3.47)

= γtet−1 − γtαte>t−1φtφt + αtφt; e0 = 0. (3.48)

Then we can re-write θt+1 as:

θt+1 = Ft

t−1∑
k=1

Rk+1F
t−1
k+1ek +Rt+1et + FtF

t−1
1 θ1 (3.49)

+ FtγtPtet−1 − FtγtPtet−1 + γt+1Pt+1et (3.50)

= Ft

(
t−1∑
k=1

Rk+1F
t−1
k+1ek + γtPtet−1 + Ft−1

1 θ1

)
(3.51)

+Rt+1et + γt+1Pt+1et − Pt (et − αtφt) (3.52)

= Ftθt +Rt+1et + γt+1Pt+1et − Pt (et − αtφt) (3.53)

= θt + (Rt+1 + γt+1Pt+1 − Pt) et + αt

(
Pt − θ>t φt

)
φt. (3.54)

The complete algorithm is given in Table 3.5. We call this algorithm the Real-Time

Incremental SGD algorithm. The memory and the per-sample computation of this algo-

rithm are O(1). We can produce a series of learned estimates by invoking the Real-Time

Incremental SGD algorithm using new samples each time a transition occurs:

e0 ← 0,

(θ2, e1)← Real-Time-Incr-SGD(θ1,φ1, R2, γ1, P1, γ2, P2, e0, α1),

(θ3, e2)← Real-Time-Incr-SGD(θ2,φ2, R3, γ2, P2, γ3, P3, e1, α2),

36

Algorithm Real-Time-Incremental-SGD(θ,φ, R, γ, P, γ′, P ′, e, α)

e← γe− γαe>φφ+ αφ
θ ← θ + (R+ γ′P ′ − P) e + α

(
P − θ>φ

)
φ

return (θ, e)

Table 3.5: The Real-Time Incremental SGD algorithm: It computes learned estimates
strictly incrementally on a real-time basis.

...

(θt+1, et)← Real-Time-Incr-SGD(θt,φt, Rt+1, γt, Pt, γt+1, Pt+1, et−1, αt).

It is evident from the above derivation that the estimates produced by the Real-Time

Incremental SGD are equivalent to those produced by the Real-Time SGD.

A real-time incremental implementation of SGD was first introduced by van Seijen and

Sutton (2014, van Seijen et al. 2016). The derivation in their work uses intuitions specific

to the non-incremental algorithm and follows a different technique than the one used here.

The technique used here is simpler, more mechanistic, and is quite similar to the derivation

of the Real-Time Incremental LS. In both cases, we have double summations, an application

of Lemma 7, and linear recursions. Although these two algorithms are quite different, and

it is natural to expect that their derivations would follow different techniques as well, our

derivations here show that the same mechanistic technique can be used to derive both

algorithms.

3.4 Counterexamples to Strict Incrementality

We have seen a series of examples with increasing complexity illustrating algorithmic equiva-

lences through derivations in different reinforcement learning settings. A natural question is

whether a derivation of such equivalent incremental algorithms is always possible. For that,

we consider some hypothetical examples using algebraic expressions that do not constitute

any actual learning algorithm.

We consider algebraic expressions using only three basic mathematical operations: sum-

mation, multiplication, and division. Let us consider an online learning setting where a

sequence of samples {Xk}∞k=1 appear one at a time to the learner. A batch algorithm can

be defined as a variadic function fn producing an estimate θn based on the first n sam-

ples: X1, · · · , Xn 7→ θn. The question is whether there is an equivalent strictly incremental

algorithm for fn, that is, an algorithm producing θn using only O(1) input memory, work

memory and per-sample computation.

For concreteness, consider there is a function g that receives only c most recent samples

{Xk}nk=n−c+1, where c is a constant, and an auxiliary parameter ψn−1. Also consider that

the function g produces a new update of the auxiliary parameter ψn and the estimate θn:

37

(
{Xk}nk=n−c+1,ψn−1

)
7→ (θn,ψn). Then the function g is a strictly incremental algorithm if

its computation, the memory requirement for storing ψn, and the internal working memory

is O(1) in terms of the number of samples.

For the real-time incremental least-squares algorithm, {Xk}nk=n−c+1 stands for (φn,

Rn+1, Pn, γn, Pn+1, γn+1) and the auxiliary parameter ψn stands for (An,bn, en). In the

case of real-time incremental SGD, {Xk}nk=n−c+1 remains the same, and the auxiliary pa-

rameter is (θn, en−1, αn). An incremental algorithm either computes a recursive function

or can be computed based on a constant number of other recursive functions.

In order to see an example of a batch algorithm which does not have a real-time incre-

mental counterpart, consider the following variadic function computing θn from the sequence

{Xk}nk=1:

θn = (Xn) (Xn +Xn−1) (Xn +Xn−1 +Xn−2) · · · (Xn + · · ·+X1) =
n∏
k=1

n∑
i=k

Xi. (3.55)

Can we compute θn recursively? In order to explore that, consider how to express θn+1

in terms of θn:

θn+1 =

n+1∏
k=1

n+1∑
i=k

Xi =

(
n+1∑
i=1

Xi

)
n∏
k=1

(
n∑
i=k

Xi +Xn

)
(3.56)

=

(
n+1∑
i=1

Xi

)
×

∑
Z1,···,Zn

Zj∈{∑n
i=j

Xi,Xn}

n∏
k=1

Zk. (3.57)

In the above, the first summation can be computed strictly incrementally. The second sum-

mation goes through all possible products
∏n
k=1 Zk, where the factors are Zk ∈ {

∑n
i=kXi, Xn}.

Only one of the summands in the second summation is θn, and there are 2n− 1 other sum-

mands! We need O(2n) computation in order to compute θn recursively. A direct compu-

tation of θn requires computing each factor
∑n

i=kXi first, which is O(n) and then forming

the product, which is also O(n). To compute θn strictly incrementally, it is not necessary

to express θn recursively, but in that case, it must be expressed in terms of O(1) num-

ber of auxiliary parameters with recursive updates. It appears that a strictly incremental

computation of θn is not possible.

This makes us wonder whether a strictly incremental algorithm is not possible whenever

there is a product of sums. For that, consider the following definition of θn:

θn = (X1) (X1 +X2) · · · (X1 +X2 + · · ·+Xn) =
n∏
k=1

k∑
i=1

Xi. (3.58)

If we are to compute θn at each step n from the scratch, it requires O(n) computation.

However, we can compute θn recursively in the following way:

38

θn+1 =
n+1∏
k=1

k∑
i=1

Xi =

(
n+1∑
i=1

Xi

)
n∏
k=1

k∑
i=1

Xi = χn+1θn, (3.59)

where χn is computed incrementally as χn+1 = χn + Xn+1. We can compute θn strictly

incrementally in this case.

Therefore, it appears that not all products of sums cause difficulty for strictly incre-

mental computation. However, when a new sample affects all the factors in the product of

sums, then the difficulty arises.

The following definition of θn constitutes another example where the derivation of a

strictly incremental algorithm does not seem possible:

θn =
X1

X1 + · · ·+Xn
+

X2

X2 + · · ·+Xn
+ · · ·+ Xn−2

Xn−2 +Xn−1 +Xn
+

Xn−1

Xn−1 +Xn
(3.60)

=
n−1∑
k=1

(
Xk∑n
i=kXi

)
. (3.61)

3.5 Equivalence Techniques and Intuitions

After looking at a number of successful and failed derivations, we wonder whether a gen-

eral technique can be developed that can be used for a large class of algorithms to derive

equivalent strictly incremental algorithms. In principle, an algorithm can take an arbitrary

form and is not restricted to be an algebraic expression. However, for a restricted class of

algorithms, we may have some characterizations whether and how such derivations might

be possible.

What does make strict incrementality impossible for algebraic expressions? The follow-

ing theorem provides us a sufficient condition for non strict incrementality.

Theorem 1 (Condition for non-strict incrementality). Let θn be an estimate based on
n samples described in terms of an algebraic expression. If there exists no expression
of θn where the nth sample appears only in O(1) number of places, then this estimate
cannot be computed strictly incrementally.

Proof. A proof by contradiciton is straightforward. Let us consider that θn is an estimate

where in each expression the new sample appears in ω(1) number of places, and θn has a

strictly incremental implementation. Let us say the expression corresponding to the strictly

incremental implementation consists of O(h(n)) places where the nth sample appears. Each

of these appearances of the nth sample is associated with a mathematical operator. There-

fore, it requires at least O(h(n)) computation to produce θn. Then h(n) must be a constant

function of n, which makes nth sample appear in O(1) places, a contradiction.

39

In each of the expressions of θn in (3.55), (3.57) and (3.60), the new sample Xn appears

at least in O(n) number of places. It does not readily follow that there are no alternative ex-

pressions where θn appears only in O(1) places. However, the following observations would

help us further understand the difficulty of deriving strictly incremental implementations

of the above equations.

When an expression contains the new sample in O(n) places, it can be transformed into

another expression with O(1) appearance of the new sample in certain cases through the

distributive law of operators. For example, in the following:

X1Xn +X2Xn + · · ·+Xn−1Xn = Xn (X1 +X2 + · · ·+Xn−1) ,

where the number of places the nth sample Xn appears is reduced from n to 1. Here the

distributivity of multiplication over addition is used.

In Equation (3.55) and (3.60), the nth sample associates with additions. In the first

case, the distributivity of addition over multiplication and in the second case, the left-

distributivity of division over addition would have helped. However, none of these distribu-

tivity laws hold. This further provides intuitions why strictly incremental implementation

in these two examples could not be obtained.

In summary, to have strictly incremental update of θn, we have to express the definition

of θn in terms of a constant number of appearance of the new sample and a constant

number of parameters which themselves have strictly incremental updates. Therefore, each

time we have a definition of an estimate θn for which we seek to derive a strictly incremental

implementation, we would attempt to reduce the number of times the new sample appears

to a constant and express the rest of the expression in terms of other parameters with

strictly incremental updates.

As we shall see, such strict incrementally is typically achieved for reinforcement learning

algorithms by the distributivity of multiplication over addition, which is the key step behind

the switching of the order of the double summations achieved by Lemma 7. To expand its

application, this lemma can be further generalized by extending the limits of its sums:

Lemma 8 (Generalized double-summation identity). For c ≤ t, d ≤ e, the following
holds:

t∑
a=c

t+e∑
b=a+d

f(a, b) =

t+e∑
b=c+d

b−d∑
a=c

f(a, b),

or alternatively,
t∑

a=c

t+e∑
b=a+d

f(a, b) =
t+e∑

a=c+d

a−d∑
b=c

f(b, a),

where the function f takes two natural numbers as inputs and produces a matrix as an
output f : N× N→ Rc×d, with c, d ≥ 1.

40

Proof. This theorem can be easily proven by working on the limits of the two sums:

[c ≤ a ≤ t][a+ d ≤ b ≤ t+ e] = [c ≤ a ≤ t][a ≤ b− d ≤ t+ e− d] (3.62)

= [c ≤ a ≤ b− d ≤ t+ e− d] (3.63)

= [c ≤ b− d ≤ t+ e− d][c ≤ a ≤ b− d] (3.64)

= [c+ d ≤ b ≤ t+ e][c ≤ a ≤ b− d], (3.65)

which proves the first form.

We can obtain the second form simply by exchanging the variables.

3.6 Conclusions

In this chapter, we discussed the core concepts involving algorithmic equivalences in re-

inforcement learning. Our ultimate goal throughout the thesis is to develop algorithms

that can be updated strictly incrementally on a real-time basis. We have illustrated how

to derive such algorithms using two notable machine learning algorithms: the method of

least-squares and stochastic gradient descent. We also described two examples where a

strictly incremental update could not be derived. To understand the difficulty in deriving

strictly incremental updates, we provided a sufficient condition where a strictly incremental

update cannot be derived for a restricted class of algorithms involving algebraic expressions.

We concluded by summarizing some intuitions behind the derivations involving algorithmic

equivalence in reinforcement learning.

41

Chapter 4

Tabular Off-policy Algorithms for
Value Function Estimation1

In this chapter, we introduce two new model-free off-policy algorithms for tabular value

function estimation: OIS2 and WIS2, and compare them with existing tabular algorithms.

These new tabular algorithms constitute the first of a series of contributions toward over-

coming the issue of high variance based on weighted importance sampling. En route, we

explore several model-free off-policy algorithms for tabular value function estimation. The

tabular representation is the simplest to understand and analyze. Algorithms for this set-

ting form the basis for developing more sophisticated algorithms such as those with function

approximation and bootstrapping. Model-free off-policy algorithms all use importance sam-

pling as a core component, and they mainly differ from each other based on how importance

sampling is applied to samples. We systematically investigate the existing tabular off-policy

algorithms and also develop and study the new ones. The algorithms producing superior

performance lay the foundation for off-policy algorithms with linear function approximation

developed in subsequent chapters. For simplicity, we assume that each trajectory always

terminates fully under the target policy.

4.1 Off-policy Tabular Estimators with Importance Sampling

A tabular estimate of the value for a particular state can be easily computed by generating

many returns from that state and averaging them. Such a simple average is directly appli-

cable in the on-policy case. The discrepancy between the target and the behavior policy

in off-policy learning makes value estimation more complicated. To account for this dis-

crepancy, off-policy estimators use importance sampling, which is introduced in Section 2.8.

There are two most commonly used forms of importance sampling estimators: the average

estimator (2.3) and the ratio estimator (2.4). The off-policy estimators we introduce also

1The novel algorithms developed in this chapter are based on simplifications of the algorithms developed
in a published paper coauthored by this author (Mahmood, van Hasselt & Sutton 2014). The analysis of
these algorithms are originally produced for this document.

42

take one of these forms.

Consider n sample returns {Gtk}nk=1 generated from state s following policy µ, and

importance weights {Wtk}nk=1 of their corresponding trajectories, where Wt
def
== ρ

T (t)
t defined

in Section 2.8. Here, tk denotes the initial time step of the kth trajectory. For our first pair

of estimators, we define Xk
def
== WtkGtk . Then we can easily show that Xk is an unbiased

estimate of vπ(s), which we formally state below.

Lemma 9 (Unbiasedness of scaled return). Let Assumption 1 hold. If Gt is a return
generated from state s at a given time step t following policy µ and Wt the corresponding
importance weight, then WtGt is an unbiased estimator of vπ(s), that is:

Eµ [WtGt|St = s] = vπ(s). (4.1)

Proof. By expanding return Gt, we can write:

Eµ [WtGt|St = s] = Eπ [Gt|St = s] = vπ(s). (4.2)

The first equality follows from Lemma 6.

The most ordinary form of importance sampling estimator for off-policy estimation is

an average of the random variables WtkGtk . We call this the ordinary importance sam-

pling estimator (OIS). Given a sequence of n returns {Gtk}nk=1 originated from state s and

corresponding importance weights {Wtk}nk=1, the ordinary importance sampling estimator

V OIS
n (s) is defined as

V OIS
n (s)

def
==

∑n
k=1WtkGtk

n
. (4.3)

A ratio estimator can be formed using (2.4) and random variables Xk
def
== WtkGtk and

Yk
def
== Wtk . This estimator is known as the weighted importance sampling estimator (WIS),

as it forms a weighted average of returns Gtk . The weighted importance sampling estimator

V WIS
n (s) is defined as

V WIS
n (s)

def
==

∑n
k=1WtkGtk∑n
k=1Wtk

. (4.4)

Both OIS and WIS are consistent, whereas only OIS is an unbiased estimator. We

formally state these properties in the following. For simplicity, we assume the trajectories

are generated i.i.d.

43

Theorem 2 (Unbiasedness of OIS). Let Assumption 1 hold. If the trajectories {Ltk}nk=1

are generated i.i.d. from state s and {Wtk}nk=1 are corresponding importance weights,
then V OIS

n (s) is an unbiased estimator of vπ(s), that is:

Eµ
[
V OIS
n (s)

]
= vπ(s). (4.5)

Proof. With Xk
def
== WtkGtk , V OIS

n (s) is an average estimator. Therefore, the result follows

from Lemmas 1 and 9.

Theorem 3 (Bias of WIS). Let Assumption 1 hold. If the trajectories {Ltk}nk=1 are
generated i.i.d. from state s and {Wtk}nk=1 are corresponding importance weights, then
V OIS
n (s) is a biased estimator of vπ(s), that is, generally:

Eµ
[
V WIS
n (s)

]
6= vπ(s). (4.6)

Proof. It can be easily shown by taking n = 1. Then we can write:

Eµ
[
V WIS
n (s)

]
= Eµ

[
Wt1Gt1
Wt1

∣∣∣St1 = s

]
= Eµ [Gt1 |St1 = s] = vµ(s) 6= vπ(s), as µ 6= π. (4.7)

Theorem 4 (Consistency of OIS). Let Assumption 1 hold. If the trajectories {Ltk}nk=1

are generated i.i.d. from state s and {Wtk}nk=1 are corresponding importance weights,
then V OIS

n (s) is a consistent estimator of vπ(s), that is:

V OIS
n (s)

a.s.−−→ vπ(s). (4.8)

Proof. With Xk
def
== WtkGtk , V OIS

n (s) is an average estimator. Therefore, the result follows

from Lemmas 3 and 9.

Theorem 5 (Consistency of WIS). Let Assumption 1 hold. If the trajectories {Ltk}nk=1

are generated i.i.d. from state s and {Wtk}nk=1 are corresponding importance weights,
then V WIS

n (s) is a consistent estimator of vπ(s), that is:

V WIS
n (s)

a.s.−−→ vπ(s). (4.9)

Proof. With Xk
def
== WtkGtk and Yk

def
== Wtk , V OIS

n (s), is a ratio estimator. Therefore, the

result follows from Lemmas 4, 5 and 9.

44

The relationship between the EMSE of WIS and the MSE of OIS can be established

using (2.32):

EMSE
[
V WIS
n (s)

]
< MSE[V OIS

n (s)] (4.10)

=⇒ EMSE

[
X̄n

Ȳn

]
< MSE[X̄n] (4.11)

=⇒ µx Cov[X1, Y1] >
µ2
x Var[Y1]

2
(4.12)

=⇒ vπ(s) Covµ[Wt,WtGt|St = s] >
1

2
vπ(s)2 Varµ[Wt|St = s]. (4.13)

The covariance term can be simplified in the following way:

Covµ[Wt,WtGt|St = s] = Eµ [(Wt − Eµ[Wt|St = s])(WtGt − Eµ[WtGt|St = s])|St = s]

(4.14)

= Eµ [(Wt − 1)(WtGt − vπ(s))|St = s] (4.15)

= Eµ [Wt(WtGt − vπ(s))|St = s]− Eµ [WtGt − vπ(s)|St = s] (4.16)

= Eπ [WtGt − vπ(s)|St = s] (4.17)

= Eπ [WtGt|St = s]− vπ(s) (4.18)

= Eπ [WtGt|St = s]− Eπ [Wt|St = s] vπ(s) + Eπ [Wt|St = s] vπ(s)− vπ(s) (4.19)

= Covπ[Wt, Gt|St = s] + vπ(s) (Eπ [Wt|St = s]− 1) (4.20)

= Covπ[Wt, Gt|St = s] + vπ(s)
(

Eµ
[
W 2
t |St = s

]
− Eµ [Wt|St = s]2

)
(4.21)

= Covπ[Wt, Gt|St = s] + vπ(s) Varµ[Wt|St = s]. (4.22)

Therefore, the EMSE of WIS is smaller than the MSE of OIS, when:

vπ(s) Covµ[Wt,WtGt|St = s] >
1

2
vπ(s)2 Varµ[Wt|St = s] (4.23)

=⇒ vπ(s) (Covπ[Wt, Gt|St = s] + vπ(s) Varµ[Wt|St = s]) >
1

2
vπ(s)2 Varµ[Wt|St = s]

(4.24)

=⇒ vπ(s) Covπ[Wt, Gt|St = s] > −1

2
vπ(s)2 Varµ[Wt|St = s] (4.25)

=⇒
{
|vπ(s)|Covπ[Wt, Gt|St = s] > −1

2vπ(s)2 Varµ[Wt|St = s]; if vπ(s) ≥ 0

|vπ(s)|Covπ[Wt, Gt|St = s] < 1
2vπ(s)2 Varµ[Wt|St = s]; if vπ(s) < 0.

(4.26)

This gives a simpler characterization of the case when WIS is likely to have lower MSE

than OIS. The right-hand side of the inequality above is negative. Therefore, if the im-

portance weight and the return are even loosely correlated under the target policy and the

value vπ(s) is non-negative, then WIS is much likely to have lesser MSE than OIS. If all

the trajectories are equally likely under the behavior policy, then this covariance is easier

to interpret. In that case, if a trajectory that is more likely under the target policy is

also more likely to produce larger returns, then this covariance becomes higher. In many

45

WIS
NMSE

WIS

OIS

NMSE

trajectories

(a) (b)

target policy probability for action 2

OIS

Figure 4.1: Performance comparison of OIS and WIS estimators: Left : In an off-policy
task with a simple Markov chain, WIS performed better than OIS by more than an or-
der of magnitude margin. Right : WIS is preferable to OIS for a certain range of target
policy probabilities for a particular action. In this problem, the higher the probability of
choosing that action under the target policy, the larger is the covariance between the im-
portance weights and the returns. The result here confirms our analytical finding that WIS
is preferable when the importance weights and the returns have positive covariance.

off-policy problems, target policies are chosen in such a way that they are more likely to

produce larger returns, such as greedy policies in control problems. This partially explains

why WIS tends to perform better than OIS in practice. Moreover, the larger the variance of

the importance weights, the more likely for WIS to obtain lesser MSE than OIS. However,

negative state values are not as much favorable for WIS.

The following experiments illustrate the comparison between WIS and OIS on an ide-

alized prediction task. This task consisted a chain-like MDP with a state space S = {1, 2,
· · · , 10}. Two actions 1 and 2 were available at every state. For states {1, 2, · · · , 9}, both

actions increased the state by one. At state 10, both actions brought the agent to state 1.

The behavior policy chose both actions uniformly randomly.

The general value function was defined in the following way. The pseudo-reward was +1

for action 2 and 0 for action 1 with standard normal noise of zero mean and 0.1 standard

deviation added in both cases. The state-dependent termination was 0 for state 10 and 0.99

for the rest of the states. The target policy chose action 2 with probability 0.9 at every

state.

We evaluated both OIS and WIS on this task by generating 1000 trajectories each

starting from state 1 and ending at state 10 following the behavior policy. The performance

was measured by the estimated value V of state 1 subtracted from the true value v, squared

and then normalized by the square of the true value: (v−V)2

v2
. The results were averaged over

50 independent runs for statistical significance. We refer to this measure as the Normalized

Mean Squared Error (NMSE).

46

The left panel of Figure 4.1 shows NMSE of OIS and WIS over 1000 trajectories. WIS

performed better than OIS in this task by more than an order of magnitude during the full

period of learning. The right panel of Figure 4.1 shows NMSE of OIS and WIS for evaluating

target policies with different probabilities p(2) of choosing action 2, ranging from 0.02 to

0.98 in steps of 0.02. The importance weights and returns under the target policy are

positively correlated for p(2) > 0.5 and are negatively correlated for p(2) < 0.5. In this

task, the value is always non-negative for all values of p(2). WIS performed better than

OIS up to two orders of magnitude when p(2) > 0.5. On the other hand, WIS performed

worse than OIS when p(2) < 0.5 but not by more than an order of magnitude.

4.2 Discounting-aware Off-policy Estimators

The scaling of the return Gt with the importance weight Wt of the complete trajectory

has a potential disadvantage. The trajectory corresponding to the return can be arbitrarily

large, whereas the discounting involved with the return may make the impact of the later

part of the trajectory on the return insignificant. However, the full importance weight Wt

is not aware of such discounting. It will scale a lightly discounted return the same way it

will scale a heavily discounted return. For example, consider a full trajectory of 100 steps

long, that is γ100 = 0, where each of the rewards from step 10 is heavily discounted with

(γk)
99
k=10 = 0.001. The return corresponding to this trajectory effectively depends on the

rewards from the first 10 steps. In this case, scaling the return with the importance weight

W 100
1 of the full trajectory may introduce unnecessary variance. In general, the longer the

trajectory is, the higher the variance of the importance weight can be.

One way we can devise a discounting-aware importance weighting is by applying impor-

tance weights separately to separate undiscounted or flat return components of the complete

return. A return can be expressed in terms of the weighted sum of different multistep flat

returns where each flat return is weighted by the degree of discounting applied to it. Let

us define a flat return starting from time step t up to horizon h as

Ḡht = Rt+1 +Rt+2 + · · ·+Rh. (4.27)

Then the complete return Gt can be written in terms of the flat returns with different

horizons in the following way:

Gt =

T (t)∑
l=t+1

l−1∏
i=t+1

γiRl (4.28)

=

T (t)∑
l=t+1

Rl

l−1∏
i=t+1

γi −
T (t)∏
i=t+1

γi︸ ︷︷ ︸
0

 (4.29)

47

=

T (t)∑
l=t+1

Rl

(l−1∏
i=t+1

γi −
l∏

i=t+1

γi

)
+

(
l∏

i=t+1

γi −
l+1∏
i=t+1

γi

)
+ · · ·+

T (t)−1∏
i=t+1

γi −
T (t)∏
i=t+1

γi

(4.30)

=

T (t)∑
l=t+1

Rl

T (t)∑
h=l

(
h−1∏
i=t+1

γi −
h∏

i=t+1

γi

)
(4.31)

=

T (t)∑
l=t+1

Rl

T (t)∑
h=l

(1− γh)
h−1∏
i=t+1

γi (4.32)

=

T (t)∑
l=t+1

T (t)∑
h=l

Rl (1− γh)
h−1∏
i=t+1

γi (4.33)

=

T (t)∑
h=t+1

(1− γh)
h−1∏
i=t+1

γi

h∑
l=t+1

Rl (4.34)

=

T (t)∑
h=t+1

(1− γh)
h−1∏
i=t+1

γiḠ
h
t . (4.35)

It can be viewed as each flat return Ḡht being weighted by its probability of termination

(1− γh)
∏h−1
i=t+1 γi at the horizon h.

Then, instead of scaling the return with the complete importance weight Wt, we can

weight each individual flat returns Ḡht with the importance weights W h
t of their correspond-

ing trajectories. We denote this new scaled return by G̃t, which is defined as follows:

G̃t =

T (t)∑
h=t+1

W h
t (1− γh)

h−1∏
i=t+1

γiḠ
h
t . (4.36)

In the following, we show that G̃t is an unbiased estimate of vπ(s).

Lemma 10 (Unbiasedness of flat-return-specific scaling). Let Assumption 1 hold. If
the state visited at time t is s, then G̃t defined by (4.36) is an unbiased estimator of
vπ(s), that is:

Eµ

[
G̃t|St = s

]
= vπ(s). (4.37)

Proof. By expanding G̃t, we can write:

Eµ

[
G̃t|St = s

]
= Eµ

 T (t)∑
h=t+1

W h
t (1− γh)

h−1∏
i=t+1

γi

h∑
l=t+1

Rl|St = s

 (4.38)

=
∞∑

h=t+1

Eµ

[
W h
t (1− γh)

h−1∏
i=t+1

γi

h∑
l=t+1

Rl|St = s

]
(4.39)

48

=
∞∑

h=t+1

Eπ

[
(1− γh)

h−1∏
i=t+1

γi

h∑
l=t+1

Rl|St = s

]
(4.40)

= Eπ

 T (t)∑
h=t+1

(1− γh)
h−1∏
i=t+1

γi

h∑
l=t+1

Rl|St = s

 (4.41)

= Eπ [Gt|St = s] (4.42)

= vπ(s). (4.43)

Using Xk
def
== G̃tk , we can form an average estimator. We consider it as an improvement

over OIS, and thus call it OIS2. It is defined as follows:

V OIS2
n (s)

def
==

∑n
k=1 G̃tk
n

. (4.44)

We can form a ratio estimator using Xk
def
== G̃tk as well. The question is what we should

use for Yk, where Eµ[Yk|Stk = s] = 1. We could use the full importance weight Wtk , but we

are not using this in the numerator. We can use the same reasoning based on the awareness

of discounting we used for the scaled return G̃tk to form an importance weight to be used

in the denominator. We denote it by W̃tk and define it as follows:

W̃tk =

Tk∑
h=tk+1

W h
tk

(1− γh)
h−1∏
i=t+1

γi. (4.45)

The expected value of W̃tk is 1, which we formally show in the following.

Lemma 11 (New importance weight). Given Assumption 1, the following holds:

Eµ

[
W̃t

∣∣St = s
]

= 1. (4.46)

Proof. Using the definition of expectations, we can write:

Eµ

[
W̃t

∣∣St = s
]

= Eµ

 T (t)∑
h=t+1

W h
t (1− γh)

h−1∏
i=t+1

γi
∣∣St = s

 (4.47)

=

∞∑
h=t+1

Eµ

[
W h
t (1− γh)

h−1∏
i=t+1

γi
∣∣St = s

]
(4.48)

=

∞∑
h=t+1

Eπ

[
(1− γh)

h−1∏
i=t+1

γi
∣∣St = s

]
(4.49)

= Eπ

 T (t)∑
h=t+1

(1− γh)
h−1∏
i=t+1

γi
∣∣St = s

 (4.50)

49

= 1. (4.51)

We call this ratio estimator WIS2. It is defined as follows:

V WIS2
n (s)

def
==

∑n
k=1 G̃tk∑n
k=1 W̃tk

. (4.52)

Both OIS2 and WIS2 are consistent, whereas only OIS2 is an unbiased estimator. We

formally state these properties in the following.

Theorem 6 (Unbiasedness of OIS2). Let Assumption 1 hold and the trajectories
{Ltk}nk=1 are generated i.i.d. from state s. If {G̃tk}nk=1 are defined by (4.36), then
V OIS2
n (s) is an unbiased estimator of vπ(s), that is:

Eµ
[
V OIS2
n (s)

]
= vπ(s). (4.53)

Proof. With Xk
def
== G̃tk , V OIS2

n (s) is an average estimator. Therefore, the result follows

from Lemmas 1 and 10.

Theorem 7 (Bias of WIS2). Let Assumption 1 hold and the trajectories {Ltk}nk=1 are
generated i.i.d. from state s. If {G̃tk}nk=1 are defined by (4.36) and {W̃tk}nk=1 by (4.45),
then V WIS2

n (s) is a biased estimator of vπ(s), that is:

Eµ
[
V WIS2
n (s)

]
6= vπ(s). (4.54)

Proof. We prove it using a counterexample. Consider an MDP where discounting is 1 ev-

erywhere except at the state where full termination occurs. In that case, WIS2 is equivalent

to WIS. The proof of Theorem 3 gives a simple counterexmple where WIS is not unbiased,

which applies to WIS2 in the current example as well. Therefore, it follows that WIS2 is a

biased estimator of vπ(s).

Theorem 8 (Consistency of OIS2). Let Assumption 1 hold and the trajectories {Ltk}nk=1

are generated i.i.d. from state s. If {G̃tk}nk=1 are defined by (4.36), then V OIS2
n (s) is a

consistent estimator of vπ(s), that is:

Eµ
[
V OIS2
n (s)

] a.s.−−→ vπ(s). (4.55)

Proof. With Xk
def
== G̃tk , V OIS2

n (s) is an average estimator. Therefore, the result follows

from Lemmas 3 and 10.

50

Theorem 9 (Consistency of WIS2). Let Assumption 1 hold and the trajectories {Ltk}nk=1

are generated i.i.d. from state s. If {G̃tk}nk=1 are defined by (4.36) and {W̃tk}nk=1 by
(4.45), then V WIS2

n (s) is a consistent estimator of vπ(s), that is:

Eµ
[
V WIS2
n (s)

] a.s.−−→ vπ(s). (4.56)

Proof. With Xk
def
== G̃tk and Yk

def
== W̃tk , V WIS2

n (s), is a ratio estimator. Therefore, the

result follows from Lemmas 4, 10 and 11.

The MSE of WIS2 can be compared with that of OIS2 the similar way as we have done

it for WIS and OIS:

EMSE
[
V WIS2
n (s)

]
< MSE[V OIS2

n (s)] (4.57)

=⇒ EMSE

[
X̄n

Ȳn

]
< MSE[X̄n] (4.58)

=⇒ µx Cov[X1, Y1] >
µ2
x Var[Y1]

2
(4.59)

=⇒ vπ(s) Covµ[W̃t, G̃t|St = s] >
1

2
vπ(s)2 Varµ[W̃t|St = s]. (4.60)

The covariance term can be simplified in the following way:

Covµ[W̃t, G̃t|St = s] = Eµ

[
(W̃t − Eµ[W̃t|St = s])(G̃t − Eµ[G̃t|St = s])|St = s

]
(4.61)

= Eµ

[
(W̃t − 1)(G̃t − vπ(s))|St = s

]
(4.62)

= Eµ

[
W̃t(G̃t − vπ(s))|St = s

]
− Eµ

[
G̃t − vπ(s)|St = s

]
(4.63)

= Eπ

[
W̃tGt − vπ(s)|St = s

]
(4.64)

= Eπ

[
W̃tGt|St = s

]
− Eπ

[
W̃t|St = s

]
vπ(s) + Eπ

[
W̃t|St = s

]
vπ(s)− vπ(s) (4.65)

= Covπ[W̃t, Gt|St = s] + vπ(s)

(
Eµ

[
W̃ 2
t |St = s

]
− Eµ

[
W̃t|St = s

]2
)

(4.66)

= Covπ[W̃t, Gt|St = s] + vπ(s) Varµ[W̃t|St = s]. (4.67)

Therefore, the EMSE of WIS2 is smaller than the MSE of OIS2, when:

vπ(s) Covµ[W̃t, Gt|St = s] >
1

2
vπ(s)2 Varµ[W̃t|St = s] (4.68)

=⇒ vπ(s)
(

Covπ[W̃t, Gt|St = s] + vπ(s) Varµ[W̃t|St = s]
)
>

1

2
vπ(s)2 Varµ[W̃t|St = s]

(4.69)

=⇒ vπ(s) Covπ[W̃t, Gt|St = s] > −1

2
vπ(s)2 Varµ[W̃t|St = s] (4.70)

=⇒
{
|vπ(s)|Covπ[W̃t, Gt|St = s] > −1

2vπ(s)2 Varµ[W̃t|St = s]; if vπ(s) ≥ 0

|vπ(s)|Covπ[W̃t, Gt|St = s] < 1
2vπ(s)2 Varµ[W̃t|St = s]; if vπ(s) < 0.

(4.71)

51

WIS

OIS

NMSE

trajectories

OIS2

WIS2

Figure 4.2: The new off-policy tabular estimators OIS2 and WIS2 perform substantially
better than OIS and WIS, respectively, in off-policy tasks with variable discounting.

This characterization of MSE of WIS2 and OIS2 is similar to that of WIS and OIS. But

rather than depending on the correlation of the return and the importance weights of the

full trajectory, this depends on the correlation of the return and the importance weights of

the effective portion of the trajectory. However, this does not show how WIS2 compares

with WIS.

To demonstrate a case where OIS2 and WIS2 are preferable to WIS and OIS, respec-

tively, we modify the previous task. In the modified task, the trajectories start at state 1

and end in state 10, but the returns are heavily discounted after state 2. More specifically,

the state-dependent discounting is 1 for state 1 and 2, and 0.1 from state 3 to 9. The target

policy probability for choosing action 2 is still 0.9. Figure 4.2 shows the performance of

OIS2 and WIS2 in comparison with OIS and WIS. Both OIS2 and WIS2 performed bet-

ter than OIS and WIS, respectively, as expected. Moreover, the performance of OIS2 was

similar to that of WIS almost for the full period of learning.

4.3 Reward-Specific Off-policy Estimators

There is yet another way of applying the importance weights to account for the discrepancy

between the target and the behavior policies. Instead of scaling full returns or different

multi-step flat-returns, we may choose to scale each reward individually so that in expecta-

tion the reward appears to be generated by the target policy. In this case, the new scaled

52

return is defined in the following way:

Ĝt =

T (t)∑
l=t+1

W l
t

l−1∏
i=t+1

γiRl. (4.72)

Here each reward Rl is scaled by the importance weight W l
t corresponding to the trajectory

starting from time t when state s is visited up to the time the reward was generated.

In the following, we show that Ĝt is an unbiased estimate of vπ(s).

Lemma 12 (Unbiasedness of reward-specific scaling). Let Assumption 1 hold. If the
state visited at time t is s, then Ĝt defined by (4.72) is an unbiased estimator of vπ(s),
that is:

Eµ

[
Ĝt|St = s

]
= vπ(s). (4.73)

Proof. By expanding Ĝt, we can write:

Eµ

[
Ĝt|St = s

]
= Eµ

 T (t)∑
l=t+1

W l
t

l−1∏
i=t+1

γiRl|St = s

 (4.74)

=
∞∑

l=t+1

Eµ

[
W l
t

l−1∏
i=t+1

γiRl|St = s

]
(4.75)

=

∞∑
l=t+1

Eπ

[
l−1∏
i=t+1

γiRl|St = s

]
(4.76)

= Eπ

 T (t)∑
l=t+1

l−1∏
i=t+1

γiRl|St = s

 (4.77)

= Eπ [Gt|St = s] (4.78)

= vπ(s). (4.79)

Using Xk
def
== Ĝtk , we can form an average estimator, which we call the per-reward

importance sampling estimator (PRIS), can be defined in the following way:

V PRIS
n (s)

def
==

∑n
k=1 Ĝtk
n

. (4.80)

In the following, we show the statistical properties of PRIS is similar to the other average

estimators.

53

Theorem 10 (Unbiasedness of PRIS). Let Assumption 1 hold and the trajectories
{Ltk}nk=1 are generated i.i.d. from state s. If {Ĝtk}nk=1 are defined by (4.72), then
V PRIS
n (s) is an unbiased estimator of vπ(s), that is:

Eµ
[
V PRIS
n (s)

]
= vπ(s). (4.81)

Proof. With Xk
def
== Ĝtk , V PRIS

n (s) is an average estimator. Therefore, the result follows

from Lemmas 1 and 12.

Theorem 11 (Consistency of PRIS). Let Assumption 1 hold and the trajectories
{Ltk}nk=1 are generated i.i.d. from state s. If {Ĝtk}nk=1 are defined by (4.72), then
V PRIS
n (s) is a consistent estimator of vπ(s), that is:

Eµ
[
V PRIS
n (s)

] a.s.−−→ vπ(s). (4.82)

Proof. With Xk
def
== Ĝtk , V PRIS

n (s) is an average estimator. Therefore, the result follows

from Lemmas 3 and 12.

PRIS was proposed by Precup et al. (2000), which they called per-decision importance

sampling estimator. Precup et al. intended to develop an estimator based on PRIS that is

similar to what WIS is to OIS. They called this estimator weighted per-decision importance

sampling (WPDIS) estimator , which is defined as follows:

V WPDIS
n (s) =

∑n
k=1 Ĝtk∑n
k=1

ˆ̃Wtk

, (4.83)

ˆ̃Wtk =

Tk∑
l=tk

W l+1
tk

l∏
i=tk+1

γi. (4.84)

WPDIS is another ratio estimator, but it is different than the above ratio estimators in

the sense that the summands of the denominator are not in expectation one, which is the

main step to make sure that the ratio estimator is a consistent estimator. Thomas (2015)

showed that PDW is not a consistent estimator.

Thomas (2015) introduced another estimator based on PRIS, which is called consistent

weighted per-decision importance sampling (CWPDIS) estimator. We call this WPRIS.

Thomas introduced this estimator together with the normalization of the returns using the

upper and lower bounds of returns. All the estimators introduced here can be extended

using such normalized returns, In general, such bounds may not be known, and we avoid

this modification for simplicity.

WPRIS is not a ratio estimator but is a discounted sum of a series of ratio estimators

and is introduced for constant discounting. Consider that n trajectories have been observed,

where H is the length of the longest trajectory. Then WPRIS forms H ratio estimators,

54

where the lth estimator is a weighted average of the lth rewards from each trajectory, and the

corresponding importance weights are the weights of the average. The trajectories smaller

than the longest trajectories are padded by pretending that the rest of the transitions have

occurred with the same discounting and zero rewards to and from an absorbing state that

allows a single action. The following is the definition of the WPRIS estimator:

V WPRIS
n (s)

def
==

H∑
l=1

γl−1

∑n
k=1W

tk+l
tk

Rtk+l∑n
k=1W

tk+l
tk

. (4.85)

Each of the H weighted averages above are a consistent estimator of the lth reward. There-

fore, V WPRIS
n (s) is a consistent estimator of vπ(s) with fixed horizon H and constant dis-

counting γ. Ther is no available extension of WPRIS to state-dependent discounting, and

the main difficulty is due to having different discounting for rewards from different trajec-

tories.

PRIS and WPRIS may potentially reduce variance as each reward is scaled by the mini-

mal amount of importance weight for correcting the discrepancy between policies. However,

if MDP is such that the rewards tend to cancel each other, then scaling the returns directly

is likely to produce less variance than scaling the rewards individually.

In the following four experiments, we illustrate cases where PRIS and WPRIS perform

better and worse compared to OIS2 and WIS2, respectively. In the first experiment, we

used the same off-policy evaluation task where we evaluated OIS and WIS. The top-left plot

of Figure 4.3 shows the results. In this experiment, PRIS and WPRIS performed better

than OIS2 and WIS2, respectively. The performance of WPRIS was about an order of

magnitude better than that of WIS2.

In the second experiment, we used a modification of the previous task. Here, rewards

for all transitions are -1 except the transition from state 9 to 10, where the reward is 11.

The top-right plot of Figure 4.3 shows the result. In this experiment, PRIS performed

considerably worse than OIS2. The advantage of using WPRIS over WIS2 is also reduced.

WPRIS has a significant drawback compared to WIS2 in that rather than working with

different returns it aligns different rewards occurring at the same position of transitions

across different trajectories and averages them. Therefore, if the trajectories are vastly

different from each other, then the rewards are not likely to be similar after the same

number of transitions. We cannot see this drawback in the above two experiments because

the trajectories are extremely similar to each other with only white noise added to each

transition.

Our third and fourth experiments emphasize this drawback of WPRIS. In these two

experiments, we used an MDP where the agent may randomly follow different trajectories

that are vastly different from each other. In this MDP, there are now 11 states {1, · · · , 11}
forming a chain. From each state, there are two actions available -1 and 1. From states

2 to 10, choosing action -1 decreases the state index and choosing action 1 increases it.

In the third experiment, there is a reward of +1 for choosing action 1 and a reward of -1

55

PRIS
NMSE

OIS2

WIS2

WPRIS

NMSE

PRIS

OIS2

WIS2

WPRIS

NMSE

PRIS

OIS2

WIS2

WPRIS

trajectories

NMSE

OIS2

PRIS

WPRIS

WIS2

trajectories

Figure 4.3: Performance comparison between reward specific estimators (PRIS and WPRIS)
and the new discounting aware estimators (OIS2 and WIS2). Upper Left : In a simple off-
policy task with fixed length trajectories, the reward specific estimators performed substan-
tially better than the corresponding discounting-aware estimators. Upper Right : However,
the performance advantage of the reward-specific estimators is diminished when the rewards
are canceling each other along the trajectory. Lower Left : the ratio-based reward-specific
estimator WPRIS performed considerably worse than the ratio-based discounting-aware es-
timator WIS2, when the length of the trajectories are allowed to be variable, while the
rewards are still canceling each other along the trajectory. Lower Right : When the trajec-
tories are of variable length, WPRIS still performed worse compared to WIS2 even when
the rewards did not cancel along the trajectory.

for choosing action -1 from those states. In the fourth experiment, there is a reward of

+1 for choosing action 1 and a reward of 0 for choosing action -1 from those states. In

states 1 and 11, both actions lead to the middle state 6 with reward 0. The behavior policy

chooses both actions uniformly randomly whereas the target policy chooses action 1 with

probability 0.9. The bottom-left and bottom-right plots of Figure 4.3 shows the results of

the third and the fourth experiments, respectively. In both of these experiments, WPRIS

performed worse than WIS2. In the third experiment where the rewards are likely to cancel

along a trajectory, WPRIS performed more than by an order of magnitude than WIS2.

56

4.4 Incremental Updates of Off-policy Estimators

In this section, we focus on the incremental implementation of the tabular off-policy estima-

tors both on a per-trajectory and real-time basis. We developed the notion of per-trajectory

learning setting and per-trajectory incrementality in Chapter 2. In that Chapter,

All the estimators, except WPRIS, are either an average estimator or a ratio estimator.

In both cases, deriving a per-trajectory incremental implementation is straightforward. In

these estimators, the index n stands for the number of samples as well as trajectories.

Therefore, the goal here is to express each estimator indexed by n in terms of the same

estimator indexed by n− 1 and in terms of the data arriving only from nth trajectory.

As discussed in Chapter 3, the average estimator X̄n defined by (2.3) can be implemented

per-trajectory incrementally in two different ways. It can be implemented incrementally by

updating the sum incrementally in the numerator:

X̂n =

n∑
k=1

Xk = X̂n−1 +Xn, (4.86)

X̄n =
X̂n

n
. (4.87)

The average estimator can be also be updated per-trajectory incrementally with a direct

recursion:

X̄n =

∑n
k=1Xk

n
= X̄n−1 +

1

n

(
Xn − X̄n

)
. (4.88)

On the other hand, the ratio estimator is the ratio of two summations:

R̄n =
X̂n

Ŷn
. (4.89)

The ratio estimator can be implemented incrementally by updating the sums of numerator

and the denominator incrementally. Let us define X̂n
def
==

∑n
k=1Xk and Ŷn

def
==

∑n
k=1 Yk.

These are simple summations and can be incrementally updated in the following way:

X̂n =
n∑
k=1

Xk = X̂n−1 +Xn, (4.90)

Ŷn =
n∑
k=1

Yk = Ŷn−1 + Yn. (4.91)

An alternative incremental implementation depends on the definition of the ratio esti-

mator as the ratio of two averages: R̄n
def
== X̄n

Ȳn
given by (2.4). Then the ratio estimator

can be implemented incrementally by updating both the numerator and the denominator

incrementally:

X̄n = X̄n−1 +
1

n

(
Xn − X̄n

)
, (4.92)

57

Ȳn = Ȳn−1 +
1

n

(
Yn − Ȳn

)
, (4.93)

R̄n =
X̄n

Ȳn
. (4.94)

Although the above two implementations are incremental, they are not recursive on the

original estimator R̄n. However, it is also possible to derive an incremental implementation

of the ratio estimator R̄n that is also recursive on R̄n. In the following we show how to

achieve that:

R̄n =
X̄n

Ȳn
=
X̂n

Ŷn
(4.95)

=
X̂n−1 +Xn

Ŷn
(4.96)

=
Ŷn−1

Ŷn
× X̂n−1

Ŷn−1

+
Xn

Ŷn
(4.97)

=
Ŷn − Yn
Ŷn

× R̄n−1 +
Xn

Ŷn
(4.98)

=

(
1− Yn

Ŷn

)
× R̄n−1 +

Xn

Ŷn
(4.99)

= R̄n−1 +
1

Ŷn

(
Xn − YnR̄n−1

)
. (4.100)

A slight modification to this update is where Ŷn is replaced by the equivalent term nȲn:

R̄n = R̄n−1 +
1

nȲn

(
Xn − YnR̄n−1

)
. (4.101)

We have given two equivalent implementations of the average estimator and four equiv-

alent implementations of the ratio estimator. Although they are equivalent, they are not

numerically equally stable. Previous works showed that the direct recursive implementation

of the average estimator defined by (4.88) is numerically more stable than the implemen-

tation with the recursion of the summation in the numerator defined by (4.86) and (4.87)

(van Reeken 1968, 1970, Ling 1974). Similarly, it can be shown that the implementation

of the ratio estimator based on the recursion of sum defined by (4.89) and the direct re-

cursion defined by (4.100) that still uses a sum in its implementation are numerically less

stable than the other two implementations of the ratio estimator (4.94) and (4.101). The

latter two are more stable prominently because they avoid implementations of sums, which

may grow to a quantity much larger than the quantity being estimated resulting in loss of

precision.

The WPRIS estimator is neither an average estimator nor a ratio estimator. It is

a summation of a number of ratio estimators. When a new trajectory is complete, the

corresponding new terms are distributed among the ratio estimators that are summands

of the outer summation of WPRIS. These terms corresponding to the newest trajectory

58

appear both in the numerator and the denominator of each of the ratio estimator. It can

be seen by observing the definition of both V WPRIS
n (s) and V WPRIS

n+1 (s):

V WPRIS
n (s) =

H∑
l=1

γl−1

∑n
k=1W

tk+l
tk

Rtk+l∑n
k=1W

tk+l
tk

(4.102)

V WPRIS
n+1 (s) =

H∑
l=1

γl−1

∑n+1
k=1 W

tk+l
tk

Rtk+l∑n+1
k=1 W

tk+l
tk

(4.103)

=
H∑
l=1

γl−1

∑n
k=1W

tk+l
tk

Rtk+l +W
tn+1+l
tn+1

Rtn+1+l∑n
k=1W

tk+l
tk

+W
tn+1+l
tn+1

. (4.104)

The second terms both in the numerator and the denominator of the last equation is what

get appended to the previous update of WPRIS estimator.

In order to develop a per-trajectory incremental implementation of WPRIS, we first

re-write V WPRIS
n (s) as follows:

V WPRIS
n (s) =

H∑
l=1

γl−1

∑n
k=1W

tk+l
tk

Rtk+l∑n
k=1W

tk+l
tk

(4.105)

=
H∑
l=1

γl−1 Pn(l)

Qn(l)
, (4.106)

Pn+1(c) =
n+1∑
k=1

W tk+c
tk

Rtk+c =
n∑
k=1

W tk+c
tk

Rtk+c +W
tn+1+c
tn+1

Rtn+1+c (4.107)

= Pn(c) +W
tn+1+c
tn+1

Rtn+1+c, (4.108)

Qn+1(c) =

n+1∑
k=1

W tk+c
tk

=

n∑
k=1

W tk+c
tk

+W
tn+1+c
tn+1

(4.109)

= Qn(c) +W
tn+1+c
tn+1

. (4.110)

Then V WPRIS
n+1 (s) can be written as:

V WPRIS
n+1 (s) =

H∑
l=1

γl−1 Pn+1(l)

Qn+1(l)
=

H∑
l=1

γl−1
Pn(l) +W

tn+1+l
tn+1

Rtn+1+l

Qn(l) +W
tn+1+l
tn+1

. (4.111)

This update requires storing the sequences (Pn(l))nl=1 and (Qn(l))nl=1, both occupying O(H)

memory. The terms from the newest trajectory have to be incorporated with these two

sequences to obtain V WPRIS
n+1 (s), and the computation of which requires O(H) operations.

Is it possible to implement WPRIS in a per-trajectory strictly incremental manner? As we

have shown in Chapter 3, to bring the summation over samples outside, the ones inside P

and Q here, algebraic expressions of this form require a distributivity law that does not

hold. It appears unlikely that WPRIS can be implemented strictly incrementally.

Real-time strictly incremental implementation is possible for all the estimators pre-

sented here except WPRIS. We extend some of these estimators to the case of function

59

approximation and bootstrapping in the subsequent chapters and provide the incremental

implementations of them there. Therefore, we do not repeat the incremental implementa-

tion for the special case of tabular representation here. For WPRIS, it is not possible to

implement a real-time strictly incremental update. It can be easily seen from the fact that

there is always a possibility that an unseen trajectory can be longer than any of the trajecto-

ries seen so far. Therefore, the maximum length of all observed trajectories H can increase

as time step increases. As WPRIS requires maintaining O(H) ratio estimators, its memory

can always increase with more time steps. Therefore, it cannot be strictly incremental.

4.5 Discussion and Conclusions

In this section, we discussed and analyzed six tabular off-policy estimators. We analyzed

the bias, variance, and convergence of these estimators. There are three main groups among

these six estimators, each containing a pair of estimators. These groups differ from each

other based on how the importance weights are applied. They are discussed in Sections 4.1,

4.2 and 4.3. Each pair consists of an average estimator and a ratio estimator. Categorizing

the off-policy estimators in terms of these standard forms simplified the analysis consider-

ably and opened up opportunities to develop new estimators more easily. Among the six

estimators, two of them are new.

We included experiments illustrating how these estimators differ from each other and

what cases make one estimator perform better than the others. At least for two of the

groups, we were able to characterize theoretically the cases where the ratio estimators can

perform better than the average estimators. This characterization also provides a better

understanding on why historically importance sampling with ratio estimators performed

better than importance sampling with the average estimators. The pseudo-reward signals

can be scaled to satisfy one condition or the other so that we can choose among these esti-

mators in a principled way. In our experiments, it was observed that when ratio estimators

perform better, the performance margin is much larger than when the average estimators

perform better.

From all the experiments, it appears that among the ratio estimators, one of the new

estimators WIS2 is preferable to WIS when state-dependent discounting is used. WPRIS

is likely to perform better than other ratio estimators when the trajectories are similar.

However, WPRIS is by design incompatible with real-time incremental learning. In a more

natural setting, WIS2 performed better than WPRIS.

60

Chapter 5

Weighted Importance Sampling
with Function Approximation1

In this chapter, we introduce a novel and principled way of extending weighted impor-

tance sampling to parametric function approximation, which constitutes a foundational

step toward developing a practically applicable off-policy algorithm based on weighted im-

portance sampling. As we have found that WIS2 is generally preferable among all the other

importance sampling methods, we adopt it as the core element for extending to function

approximation. By extending WIS2 to linear function approximation, we develop WIS2-LS,

one of the main contributions of this thesis. However, due to its simplicity, we first start

with WIS for extending.

5.1 WIS as Weighted Least Squares

In this section, we devise a systematic way of extending tabular algorithms to linear function

approximation. Extending average estimators is straightforward and will be discussed first

here. Trickier is ratio estimators such as WIS, for which a backward-consistent extension

was not available. By drawing the intuition from average estimators, we devise a systematic

way of extending WIS to linear function approximation, which would eventually lead us to

extend WIS2 later in this chapter.

An average estimator can be seen as the solution to the least-squares problem. If we are

estimating v, and {Xk}nk=1 are unbiased i.i.d. samples representative of v, then a reasonable

empirical objective function is as follows:

Jn(v̂)
def
==

1

n

n∑
k=1

(Xk − v̂)2 . (5.1)

Justification behind choosing this objective function is that Jn(v̂) is an unbiased and

consistent estimate of the Mean Squared Error (MSE): E[(Xk − v̂)2]. If V is an estimator

1The core concept of this chapter is developed in a published paper coauthored by this author (Mahmood,
van Hasselt & Sutton 2014).

61

that minimizes this function, then we can easily see that V must be the average estimator:

∂

∂V

1

n

n∑
k=1

(Xk − V)2 = 0 =⇒ − 2

n

n∑
k=1

(Xk − V) = 0 =⇒ V =
1

n

n∑
k=1

Xk = X̄n. (5.2)

In the off-policy general value function estimation problem, our main objective is more

complicated due the the discrepancy between policies. In particular, we would like to

estimate vπ(s) = Eπ[Gk|Sk = s] under policy π, where we have a sequence of trajectories

{Lk}nk=1 generated by following policy µ. Then the MSE is defined by Eπ[(Gk− v̂)2|Sk = s].

Two empirical objective functions we can naturally think of based on this MSE are as

follows:

J̃n(v̂) =
1

n

n∑
k=1

(WkGk − v̂)2 , (5.3)

Ĵn(v̂) =
1

n

n∑
k=1

Wk (Gk − v̂)2 , (5.4)

where Wk is the importance weight of Gk. Here, the first one is in the least-squares form,

but is neither an unbiased nor a consistent estimate of MSE. On the other hand, the second

one is a weighted least-squares form and is both an unbiased and consistent estimate of

MSE.

Interestingly, we notice that OIS is the solution to the first objective whereas WIS is

the solution to the second:

∂

∂V
J̃n(V) = 0 =⇒ − 2

n

n∑
k=1

(WkGk − V) = 0 =⇒ V =
1

n

n∑
k=1

WkGk = V OIS
n , (5.5)

∂

∂V
Ĵn(V) = 0 =⇒ − 2

n

n∑
k=1

Wk (Gk − V) = 0 =⇒ V =

∑n
k=1WkGk∑n
k=1Wk

= V WIS
n . (5.6)

For off-policy tasks, WIS appears to be more directly related to a more meaningful objective

function than OIS. In Chapter 4, we have already shown that both of these estimators are

consistent. The fact that WIS is a solution to a weighted least-squares problem is the key

observation here that enables us to extend WIS to parametric function approximation.

5.2 WIS with Linear Function Approximation

In this section, we use the fact that WIS is a solution to a form of weighted least-squares

problem and apply it to develop a new method for linear function approximation. The aim is

to develop a method that carries over the benefits of WIS in this extended setting and at the

same time maintains backward consistency, meaning that when the function approximation

degenerates to the tabular setting, this new method becomes exactly equivalent to WIS.

62

We use the same linear function approximation setting as described in Section 2.4. Two

objective functions related to this setting are the MSE:

Ed

[(
vπ(Sk)− θ>φk

)2
]

=
∑
s

d(s)
(
vπ(s)− θ>φ(s)

)2
, (5.7)

and the Mean Squared Return Error (MSRE):

Eπ,d

[(
Gk − θ>φk

)2
]

= Ed

[
Eπ

[(
Gk − θ>φk

)2
|Sk = s

]]
. (5.8)

Here, d(s) denotes the probability for choosing state s. Both objective functions have

the same solution, they are related to each other in the following way: MSRE = MSE +

Varπ,d [Gk].

We may wonder what the proper state distribution d should be for our objective function.

It did not matter in the tabular case because the solution is not affected by the state

distribution; the solution for each state could be estimated separately from those of the

others. However, in the function approximation case as the approximation resource, namely

the features, are shared among the states, the solution potentially depends on how the states

are distributed.

In supervised learning, a similar problem occurs where the distribution of the input

affects the solution, resulting in model misspecification. The problem exacerbates when the

desired state distribution differs from the state distribution of the data. In the supervised

learning scenario with model misspecification where the input distribution of the training

data is different than that of the test data, this problem is called the covariate shift problem

(Shimodaira 2000).

One may speculate that as the problem at hand is about estimating the value while

following the target policy π, this policy should also influence how the states themselves

are visited. Therefore, one may desire a solution where the discrepancy of not only the

return distribution is corrected but that of the state distribution is also corrected. While

this is an important goal to fulfill, we view the off-policy learning problem separately from

the covariate shift problem and focus mainly on correcting the discrepancy of the return

distribution. As we only consider the off-policy learning problem in this thesis, our desired

MSRE is Eπ,dµ [(Gk − θ>φk)2], where dµ denotes the stationary state distribution in data,

which is induced by the behavior policy µ. The solution θ∗ to this objective function is as

follows:

θ∗
def
== arg min

θ
Eπ,dµ

[
(Gk − θ>φk)2

]
(5.9)

= Edµ

[
φkφ

>
k

]−1
Eπ,dµ [Gkφk] (5.10)

= Edµ

[
φkφ

>
k

]−1
Edµ [vπ(Sk)φk] . (5.11)

Here, we assume that Edµ
[
φkφ

>
k

]
is nonsingular.

63

Similar to the tabular setting discussed in Section 5.1, we provide two empirical objective

functions associated with MSRE:

J̃t(θ)
def
==

1

n

n∑
k=1

(
WtkGtk − θ>φtk

)2
, (5.12)

Ĵt(θ)
def
==

1

n

n∑
k=1

Wtk

(
Gtk − θ>φtk

)2
. (5.13)

These two empirical objectives are generalizations of the two tabular empirical objectives

(5.3), and (5.4) to linear function approximation. The second empirical objective function is

an unbiased and consistent estimator of MSRE. By solving the above empirical objectives,

we obtain the following two estimators, respectively:

θ̃n
def
==

(
1

n

n∑
k=1

φtkφ
>
tk

)−1(
1

n

n∑
k=1

WtkGtkφtk

)
, (5.14)

θ̂n
def
==

(
1

n

n∑
k=1

Wtkφtkφ
>
tk

)−1(
1

n

n∑
k=1

WtkGtkφtk

)
. (5.15)

The first estimator is a backward compatible extension to OIS and the second one to

WIS. We call θ̃ the OIS-LS estimator and θ̂ the WIS-LS estimator. In the following

theorems, we formally prove these facts and some of the key properties regarding these

two estimators. These properties are similar to some of those of the tabular estimators we

investigated in Chapter 4, showing that they are proper extensions of their corresponding

tabular estimators.

Theorem 12 (Unbiasedness of OIS-LS). If vπ is a linear function of the features, that
is, vπ(s) = θ∗>φ(s), then OIS-LS is an unbiased estimator, that is, Eµ,dµ [θ̃n] = θ∗.

Proof. The proof is given by the following derivation:

Eµ,dµ [θ̃n] = Eµ,dµ

(1

n

n∑
k=1

φtkφ
>
tk

)−1(
1

n

n∑
k=1

WtkGtkφtk

)
= Edµ

(1

n

n∑
k=1

φtkφ
>
tk

)−1(
1

n

n∑
k=1

Eµ [WtkGtk |Stk]φtk

)
= Edµ

(1

n

n∑
k=1

φtkφ
>
tk

)−1(
1

n

n∑
k=1

Eπ [Gtk |Stk]φtk

)
= Edµ

(1

n

n∑
k=1

φtkφ
>
tk

)−1(
1

n

n∑
k=1

vπ(Stk)φtk

)
64

= Edµ

(1

n

n∑
k=1

φtkφ
>
tk

)−1(
1

n

n∑
k=1

φtkφ
>
tk
θ∗

)
= Edµ

(1

n

n∑
k=1

φtkφ
>
tk

)−1(
1

n

n∑
k=1

φtkφ
>
tk

)θ∗ = θ∗.

Theorem 13 (Bias of WIS-LS). Even if vπ is a linear function of the features, that is,
vπ(s) = θ>∗ φ(s), WIS-LS is in general a biased estimator, that is, Eµ,dµ [θ̂n] 6= θ∗.

Proof. We prove it by providing a counterexample to the claim that Eµ,dµ [θ̂n] = θ∗. Con-

sider S = {s} and φ(s) = [1]. It is easy to see that in this case θ∗=Eπ [Gk|s]=vπ(s). The

WIS-LS estimator θ̂n also reduces to the WIS estimator:

θ̂n =

(
1

n

n∑
k=1

Wtk

)−1(
1

n

n∑
k=1

WtkGtk

)
= V WIS

n ,

which is a biased estimator of vπ(s). Hence, in general, Eµ,dµ [θ̂n] 6= θ∗.

Theorem 14 (Consistency of OIS-LS). The OIS-LS estimator θ̃n is a consistent esti-
mator of the MSE solution θ∗ given in (5.11).

Proof. Due to the strong law of large numbers

1

n

n∑
k=1

φtkφ
>
tk

a.s.−−→ Edµ

[
φkφ

>
k

]
,

1

n

n∑
k=1

WtkGtkφtk
a.s.−−→ Eµ,dµ [WkGkφk] = Edµ [Eµ [WkGk|Sk]φk] = Edµ [vπ(Sk)φk] .

Then it follows that θ̃n
a.s.−−→ θ∗.

Theorem 15 (Consistency of WIS-LS). The WIS-LS estimator θ̂n is a consistent
estimator of the MSE solution θ∗ given in (5.11).

Proof. Due to the strong law of large numbers

1

n

n∑
k=1

Wtkφtkφ
>
tk

a.s.−−→ Eµ,dµ

[
Wkφkφ

>
k

]
= Edµ

[
Eµ [Wk|Sk]φkφ>k

]
= Edµ

[
φkφ

>
k

]
,

65

1

n

n∑
k=1

WtkGtkφtk
a.s.−−→ Eµ,dµ [WkGkφk] = Edµ [Eµ [WkGk|Sk]φk] = Edµ [vπ(Sk)φk] .

Then it follows that θ̂n
a.s.−−→ θ∗.

Theorem 16 (Backward compatibility of OIS-LS with OIS). If the features form an
orthonormal basis, then the OIS-LS estimate θ̃>nφ(s) is equivalent to the OIS estimate
of vπ(s).

Proof. Let Φ denote to be the feature matrix the rows of which contain the feature vectors

of different unique inputs: Φ =
(
φ(s1), . . . ,φ(s|S|)

)>
, where s1, . . . , s|S| are different unique

states. Then the vector containing the estimated value of each unique state according to

the OIS-LS estimator can be written as

Φθ̃n = Φ

(∑
s∈S

nsφ(s)φ(s)>
)−1∑

s∈S

(
ns∑
i=1

Ws,iGs,i

)
φ(s) = Φ

(
Φ>NΦ

)−1
Φ>y,

where ns is the number of times state s has been the start state among n samples, Gs,i is the

return corresponding to the ith occurrence of state s as a start state and Ws,i is the corre-

sponding importance weight. Here, N is a diagonal matrix where the ith diagonal element

contains nsi : N = diag
(
ns1 , . . . , ns|S|

)
and y =

(∑ns1
i=1Ws1,iGs1,i, . . . ,

∑n|S|
i=1 W|S|,iG|S|,i

)>
.

Note that, due to orthonormality of the features, Φ is necessarily a square matrix and

full rank. Therefore, it follows that the vector of the estimates can be written as

Φθ̃n = ΦΦ−1N−1Φ>
−1

Φ>y = N−1y.

The element of this vector corresponding to any state s is the ordinary importance-sampling

estimator of its corresponding value: n−1
s

∑ns
i=1Ws,iGs,i.

Theorem 17 (Backward compatibility of WIS-LS with WIS). If the features form an
orthonormal basis, then the WIS-LS estimate θ̂>nφ(s) of state s is equivalent to the
WIS estimate of the value of s.

Proof. The proof is similar to the proof of Theorem 5. First, we write the vector of the

estimates according to the WIS-LS estimate as

Φθ̂n = Φ

(∑
s∈S

(
ns∑
i=1

Ws,i

)
φ(s)φ(s)>

)−1∑
s∈S

(
ns∑
i=1

ρs,iYs,i

)
φ(s) = Φ

(
Φ>RΦ

)−1
Φ>y,

66

where R is a diagonal matrix with each diagonal element containing the total summation

of the importance weights corresponding to each state:

R = diag

(ns1∑
i=1

Ws1,i

)
, . . . ,

ns|S|∑
i=1

Ws|S|,i

 .

Hence, the vector of estimates can be written as

Φθ̂n = ΦΦ−1R−1Φ>
−1

Φ>y = R−1y,

The element of this vector corresponding to any state s is the WIS estimate of its corre-

sponding outputs: (
∑ns

i=1Ws,i)
−1∑ns

i=1Ws,iGs,i.

We test these newly developed algorithms analogous to OIS and WIS first on a simple

toy task and then on the Mountain Car task.

In the toy task, we adopted a supervised learning setting. In this task, there are 25

inputs {s1, · · · , s25} representing states, and from each input, there is a different distribution

of outputs. The output can take 100 different values {0, 1, · · · , 99} according to a given

distribution plus a noise according to normal distribution with 0.1 standard deviation.

Two distributions were generated by choosing probabilities using random numbers drawn

uniformly randomly and normalized so that they add up to 1. One is the target distribution

under which we wish to estimate the value, and the other is the sampling distribution which

was used to generate data. Two different sets of feature vectors were generated. For each

input, 10 features were generated and kept fixed. For the first set, the features were either 0

or 1 generated uniformly randomly, and for the second set, the features were between [0, 1]

generated using uniform random distribution.

Data consisting 1000 outputs {Gk}1000
k=1 were generated, each time choosing one of the

inputs uniformly randomly and then using the sampling distribution to generate the output

corresponding to that input. For each of these outputs Gk, the importance weight Wk was

generated by dividing the target distribution probability of that output by its the sampling

distribution probability. Using the 1000 triples of outputs Gk, importance weights Wk and

input feature vectors φk, OIS-LS estimator θ̃ and WIS-LS estimator θ̂ were calculated.

As the matrices 1
n

∑n
k=1φkφ

>
k and 1

n

∑n
k=1Wkφkφ

>
k may be singular, especially at the

beginning, a regularization of (10−4/n)I was added to them for numerical stability. Each

time a triple is presented, the estimators are computed and their performance is measured

as
∑25

i=1

(
θ>∗ φ(si)− θ>φ(si)

)2
, where θ is either the OIS-LS estimator or the WIS-LS

estimator and θ∗ is the MSE solution according to (5.11). We call this the Mean Squared

Projected Error (MSPE). This performance measure was generated for 1000 samples and

then averaged over 30 such different independent sets of 1000 samples. It was repeated for

the two different sets of feature vectors. The MSPE is then normalized by
∑25

i=1

(
θ>∗ φ(si)

)2
67

WIS-LS

NMSPE
OIS-LS

NMSPE

samples

NMSPE

WIS-LS

OIS-LS

WIS-LS

OIS-LS

samples samples

Tabular features 0/1 features [0, 1] features

Figure 5.1: Performance comparison between OIS-LS and WIS-LS on a toy supervised
learning task with three different sets of features. Performance of both estimators is shown
in Normalized Mean Squared Projected Error (NMSPE) for learning over 1000 samples,
averaged over 30 independently generated data sets.

so that the unit error can be used as a baseline performance. We refer to this measure as

the Normalized MSPE (NMSPE).

In Figure 5.1, we show the performance of WIS-LS and OIS-LS in NMSPE. The middle

plot corresponds to 0/1 features, and the right plot corresponds to [0, 1] features. In order

to make sure that the problem is favorable to tabular WIS, we show the performance of

WIS-LS and OIS-LS with tabular features, in which case they reduce to WIS and OIS

respectively. In both cases of function approximation, WIS-LS substantially outperformed

OIS-LS throughout the period of learning.

For the Mountain Car off-policy prediction task, we used the standard simulator as

described by Sutton and Barto (1998). We used Sarsa(0.9) with replacing traces and ε-

greedy policy with ε = 0.01 to learn a control policy for 2000 episodes. This learned policy

served as the target policy. Then we estimated the value of 25 different random start

states under the learned policy by generating 50 trajectories from each of those states and

averaging the returns. In the absence of true values, these values were used to measure the

performance of the estimators.

In order to generate data samples, 20 trajectories were generated from each of the

25 randomly chosen start states by following a behavior policy. The behavior policy was

constructed by applying an ε-greedy policy on the learned parameters, where the value of ε

was different than the value used with the target policy. We generated two sets of data by

using ε = 0.1 and 0.2. In each case, the return and the importance weight corresponding to

each trajectory was stored.

In order to train OIS-LS and WIS-LS, we generated a set feature vectors, one for each

start states, using tile coding, where the number of tiling was 10 and a feature vector of

size 64. The performance was measured using NMSPE, where in the absence of a true MSE

solution, we estimated it by drawing samples under the target policy. The performance was

averaged using 30 different independent sets of data. Different values of the regularization

parameter was tested for both estimators, the best value of this parameter was used.

68

WIS-LS

NMSPE
OIS-LS

NMSPE

samples

WIS-LS

OIS-LS

samples

✏ = 0.1✏ = 0.1 ✏ = 0.2✏ = 0.2

Figure 5.2: Performance comparison between OIS-LS and WIS-LS on two Mountain Car off-
policy prediction tasks with two different behavior policies that are fixed ε-greedy policies
based on parameters learned by Sarsa(0.9). Performance of both estimators are shown in
Normalized Mean Squared Projected Error (NMSPE) for learning over 500 samples and
averaged over 30 independently generated data sets. In both tasks WIS-LS significantly
outperforms OIS-LS.

Figure 5.2 shows the performance of OIS-LS and WIS-LS for the two different behavior

policies we chose. In both cases, WIS-LS substantially outperformed OIS-LS. The difference

between the two plots shows that as the behavior policy deviates more from the target policy,

caused by the increase in exploration in the behavior policy, learning becomes more difficult.

However, even with an increase in the exploration, WIS-LS remained the only algorithm

that learned effectively.

5.3 WIS2 with Linear Function Approximation

In this section, we extend WIS2, which developed in Chapter 4, to linear function approx-

imation. The main idea here is to combine the intuition behind developing WIS2 and the

intuition behind extending WIS to WIS-LS.

The intuition behind developing both OIS2 and WIS2 was to view a return as a combi-

nation of different n-step flat returns. Then the target samples for off-policy estimation are

formed by scaling the individual flat returns with corresponding importance weights instead

of scaling the whole return with one importance weight. This idea of scaling different flat

returns can be utilized to produce the following two empirical objectives:

J̃n(v̂) =
1

n

n∑
k=1

 Tk∑
h=tk+1

W h
tk

(1− γh)

h−1∏
i=tk+1

γiḠ
h
tk
− v̂

2

, (5.16)

Ĵn(v̂) =
1

n

n∑
k=1

Tk∑
h=tk+1

W h
tk

(1− γh)

h−1∏
i=tk+1

γi

(
Ḡhtk − v̂

)2
. (5.17)

69

In the first objective, the individual flat returns are scaled by the importance weights

whereas in the second objective, the error for each individual flat return is scaled by the

importance weight.

Then it can be easily shown that V WIS2 is the solution to Jn(v̂):

V OIS2 = arg min
v

J̃n(v) =

∑n
k=1

∑Tk
h=tk+1W

h
tk

(1− γh)
∏h−1
i=tk+1 γiḠ

h
tk

n
, (5.18)

V WIS2 = arg min
v

Ĵn(v) =

∑n
k=1

∑Tk
h=tk+1W

h
tk

(1− γh)
∏h−1
i=tk+1 γiḠ

h
tk∑n

k=1

∑Tk
h=tk+1W

h
tk

(1− γh)
∏h−1
i=tk+1 γi

. (5.19)

An extension to the empirical objectives to linear function approximation would be as

follows:

J̃t(θ)
def
==

1

n

n∑
k=1

 Tk∑
h=tk+1

W h
tk

(1− γh)
h−1∏

i=tk+1

γiḠ
h
tk
− θ>φtk

2

, (5.20)

Ĵt(θ)
def
==

1

n

n∑
k=1

Tk∑
h=tk+1

W h
tk

(1− γh)

h−1∏
i=tk+1

γi

(
Ḡhtk − θ

>φtk
)2
. (5.21)

We obtain the following two estimators by solving the above two empirical objectives,

respectively:

θ̃n
def
==

(
1

n

n∑
k=1

φtkφ
>
tk

)−1
 1

n

n∑
k=1

Tk∑
h=tk+1

W h
tk

(1− γh)
h−1∏

i=tk+1

γiḠ
h
tk
φtk

 , (5.22)

θ̂n
def
==

 1

n

n∑
k=1

Tk∑
h=tk+1

W h
tk

(1− γh)

h−1∏
i=tk+1

γiφtkφ
>
tk

−1

(5.23)

×

 1

n

n∑
k=1

Tk∑
h=tk+1

W h
tk

(1− γh)

h−1∏
i=tk+1

γiḠ
h
tk
φtk

 . (5.24)

We call θ̃ the OIS2-LS estimator and θ̂ the WIS2-LS estimator. The following theorems

about OIS2-LS and WIS2-LS are similar to the theorems we have proved in Section 5.2 with

regards to OIS-LS and WIS-LS. They show that both OIS2-LS and WIS2-LS are proper

extensions of OIS2 and WIS2, carrying forward their essential properties to linear function

approximation.

Theorem 18 (Unbiasedness of OIS2-LS). If vπ is a linear function of the features, that
is, vπ(s) = θ∗>φ(s), then OIS2-LS is an unbiased estimator, that is, Eµ,bµ [θ̃n] = θ∗.

70

Theorem 19 (Bias of WIS2-LS). Even if vπ is a linear function of the features, that
is, vπ(s) = θ>∗ φ(s), WIS2-LS is in general a biased estimator, that is, Eµ,bµ [θ̂n] 6= θ∗.

Theorem 20 (Consistency of OIS2-LS). The OIS2-LS estimator θ̃n is a consistent
estimator of the MSE solution θ∗ given in (5.11).

Theorem 21 (Consistency of WIS2-LS). The WIS2-LS estimator θ̂n is a consistent
estimator of the MSE solution θ∗ given in (5.11).

Theorem 22 (Backward compatibility of OIS2-LS with OIS2). If the features form
an orthonormal basis, then the OIS2-LS estimate θ̃>nφ(s) is equivalent to the OIS2
estimate of vπ(s).

Theorem 23 (Backward compatibility of WIS2-LS with WIS2). If the features form
an orthonormal basis, then the WIS2-LS estimate θ̂>nφ(s) of state s is equivalent to the
WIS2 estimate of the value of s.

Proofs of these theorems are similar to those in Section 5.2 and we leave them out here.

5.4 Conclusions

In this chapter, we developed some key intuitions for extending tabular estimators to linear

function approximation in a backward compatible way. This allowed us to provide the

first weighted importance sampling method for linear function approximation. We showed

through theoretical and empirical results that our new methods carry over the beneficial

properties of weighted importance sampling to linear function approximation. Finally, we

performed a similar extension to a superior version of weighted importance sampling, WIS2,

resulting in a new algorithm we called WIS2-LS. This method builds the foundation for more

powerful and computationally amenable off-policy algorithms.

71

Chapter 6

Real-Time Weighted Importance
Sampling with Bootstrapping 1

In this chapter, we provide two main contributions of this thesis. First, we provide a novel

and systematic technique for deriving algorithms based on algorithmic equivalence. This

builds on some of the intuitions illustrated in Chapter 3. Second, we provide the fullest

extension of the new weighted importance sampling estimator—WIS2—we developed in

Chapter 4. This results into a new strictly incremental off-policy algorithm for the real-time

learning setting, we call WIS-LSTD(λ). This is the culmination of the series of contributions

we make in this thesis based on weighted importance sampling toward the issue of high

variance.

In Chapter 5, we extended WIS2 to the case of linear function approximation to develop

a least-squares method based on per-trajectory updates. Our new algorithm surpasses the

contributions of the previous chapter in two other important ways. First, the new algorithm

goes beyond the Monte Carlo updates of the algorithms from the previous chapter by

incorporating bootstrapping , a well-known technique for reducing variance in reinforcement

learning. Second, the algorithms in the previous chapter were based on per-trajectory

updates, whereas the new algorithm can be updated strictly incrementally on a real-time

basis. The question of how a per-trajectory algorithm can be extended to a real-time

algorithm is an intricate topic, and Chapter 3 only scratches the surface of it. In this

chapter, we take a closer look at it and devise a principled way of performing this feat.

6.1 Forming Targets with State-dependent Bootstrapping

Bootstrapping is a sophisticated technique used in many reinforcement-learning learning

algorithms where the estimates are formed using the estimates of the subsequent states

rather than solely using samples as in Monte Carlo estimates. One of the most popular

1The contribution toward algorithmic equivalence techniques is adapted from the techniques developed
in a published paper coauthored by this author (Mahmood & Sutton 2015). The contribution toward the
fullest extension of weighted importance sampling is adapted from a published paper coauthored by this
author (Mahmood, van Hasselt & Sutton 2014).

72

reinforcement-learning algorithm–the Temporal-Difference (TD) learning algorithm—is the

quintessential example of bootstrapping. By avoiding updates solely based on direct sam-

pling, bootstrapping estimates can reduce variance in exchange for introduced bias in the

finite sample case. Bootstrapping estimates can be asymptotically unbiased in the case

of lookup-table representation, however, in the case of parametric function approximation,

they are generally biased.

As Monte Carlo estimates are formed using returns as targets, bootstrapping estimates

are formed using modified returns where a part of it is formed using samples and the rest is

formed using the estimate of the subsequent states. The simplest of such targets use only

the immediate reward as the sample and the estimate of the next state, which we call the

one-step flat return: Rt+1 + θ>φt+1. The estimate of the next state uses weight estimate

θ. Bootstrapping estimates make a specific choice for the weight estimates. In this section

and the next, we will only form targets without committing to a specific bootstrapping

estimate.

In general, an n-step corrected flat return can be defined in the following way:

Ḡ
(n)
t

def
== Ḡt+nt + θ>φt+n =

t+n∑
k=t+1

Rk + θ>φt+n, (6.1)

where Ḡht is the flat return defined by (4.27). The n-step corrected flat return incorporates

a bootstrapped estimate θ>φt+n with an incomplete flat return Ḡt+nt at the horizon t + n.

However, it is not discounting aware. We can include discounting awareness using the

technique given in Section 4.2.

A more powerful target for updates would be one that combines different bootstrapping

targets as well as the full Monte Carlo return in a single target. This can be achieved by

exponentially scaling different n-step corrected returns using a parameter most commonly

denoted by λ ∈ [0, 1], often known as the bootstrapping parameter. Such combined targets

are typically formed when both the discount factor and the bootstrapping parameter are

constants. As the discount factor can be state dependent and viewed as the degree of

termination, a similar interpretation can be applied to λ by allowing them to depend on

states and view them as the degree of bootstrapping that can vary with states.

In the following, we introduce a combined return, where different n-step corrected flat

return are weighted according to their corresponding degree of discounting, bootstrapping,

as well as importance weights. We start by the first uncorrected flat return Ḡt+1
t = Rt+1,

which stands for a trajectory up to horizon t + 1. Of course, the trajectory may not be

complete in a single transition. But this incompleteness of the return can be accounted

for by scaling it with the degree of termination corresponding to this trajectory given by

1 − γt+1. Therefore, a valid off-policy target corresponding to this return can be obtained

by scaling it with the degree of termination at time t + 1 times the importance weight

corresponding to this trajectory: (1 − γt+1)W t+1
t . On the other hand, the first corrected

flat return Ḡt+1
t +θ>φt+1 stands for a trajectory which did not terminate at time t+1, but

73

has rather used bootstrapping. The degree of continuation at time t + 1 is given by γt+1,

and the degree of bootstrapping at t+ 1 is given by 1− λt+1. Therefore, the corresponding

weights for this return would be the degree of continuation at time t + 1 times the degree

of bootstrapping at time t+ 1 times the importance weight: γt+1(1− λt+1)W t+1
t . By using

this idea for the subsequent returns, the combined return, which we call the λ-return, can

be formed as follows:

Gλt (θ) = (1− γt+1)W t+1
t Ḡt+1

t + γt+1(1− λt+1)W t+1
t

(
Ḡt+1
t + θ>φt+1

)
(6.2)

+ γt+1λt+1(1− γt+2)W t+2
t Ḡt+2

t (6.3)

+ γt+1λt+1γt+2(1− λt+2)W t+2
t

(
Ḡt+2
t + θ>φt+2

)
+ · · · (6.4)

=
∞∑

h=t+1

γh−1
t+1 λ

h−1
t+1W

h
t

[
(1− γh)Ḡht + (1− λh)γh

(
Ḡht + θ>φh

)]
. (6.5)

Note that, at T (t), the trajectory must fully terminate: γT (t) = 0. Therefore, the above

return can be rewritten as:

Gλt =

T (t)−1∑
h=t+1

γh−1
t+1 λ

h−1
t+1W

h
t

[
(1− γh)Ḡht + (1− λh)γh

(
Ḡht + θ>φh

)]
(6.6)

+ γ
T (t)−1
t+1 λ

T (t)−1
t+1 W

T (t)
t Ḡ

T (t)
t . (6.7)

Note that we have scaled the returns by the importance weights directly instead of

scaling errors. The question of whether to scale the returns or the errors is still relevant

here, which we will consider in a later section. Scaling the return is the simplest and

the most ordinary way of applying importance sampling, and we have adopted it here to

introduce the complex return in a simple way.

6.2 Interim Targets for Real-time Updates

In this section, we extend the complex return Gλt so that updates can be made real time

toward a meaning target without waiting for a trajectory to terminate fully. So far, all

the off-policy updates we have discussed have been on a per-trajectory basis. The complex

return we formed in the previous section also completes upon full termination at T (t).

However, to make real-time updates, we need to form a target that is valid and meaningful

at any time. We expand here the concept of interim targets introduced in Section 3.2. In

that section, the interim targets did not consider complex returns and avoided the intricacy

of bootstrapping on the estimate of subsequent states by considering bootstrapping on

open-ended “guesses”. We address those issues here.

Let us consider that the current time step is t < T (t). Ideally, an interim target would

use the samples from time step k up to interim horizon t but would be incomplete otherwise.

If we adopt the λ-return defined by (8.6) for this, it is clear that the summation would need

74

to be truncated at the interim horizon t. All the prior summands can be kept in their

original form, but we have to determine what should be the last summand. As the return

needs to appear complete to the update, we can choose to fully bootstrap at the interim

horizon. Hence, the interim return for an interim horizon t can be defined as:

Gλk,t =

t−1∑
h=k+1

γh−1
k+1λ

h−1
k+1W

h
k

[
(1− γh)Ḡhk + (1− λh)γh

(
Ḡhk + θ>φh

)]
(6.8)

+ γt−1
k+1λ

t−1
k+1W

t
k

[
(1− γt)Ḡtk + γt

(
Ḡtk + θ>φt

)]
. (6.9)

Note that this interim target becomes equivalent to Gλk at full termination. The interim

return Gλk,t provides a valid target for making updates at all time t for all past visited states

at time k < t without waiting for the trajectory to complete.

6.3 Putting It All Together

In this section, we form an off-policy algorithm with real-time updates based on interim

targets. The resulting algorithm here is of least-squares form. The novel problem we face

here is developing a learning algorithm that makes updates for a parameter vector θ toward

targets with bootstrapped estimates, which themselves are based on the same parameter

vector θ. There are two notable approaches that can be taken in this case. We can choose

the parameter vector for the bootstrapped estimates to be exactly the same as the current

estimate or set it at the solution of the least-squares update. The former approach is known

as the residual approach whereas the latter is known as the projected fixed point approach

(Geist and Scherrer 2014). We take the latter approach here.

As we utilize the interim targets to achieve real-time updates, we abandon the per-

trajectory based time-step notation tk. Instead, we consider all the interim returns from

each of the intermediate time steps starting from time 0 up to time t. As in previous,

we face two alternative routes to forming an off-policy least-squares algorithm: scale the

returns directly or scale the errors instead, where the former leads to an ordinary form of

importance sampling estimator whereas the latter leads to a weighted importance sampling

estimator. As we have already found that weighted importance sampling estimators are

preferable to its ordinary counterpart, we take only the latter approach here.

By utilizing the idea behind forming the interim return defined by (6.9), we form an

empirical objective function where the errors are scaled by the corresponding degree of

discounting, bootstrapping, and importance weights. Such an objective function can be

defined as:

Jt(θ,v)
def
==

1

t

t−1∑
k=0

`k,t(θ,v), (6.10)

`k,t(θ,v)
def
==

t−1∑
h=k+1

γh−1
k+1λ

h−1
k+1W

h
k

[
(1− γh)

(
Ḡhk − θ>φk

)2
(6.11)

75

+ (1− λh)γh

(
Ḡhk + v>φh − θ>φk

)2
]

(6.12)

+ γt−1
k+1λ

t−1
k+1W

t
k

[
(1− γt)

(
Ḡtk − v>φk

)2
+ γt

(
Ḡtk + v>φt − θ>φk

)2
]
. (6.13)

By choosing the bootstrapped estimate to have values at the solution, the solution is

defined as follows:

θt = arg min
θ

Jt(θ,θt). (6.14)

In order to find the solution in a closed form, we write out the expression for which the

minimum of the objective is achieved, and separate all the terms that involve θt from those

that do not. At the solution, the gradient of the objective equates to zero:

∇θJt(θ)|θ=θt
=

1

t

t−1∑
k=0

`k,t(θ,v) = −2
1

t

t−1∑
k=0

δk,t(θt,θt)φk = 0, (6.15)

where the errors δk,t are defined by

δk,t(θ,v) =

t−1∑
h=k+1

γh−1
k+1λ

h−1
k+1W

h
k

[
(1− γh)

(
Ḡhk − θ>φk

)
+ (1− λh)γh

(
Ḡhk + v>φh − θ>φk

)]
(6.16)

+ γt−1
k+1λ

t−1
k+1W

t
k

[
(1− γt)

(
Ḡtk − v>φk

)
+ γt

(
Ḡtk + v>φt − θ>φk

)]
. (6.17)

By separating the terms of δk,t(θt,θt)φk with θt from those without, we obtain:

δk,t(θt,θt)φk = b̃k,t − Ãk,tθt. (6.18)

Here, b̃k,t ∈ Rm, Ãk,t ∈ Rm×m, and they are defined as

b̃k,t =

t−1∑
h=k+1

γh−1
k+1λ

h−1
k+1W

h
k

[
(1− γh)Ḡhk + (1− λh)γhḠ

h
k

]
φk (6.19)

+ γt−1
k+1λ

t−1
k+1W

t
k

[
(1− γt)Ḡtk + γtḠ

t
k

]
φk (6.20)

=

t−1∑
h=k+1

γh−1
k+1λ

h−1
k+1W

h
k (1− γhλh)Ḡhkφk + γt−1

k+1λ
t−1
k+1W

t
kḠ

t
kφk, (6.21)

Ãk,t =

t−1∑
h=k+1

γh−1
k+1λ

h−1
k+1W

h
k φk

[
(1− γh)φ>k − (1− λh)γh (φh − φk)>

]
(6.22)

+ γt−1
k+1λ

t−1
k+1W

t
kφk

[
(1− γt)φ>k − γt (φt − φk)>

]
(6.23)

=

t−1∑
h=k+1

γh−1
k+1λ

h−1
k+1W

h
k φk

[
(1− γhλh)φk − γh(1− λh)φh

]>
+ γt−1

k+1λ
t−1
k+1W

t
kφk [φk − γtφt]> .

(6.24)

76

Therefore, the solution can be written in a closed form as follows:

1

t

t−1∑
k=0

(
b̃k,t − Ãk,tθt

)
= 0 =⇒ θt = A−1

t bt, (6.25)

where

At =
1

t

t−1∑
k=0

Ãk,t, (6.26)

bt =
1

t

t−1∑
k=0

b̃k,t. (6.27)

We call this algorithm the WIS-LSTD(λ) algorithm, because this is a generalization of

LSTD(λ) algorithm (Boyan 2002) with WIS. When λk = 1,∀k and termination occurs then

the solution reduces to that of WIS2-LS, which we show in the following.

Theorem 24 (Backward compatibility of WIS-LSTD(λ) with WIS2-LS). At termina-
tion (γt = 0) with λk = 1,∀k, and tk = k, the solution defined by (6.25) is equivalent
to the WIS2-LS solution defined by (5.24).

Proof. By choosing tk = k, γt = 0, and λk = 1,∀k, we can rewrite bt and At as

bt =
1

t

t−1∑
k=0

(
t−1∑

h=k+1

γh−1
k+1W

h
k (1− γh)Ḡhkφk + γt−1

k+1W
t
kḠ

t
kφk

)
(6.28)

=
1

t

t−1∑
k=0

t∑
h=k+1

γh−1
k+1W

h
k (1− γh)Ḡhkφk, (6.29)

At =
1

t

t−1∑
k=0

t−1∑
h=k+1

γh−1
k+1W

h
k (1− γh)φkφ

>
k+ γt−1

k+1W
t
kφkφ

>
k (6.30)

=
1

t

t−1∑
k=0

t∑
h=k+1

γh−1
k+1W

h
k (1− γh)φkφ

>
k . (6.31)

Also note that Tk = T (tk) = T (k), which we can also use to replace the upper limit of

the inner summation for both bt and At, because the time-step t is either the first time

step after k where a termination occurred: T (k) = t or there are other terminations before

t: T (k) < t. Then it is clear that the solution θt = A−1
t bt coincides with the solution of

WIS2-lS.

6.4 Strictly Incremental Updates with Algorithmic Equiva-
lence Technique

In this section, we derive a strictly incremental update that produces the same solutions

as the real-time update in the previous section. The crux of the derivation is switching

77

the order of the double summations as in Lemma 8 and seeking recursive expressions. As

we use these derivation steps multiple times for different algorithms in this work, it would

be desirable to avoid much of the repetitions by providing a general technique, which we

can instantiate in each case. This general technique would capture the common specialties

involved in the reinforcement learning updates toward complex interim targets such as λ-

returns.

A key feature in complex interim returns, on which all strict incremental updates rely

on, is the recursive expressions of the returns in the expanding horizon. A return with

interim horizon t+1 can typically be written recursively in terms of the return with interim

horizon t. The following return is a general form for all the complex interim targets we have

used in this work:

Y t+1
k − Y t

k = dk+1

(
Y t+1
k+1 − Y t

k+1

)
+ btgk

t−1∏
j=k+1

cj , 0 ≤ k ≤ t, (6.32)

where µk, ck, dk, and gk are scalars that can be computed using data available at time k.

We show in the following that an update toward the target Y t+1
k can then be computed

strictly incrementally.

Theorem 25 (Algorithmic equivalence theorem). Consider any forward view that up-
dates toward an interim target Y t

k with

θt+1
k+1

def
== Fkθ

t+1
k + Y t+1

k wk + xk, 0 ≤ k < t+ 1,

where θt0
def
== θ0 for some initial θ0, and both Fk ∈ Rm×m and wk ∈ Rm can be computed

using data available at k. Assume that the temporal difference Y t+1
k −Y t

k at k is related
to the temporal difference at k + 1 as follows:

Y t+1
k − Y t

k = dk+1

(
Y t+1
k+1− Y t

k+1

)
+ btgk

t−1∏
j=k+1

cj , 0 ≤ k < t,

where bk, ck, dk and gk can be computed using data available at time k. Then the final

weight θt+1
def
== θt+1

t+1 can be computed through the following backward-view updates, with

e−1
def
== 0, d0

def
== 0, and t ≥ 0:

et
def
== wt + dtFtet−1,

θt+1
def
== Ftθt + (Y t+1

t − Y t
t)et + Y t

t wt + btFtdt + xt,

dt+1
def
== ctFtdt + gtet.

Proof. We can write the difference between two consecutive estimates as

θt+1
t+1 − θtt = Ftθ

t+1
t − θtt + Y t+1

t wk + xt

= Ft

(
θt+1
t − θtt

)
+ Y t+1

t wk + (Ft − I)θtt + xt.

78

Now let us expand θt+1
t − θtt:

θt+1
t − θtt = Ft−1θ

t+1
t−1 + Y t+1

t−1 wt−1 + xt−1

− Ft−1θ
t
t−1 − Y t

t−1wt−1 − xt−1

= Ft−1

(
θt+1
t−1 − θtt−1

)
+
(
Y t+1
t−1 − Y t

t−1

)
wt−1

= Ft−1 · · ·F0(θt+1
0 − θt0) +

t−1∑
k=0

Ft−1 · · ·Fk+1(Y t+1
k − Y t

k)wk

=

t−1∑
k=0

Ft−1 · · ·Fk+1(Y t+1
k − Y t

k)wk

=

t−1∑
k=0

Ft−1 · · ·Fk+1

dk+1(Y t+1
k+1 − Y t

k+1) + btgk

t−1∏
j=k+1

cj

wk

=

t−1∑
k=0

Ft−1 · · ·Fk+1

(
dk+1

(
dk+2(Y t+1

k+2 − Y t
k+2)

+ btgk+1

t−1∏
j=k+2

cj

)
+ btgk

t−1∏
j=k+1

cj

)
wk

=

t−1∑
k=0

Ft−1 · · ·Fk+1

(
dk+1dk+2(Y t+1

k+2 − Y t
k+2)

+ btgk+1dk+1

t−1∏
j=k+2

cj + btgk

t−1∏
j=k+1

cj

)
wk

=

t−1∑
k=0

Ft−1 · · ·Fk+1

(
t∏

j=k+1

dj(Y
t+1
t − Y t

t)

+ bt

t−1∑
n=k

gn

n∏
i=k+1

di

t−1∏
j=n+1

cj

)
wk

= dt(Y
t+1
t − Y t

t)

t−1∑
k=0

Ft−1 · · ·Fk+1

t−1∏
j=k+1

djwk︸ ︷︷ ︸
et−1

+ bt

t−1∑
k=0

Ft−1 · · ·Fk+1

t−1∑
n=k

gn

n∏
i=k+1

di

t−1∏
j=n+1

cjwk︸ ︷︷ ︸
dt

= (Y t+1
t − Y t

t)dtet−1 + btdt.

The vectors et and dt can be incrementally updated as follows:

et =

t∑
k=0

Ft · · ·Fk+1

t∏
j=k+1

djwk

79

= wt + dtFt

t−1∑
k=0

Ft−1 · · ·Fk+1

t−1∏
j=k+1

djwk

= wt + dtFtet−1,

dt =

t−1∑
k=0

Ft−1 · · ·Fk+1

t−1∑
n=k

gn

n∏
i=k+1

di

t−1∏
j=n+1

cjwk

=
t−1∑
k=0

Ft−1 · · ·Fk+1

 t−2∑
n=k

gn

n∏
i=k+1

di

t−1∏
j=n+1

cjwk + gt−1

t−1∏
j=k+1

djwk

=

t−1∑
k=0

Ft−1 · · ·Fk+1

t−2∑
n=k

gn

n∏
i=k+1

di

t−1∏
j=n+1

cjwk + gt−1

t−1∑
k=0

Ft−1 · · ·Fk+1

t−1∏
j=k+1

djwk

= ct−1Ft−1

t−2∑
k=0

Ft−1 · · ·Fk+1

t−2∑
n=k

gn

n∏
i=k+1

di

t−2∏
j=n+1

cjwk + gt−1et−1

= ct−1Ft−1dt−1 + gt−1et−1.

Then plugging back in

θt+1
t+1 = θtt + Ft

(
θt+1
t − θtt

)
+ Y t+1

t wt + (Ft − I)θtt + xt

= θtt + dtFtet−1(Y t+1
t − Y t

t) + btFtdt + Y t+1
t wt + (Ft − I)θtt + xt

= Ftθ
t
t + (et −wt)(Y

t+1
t − Y t

t) + Y t+1
t wt + btFtdt + xt

= Ftθ
t
t + (Y t+1

t − Y t
t)et + Y t

t wt + btFtdt + xt.

This result also applies to matrix θ, vector Y and vector g, which we use in the next

to derive strictly incremental updates of At and bt. This leads to the following strictly

incremental update of WIS-LSTD(λ):

At+1 =

(
1− 1

t+ 1

)
At +

1

t+ 1
et (φt − γt+1φt+1)> +

(
W t+1
t − 1

) 1

t+ 1
Vt, (6.33)

et = W t+1
t φt + γtλtW

t+1
t et−1, (6.34)

Vt+1 = γt+1λt+1

(
W t+1
t Vt + et (φt − φt+1)>

)
, (6.35)

bt+1 =

(
1− 1

t+ 1

)
bt +

1

t+ 1
Rt+1et +

(
W t+1
t − 1

) 1

t+ 1
ut, (6.36)

ut+1 = γt+1λt+1

(
W t+1
t ut +Rt+1et

)
, (6.37)

θt+1 = A−1
t+1bt+1. (6.38)

In the following, we show that the above update is equivalent to the original real-time

update of WIS-LSTD(λ).

80

Theorem 26 (Equivalence of strictly incremental update of WIS-LSTD(λ)). The
strictly incremental updates of WIS-LSTD(λ) computed by (6.33)-(6.38) are equiva-
lent to updates computed by (6.21), (6.24), (6.25), (6.26), and (6.27).

Proof. It suffices to show that the strictly incremental updates of At and bt are equivalent

to their original real-time updates. Let us define At
k, which truncates the summation in At

up to time k using horizon up to time t as

At+1
k+1 =

1

k + 1

k∑
n=0

Ãn,t+1 =

(
1− 1

k + 1

)
1

k

k−1∑
n=0

Ãn,t+1 +
1

k + 1
Ãk,t+1 (6.39)

=

(
1− 1

k + 1

)
At+1
k +

1

k + 1
W k+1
k φkg

>
k,t+1, (6.40)

where Ãk,t = 1
kW

k+1
k φkg

>
k,t+1, gt,t = 0, and

gk,t =

t−1∑
h=k+1

γh−1
k+1λ

h−1
k+1W

h
k+1

[
(1− γhλh)φk − γh(1− λh)φh

]
+ γt−1

k+1λ
t−1
k+1W

t
k+1 [φk − γtφt] .

(6.41)

Note that At
t completes the summation in At as At

t = 1
t

∑t−1
n=0 Ãn,t = At.

Here, At
t is the estimate which we would like to compute strictly incrementally, and its

non-strictly incremental iteration At+1
k+1 uses gk,t+1 as the target.

In the following, we seek to represent this target in a similar form Y t
k is represented in

Theorem 25:

gk,t+1 − gk,t (6.42)

=
t∑

h=k+1

γh−1
k+1λ

h−1
k+1W

h
k+1

[
(1− γhλh)φk − γh(1− λh)φh

]
+ γtk+1λ

t
k+1W

t+1
k+1 [φk − γt+1φt+1]

(6.43)

−
t−1∑

h=k+1

γh−1
k+1λ

h−1
k+1W

h
k+1

[
(1− γhλh)φk − γh(1− λh)φh

]
− γt−1

k+1λ
t−1
k+1W

t
k+1 [φk − γtφt]

(6.44)

= γk+1λk+1W
k+1
k+1

[
t∑

h=k+2

γh−1
k+2λ

h−1
k+2W

h
k+2

[
(1− γhλh)φk+1 − γh(1− λh)φh

]
(6.45)

+ γtk+2λ
t
k+2W

t+1
k+2 [φk+1 − γt+1φt+1]

]
(6.46)

− γk+1λk+1W
k+1
k+1

[
t−1∑

h=k+2

γh−1
k+2λ

h−1
k+2W

h
k+2

[
(1− γhλh)φk+1 − γh(1− λh)φh

]
(6.47)

+ γtk+2λ
t
k+2W

t+1
k+2 [φk+1 − γtφt]

]
+
(
W t+1
t − 1

)
γtk+1λ

t
k+1W

t
k+1 (φk − φk+1) (6.48)

81

= γk+1λk+1W
k+1
k+1 (gk+1,t+1 − gk+1,t) +

(
W t+1
t − 1

)
γtk+1λ

t
k+1W

t
k+1 (φk − φk+1) . (6.49)

Therefore, by letting dk+1 = ck = γk+1λk+1W
k+1
k , gk = γk+1λk+1 (φk − φk+1), and

bt = W t+1
t − 1, we can see that gk,t has the same recursive form as Y t

k . Therefore, we can

write At recursively as

At+1 =

(
1− 1

t+ 1

)
At +

1

t+ 1
et (φt − γt+1φt+1)> +

(
W t+1
t − 1

) 1

t+ 1
Vt, (6.50)

et = W t+1
t φt + γtλtW

t+1
t et−1, (6.51)

Vt+1 = γt+1λt+1

(
W t+1
t Vt + et (φt − φt+1)>

)
. (6.52)

The strictly incremental update of bt can also be derived in a similar way.

6.5 Experimental Results

We compared the performance of WIS-LSTD(λ) with the conventional off-policy LSTD(λ)

by Yu (2010) on two random-walk tasks for off-policy policy evaluation. These random-walk

tasks consist of a Markov chain with 11 non-terminal and two terminal states. They can be

imagined to be laid out horizontally, where the two terminal states are at the left and the

right ends of the chain. From each non-terminal state, there are two actions available: left ,

which leads to the state to the left and right , which leads to the state to the right. The

reward is 0 for all transitions except for the rightmost transition to the terminal state, where

it is +1. The initial state was set to the state in the middle of the chain. The behavior

policy chooses an action uniformly randomly, whereas the target policy chooses the right

action with probability 0.99. The termination function γ was set to 1 for the non-terminal

states and 0 for the terminal states.

We used two tasks based on this Markov chain in our experiments. These tasks differ

by how the non-terminal states were mapped to features. The terminal states were always

mapped to a vector with all zero elements. For each non-terminal state, the features were

normalized so that the L2 norm of each feature vector was one. For the first task, the

feature representation was tabular , that is, the feature vectors were standard basis vectors.

In this representation, each feature corresponded to only one state. For the second task,

the feature vectors were binary representations of state indices. There were 11 non-terminal

states, hence each feature vector had blog2(11)c+ 1 = 4 components. These vectors for the

states from left to right were (0, 0, 0, 1)>, (0, 0, 1, 0)>, (0, 0, 1, 1)>, . . . , (1, 0, 1, 1)>, which

were then normalized to get unit vectors. These features heavily underrepresented the

states, because 11 states were represented by only 4 features.

We tested both algorithms for different values of constant λ, from 0 to 0.9 in steps

of 0.1 and from 0.9 to 1.0 in steps of 0.025. The matrix to be inverted in both methods

was initialized to εI, where the regularization parameter ε was varied by powers of 10 with

powers chosen from -3 to +3 in steps of 0.2. The performance was measured as the empirical

82

MSE MSEMSE

MSE MSEMSE

episodes

�

—
...
‒‒

0.0
0.5
0.9

�

—
...
‒‒

0.5
0.9
1.0

Tabular task

Func. approx. task

off-policy LSTD()

WIS-LSTD()

�

�

regularization parameter ✏

episodes regularization parameter ✏

WIS- LSTD()

off-policy LSTD()

�

�

�

�

Figure 6.1: Empirical comparison of WIS-LSTD(λ) with conventional off-policy LSTD(λ)
on two random-walk tasks. The empirical Mean Squared Error shown is for the initial state
at the end of each episode, averaged over 100 independent runs (and also over 200 episodes
in column 2 and 3).

mean squared error (MSE) between the estimated value of the initial state and its true value

under the target policy projected to the space spanned by the given features. This error

was measured at the end of each of 200 episodes for 100 independent runs.

Figure 1 shows the results for the two tasks in terms of empirical convergence rate,

optimum performance, and parameter sensitivity. Each curve shows MSE together with

standard errors. The first row shows results for the tabular task and the second row shows

results for the function approximation task. The first column shows learning curves using

(λ, ε) = (0, 1) for the first task and (0.95, 10) for the second. It shows that in both cases

WIS-LSTD(λ) learned faster and gave lower error throughout the period of learning. The

second column shows performance for different λ optimized over ε. The x-axis is plotted in

a reverse log scale, where higher values are more spread out than the lower values. In both

tasks, WIS-LSTD(λ) outperformed the conventional LSTD(λ) for all values of λ. For the

best parameter setting (best λ and ε), WIS-LSTD(λ) outperformed LSTD(λ) by an order

of magnitude.

The third column shows performance with respect to different regularization param-

eter values ε for three representative values of λ. For a wide range of ε, WIS-LSTD(λ)

outperformed conventional LSTD(λ) by an order of magnitude. Both methods performed

similarly for large ε, as such large values essentially prevent learning for a long period. In

the function approximation task when smaller values of ε were chosen, λ close to 1 led to

more stable estimates, whereas smaller λ introduced high variance for both methods. In

both tasks, the better-performing regions of ε (the U-shaped depressions) were wider for

83

WIS-LSTD(λ).

6.6 Conclusions

In this chapter, we developed the fullest extension of weighted importance sampling to the

case of linear function approximation with bootstrapping and real-time strictly incremental

update. The resulting algorithm is WIS-LSTD(λ), which we have shown to carry over the

benefits of the tabular off-policy estimator WIS2, which we found to be superior among

other estimators. Development of this algorithm required some important contributions

toward the understanding of reinforcement learning algorithms. We developed a technique

for incorporating state-dependent bootstrapping to combine different corrected flat returns.

To make real-time updates, we developed the concept of interim targets, so that meaningful

updates can be made without waiting for a full termination. We developed a general equiv-

alence technique for mechanistically deriving strictly incremental updates of reinforcement

learning algorithm, including WIS-LSTD(λ) we developed here. This is the first off-policy

algorithm for function approximation that fully incorporates the benefits of weighted im-

portance sampling. One drawback of this algorithm is that it is a least-squares method,

requiring matrix inversion or at least O(m2) memory and computation. Due to strictly

incremental computation, it can still be used for many off-policy predictions. However,

as White (2015) demonstrated, stochastic approximation algorithms with linear computa-

tional complexity are much more suited for large-scale learning of predictions compared to

least-squares methods.

84

Chapter 7

Weighted Importance Sampling
with Linear Computational
Complexity 1

In this chapter, we introduce a class of new off-policy algorithms with linear computational

complexity based on weighted importance sampling. They constitute our final contribution

toward the issue of high variance based on weighted importance sampling. These algorithms

emerged from our attempt to retain the benefits of WIS-LSTD(λ) while reducing the com-

putational complexity. Our effort also resulted into a novel way of incorporating averaging

methods with parametric function approximation, which constitute another contribution of

this thesis.

To produce computationally cheap algorithms based on weighted importance sampling,

we utilize stochastic gradient descent (SGD) updates as they typically fulfill this compu-

tational requirement. To carry over weighted importance sampling, which is a tabular

averaging method to stochastic gradient descent updates, we seek a principled way of relat-

ing tabular averaging method with stochastic gradient descent with function approximation.

Therefore, the key step in this endeavor is bridging the gap between stochastic gradient de-

scent updates with parametric function approximation and averaging methods with lookup

table representation. We show that this gap can be bridged by keeping track of the “usage”

of each feature and use it to modulate the step size of the updates. Although weighted

importance sampling based on stochastic gradient descent with function approximation can

be achieved through the application of a feature usage vector, it could not be calculated in

a strictly incremental manner. We introduce a second stochastic gradient descent update

which is motivated by weighted importance sampling and can be computed in a strictly in-

cremental manner. Moreover, we show that the feature usage vector can be flexibly applied

to other existing algorithms to achieve reduced mean squared errors.

1This chapter is adapted from a published paper coauthored by this author (Mahmood & Sutton 2015).

85

7.1 Merging Sample Average and SGD

In this section, we investigate the relationship between the sample average estimator and

SGD. We first show that SGD does not reduce to the sample average estimator in the

fully-representable case also known as the tabular representation. Then we propose a mod-

ification to SGD and show that it achieves the sample average estimator when the feature

representation is tabular.

The sample average is one of the simplest Monte Carlo estimators. In order to intro-

duce it, consider that data arrives as a sequence of samples Yk ∈ R drawn from a fixed

distribution. The goal of the learner is to estimate the expected value of the samples,

v
def
== E [Yk]. The sample average estimator V̂t+1 for data given up to time t can be defined

and incrementally updated in the following way:

V̂t+1
def
==

∑t
k=1 Yk
t

= V̂t +
1

t

(
Yt − V̂t

)
; V̂1

def
== 0. (7.1)

In the incremental update, 1
t can be viewed as a form of step size, modulating the

amount of change made to the current estimate, which decreases with time in this case. In

the parametric function approximation case, we have to go beyond sample average and use

stochastic approximation methods such as SGD.

To introduce SGD, we use a supervised-learning setting with linear function approxima-

tion. In this setting, data arrives as a sequence of input-output pairs (Xk, Yk), where Xk

takes values from a finite set X and Yk ∈ R. The learner observes a feature representation

of the inputs, where each input is mapped to a feature vector φk
def
== φ(Xk) ∈ Rm. The goal

of the learner is to estimate the conditional expectation of Yk for each unique input φ ∈ X
as a linear function of the features: θ>φ(x) ≈ v(φ)

def
== E [Yk|Xk = φ]. SGD incrementally

updates the parameter vector θ ∈ Rm at each time step t in the following way:

θt+1
def
== θt + αt

(
Yt − θ>t φt

)
φt, (7.2)

where αt > 0 is a scalar step-size parameter, which is often set to a small constant. The

per-update time and memory complexity of SGD is O(n).

Linear function approximation includes tabular representations as a special case. For

example, if the feature vectors are |X |-dimensional standard basis vectors, then each feature

uniquely represents an input, and the feature representation becomes tabular.

We are interested in finding whether SGD degenerates to sample average when the linear

function approximation setting reduces to the tabular setting. Both incremental updates

are in a form where the previous estimate is incremented with a product of an error and a

step size. In the SGD update, the product also has the feature vector as a factor, but in

the tabular setting, it simply selects the input for which an update is made.

A major difference between SGD and sample average is the ability of SGD to track

under non-stationarity through the use of a constant step size. Typically, the step size of

86

SGD is set to a constant value or decreased with time, where the latter does not work well

under non-stationarity but is similar to how sample average works. While we attempt to

accommodate sample average estimation more closely within SGD, it is also desirable to

retain the tracking ability of SGD.

SGD clearly cannot achieve sample average with a constant step size. On the other

hand, if we set the step-size parameter in the SGD update as αt = 1
t , the SGD update still

does not subsume the sample average. This is because, in the SGD update (7.2), time t is

the total number of samples seen so far, whereas, in the sample average update (7.1), it is

the number of samples seen so far only for one specific input.

We take two important steps to bridge the gap between the sample average update and

the SGD update. First, we extend the sample average estimator to incorporate tracking

through recency weighting, where the amount of weight assigned to the recent samples

is modulated by a scalar recency-weighting constant. This new recency-weighted average

estimator subsumes sample average as a special case and hence unifies both tracking and

sample averaging. Second, we propose a variant of SGD that reduces to recency-weighted

average in the tabular setting and still uses only O(n) per-update memory and computation.

Our proposed recency-weighted average estimator can be derived by minimizing an

empirical mean squared objective with recency weighting:

Ṽt+1
def
== arg min

v

1

t

t∑
k=1

(1− η)t−k (Yk − v)2 ; 0 ≤ η < 1.

Here, the recency-weighting constant η exponentially weights the past observations down

and thus gives more weight to the recent samples. When η = 0, all samples are weighted

equally. The recency-weighted average can be defined and incrementally updated as follows:

Ṽt+1 =

∑t
k=1(1−η)t−kYk∑t
k=1(1−η)t−k

= Ṽt+
1

Ũt+1

(
Yt−Ṽt

)
, (7.3)

Ũt+1
def
== (1− η)Ũt + 1; Ũ1

def
== 0, Ṽ1

def
== 0. (7.4)

It is easy to see that the recency-weighted average is an unbiased estimator of v. Moreover,

when η = 0, it reduces to the sample average estimator.

Now, we propose a modified SGD in the supervised-learning setting that for tabular

representation reduces to the recency-weighted average. The updates are as follows:

ut+1
def
== (1− ηφt ◦ φt) ◦ ut + φt ◦ φt, (7.5)

αt+1
def
== 1� ut+1, (7.6)

θt+1
def
== θt +αt+1 ◦

(
Yt − θ>t φt

)
φt, (7.7)

where η ≥ 0 is the recency-weighting factor, ◦ is component-wise vector multiplication, �
is component-wise vector division where a division by zero results in zero, and 1 ∈ Rm is a

87

vector of all ones. Here, αt+1 ∈ Rm is a vector step-size parameter, set as the vector division

of 1 by ut+1 ∈ Rm, which parallels Ũ of the recency-weighted average. We call u the usage

vector , as it can be seen as an estimate of how much each feature is “used” over time by

the update. We call this algorithm the usage-based SGD (U-SGD). Replacing a division by

zero with zero in the step-size vector amounts to having no updates for the corresponding

component. This makes sense because a zero in any component of u can occur only at the

beginning when u is initialized to zero and the corresponding feature has not been activated

yet. Once a feature is nonzero, the corresponding component of α becomes positive and,

with sufficiently small η, it always remains so.

In the following theorem, we show that U-SGD reduces to recency-weighted average in

the tabular setting and hence is a generalization of the sample average estimator as well.

Theorem 27 (Backward consistency of U-SGD with sample average). If the feature
representation is tabular, the vectors u and θ are initially set to zero, and 0 ≤ η < 1,
then U-SGD defined by (7.5)-(7.7) degenerates to the recency-weighted average estima-
tor defined by (7.3) and (7.4), in the sense that each component of the parameter vector
θt+1 of U-SGD becomes the recency-weighted average estimator of the corresponding in-
put.

Proof. Consider that t samples have been observed and among them tx samples correspond

to input φ. Hence,
∑

φ∈X tx = t. Let Yφ,k denote the kth output corresponding to input

φ. Then the recency-weighted average estimator of v(x) given overall data up to t can be

equivalently redefined in the following way:

Ṽtx+1
def
==

∑tx
k=1(1− η)tx−kYφ,k∑tx
k=1(1− η)tx−k

= Ṽtx +
1

Ũtx+1

(
Yx,tx − Ṽtx

)
; Ṽ1 = 0,

Ũtx+1
def
== (1− η)Ũtx + 1; Ũ1 = 0.

Consider that the ith feature corresponds to input φ. Then it is equivalent to prove that

[θt+1]i = Ṽtx+1, where [·]i denotes the ith component of a vector.

We prove by induction. First we show that [ut+1]i = Ũtx+1. By assumption, [u1]i =

Ũ1 = 0. Now, consider that [ut]i = Ũ(t−1)x+1. Then the ith component of ut+1 can be

written as

[ut+1]i = (1− η[φt]
2
i)[ut]i + [φt]

2
i .

If the tth input is not x, then tx = (t− 1)x and [φt]i = 0. Hence

[ut+1]i = (1− 0)Ũ(t−1)x+1 + 0 = Ũ(t−1)x+1 = Ũtx+1.

On the other hand, if the tth input is x, then tx = (t− 1)x + 1 and [φt]i = 1. Hence,

[ut+1]i = (1− η)Ũ(t−1)x+1 + 1 = (1− η)Ũtx + 1 = Ũtx+1.

88

Hence, [αt+1]i = 1
Ũtx+1

, if tx > 0, or [αt+1]i = 0, otherwise.

Now, by assumption, [θ1]i = Ṽ1 = 0. Consider [θt]i = Ṽ(t−1)x+1 and tx > 0. Then the

ith component of θt+1 can be written as

[θt+1]i = [θt]i + [αt+1]i

(
Yt − θ>t φt

)
[φt]i

= Ṽ(t−1)x+1 +
1

Ũtx+1

(
Yt − θ>t φt

)
[φt]i.

If the tth input is not x, then [θt+1]i = Ṽ(t−1)x+1 + 0 = Ṽtx+1.

On the other hand, if the tth input is x, then Yt = Yφ,tx and

[θt+1]i = Ṽ(t−1)x+1 +
1

Ũtx+1

(
Yφ,tx − Ṽ(t−1)x+1

)
= Ṽtx +

1

Ũtx+1

(
Yφ,tx − Ṽtx

)
= Ṽtx+1.

The only case that is left is when tx = 0. In this case, the tth input cannot be x, and

Ṽtx+1 = Ṽ(t−1)x+1 = · · · = Ṽ1 = 0. Then

[θt+1]i = [θt]i + [αt+1]i

(
Yt − θ>t φt

)
[φt]i

= Ṽ(t−1)x+1 + 0 ·
(
Yt − θ>t φt

)
· 0

= 0 = Ṽtx+1.

7.2 Merging WIS and off-policy SGD

In this section, we carry over weighted importance sampling (WIS) to off-policy SGD,

drawing from the ideas developed in the previous section. We introduce two new off-policy

SGD algorithms based on WIS. The first one subsumes WIS fully but does not lead to

an O(n) implementation, whereas the other algorithm is more amenable to an efficient

implementation.

First we introduce both the ordinary importance sampling (OIS) and WIS. Importance

sampling is a technique for estimating an expectation under one distribution using samples

drawn from a different distribution. OIS estimates the expectation by forming a special kind

of sample average. Consider that samples Yk ∈ R are drawn from a sample distribution l,

but the goal of the learner is to estimate the expectation vg
def
== Eg [Yk] under a different

distribution g. OIS estimates vg by scaling each sample Yk by the importance-sampling

ratio Wk
def
== g(Yk)

l(Yk) and forming a sample average estimate of the scaled samples:

Ṽt+1
def
==

∑t
k=1WkYk

t
= Ṽt +

1

t

(
WtYt − Ṽt

)
; Ṽ1

def
== 0.

89

WIS, on the other hand, estimates vg by forming a weighted average estimate of the

original samples. Its definition and incremental update are as follows:

V̂t+1
def
==

∑t
k=1WkYk∑t
k=1Wk

= V̂t +
1

Ût+1

Wt

(
Yt − V̂t

)
,

Ût+1
def
== Ût +Wt; Û1

def
== 0, V̂1

def
== 0.

If there is no discrepancy between the sample and the target distribution, then Wk = 1,∀k,

and both OIS and WIS become equivalent to the sample average estimator.

We derive the recency-weighted WIS as a solution to a mean squared objective with

recency weighting and additionally importance sampling:

V̄t+1
def
== arg min

v

1

t

t∑
k=1

(1− η)t−kWk (Yk − v)2 ; 0 ≤ η < 1,

=

∑t
k=1(1− η)t−kWkYk∑t
k=1(1− η)t−kWk

.

It is easy to see that, when η = 0, the recency-weighted WIS estimator reduces to WIS.

Recency-weighted WIS can be updated incrementally in the following way:

V̄t+1 = V̄t +
1

dt+1
Wt

(
Yt − V̄t

)
; V̄1

def
== 0, (7.8)

dt+1
def
== (1− η)dt +Wt; d1

def
== 0. (7.9)

Now we introduce two variants of SGD based on WIS in a more general off-policy

reinforcement learning setting with linear function approximation.

We call the first off-policy SGD based on WIS to be WIS-SGD-1. With 0 ≤ k < t + 1

and θt0
def
== θ0, ∀t, the following updates define WIS-SGD-1:

ut+1
k+1

def
== (1− ηφk ◦ φk) ◦ ut+1

k + ρt+1
k φk ◦ φk, (7.10)

αt+1
k+1

def
== 1� ut+1

k+1, (7.11)

θt+1
k+1

def
== θk +αt+1

k+1 ◦ ρt+1
k

(
Gt+1
k − φ>k θt+1

k

)
φk. (7.12)

Similar to U-SGD, WIS-SGD-1 maintains a vector step size through the update of a usage

vector, which in this case also includes the importance-sampling ratios. Unlike U-SGD, the

parameters of WIS-SGD-1 use two-time indices. The time index in the subscript corresponds

to the time step of the prediction, and the time index in the superscript stands for the data

horizon. In the following, we show that WIS-SGD-1 reduces to recency-weighted WIS, and

hence to WIS as well, in the tabular setting.

Theorem 28 (Backward consistency of WIS-SGD-1 with WIS). If the feature repre-
sentation is tabular, the vectors u and θ are initially set to zero, and 0 ≤ η < 1, then
WIS-SGD-1 defined by (7.10)-(7.12) degenerates to recency-weighted WIS defined by

(7.8) and (7.9) with Yk
def
== Gt+1

k and Wk
def
== ρt+1

k , in the sense that each component of

90

the parameter vector θt+1
t+1 of WIS-SGD-1 becomes the recency-weighted WIS estimator

of the corresponding input.

Proof. The proof is similar to that of Theorem 27.

Consider that data is available up to time t + 1, among which state s was visited on

ts steps. Let Gt+1
s,k denote the kth flat truncated return originated from state s and ρt+1

s,k

its corresponding importance-sampling ratio. Then the recency-weighted WIS estimator of

v(s) given overall data up to t+ 1 can be equivalently redefined in the following way:

V̄ t+1
ts+1

def
== V̄ t+1

ts +
ρt+1
s,ts

dt+1
ts+1

(
Gt+1
s,ts − V̄

t+1
ts

)
; V̄ t+1

0 = 0,

dt+1
ts+1

def
== (1− η)dt+1

ts + ρt+1
s,ts ; dt+1

0 = 0.

Consider that the ith feature corresponds to input s. Then it is equivalent to prove that[
θt+1
t+1

]
i

= V̄ t+1
ts+1, where [·]i denotes the ith component of a vector. By abuse of notation, we

drop all the t+ 1 from superscripts, as it is redundant in this proof.

We prove by induction. First we show that [ut+1]i = dts+1. By assumption, [u0]i =

d0 = 0. Considering [ut]i = d(t−1)s+1. Then the ith component of ut+1 can be written as

[ut+1]i = (1− η[φt]
2
i)[ut]i + ρt[φt]

2
i .

If the state at time t is not s, then ts = (t− 1)s and [φt]i = 0. Hence

[ut+1]i = (1− 0)d(t−1)s+1 + 0 = d(t−1)s+1 = dts+1.

On the other hand, if the state at time t is s, then ts = (t− 1)s + 1, [φt]i = 1 and ρt = ρt+1
s,ts .

Hence,

[ut+1]i = (1− η)d(t−1)s+1 + ρt+1
s,ts

= (1− η)dts + ρt+1
s,ts = dts+1.

Hence, [αt+1]i = 1
dts+1

, if ts > 0, or [αt+1]i = 0, otherwise.

Now, by assumption, [θ0]i = V̄0 = 0. Considering [θt]i = V̄(t−1)s+1 and ts > 0, the ith

component of θt+1 can be written as

[θt+1]i = [θt]i + [αt+1]iρt

(
Gt − φ>t θt

)
[φt]i

= V̄(t−1)s+1 +
ρt

dts+1

(
Gt − φ>t θt

)
[φt]i.

If the state at time t is not s, then [θt+1]i = V̄(t−1)s+1 + 0 = V̄ts+1.

If the state at time t is not s, then ρt = ρs,ts , Gt = Gs,ts and

[θt+1]i = V̄(t−1)s+1 +
ρs,ts
dts+1

(
Gs,ts − V̄(t−1)s+1

)
= V̄ts +

ρs,ts
dts+1

(
Gs,ts − V̄ts

)
= V̄ts+1.

91

The only case that is left is when ts = 0. In this case, the the state at time t cannot be s,

and V̄ts+1 = V̄(t−1)s+1 = · · · = V̄0 = 0. Then

[θt+1]i = [θt]i + [αt+1]iρt

(
Gt − θ>t φt

)
[φt]i

= V̄(t−1)s+1 + 0 · ρt
(
Gt − θ>t φt

)
· 0

= 0 = V̄ts+1.

Now we focus on whether and how WIS-SGD-1 can be implemented efficiently. The

updates as defined above cannot be computed in O(n) per time step. An update for step

k requires computing an importance-sampling ratio and a flat truncated return that are

available only at t + 1 > k. It can be computed by looking ahead into the future from k,

but then the update becomes acausal. It can alternatively be computed by waiting until

time t+ 1 and iterating for each k. But then the update made at t+ 1 becomes expensive,

scaling linearly with t, that is, O(tn).

Such updates, where samples are available in future from the time step when the update

is made, are often known as forward-view updates (Sutton & Barto 1998). Forward-view

updates are typically expensive, but for some forward-view updates it is possible to derive

causal and efficient updates, known as backward-view updates, that compute exactly the

same estimate at each time step. Classically these equivalences were achieved for offline

updating. Van Seijen and Sutton (2014) showed that such equivalences can also be achieved

in the online case.

Converting a forward-view update into an efficient backward-view update depends on

combining the extra data available at t+ 1 with the current estimate θtt in an efficient way

to give the next estimate θt+1
t+1. For linear recursive updates, it is tantamount to unrolling

both θt+1
t+1 and θtt and expressing their difference in a form that can be computed efficiently.

It is often not possible to achieve such efficient backward-view updates, and we believe

WIS-SGD-1 is one such case.

To appreciate why an efficient backward-view update of WIS-SGD-1 is not plausible,

consider the update of θtt unrolled back to the beginning of time:

θtt =
(
I− ρtt−1(αtt ◦ φt−1)φ>t−1

)
θtt−1 + ρtt−1G

t
t−1φt−1

=
t−1∏
k=0

(
I− ρtk(αtk+1 ◦ φk)φ>k

)
θt0

+

t−1∑
k=0

ρtkG
t
k

t−1∏
j=k+1

(
I− ρtj(αtj+1 ◦ φj)φ>j

)
φk.

In order to obtain θt+1
t+1 by combining the new data φt and Rt+1 with θtt, it is evident that

each of the ρtk(α
t
k+1 ◦φk)φ>k terms in the first product needs to be replaced by ρt+1

k (αt+1
k+1 ◦

92

φk)φ
>
k , which is unlikely to be achieved in an inexpensive way. We cannot achieve a

backward-view due to the lack of the distributivity of addition over multiplication as in

(3.55). This problem does not appear in previous algorithms with online equivalence such

as true online TD(λ) (van Seijen & Sutton 2014) or true online GTD(λ) (van Hasselt,

Mahmood & Sutton 2014), because the terms involved in the product of the unrolled update

in those algorithms do not involve forward-view terms, that is, they contain ρk and αk+1 in

those products instead of ρt+1
k and αt+1

k+1. This specific problem with WIS-SGD-1 is due to

the fact that the error of the update in (7.12) is multiplied by the forward-view terms ρt+1
k

and αt+1
k+1.

The observation we made in the above leads us to develop a second off-policy SGD. In

this algorithm, first we replace the forward-view term αt+1
k+1 from the update of θ with αk+1

k+1.

Second, instead of multiplying the terms in the error Gt+1
k −φ>k θt+1

k with the same forward-

view term ρt+1
k , we multiply the first term Gt+1

k by ρt+1
k and the second term φ>k θ

t+1
k by

ρk. To account for this discrepancy, we add two more terms in the error, and the resultant

error of the new update becomes ρt+1
k Gt+1

k − ρt+1
k φ>k θ

k−1
k−1 + ρkφ

>
k θ

k−1
k−1 − ρkφ>k θt+1

k . Here,

the first two terms are approximating the WIS-SGD-1 error ρt+1
k

(
Gt+1
k − φ>k θt+1

k

)
, whereas

the last two terms are adding a bias. Although this new algorithm no longer reduces to

WIS in the tabular setting, it is developed based on WIS and still retains the main ideas

behind recency-weighted WIS. Hence, we call this algorithm WIS-SGD-2. The following

updates define WIS-SGD-2, with 0 ≤ k < t+ 1:

ut+1
k+1

def
== (1− ηφk ◦ φk) ◦ ut+1

k + ρt+1
k φk ◦ φk, (7.13)

αk+1
def
== 1� uk+1

k+1, (7.14)

δt+1
k

def
== ρt+1

k Gt+1
k − ρt+1

k φ>k θk−1

+ ρkφ
>
k θk−1 − ρkφ>k θt+1

k , (7.15)

θt+1
k+1

def
== θt+1

k +αk+1 ◦ δt+1
k φk. (7.16)

Here, θk
def
== θkk , and θ−1 = 0. It can be easily verified that, in the on-policy case, WIS-

SGD-2 degenerates to U-SGD and hence retains the backward consistency with the sample

average estimator.

Although this algorithm has much more plausibility of having an efficient backward view

due to the careful modifications, it is not yet immediately clear how such a backward-view

update can be obtained. Van Hasselt, Mahmood, and Sutton (2014) introduced an online

equivalence technique from which both true online TD(λ) and true online GTD(λ) can be

derived. Their technique requires the target in error to have a specific recurrence relation.

Unfortunately, that specific relation does not hold for the target in WIS-SGD-2. A new

technique is needed to derive an efficient backward view for WIS-SGD-2.

93

7.3 Usage-based Algorithms

In this section, we develop a new off-policy algorithm that generalizes WIS-SGD-2 to partial

termination and bootstrapping. Then we use the new online equivalence technique to

derive an equivalent O(n) backward-view update. We use a state-dependent bootstrapping

parameter λk
def
== λ(Sk) ∈ [0, 1] in developing the new algorithm. First, we construct the

target, and then we define a new update for the usage vector u in this more general setting.

Based on the general off-policy forward view by Sutton et al. (2014), we combine trun-

cated returns Gt+1
k and truncated corrected returns Gt+1

k +φ>t+1θt scaled by corresponding

weights due to discounting, bootstrapping and importance sampling to develop an overall

return:

Gρk,t+1
def
==ρkC

t
k

(
(1− γt+1)Gt+1

k +γt+1

(
Gt+1
k + φ>t+1θt

))
+

t∑
i=k+1

ρkC
i−1
k

(
(1− γi)Gik+γi(1− λi)

(
Gik + φ>i θi−1

))

− ρk
(
Ctk +

t∑
i=k+1

Ci−1
k (1− γiλi)− 1

)
φ>k θk−1, (7.17)

where Ctk
def
==

∏t
j=k+1 γjλjρj , θk

def
== θkk , 0 ≤ k < t + 1 and θ−1 = 0. It can be readily

verified that, when no bootstrapping is used, that is, λk = 1, ∀k and discounting occurs

only at the data horizon t + 1, that is, γ0 = γ1 = · · · = γt = 1 and γt+1 = 0, then

Gρk,t+1 = ρt+1
k Gt+1

k −ρt+1
k φ>k θk−1 +ρkφ

>
k θk−1. Hence Gρk,t+1 is a strict generalization of the

WIS-SGD-2 target to the state-dependent discounting and bootstrapping.

The usage vector u of the WIS-SGD algorithms rescales the components of the parameter

updates to clamp down the updates proportionally when they become large due to large

importance-sampling ratios. However, when bootstrapping is used, larger trajectories are

given smaller weights, and hence their corresponding importance-sampling ratios will have

a less severe effect on the updates. For example, when full bootstrapping is used, that

is, λk = 0,∀k, the overall return becomes Gρk,t+1 = ρk
(
Rk+1 + γk+1φ

>
k+1φk

)
, with an

importance-sampling ratio of a one-transition long trajectory. In such cases, updating u

with the importance-sampling ratio of the full trajectory ρt+1
k is unnecessary. Hence, the

amount of importance weighting in u at each step should be modulated by the amount of

discounting and bootstrapping.

Based on the overall return in (7.17) and the idea of discounting and bootstrapping-

aware update of u discussed above, we propose a new off-policy TD algorithm based on

WIS, which we call WIS-TD(λ). It consists of the following forward-view updates:

ρ̃t+1
k

def
== ρk

t∑
i=k+1

Ci−1
k (1− γiλi) + ρkC

t
k; ρ̃tt

def
== 0, (7.18)

ut+1
k+1

def
== (1− ηφk ◦ φk) ◦ ut+1

k + ρ̃t+1
k φk ◦ φk, (7.19)

94

αk+1
def
== 1� uk+1

k+1, (7.20)

θt+1
k+1

def
== θt+1

k +αk+1 ◦
(
Gρk,t+1− ρkφ>k θt+1

k

)
φk. (7.21)

It can be easily verified that, when no bootstrapping is used, that is, λk = 1, ∀k and

discounting occurs only at the data horizon t + 1, that is, γ0 = γ1 = · · · = γt = 1 and

γt+1 = 0, then ρ̃t+1
k = ρt+1

k , and we already showed that the target of WIS-TD(λ) Gρk,t+1

reduces to the WIS-SGD-2 target in this case. Hence, WIS-TD(λ) subsumes WIS-SGD-2,

establishing a direct backward consistency to sample average.

In the following, we apply the new general equivalence technique, we provided in Theo-

rem 25, to the above forward-view update to derive an O(n) backward-view update comput-

ing the same parameter vector θt at each t. For that, first we derive an O(n) backward-view

update for the step size that computes the same αt as in the above algorithm at each t.

Theorem 29 (Backward view update for αt of WIS-TD(λ)). The step-size vector αt
computed by the following backward-view update and the forward-view update defined
by (7.18) – (7.20) are equal at each step t:

ut+1
def
== (1− ηφt ◦ φt) ◦ ut + ρtφt ◦ φt + (ρt − 1)γtλt (1− ηφt ◦ φt) ◦ vt, (7.22)

vt+1
def
== γtλtρt (1− ηφt ◦ φt) ◦ vt + ρtφt ◦ φt, (7.23)

αt+1
def
== 1� ut+1. (7.24)

Proof. First, note that the component-wise vector multiplication in (7.19) can be written

equivalently as a matrix-vector multiplication in the following way:

(1− ηφk ◦ φk) ◦ ut+1
k = (I− ηDiag (φk ◦ φk)) ut+1

k ,

where Diag(v) ∈ R|v|×|v| is a diagonal matrix with the components of v in its diagonal.

In Theorem 25, we substitute θt+1
k = ut+1

k , Fk = (I− ηDiag (φk ◦ φk)), xk = 0, wk =

φk ◦ φk and Y t+1
k = ρ̃t+1

k .

Now, ρ̃t+1
k can be recursively in t written as follows

ρ̃t+1
k = ρk

t∑
i=k+1

Ci−1
k (1− γiλi) + ρkC

t
k

= ρk

t−1∑
i=k+1

Ci−1
k (1− γiλi) + ρkC

t−1
k (1− γtλt) + ρkC

t
k

= ρk

t−1∑
i=k+1

Ci−1
k (1− γiλi) + ρkC

t−1
k + ρkC

t−1
k ρtγtλt − ρkCt−1

k γtλt

= ρ̃tk + (ρt − 1)γtλtρkC
t−1
k .

Hence, it proves that

Y t+1
k − Y t

k = dk+1

(
Y t+1
k+1− Y t

k+1

)
+ btgk

t−1∏
j=k+1

cj , 0 ≤ k < t,

95

with di = 0, bi = (ρi − 1)γiλi, gi = ρi and ci = γiλiρi,∀i.
Inserting these substitutes in Theorem 25 yields us the backward-view defined by (7.22)

– (7.24).

Now, we derive an O(n) backward-view update that computes the same θtt as the above

forward view.

Theorem 30 (Backward view update for θtt of WIS-TD(λ)). The parameter vector θt
computed by the following backward-view update and the parameter vector θtt computed
by the forward-view update defined by (7.17) and (7.21) are equal at every time step t:

et
def
== ρtαt+1 ◦ φt

+ γtλtρt

(
et−1 − ρt (αt+1 ◦ φt)φ>t et−1

)
, (7.25)

θt+1
def
== θt +αt+1 ◦ ρt

(
θ>t−1φt − θ>t φt

)
φt

+ (Rt+1 + γt+1θ
>
t φt+1 − θ>t−1φt)et

+ (ρt − 1)γtλt

(
dt − ρt (αt+1 ◦ φt)φ>t dt

)
, (7.26)

dt+1
def
== γtλtρt

(
dt − ρt (αt+1 ◦ φt)φ>t dt

)
+
(
Rt+1 + θ>t φt+1 − θ>t−1φt

)
et. (7.27)

Proof. First, we redefine (7.21) for convenience:

θt+1
k+1

def
== θt+1

k +αk+1 ◦ ρk
(
ζρk,t+1− φ>k θt+1

k

)
φk, (7.28)

where Gρk,t+1 = ρkζ
ρ
k,t+1. Hence, ζρk,t+1 can be given by:

ζρk,t+1
def
== Ctk

(
(1− γt+1)Gt+1

k + γt+1

(
Gt+1
k + φ>t+1θt

))
+

t∑
i=k+1

Ci−1
k

(
(1− γi)Gik + γi(1− λi)

(
Gik + φ>i θi−1

))

−
(
Ctk +

t∑
i=k+1

Ci−1
k (1− γiλi)− 1

)
φ>k θk−1.

In Theorem 25, we substitute Fk = I−ρk(αk+1◦φk)φ>k , wk = ρkαk+1◦φk, Y t+1
k = ζρk,t+1

and xk = 0, ∀k, to get (7.28). Now, the next step is to establish a recursive relation for ζρ

both in k and t. For that, we use the following identities:

Gk+1
k = Rk+1,

Gt+1
k =

t∑
i=k

Ri+1 = Rk+1 +Gt+1
k+1.

96

First we establish the recurrence relation in k:

ζρk,t+1 = Ctk

(
(1− γt+1)Gt+1

k + γt+1

(
Gt+1
k + φ>t+1θt

))
+

t∑
i=k+1

Ci−1
k

(
(1− γi)Gik + γi(1− λi)

(
Gik + φ>i θi−1

))

−
(
Ctk +

t∑
i=k+1

Ci−1
k (1− γiλi)− 1

)
φ>k θk−1

= Ctk

(
(1− γt+1)

(
Rk+1 +Gt+1

k+1

)
+ γt+1

(
Rk+1 +Gt+1

k+1 + φ>t+1θt

))
+
(

(1− γk+1)Gk+1
k + γk+1(1− λk+1)

(
Gk+1
k + φ>k+1θk

))
+

t∑
i=k+2

Ci−1
k

(
(1− γi)

(
Rk+1 +Gik+1

)
+ γi(1− λi)

(
Rk+1 +Gik+1 + φ>i θi−1

))

−
(
Ctk +

t∑
i=k+1

Ci−1
k (1− γiλi)− 1

)
φ>k θk−1

= ρk+1γk+1λk+1C
t
k+1

(
(1− γt+1)Gt+1

k+1 + γt+1(Gt+1
k+1 + φ>t+1θt)

)
+ ρk+1γk+1λk+1

t∑
i=k+2

Ci−1
k+1

(
(1− γi)Gik+1 + γi(1− λi)

(
Gik+1 + φ>i θi−1

))

− ρk+1γk+1λk+1

(
Ctk+1 +

t∑
i=k+2

Ci−1
k+1(1− γiλi)− 1

)
φ>k+1θk

+

(
Ctk +

t∑
i=k+2

Ci−1
k (1− γiλi)− ρk+1γk+1λk+1

)
φ>k+1θk

+ CtkRk+1 + (1− γk+1λk+1)Rk+1 + γk+1(1− λk+1)φ>k+1θk

+Rk+1

t∑
i=k+2

Ci−1
k (1− γiλi)

−
(
Ctk +

t∑
i=k+1

Ci−1
k (1− γiλi)− 1

)
φ>k θk−1

= ρk+1γk+1λk+1ζ
ρ
k+1,t+1

+

(
Ctk +

t∑
i=k+1

Ci−1
k (1− γiλi)− 1

)(
Rk+1 + φ>k+1θk − φ>k θk−1

)
+Rk+1 + φ>k+1θk − ρk+1γk+1λk+1φ

>
k+1θk

+ γk+1(1− λk+1)φ>k+1θk − (1− γk+1λk+1)φ>k+1θk

= ρk+1γk+1λk+1ζ
ρ
k+1,t+1

+

(
Ctk +

t∑
i=k+1

Ci−1
k (1− γiλi)− 1

)(
Rk+1 + φ>k+1θk − φ>k θk−1

)
+Rk+1 + γk+1 (1− ρk+1λk+1)φ>k+1θk.

97

Then the recurrence in t can be established by subtracting ζρk,t from ζρk,t+1:

ζρk,t+1 − ζ
ρ
k,t

def
== ρk+1γk+1λk+1ζ

ρ
k+1,t+1

+

(
Ctk +

t∑
i=k+1

Ci−1
k (1− γiλi)− 1

)(
Rk+1 + φ>k+1θk − φ>k θk−1

)
+Rk+1 + γk+1 (1− ρk+1λk+1)φ>k+1θk − ρk+1γk+1λk+1ζ

ρ
k+1,t

−
(
Ct−1
k +

t−1∑
i=k+1

Ci−1
k (1− γiλi)− 1

)(
Rk+1 + φ>k+1θk − φ>k θk−1

)
−Rk+1 + γk+1 (1− ρk+1λk+1)φ>k+1θk

= ρk+1γk+1λk+1

(
ζρk+1,t+1 − ζ

ρ
k+1,t

)
+
(
Ctk − Ct−1

k + Ct−1
k (1− γtλt)

) (
Rk+1 + φ>k+1θk − φ>k θk−1

)
= ρk+1γk+1λk+1

(
ζρk+1,t+1 − ζ

ρ
k+1,t

)
+ (ρt − 1)γtλtC

t−1
k

(
Rk+1 + φ>k+1θk − φ>k θk−1

)
.

The above recurrence relation establishes

Y t+1
k − Y t

k = dk+1

(
Y t+1
k+1− Y t

k+1

)
+ btgk

t−1∏
j=k+1

cj , 0 ≤ k < t,

with di = ρiγiλi, bi = (ρi−1)γiλi, gi = Ri+1+φ>i+1θi−φ>i θi−1 and ci = γiλiρi, ∀i. Inserting

these substitutes in Theorem 25 yields us the backward-view defined by (7.25) – (7.27)

The overall backward view of WIS-TD(λ) is defined by (7.22) – (7.27). Note that Theo-

rem 30 does not depend on how αt+1 is set. The per-update time and memory complexity

of WIS-TD(λ) is O(n). An auxiliary parameter vector might be included in WIS-TD(λ) by

making use of the xk vector of the online equivalence technique as was done by van Hasselt

et al. (2014), but we do not explore this possibility here.

The vector step-size adaptation based on the update of the usage vector u is only loosely

coupled with WIS-TD(λ) and can be freely combined with existing off-policy algorithms

as well as the on-policy ones. When combined with the existing algorithms, this step-size

adaptation is expected to yield benefits due to the rescaling it performs according to the

magnitude of importance-sampling weights and the frequency of feature activation.

We propose two new off-policy algorithms: WIS-GTD(λ) and WIS-TO-GTD(λ), based

on GTD(λ) (Maei 2011) and true online GTD(λ) (van Hasselt et al. 2014), respectively.

In both algorithms, we propose replacing the scalar step size of the main parameter vector

with the vector step size according to (7.22) – (7.24). The scalar step-size parameter of the

auxiliary parameter vector of GTD(λ) and true online GTD(λ) could also be replaced with

the vector step size with a different recency-weighting factor, but we leave it out here.

We propose two new on-policy algorithms: usage-based TD(λ) (U-TD(λ)) and usage-

based true online TD(λ) (U-TO-TD(λ)), by combining the vector-step-size adaptation with

98

two existing on-policy algorithms: TD(λ) (Sutton & Barto 1998) and true online TD(λ)

(van Seijen & Sutton 2014), respectively. There are interesting interrelationships between

these on-policy and off-policy algorithms. For example, WIS-GTD(λ) becomes equivalent

to U-TD(λ) in the on-policy case when the second step-size parameter β = 0. On the other

hand, WIS-TD(λ) directly degenerates to U-TO-TD(λ) in the on-policy case, whereas WIS-

TO-GTD(λ) reduces to U-TO-TD(λ) in the on-policy case with β = 0.

7.4 Experimental Results

In this section we evaluate the new algorithms using two sets of experiments with off-

policy and on-policy policy-evaluation tasks, respectively. Source code for both the off-

policy and on-policy experiments are available online In the first set of experiments, we

compared the new off-policy algorithms: WIS-TD(λ), WIS-GTD(λ) and WIS-TO-GTD(λ)

with two existing O(n) algorithms: GTD(λ) and true online GTD(λ) (TO-GTD(λ)), and

with two least squares algorithms: LSTD-TO(λ), an off-policy algorithm proposed by Dann,

Neumann and Peters (2014), and WIS-LSTD(λ), an ideal extension of WIS. For evaluation,

we created three off-policy policy-evaluation tasks.

The first task was constructed based on a random-walk Markov chain where the states

can be imagined to be laid out on a horizontal line. There were 11 non-terminal states and

two terminal states: on the left and the right ends of the chain. From each non-terminal

state, there were two actions available: left, leads to the state to the left, and right, leads

to the state to the right. The initial state was always set to the state in the middle of the

chain. The reward was sparse: 0 for all transitions except for the rightmost transition to

the terminal state, where it was +1. The behavior policy was uniformly random between

the two actions and the target policy chose right with 0.99 probability. No discounting was

used. The feature vectors were binary representations of state indices. For 11 non-terminal

states, each feature vector was of length blog2(11)c+ 1 = 4, and these vectors for the states

from left to right were (0, 0, 0, 1)>, (0, 0, 1, 0)>, (0, 0, 1, 1,)>, · · · , (1, 0, 1, 1)>. The features

were all zero for the terminal states.

The second and the third tasks were constructed using randomly generated MDPs. We

represent a randomly generated MDP as (N,M, b,Γ) where N and M stand for the number

of states and actions, respectively, and b is a branching factor denoting the number of next

states for a given state-action pair. Here, Γ ∈ RN×N is a diagonal matrix where the entries

are the state-dependent discounting γ(·) for each state. We use such a state-dependent

discounting to denote termination under the target policy while experience continues seam-

lessly under the behavior policy. For each state, the next b states were chosen from total

N states randomly without replacement, and the transition probabilities were generated

by partitioning the unit interval at b − 1 cut points which were selected uniformly ran-

domly from [0, 1]. The rewards for a transition from a state-action pair to the next state

were selected uniformly randomly from [0, 1] and kept deterministic. The behavior policy

99

probabilities for different actions in a particular state were set using uniform random num-

bers from [10−15, 1 + 10−15] and normalized to sum to one. The target policy is much less

stochastic: one of the actions in a particular state is chosen to have probability 0.99 and

the rest of the actions are equiprobable.

We constructed the second task by randomly generating an MDP with parameters (10,

3, 3,Γ), where γ(·) = 0 for 2 randomly chosen states to denote termination under the target

policy and γ(·) = 0.99 for the rest of the 8 states. For the third task, we randomly generated

an MDP with parameters (100, 3, 10,Γ), where γ(·) = 0 for 5 randomly chosen states and

γ(·) = 0.99 for the rest. The feature vectors were binary representations of the indices of

all states including those for which γ(·) = 0. In these two tasks, the feature vectors were

normalized to have unit length.

We tested all algorithms for different values of constant λ, from 0 to 0.9 in steps of

0.1 and from 0.9 to 1.0 in steps of 0.01. The first step-size parameter α of GTD(λ) and

TO-GTD(λ) was varied by powers of 10 with powers chosen from −3 to 0 in steps of 0.25.

The second step-size parameter β of both algorithms was varied among values [0, 0.001,

0.01, 0.1]. The initial value u0 of the components of the usage vector u for WIS-TD(λ),

WIS-GTD(λ) and WIS-TO-GTD(λ) was varied by powers of 10 with powers chosen from

0 to 3 in steps of 0.25. The recency-weighting factor η of the same algorithms was set as

η = µ/u0, where µ was varied among values [0, 0.001, 0.01, 0.1, 1]. The second step-size

parameter β for WIS-GTD(λ) and WIS-TO-GTD(λ) was set to zero. The matrix to be

inverted in LSTD-TO(λ) and WIS-LSTD(λ) was initialized to εI, where ε was varied by

powers of 10 with powers chosen from −3 to +3 in steps of 0.2. The initial parameter vector

θ0 was set to 0.

Performance was measured as the empirical mean squared error (MSE) between the

estimated values of the states and their true values under the target policy projected to

the space spanned by the given features. The error was weighted according to the state-

visitation distribution under the behavior policy. As the scale of this MSE measure can vary

between these tasks, we normalized it by the squared weighted L2 norm of the projected

true value, which is equivalent to the MSE under θ = 0. As a result, the initial normalized

MSE (NMSE) for each algorithm was 1. For each run, we averaged this error over 100

episodes measured at the end of each episode for the first task, over 500 steps for the second

task, and over 5000 steps for the third. We produced the final estimate by further averaging

over 50 independent runs.

Figure 7.1 shows the empirical performance together with the standard error on the three

off-policy policy-evaluation tasks with respect to different λ and optimized over all other

parameters. In all three tasks, the new algorithms significantly outperformed both GTD(λ)

and TO-GTD(λ) indicating the effectiveness of the adaptive vector step size in retaining the

advantage of WIS. The new algorithms also performed competitively with LSTD-TO(λ) in

all tasks. Among the new algorithms, WIS-GTD(λ) had superior performance with large

100

TO-GTD

GTD

WIS-LSTD

WIS-GTD

W
IS

-T
O-

GT
D

WIS-TD

�

2. Randomly generated MDP: (10 states)

WIS-LSTD

WIS-GTD

TO-GTD

GTD

WIS-TO-GTD
WIS-TD

�

3. Randomly generated MDP: (100 states)

TO-GTD

GTD

WIS-GTD

WIS-TO-GTD

W
IS

-T
D

WIS-LSTD

NMSE

�

1. Random walk: (11 states)

LSTD-TO

LSTD-TO

LSTD-TO

Figure 7.1: Empirical comparison of the new WIS-based O(n) algorithms with two exist-
ing O(n) algorithms and two LSTD algorithms on three off-policy policy-evaluation tasks.
Performance is shown in the empirical normalized MSE (NMSE) measured by averaging
over 50 independent runs and 100 episodes for the first task, 500 steps for the second, and
5000 steps for the third. The new WIS-based algorithms performed significantly better than
both existing O(n) algorithms in all three off-policy tasks and competitively with one of
the LSTD algorithms.

values of λ.

We also studied the sensitivity of the new algorithms with respect to their parameters.

Although these algorithms replace the scalar constant step-size parameter of their base

learner with an adaptive vector step size based on feature usage, the estimate of the usage

depends on two new parameters: the initial value u0 and the recency weighting constant η.

The initial value u0 of the usage vector can be interpreted as the inverse of the initial step

size, and its tuning can be as extensive as that of the scalar step-size parameter in other

algorithms. On the other hand, η can be viewed as the desired final step size. As a result,

their product µ = u0η is unit free and requires less rigorous tuning.

In our final set of experiments, we compared the new O(n) on-policy algorithms: U-

TD(λ) and U-TO-TD(λ), with two O(n) on-policy algorithms: TD(λ) with accumulating

traces and true online TD(λ), which we call TO-TD(λ).

We used randomly generated MDPs to produce two on-policy policy-evaluation tasks.

As the TD algorithms here estimate state-value functions, it sufficed to construct Markov

Reward Processes (MRPs), which we obtained by choosing the number of actions M to be

1 in both tasks. Our first task used an MDP with 10 states: (10, 1, 3, 0.99I) and the second

task used an MDP with 100 states: (100, 1, 10, 0.99I). The feature vectors were binary

representations of the state indices as in the off-policy tasks and were normalized to have

unit length.

For each task, the performance of each algorithm was measured for different parameter

values. For TD(λ) and TO-TD(λ), the scalar step-size parameter α was varied by powers

of 10 with powers chosen from −3 to 1 in steps of 0.25. For U-TD(λ) and U-TO-TD(λ),

the parameter u0 was varied by powers of 10 with powers chosen from −1 to 3 in steps of

0.25. The rest of the parameters for all four algorithms were varied using the same values

101

TO-TD

�

2. Randomly generated MDP: (100 states)

U-TO-TD

U-TD

TD

�

NM
SE

U-TO-TD

TO-TD

U-TD

TD
1. Randomly generated MDP: (10 states)

Figure 7.2: Empirical comparison of the new O(n) usage-based algorithms with two existing
O(n) TD algorithms on on-policy policy-evaluation tasks. Performance is measured in
empirical normalized MSE (NMSE).

as in the off-policy tasks. Performance was measured using NMSE as in the off-policy tasks.

For each run, we averaged this error over 100 steps for the first task and 1000 steps for the

second. The final estimate is produced again by averaging over 50 independent runs.

Figure 7.2 shows the performance on both tasks for different λ with the rest of the

parameters optimized. Left plot corresponds to MDP (10, 1, 3, 0.99I) and the right plot

corresponds to MDP (100, 1, 10, 0.99I). On both tasks, the new algorithms performed sig-

nificantly better than their base learning algorithms for higher values of λ and performed

equally well for the smaller ones. The standard error in each case was smaller than the

width of the curves shown. This set of experiments suggests that the step-size adaptation

based on the usage of features can be useful in both off-policy and on-policy tasks.

7.5 Discussion and Conclusions

In this chapter, we carried over much of the benefits of WIS to O(n) off-policy algorithms.

In the process, we developed a modification of stochastic gradient descent that are more

closely related to sample averages. The key idea behind this modification is to maintain

a “usage” vector to keep track how much each feature is used in the updates and set the

step-size parameter inversely proportional to that measure. We developed new O(n) off-

policy algorithms that incorporated this modification. On three off-policy policy-evaluation

experiments, the new algorithms outperformed the existing O(n) off-policy algorithms and

performed competitively with LSTD-TO(λ). However, none of these algorithms are back-

ward compatible to tabular WIS estimators. In our experiments, the off-policy algorithms

with large values of λ did not perform well compared to the best performance they achieved.

This held for both SGD-based and LS-based algorithms including the existing and the new

algorithms. This shows that multi-step learning is difficult to utilize in off-policy algorithms.

102

Chapter 8

Multi-step Off-policy Learning
without Importance Sampling
Ratios 1

This chapter entirely contains our contributions toward the issue of high variance using

the technique of bootstrapping, an approach different than weighted importance sampling.

These contributions comprise a new off-policy algorithm with reduced estimation variance

and linear computational complexity and a new framework for analyzing some of the existing

off-policy algorithms.

The main source of variance in importance sampling is the importance sampling ra-

tio. Weighted importance sampling (WIS) addressed this issue by bounding its net effect.

However, importance sampling is still present in WIS. Its extension to SGD with linear com-

putational complexity WIS-TD(λ) does not fully carry over the benefits of WIS. In general,

we have observed in the experiments of the previous chapter that off-policy algorithms

do not utilize multi-step learning very well; their performance deteriorates when a large

value of λ is chosen. It is because the large variance issue with importance sampling is the

most severe in multi-step learning (White 2015, Mahmood & Sutton 2015). Consequently,

multi-step off-policy learning remains problematic and largely unfulfilled.

An obvious approach to solve the problem of multi-step off-policy learning would then

be to develop an algorithm that avoids using importance-sampling ratios. The absence

of these ratios will presumably reduce the estimation variance, making long-term multi-

step learning tenable. Only a few model-free algorithms have been proposed to learn off-

policy without using importance-sampling ratios (Precup et al. 2000, van Hasselt 2011,

Harutyunyan et al. 2016). However, all these algorithms were introduced either for one-

step learning (van Hasselt 2011) or for learning with lookup table representation (Precup

et al. 2000, Harutyunyan et al. 2016). Multi-step learning does not have a lasting influence

on performance in this case.

Our key contribution in this chapter is to develop an algorithmic technique based on

1This chapter is adapted from a paper coauthored by this author (Mahmood, Yu & Sutton 2017).

103

modulating the amount to which the estimates of the subsequent states are used, a concept

known as bootstrapping , in an action-dependent manner. It results in an action-dependent

bootstrapping parameter, which is a generalization of the state-dependent bootstrapping

parameter used in prior works (Maei & Sutton 2010, Sutton et al. 2014). For action-value es-

timation, we show that importance-sampling ratios can be eliminated by varying the action-

dependent bootstrapping parameter for different state-action pairs in a particular way. We

introduce a new algorithm called ABQ using this technique that can achieve much less es-

timation variance compared to the state-of-the-art off-policy algorithm. ABQ is the first to

effectively achieve multi-step function approximation solutions for off-policy learning with-

out explicitly using importance-sampling ratios. However, it is possible to produce other

off-policy algorithms with bounded estimation variance by setting the action-dependent

bootstrapping parameter in other ways, giving rise to the action-dependent bootstrapping

framework. This allows analyzing some of the existing off-policy algorithms as well as derive

new ones. A prior algorithm, Tree Backup (Precup et al. 2000), can be retrieved as a spe-

cial case of our algorithm. Furthermore, we show that another off-policy algorithm, Retrace

(Munos et al. 2016), can also be derived under the action-dependent bootstrapping frame-

work. Our analysis allows an extension of Retrace to the case of function approximation

with stability, giving rise to another algorithm based on the action-dependent bootstrapping

technique, we call AB-Trace.

8.1 Formulation of the Action-value Estimation Task

In this section, we formulate the off-policy learning task with parametric function approx-

imation for action-value function. So far, we have developed learning algorithms for state-

value estimation. The problem formulation for action-value estimation is not much different

from that of state-value estimation we described in Chapter 2. We simplify the problem

formulation here by considering a state-independent constant discount factor γ < 1, which

is a special case of in the GVF framework and common in continuing prediction tasks.

Derivations of algorithms are simpler in this setting, but the resulting algorithms can be

easily extended back in the GVF framework. In that sense, this setting does not diminish

the contribution we provide here.

As before, we consider an agent in a dynamical environment with a finite state space

S and action space A. At each time t = 0, 1, . . ., if the present state is s ∈ S and the

agent takes action a ∈ A, the next state St+1 is s′ ∈ S with probability p(s′|s, a), and

the agent receives a random reward Rt+1 with mean r(s, a) and finite variance upon the

state transition. A randomized stationary policy π specifies the probability π(a|s) of taking

action a at state s. Of our interest is a given policy π, referred to as the target policy, and

the performance of the agent if it follows π. Specifically, our interest in this paper is to

estimate the action-value function of π, defined as the expected sum of discounted rewards

104

for any initial state-action pair (s, a):

qπ(s, a)
def
== Eπ

[∞∑
t=1

γt−1Rt

∣∣∣S0 = s,A0 = a

]
. (8.1)

Important to multi-step learning are multi-step Bellman equations satisfied by the

action-value function qπ. We review here such equations for the well-known TD(λ), where

λ ∈ [0, 1] is the bootstrapping parameter. Let Pπ be the transition probability matrix of

the Markov chain on S×A induced by the target policy π, and let r ∈ R|S|·|A| be the vector

of expected rewards for different state-action pairs: [r]sa
def
== r(s, a). For λ ∈ [0, 1], define

the multi-step Bellman operator T
(λ)
π by

T (λ)
π q

def
== (I− γλPπ)−1[r + γ(1− λ)Pπq]

for all q∈R|S|·|A|, where I is the identity matrix. Then qπ satisfies the multi-step Bellman

equation qπ = T
(λ)
π qπ, where qπ stands for the action-value function in vector notation.

We approximate the action-value function as a linear function of some given features

of state-action pairs: qπ(s, a) ≈ θ>φ(s, a), where θ ∈ Rn is the parameter vector to be

estimated and φ(s, a) ∈ Rn is the feature vector for state s and action a. In matrix notation

we write this approximation as qπ ≈ Φθ, where Φ ∈ R|S|·|A|×n is the feature matrix with

the rows being the feature vectors for different state-action pairs: [Φ]sa,: = φ(s, a)>.

The multi-step solution to the off-policy learning problem with function approximation

can be found by solving the fixed point equation: Φθ = ΠµT
(λ)
π Φθ (when it has a solution),

where Πµ
def
== Φ(Φ>DµΦ)−1Φ>Dµ is the projection matrix with Dµ ∈ R|S|·|A|×|S|·|A| being

a diagonal matrix with diagonal elements dµ(s, a). The Mean Squared Projected Bellman

Error (MSPBE) corresponding to this equation is given by:

J(θ) =
∥∥∥ΠµT

(λ)
π Φθ −Φθ

∥∥∥2

Dµ

, (8.2)

where ‖q‖2Dµ
= q>Dµq, for any q ∈ R|S|·|A|. The multi-step asymptotic TD solution

associated with the fixed-point equation and the above MSPBE can be expressed as θ∞
def
==

A−1b, when A is an invertible matrix, and A and b are given by

A
def
== Φ>Dµ (I− γλPπ)−1 (I− γPπ) Φ, (8.3)

b
def
== Φ>Dµ (I− γλPπ)−1 r. (8.4)

8.2 The Advantage of Multi-step Learning

Under the rubric of temporal-difference learning fall a broad spectrum of methods. On

one end of the spectrum, we have one-step methods that fully bootstrap using estimates

of the next state and use only the immediate rewards as samples. On the other end of

the spectrum, we have Monte Carlo methods that do not bootstrap and rather use all

105

Estimation
Bias2

(� = 0)
one-step

Asymptotic
TD solutions

(� > 0)
multi-step

�

Figure 8.1: Multi-step solutions are generally superior to one-step solutions, as estimation
bias typically goes monotonically to zero with increasing λ, shown here for 50 randomly
constructed MDPs. In these MDPs, we used 100 states, 5 actions, and 40 features. The
rewards, probabilities, and feature values (binary) were chosen uniformly randomly.

future rewards for making updates. Many multi-step learning algorithms incorporate this

full spectrum and can vary smoothly between one-step and Monte Carlo updates using the

bootstrapping parameter λ. Here 1−λ determines the degree to which bootstrapping is used

in the algorithm. With λ = 0, these algorithms achieve one-step TD updates, whereas with

λ = 1, they effectively achieve Monte Carlo updates. To contrast with one-step learning,

multi-step learning is generally viewed as learning with λ > 0 in TD methods.

Multi-step learning impacts the efficiency of estimation in two ways. First, it allows more

efficient estimation compared to one-step learning with a finite amount of samples. One-

step learning uses the minimal amount of samples, have relatively less variance compared

to Monte Carlo updates, but produces biased estimates. Typically, with a finite amount

of samples, a value of λ between 0 and 1 reduces the estimation error the most (Sutton &

Barto 1998).

Second, when function approximation is used and qπ does not lie in the approximation

subspace, multi-step learning can produce superior asymptotic solutions compared to one-

step learning. As λ increases, the multi-step Bellman operator approaches the constant

operator that maps every q to qπ. This in general leads to better approximations, as

suggested by the monotonically improving error bound of asymptotic solutions (Tsitsiklis

& Van Roy 1997) in the on-policy case, and as we demonstrate for the off-policy case in

Figure 8.1.

Although multi-step learning is desirable with function approximation, it is more dif-

106

ficult in the off-policy case where the detrimental effect of importance sampling is most

pronounced. For this reason, off-policy learning without importance-sampling ratios is a

naturally appealing and desirable solution to this problem. Prior works on off-policy learn-

ing without the ratios (e.g., Precup et al. 2000, Harutyunyan et al. 2016) are given in the

lookup table case where the benefit of multi-step learning does not show up, because re-

gardless of λ, the asymptotic solution is qπ. It is in the case of function approximation that

multi-step off-policy learning without importance-sampling ratios is most needed.

8.3 Multi-step Off-policy Learning with Importance-Sampling
Ratios

To setup the stage for our work, we describe in this section the canonical multi-step off-policy

learning update with importance-sampling ratios, and how the ratios introduce variance in

off-policy temporal-difference (TD) updates. A TD update is generally constructed based

on stochastic approximation methods, where the target of the update is based on returns.

Here we consider the off-line update for off-policy TD learning. Although not practical for

implementation, off-line updates are useful for deriving a multi-step Bellman operator and

a practically implementable algorithm. An off-line TD update for off-policy action-value

estimation based on multi-step returns can be defined as:

∆θt = αt

(
Gλt − θ>φt

)
φt, (8.5)

where α > 0 is the step-size parameter, and θ is a fixed weight vector. Here, Gλt is the

multi-step target, known as λ-return, defined as the sum of TD errors weighted by powers

of γλ and products of importance-sampling ratios:

Gλt
def
==

∞∑
n=t

(γλ)n−tρnt+1δn + θ>φt. (8.6)

The TD error δt is defined as δt
def
== Rt+1 + γθ>φ̄t+1−θ>φt, with φ̄t

def
==

∑
a π(a|St)>φ(St,

a). The term ρnt
def
== Πn

i=tρi is a product of importance-sampling ratios ρt
def
== π(At|St)

µ(At|St) , which

accounts for the discrepancy due to using the behavior policy instead of the target policy

throughout the trajectory. Note that, the update defined by (8.5) is a forward-view update,

that is, it uses samples that only become available in the future from the time the state

of the updated estimate is visited. We call this update the off-policy Q(λ) update. It can

be shown that the asymptotic multi-step solution corresponding to off-policy Q(λ) is given

by θ∞ = A−1b, (8.3), and (8.4), when A is invertible. All existing multi-step off-policy

algorithms with importance sampling are of this form or a variant.

When λ = 0, no importance-sampling ratios are involved, and this update reduces

to that of off-policy expected Sarsa (Sutton & Barto 1998, Sutton et al. 2014, van Hasselt

2011). This one-step update is also closely related to the one-step Q-learning update, where

a greedy nonstationary target policy is used instead.

107

The importance-sampling ratios play a role when λ > 0, and their influence is greater

with larger λ, including the detrimental impact on variance. The product ρn1 of off-policy

Q(λ) in (8.6) can become as large as 1
(mins,a µ(a|s))n . Such an exponential growth, when

occurred even momentarily, can have large impact on the variance of the estimate. If the

value of λ is small or very close to zero, the large variance ensuing from the product may

be avoided, but it would also be devoid of much of the benefits of multi-step learning.

8.4 Avoiding Importance-Sampling Ratios

We introduce the idea of action-dependent bootstrapping and how it can be used to avoid

importance-sampling ratios in off-policy estimates. For that, first we introduce an action-

dependent bootstrapping parameter λ(s, a) ∈ [0, 1], which is allowed to vary between dif-

ferent state-action pairs. A closely related idea is state-dependent bootstrapping used by

Sutton and Singh (1994) and Sutton et al. (2014) for state-value estimation, and by Maei

and Sutton (2010) for action-value estimation. In those works, the degree of bootstrap-

ping was allowed to vary from one state to another by the state-dependent bootstrapping

parameter λ(s) ∈ [0, 1] but was not used as a device to reduce the estimation variance.

The variability of the parameter λ(s, a) can be utilized algorithmically on a moment-

by-moment basis to absorb the detrimental effect of importance sampling and in general to

control the impact of importance sampling. Let us use the notational shorthand λt
def
== λ(St,

At), and define a new λ-return by replacing the constant λ in (8.6) with variable λ(s, a):

Gλt =

∞∑
n=t

γn−tλnt+1ρ
n
t+1δn + θ>φt, (8.7)

where λnt
def
== Πn

i=tλi. Notice that each importance sampling ratio in (8.7) is factored with

a corresponding bootstrapping parameter: λtρt. We can mitigate an explicit presence of

importance sampling ratios by setting the action-dependent bootstrapping parameter λ(s,

a) in the following way:

λ(s, a) = ν(ψ, s, a)µ(a|s), ν(ψ, s, a)
def
== min

(
ψ,

1

max (µ(a|s), π(a|s))

)
(8.8)

where ψ ≥ 0 is a constant. Note that ν(ψ, s, a) is upper-bounded by ψmax, which is defined

as follows:

ψmax
def
==

1

mins,a max (µ(a|s), π(a|s)) . (8.9)

The product λtρt can then be rewritten as: λtρt = ν(ψ, St, At)µt
πt
µt

= ν(ψ, St, At)πt, dis-

pelling an explicit presence of importance sampling ratios from the update. It is easy to see

that, under our proposed scheme, the effective bootstrapping parameter is upper bounded

by 1: λt ≤ 1, and at the same time all the products are also upper bounded by one:

λnt ρ
n
t ≤ 1, largely reducing variance.

108

To understand how ψ influences λ(s, a) let us use the following example, where there

are only one state and three actions {1, 2, 3} available. The behavior policy probabilities

are [0.2, 0.3, 0.5] and the target policy probabilities are [0.2, 0.4, 0.4] for the three actions,

respectively. Figure 8.2 shows how the action-dependent bootstrapping parameter λ for

different actions change as ψ is increased from 0 to ψmax. Initially, the bootstrapping

parameter λ increased linearly for all actions at a different rate depending on their cor-

responding behavior policy probabilities. The min in the factor ν comes into effect with

ψ > ψ0
def
== 1

maxs,a max(µ(a|s),π(a|s)) , and the largest λ at ψ = ψ0 gets capped first. Eventually,

with large enough ψ, that is, ψ ≥ ψmax, all λs get capped.

Algorithms with constant λ are typically studied in terms of their parameters by varying

λ between [0, 1], which would not be possible for an algorithm based on the above scheme

as λ is not a constant any more. For our scheme, the constant tunable parameter is ψ,

which has three pivotal values: [0, ψ0, ψmax]. For parameter studies, it would be convenient

if ψ is scaled to another tunable parameter between [0, 1]. But in that case, we have to

make a decision on what value ψ0 should transform to. In the absence of a clear sense of

it, a default choice would be to transform ψ0 to 0.5. One such scaling is where we set ψ as

a function of another constant ζ ≥ 0 in the following way:

ψ(ζ) = 2ζψ0 + (2ζ − 1)+ × (ψmax − 2ψ0) , (8.10)

and then vary ζ between [0, 1] as one would vary λ. Here (x)+ = max (0, x). In this case,

ζ = 0, 0.5, and 1 correspond to ψ(ζ) = 0, ψ0, and ψmax, respectively. Note that ζ can be

written conversely in terms of ψ as follows:

ζ = (ψ − ψ0)+ · 2ψ0 − ψmax

2 (ψmax − ψ0)ψ0
+

ψ

2ψ0
. (8.11)

The top margin of Figure 8.2 shows an alternate x-axis in terms of ζ.

To form an update using this proposed modification to λ, let us use the following nota-

tional shorthands,

νζ(s, a)
def
== ν(ψ(ζ), s, a), νζ,t

def
== νζ(St, At), (8.12)

λζ(s, a)
def
== ν(ψ(ζ), s, a)µ(a|s), λζ,t

def
== λζ(St, At). (8.13)

We use Hζ
t to denote the λ-return defined by (8.7) with the bootstrapping parameter set

according to λζ :

Hζ
t =

∞∑
n=t

γn−tλnζ,t+1ρ
n
t+1δn + θ>φt =

∞∑
n=t

γn−tνnζ,t+1π
n
t+1δn + θ>φt, (8.14)

where λnζ,t
def
== Πn

i=tλζ,i, ν
n
ζ,t

def
== Πn

i=tνζ,i, and πnt
def
== Πn

i=tπi. The off-line forward-view

update with Hζ
t as the target can be written as:

∆θt = αt

(
Hζ
t − θ>φt

)
φt. (8.15)

109

⇣

�(s, a)

 max 0

action 1

action 2action 3

Figure 8.2: The effect of ψ and ζ on λ(s,
a) for three different actions under the
action-dependent bootstrapping scheme.
As ψ is increased, the parameter λ for dif-
ferent actions increase at a different rate
and get capped for different values of ψ.

Norm.
Mean

Squared
Error

Off-policy Q()�

ABQ()⇣

Quality of asymptotic solutions

� for off-policy Q(�) and ⇣ for ABQ(⇣)

Figure 8.3: The effect of λ on off-policy
Q(λ) solutions and ζ on ABQ(ζ) solu-
tions. Multi-step (λ > 0) off-policy Q(λ)
solutions are superior to the one-step
(λ = 0) solution. ABQ(ζ) solutions can
also achieve a similar multi-step advan-
tage with ζ > 0.

The asymptotic solution corresponding to this update, which we call the ABQ(ζ) solution,

is θζ∞
def
== Aζ

−1bζ with

Aζ
def
== Φ>Dµ (I− γPπΛζ)

−1 (I− γPπ) Φ, (8.16)

bζ
def
== Φ>Dµ (I− γPπΛζ)

−1 r, (8.17)

assuming Aζ is invertible.

This is a multi-step solution when the bootstrapping parameter λζ(s, a) does not uni-

formly reduce to zero. The drawback of this scheme is that we cannot achieve λζ(s, a) = 1

for all state-action pairs, which would produce the off-policy Monte Carlo solution. It is

the cost of avoiding importance-sampling ratios together with its large variance issue.

To illustrate that ABQ(ζ) can achieve multi-step learning, we used a two-state off-policy

task similar to the off-policy task by Sutton et al. (2016). In this task, there were two states

each with two actions, left and right, leading to one of the two states deterministically.

More specifically, p(1|1, left) = p(2|1, right) = p(1|2, left) = p(2|2, right) = 1. There is a

deterministic nonzero reward r(2, right) = +1; all other transitions have reward zero. The

discount factor γ was 0.9. The feature vectors were set as φ(1, left) = φ(1, right) = 1 and

φ(2, left) = φ(2, right) = 2. The behavior policy was chosen as µ(right|1) = µ(left|2) = 0.9

to break away from the uniform distribution of the original problem. The target policy was

chosen as π(right|·) = 0.9.

We produced different asymptotic solutions defined by (8.16) and (8.17), choosing dif-

ferent constant ζ between 0 and ζmax. We compared ABQ(ζ) solutions with off-policy Q(λ)

solutions in terms of the Mean Squared Error (MSE) ‖Φθ − qπ‖2Dµ
normalized by ‖qπ‖2Dµ

.

110

The results are given in 8.3. Off-policy Q(λ) solutions with λ > 0 in this task are sub-

stantially better than the one-step solution produced with λ = 0. The ABQ(ζ) solutions

cannot be as good as the off-policy Q(1) solution, as we already anticipated, but much

of the benefits of multi-step off-policy solutions can be attained by choosing a large value

of ζ. Although the tunable parameter ζ of ABQ was set to be a constant, the effective

bootstrapping parameter λζ(s, a) was different for different state-action pairs. Therefore,

ABQ solutions cannot be obtained simply by rescaling the constant λ of off-policy Q(λ).

8.5 The ABQ(ζ) Algorithm with Gradient Correction and
Scalable Updates

In this section, we develop a computationally scalable and stable algorithm corresponding

to the ABQ(ζ) solution. The update (8.15) given earlier cannot be computed in a scalable

manner, because forward-view updates require increasing amount of computation as time

progresses. Moroever, off-policy algorithms with bootstrapping and functions approxima-

tion may be unstable (Sutton & Barto 1998), unless machinery for ensuring stability is

included. Our goal is to develop a stable update corresponding to ABQ(ζ) solutions while

keeping it free from importance-sampling ratios.

First, we produce the equivalent backward view of (8.15) so that the updates can be

implemented without forming explicitly the λ-return.

Using the forward-view update given by (8.15), the total update can be given by:

∞∑
t=0

∆θt =
∞∑
t=0

αt

(
Hζ
t − θ>φt

)
φt (8.18)

=
∞∑
t=0

∞∑
n=t

γn−tνnζ,t+1π
n
t+1δnφt (8.19)

=
∞∑
t=0

αt

t∑
n=0

γt−nνtζ,n+1π
t
n+1δtφn (8.20)

=
∞∑
t=0

αtδt

t∑
n=0

γt−nνtζ,n+1π
t
n+1φn︸ ︷︷ ︸

et

(8.21)

=
∞∑
t=0

αtδtet. (8.22)

Therefore, the backward-view update can be written as:

∆θBt = αtδtet. (8.23)

The eligibility trace vector et ∈ Rn can be written recursively as:

et =
t∑

n=0

γt−nνtζ,n+1π
t
n+1φn (8.24)

111

= γνζ,tπt

t−1∑
n=0

γt−n−1νt−1
ζ,n+1π

t−1
n+1φn + φt (8.25)

= γνζ,tπtet−1 + φt. (8.26)

Therefore, the backward view updates are given by

∆θt = αtδtet, et = γνζ,tπtet−1 + φt. (8.27)

Here, et ∈ Rn is an accumulating trace vector. The above backward-view update achieves

equivalence with the forward-view of (8.15) only for off-line updating, which is typical for

all algorithms with accumulating traces. Equivalence for online updating could also be

achieved by following the approach taken by van Seijen et al. (2016), but we leave that out

here for simplicity.

We take the approach proposed by Maei (2011) to develop a stable algorithm. In the

following, we derive the resulting gradient corrected algorithm, which we call the ABQ(ζ)

algorithm.

The key step in deriving a gradient-based TD algorithm, as proposed by Maei (2011), is

to formulate an associated Mean Squared Projected Bellman Error (MSPBE) and produce

its gradient, which can then be sampled to produce stochastic updates.

The MSPBE for the update (8.15) is given by:

J(θ) =
∥∥∥ΠµT

(Λζ)
π Φθ −Φθ

∥∥∥2

Dµ

(8.28)

=
∥∥∥Πµ

(
T

(Λζ)
π Φθ −Φθ

)∥∥∥2

Dµ

(8.29)

=
(
T

(Λζ)
π Φθ −Φθ

)>
Π>µDµΠµ

(
T

(Λζ)
π Φθ −Φθ

)
(8.30)

=
(
Φ>Dµ

(
T

(Λζ)
π Φθ −Φθ

))>
(Φ>DµΦ)−1Φ>Dµ

(
T

(Λζ)
π Φθ −Φθ

)
. (8.31)

Here, the Bellman operator corresponding to the bootstrapping matrix Λζ is defined for all

q∈R|S|·|A| as

T
(Λζ)
π q

def
== (I− γPπΛζ)

−1 [r + γPπ(I−Λζ)q] .

Let g
def
== Φ>Dµ

(
T

(Λζ)
π Φθ −Φθ

)
= Φ>Dµ

(
(I− γPπΛζ)

−1 [r + γPπ(I−Λζ)Φθ]−Φθ
)

(8.32)

= Φ>Dµ

(
(I− γPπΛζ)

−1 [r + ((I− γPπΛζ)− (I− γPπ)) Φθ]−Φθ
)

(8.33)

= Φ>Dµ

(
(I− γPπΛζ)

−1 r + Φθ − (I− γPπΛζ)
−1 (I− γPπ)Φθ −Φθ

)
(8.34)

= Φ>Dµ(I− γPπΛζ)
−1 (r− (I− γPπ)Φθ). (8.35)

Also let C = (Φ>DµΦ). Then the gradient can be written as:

∇J(θ) = −
(
X>Dµ(I− γPπΛζ)

−1 (I− γPπ) Φ
)>

C−1g (8.36)

112

= −
(
Φ>Dµ(I− γPπΛζ)

−1 ((I− γPπΛζ) Φ− γPπ(I−Λ)Φ)
)>

C−1g (8.37)

= −
(
Φ>DµΦ− γΦ>Dµ (I− γPπΛζ)

−1 Pπ(I−Λ)Φ
)>

C−1g (8.38)

= −

g − γ

Φ>Dµ (I− γPπΛζ)
−1 Pπ(I−Λ)Φ︸ ︷︷ ︸

H

>C−1g

 (8.39)

= −
(
g − γH>C−1g

)
. (8.40)

So if we know the gradient, the gradient-descent step would be to add to the parameter

vector

−αt∇J(θ) = αt

(
g − γH>C−1g

)
. (8.41)

Now to derive the stochastic updates for ABQ(ζ), let us consider a double-ended sta-

tionary Markov chain induced by µ, {. . . , (S−2, A−2, R−1), (S−1, A−1, R0), (S0, A0, R1), (S1,

A1, R2), . . .}. Let E0 denote expectation with respect to the probability distribution of this

stationary Markov chain. Fix t to be any integer. For the first term g in ∇J(θ), we can

write:

g = Φ>Dµ(I− γPπΛζ)
−1 (r− (I− γPπ)Φθ) (8.42)

= Φ>Dµ (I− γPπΛζ)
−1 r−Φ>Dµ (I− γPπΛζ)

−1 (I− γPπ)Φθ (8.43)

= bζ −Aζθ; (Aζ and bζ as defined by (8.16) and (8.17)) (8.44)

= E0

[(
Hζ
t − θ>φt

)
φt

]
(8.45)

= E0

[∞∑
n=t

γn−tνnζ,t+1π
n
t+1δnφt

]
(8.46)

= E0

[
δtφt +

∞∑
n=t+1

γn−tνnζ,t+1π
n
t+1δnφt

]
(8.47)

= E0

[
δtφt +

∞∑
n=t

γn−(t−1)νnζ,tπ
n
t δnφt−1

]
; shifting indices and using stationarity

(8.48)

= E0

[
δtφt + γνζ,tπt

∞∑
n=t

γn−tνnζ,t+1π
n
t+1δnφt−1

]
(8.49)

= E0

[
δtφt + γνζ,tπt

(
δtφt−1 +

∞∑
n=t+1

γn−tνnζ,t+1π
n
t+1δnφt−1

)]
(8.50)

= E0 [δt (φt + γνζ,tπtφt−1 + · · ·)] ; shifting indices and using stationarity (8.51)

= E0 [δtet] , (8.52)

where et is a well-defined random variable and can be written recursively as:

et = φt + γνζ,tπtφt−1 + · · · = φt + γνζ,tπtet−1. (8.53)

113

Similarly, we can also express the term H in ∇J(θ) in expectation form. Let us define

φ̃t =
∑
a

λζ(St, a)π(a|St)φ(St, a). (8.54)

Then we can write:

H = X>Dµ (I− γPπΛζ)
−1 Pπ(I−Λζ)X (8.55)

= X>DµPπ(I−Λζ)X +X>DµγPπΛζPπ(I−Λζ)X + · · · (8.56)

=
∑
s,a

dµ(s, a)φ(s, a)
∑
s′a′

p(s′|s, a)π(a′|s′)(1− λζ(s′, a′))φ(s′, a′)> (8.57)

+X>DµγPπΛζPπ(I−Λζ)X + · · · (8.58)

= E0

[
φt

(
φ̄t+1 − φ̃t+1

)>]
(8.59)

+ γ
∑
s,a

dµ(s, a)φ(s, a)
∑
s′,a′

p(s′|s, a)π(a′|s′)ζ(a′|s′)µ(a′|s′) (8.60)

×
∑
s′′a′′

p(s′′|s′, a′)π(a′′|s′′)(1− λζ(s′′, a′′))φ(s′′, a′′)> + · · · (8.61)

= E0

[
φt

(
φ̄t+1 − φ̃t+1

)>]
(8.62)

+ E0

[
γνζ,t+1πt+1φt

(
φ̄t+2 − φ̃t+2

)>]
+ · · · ; shifting indices and using stationarity

(8.63)

= E0

[
φt

(
φ̄t+1 − φ̃t+1

)>]
(8.64)

+ E0

[
γνζ,tπtφt−1

(
φ̄t+1 − φ̃t+1

)>]
+ · · · ; shifting indices and using stationarity

(8.65)

= E0

[
(φt + γνζ,tπtφt−1 + · · ·)

(
φ̄t+1 − φ̃t+1

)>
)

]
(8.66)

= E0

[
et

(
φ̄t+1 − φ̃t+1

)>]
. (8.67)

Therefore, a stochastic update corresponding to the expected gradient-descent update

can be written as:

∆θ = αt

(
δtet − γ

(
φ̄t+1 − φ̃t+1

)
e>t C−1g

)
. (8.68)

The vector C−1g can be estimated from samples by LMS but at a faster time scale and

with a larger step-size parameter β:

∆h = βt

(
δtet − h>φtφt

)
. (8.69)

It can be shown that with θ held fixed, under standard diminishing step-size rules for βt,

the {ht} produced by the above updates converges to

h∞ =
(

E0

[
φtφ

>
t

])−1
E0 [δtet] (8.70)

114

=
(
Φ>DµΦ

)−1
E0 [δtet] (8.71)

= C−1g. (8.72)

Putting these pieces together, and also allowing θ and h to vary over time, we obtain

the updates of the on-line gradient-based TD algorithm, which we call ABQ(ζ):

θt+1
def
== θt + αt

(
δtet − γe>t ht

(
φ̄t+1 − φ̃t+1

))
, (8.73)

φ̃t
def
==

∑
a

λζ(St, a)π(a|St)φ(St, a), (8.74)

δt
def
== Rt+1 + γθ>t φ̄t+1 − θ>t φt, (8.75)

et
def
== γνζ,tπtet−1 + φt, (8.76)

ht+1
def
== ht + βt

(
δtet − h>t φtφt

)
. (8.77)

The iteration (8.73) carries out stochastic gradient-descent steps to minimize the MSPBE

regarding the Bellman operator T
(Λζ)
π , and it differs from (8.27) in the gradient-correction

term −γe>t ht

(
φ̄t+1 − φ̃t+1

)
. This correction term involves the extra vector parameter ht.

Note that no importance-sampling ratios are needed in the update of ht or in the gradient-

correction term. The vector ht is updated according to (8.77) at a faster timescale than θt

by using a second step-size parameter βt � αt. Both constant and diminishing step sizes

can be used. For diminishing step sizes, one can let αt = O(1/t), βt = O(1/tc), c ∈ (1/2, 1),

for instance. In practice, when stability is not a problem, smaller values of β often lead to

better performance (White & White 2016).

8.6 Experimental Results

We empirically evaluate ABQ(ζ) on three policy evaluation tasks: the two-state off-policy

task from Section 5, an off-policy policy evaluation adaptation of the Mountain Car domain

(Sutton & Barto 1998), and the 7-star Baird’s counterexample (Baird 1995, White 2015). In

the first two tasks we investigated whether ABQ(ζ) can produce correct estimates with less

variance compared to GQ(λ) (Maei 2011), the state-of-the-art importance sampling based

algorithm for action-value estimation with function approximation. We validate the stability

of ABQ(ζ) in the final task, where off-policy algorithms without a stability guarantee (e.g.,

off-policy Q(λ)) tend to diverge.

Although the MDP involved in the two-state task is small, off-policy algorithms may

suffer severely in this task as the importance sampling ratio, once in a while, can be as large

as 9. We simulated both GQ(λ) and ABQ(λ) on this task for 10000 time steps, starting

with θ0 = 0. We averaged the MSE ‖Xθt − qπ‖2Dµ
for the last 5000 time steps. We further

averaged this quantity over 100 independent runs. Finally, we divided this error by ‖qπ‖2Dµ

to obtain the normalized MSE (NMSE).

115

� for GQ(�) and ⇣ for ABQ(⇣)

ABQ()⇣

Norm.
Mean

Squared
Error

GQ()�

Two-state off-policy task

Figure 8.4: Comparison of empirical performance of GQ(λ) and ABQ(ζ) on a two-state
off-policy policy evaluation task. Performance is shown in normalized mean squared error
with respect to different values of λ for GQ(λ) and ζ for ABQ(ζ). Different curves are for
different combinations of step-size values. GQ(λ) produces large MSE when large λ is used.
ABQ(ζ) tolerates larger values of ζ and thus can better retain the benefits of multi-step
learning compared to GQ(λ).

Figure 8.4 shows curves for different combinations of the step-size parameters: α ∈
[0.001, 0.005, 0.01] and β ∈ [0.001, 0.005, 0.01]. Performance is shown in the estimated

NMSE, with the corresponding standard error for different values of λ and ζ. With λ > 0.6,

the error of GQ(λ) increased sharply due to increased influence of importance sampling ra-

tios. It clearly depicts the failure to perform effective multi-step learning by an importance

sampling based algorithm when λ is large. The error of ABQ(ζ) decreased substantially for

most step-size combinations as ζ is increased from 0 to 0.5, and it decreased slightly for some

step-size combinations as ζ was increased up to 1. This example clearly shows that ABQ(ζ)

can perform effective multi-step learning while avoiding importance sampling ratios. On

the other hand, the best performance of GQ(λ) was better than ABQ(ζ) for the smallest

value of the first step size (i.e., α = 0.001). When the step size was too small, GQ(λ) in

fact benefited from the occasional large scaling from importance sampling, whereas ABQ(ζ)

remained conservative in its updates to be safe.

The Mountain Car domain is typically used for policy improvement tasks, but here we

use it for off-policy policy evaluation. We constructed the task in such a way that the

importance sampling ratios for GQ can be as large as 30, emphasizing the variance issue

regarding ratios. In this task, the car starts in the vicinity of the bottom of the valley with

116

ABQ(0.8)

ABQ(0.4)

Norm.
Mean

Squared
Error

GQ(0.4)

GQ(0)/
ABQ(0)

Number of episodes

GQ(0.8)

Mountain Car off-policy task

Figure 8.5: Comparison of empirical performance of GQ(λ) and ABQ(ζ) on an off-policy
policy evaluation task based on the Mountain Car domain. Each curve shows how learning
progresses in terms of estimated normalized mean squared error as more episodes are ob-
served. Different learning curves are for different values of λ for GQ(λ) and ζ for ABQ(ζ).
All of them are shown for a particular combination of step-size values. The spikes in GQ(λ)’s
learning curves are the result of the occasional large values of importance sampling ratios,
increasing the variance of the estimate for GQ(λ) as large values of λ are chosen. ABQ(ζ),
on the other hand, can achieve lower mean squared error with larger values of ζ by reducing
the estimation variance.

a small nonzero speed. The three actions are: reverse throttle, no throttle, and forward

throttle. Rewards are -1 at every time step, and state transitions are deterministic. The

discount factor γ is 0.999. The policies used in the experiments were based on a simple

handcrafted policy, which chooses to move forward with full throttle if the velocity of the

car was nonzero and toward the goal, and chooses to move away from the goal with full

throttle otherwise.

Both the target policy and the behavior policy are based on this policy but choose to

randomly explore the other actions differently. More specifically, when the velocity was

nonzero and toward the goal, the behavior policy probabilities for the actions reverse throt-

tle, no throttle, and forward throttle are
[

1
300 ,

1
300 ,

298
300

]
, and the target policy probabilities

are [0.1, 0.1, 0.8], respectively. In the other case, the behavior and the target policy prob-

abilities are
[

298
300 ,

1
300 ,

1
300

]
and [0.8, 0.1, 0.1], respectively. We set the policies this way so

that episodes complete under both policies in a reasonable number of time steps, while the

importance sampling ratio may occasionally be as large as 0.1× 300 = 30.

The feature vector for each state-action pair contained 32 features for each action,

117

MSPBE

time steps

ABQ(0)

ABQ(1)

The 7-star Baird’s counterexample

Figure 8.6: ABQ(ζ) is stable on Baird’s counterexample for different values of ζ.

where only the features corresponding to the given action were nonzero, produced using tile

coding with ten 4×4 tilings. Each algorithm ran on the same 100 independent sequences

of samples, each consisting 10,000 episodes. The performance was measured in terms of

the Mean-Squared-Error (MSE) with respect to the estimated value q̂ ∈ R30 of 30 chosen

state-action pairs. These pairs were chosen by running the agent under the behavior policy

for 1 million time steps, restarting episodes each time termination occurs, and choosing 30

pairs uniformly randomly from the last half million time steps. The ground truth values for

these 30 pairs q̂ were estimated by following the target policy 100 times from those pairs

and forming the average. The mean-squared error from q̂ was normalized by ‖q̂‖22.

We use the mountain car off-policy task to illustrate through learning curves how λ and

ζ affect GQ(λ) and ABQ(ζ), respectively. Figure 8.5 shows the learning curves of ABQ(ζ)

and GQ(λ) with respect to mean squared errors for three difference values of λ and ζ: 0,

0.4, and 0.8, and a particular step-size combination: α = 0.1/(# of active features) and

β = 0.0. These learning curves are averages over 100 independent runs. The standard

errors of ABQ’s estimated MSE here are smaller than the width of the curves shown. ABQ

achieved a significantly lower MSE with ζ > 0 than with ζ = 0. On the other hand, GQ

performed unreliably with larger λ. With λ = 0.4, the learning curves are highly varying

from each other due to occasionally having the largest ratio value 30, affecting the update

at different time steps. Some learning curves even became unstable, causing the MSE to

move away further and further with time, and affecting the average MSE, which explains

the spikes. When λ = 0.8 was chosen, all learning curves became unstable in few steps.

In the 7-star Baird’s counterexample, adopted from White (2015), step sizes were set

as α = 0.05 and β = 0.1, and the bootstrapping parameter ζ was chosen evenly between 0

and 1. The Mean Squared Projected Bellman Error (MSPBE) was estimated by averaging

118

over 50 runs. As shown in Figure 8.6, ABQ(ζ) performed stably with all values of ζ used.

This validates empirically the gradient correction in ABQ(ζ).

8.7 Action-dependent Bootstrapping as a Framework for
Off-policy Algorithms

ABQ(ζ) is a result of this new idea of varying the bootstrapping parameter in an action-

dependent manner so that an explicit presence of importance sampling ratios are mitigated

from the update. However, it is not the only action-dependent bootstrapping scheme one

can devise. It is possible to bound the product λnt ρ
n
t by using other action-dependent

bootstrapping schemes. Different schemes not only allow us to derive new algorithms, they

may also be used to understand some existing algorithms better.

An algorithm closely related to ABQ is Tree Backup by Precup et al. (2000). It can be

produced as a special case of ABQ(ζ), if we remove gradient correction, consider the feature

vectors always to be the standard basis, and νζ to be always set to a constant, instead of

setting it in an action-dependent manner. In the on-policy case, the Tree Backup algorithm

fails to achieve the TD(1) solution, whereas ABQ achieves it evidently with ζ ≥ 1. Our

work is not a trivial generalization of this prior work. The Tree Backup algorithm was

developed using a different intuition based on backup diagrams and was introduced only for

the lookup table case. Not only does ABQ(ζ) extend the Tree Backup algorithm, but the

idea of action-dependent bootstrapping also played a crucial role in deriving the ABQ(ζ)

algorithm with gradient correction in a principled way.

Another related algorithm is Retrace by Munos et al. (2016), where the variance issue

is approached by truncating the importance-sampling ratios. Retrace is a tabular off-policy

algorithm that approaches the variance issue by truncating the importance sampling ratio.

We show that such truncations can be understood as varying the action-dependent boot-

strapping parameter in a particular manner, first, by constructing a forward-view update

with a different action-dependent bootstrapping scheme than ABQ’s, second, by deriving

the asymptotic solution corresponding to that forward-view update, and third, by show-

ing that the equivalent backward-view update is the same as the Retrace algorithm. For

generality, we take these steps in the linear function approximation case and incorporate

gradient corrections for stability. The resulting algorithm, we call AB-Trace(ζ) is a stable

generalization of Retrace.

We construct a new forward-view update similar to (8.15) with λζ = νζ (s, a)µ(a|s),
where ν is redefined as νζ (s, a)

def
== ζ min

(
1

π(a|s) ,
1

µ(a|s)

)
. Here, we treat 1/0 = ∞ and

0 ·∞ = 0. Then we can directly use the results of ABQ(ζ) to derive its asymptotic solution:

θζ∞
def
== A−1

ζ bζ , (8.78)

Aζ
def
== X>Dµ (I− γPπΛζ)

−1 (I− γPπ)X, (8.79)

bζ
def
== X>Dµ (I− γPπΛζ)

−1 r, (8.80)

119

where the diagonal elements of Λζ are λζ(s, a) = νζ (s, a)µ(a|s) = ζ min
(

1
π(a|s) ,

1
µ(a|s)

)
µ(a|s)

for different state-action pairs.

A stable forward-view update with gradient correction corresponding to the above

asymptotic solution can be derived by directly using the derivation of ABQ(ζ). The re-

sulting algorithmn, AB-Trace(ζ), is given by the following updates:

δt
def
== Rt+1 + γθ>t φ̄t+1 − θ>t φt, (8.81)

νζ (s, a)
def
== ζ min

(
1

π(a|s) ,
1

µ(a|s)

)
, (8.82)

φ̃t+1
def
==

∑
a

νζ(St+1, a)π(a|St+1)φ(St+1, a), (8.83)

et
def
== γνζ,tπtet−1 + φt, (8.84)

θt+1
def
== θt + αt

(
δtet − γe>t ht

(
φ̄t+1 − φ̃t+1

))
, (8.85)

ht+1
def
== ht + βt

(
δtet − h>t φtφt

)
, (8.86)

Note that, the factor νζ,tπt in the eligibility trace vector update can be rewritten as:

νζ,tπt = ζ min

(
1

πt
,

1

µt

)
πt (8.87)

= ζ min (1, ρt) . (8.88)

From here, it is easy to see that, if the feature representation is tabular and the gradient

correction term is dropped, then the AB-Trace algorithm reduces to the Retrace algorithm.

Finally, we remark that the action-dependent bootstrapping framework provides a prin-

cipled way of developing stable and efficient off-policy algorithms as well as unifying the

existing ones, where AB-Trace and its connection to Retrace is only one instance.

8.8 Conclusions

In this chapter, we have introduced the first model-free off-policy algorithm ABQ(ζ) that

can produce multi-step function approximation solutions without requiring an explicit pres-

ence of importance-sampling ratios. The key to this algorithm is allowing the amount of

bootstrapping to vary in an action-dependent manner, instead of keeping them constant or

varying only with states. Part of this action-dependent bootstrapping factor mitigates the

importance-sampling ratios while the rest of the factor is spent achieving multi-step boot-

strapping. The resulting effect is that the large variance issue with importance-sampling

ratios is readily removed without giving up multi-step learning. This makes ABQ(ζ) more

suitable for practical use. Action-dependent bootstrapping provides an insightful and well-

founded framework for deriving off-policy algorithms without importance-sampling ratios.

120

Chapter 9

Instability of Temporal-Difference
Learning Algorithms1

One of the most notorious problems with off-policy learning is that a straightforward adop-

tion of an off-policy method to parametric function approximation may diverge no matter

how the step size parameter is chosen. This is a separate problem than the problem of large

variance because techniques to reduce the variance do not necessarily avoid divergence.

This chapter provides insights into how some algorithms may diverge by introducing

a unified approach of analyzing the stability of stochastic approximation algorithms. We

investigate the problem of instability with function approximation in this unified approach

and demonstrate examples of divergence of temporal-different learning algorithms in differ-

ent cases above and beyond off-policy learning. This unified approach simplifies and clarifies

our understanding of the instability issue of TD algorithms and constitutes our first core

contribution toward the issue of instability.

9.1 Convergence of Expected Updates

Whether or not a stochastic update diverges is closely related to the choice of the step-

size parameter as well as whether the deterministic update over the stationary distribution

corresponding to the stochastic update converges. Therefore, a convenient way of analyz-

ing the non-divergence or stability of a stochastic update is by investigating whether the

deterministic update converges. The analysis of the corresponding deterministic update

or the existence of solution of the associated “mean ODE” is also core to many conver-

gence analysis techniques for stochastic updates, often known as mean ODE-based proofs

(Kushner & Yin 2003). The deterministic update corresponding to a stochastic update can

be derived by taking expectation of the stochastic updates with respect to the stationary

Markov chain. We call this deterministic update, the expected update. To elaborate, let us

1Some of the core concepts in this chapter are developed in a published paper coauthored by this author
(Sutton, Mahmood & White 2016) and summarized in another paper (Mahmood, Yu, White & Sutton 2015).

121

consider the following stochastic update algorithm:

θt+1 = θt + α (bt −Atθt) , (9.1)

where α > 0, and bt ∈ Rn and At ∈ Rn×n are not functions of θt. Then the expected

update algorithm with respect to the stationary Markov chain corresponding to the above

algorithm can then be given as follows:

θ̄t+1 = θ̄t + α
(
b−Aθ̄

)
, (9.2)

where b = E0[bt], A = E0[At], and E0 denotes expectation with respect to the stationary

Markov chain. This expected update can be rewritten as:

θ̄t+1 = (I− αA) θ̄t + αb. (9.3)

The convergence of this update crucially depends on the matrix I− αA. Due to its impor-

tance, we give it a separate name, the iteration matrix. However, as the matrix A is the

key part of the iteration matrix, we also give it a separate name, the key matrix.

This update is an iterative method for solving the linear system of equations: Aθ̄ = b.

A unique solution to this system exists and is given by A−1b if the key matrix A is non-

singular. Moreover, it can be easily shown that the expected update given above converges

to this solution if and only if

lim
m→∞

(I− αA)m = 0. (9.4)

Whenever this condition is true, we say that the expected update and the iteration matrix

are convergent. An equivalent condition is that the spectral radius of the iteration matrix

is less than one (Varga 1962):

σ(I− αA) < 1. (9.5)

Here, the spectral radius of any matrix B is defined as

σ(B) = max
i
| eigi(B)|, (9.6)

with eigi(B) being the ith eigenvalue of matrix B. Note that the iteration matrix may not

be symmetric, and therefore its eigenvalues can be complex numbers.

In the following, we provide a necessary and sufficient condition for the convergence of

the iteration matrix in term of the key matrix and the step size.

Lemma 13 (Condition on key matrix and step size for convergence). The matrix I−αA
is convergent if and only if the following condition holds:

Re(eigi(A)) > 0, 1 ≤ i ≤ n, and α < min
j

2 Re(eigj(A))∣∣eigj(A)
∣∣2 . (9.7)

122

Proof. First, we show that (9.7) is a sufficient condition. The absolute value of the ith

eigenvalue of the matrix I− αA can be written as:

|eigi(I− αA)| =
√

(1− αRe(eigi(A)))2 + (α Im(eigi(A)))2 (9.8)

=

√
1 + α2 |eigi(A)|2 − 2αRe(eigi(A)) (9.9)

=

√
1 + α |eigi(A)|2

(
α− 2 Re(eigi(A))

|eigi(A)|2
)

(9.10)

<

√√√√1 + α |eigi(A)|2
(

min
j

2 Re(eigj(A))∣∣eigj(A)
∣∣2 − 2 Re(eigi(A))

|eigi(A)|2

)
< 1. (9.11)

Therefore, σ(I− αA) < 1.

Second, we show that (9.7) is a necessary condition. It is easy to see that, if Re(eigi(A)) ≤
0,∃i, then 1− αRe(eigi(A)) ≥ 1, and thus |eigi(I− αA)| ≥ 1.

On the other hand, if α = minj
2 Re(eigj(A))

|eigj(A)|2 +ε with ε ≥ 0, then for i = arg minj
2 Re(eigj(A))

|eigj(A)|2 ,

we can write:

|eigi(I− αA)| =

√√√√1 + α |eigi(A)|2
(

min
j

2 Re(eigj(A))∣∣eigj(A)
∣∣2 + ε− 2 Re(eigi(A))

|eigi(A)|2

)
≥ 1, (9.12)

making the matrix I− αA non-convergent.

In the case of gradient descent updates, the iteration and the key matrices are symmetric.

Therefore their eigenvalues do not have an imaginary part. In that case, Lemma 13 takes

a more familiar form, which is given by the following corollary.

Corollary 2. If the matrix A is symmetric, then I − αA is convergent if and only if
all the eigenvalues of the matrix A are positive and the scalar parameter α is smaller
than twice the reciprocal of the spectral radius of A:

eigi(A) > 0, 1 ≤ i ≤ n, and α <
2

σ(A)
. (9.13)

The step-size parameter is usually subject to tuning. Therefore, having the right key

matrix A is key here for ensuring convergence of the expected update. The following two

corollaries emphasize this important role of the key matrix.

Corollary 3. Having all positive real parts of the eigenvalues of the matrix A is equiv-
alent to having the matrix I− αA convergent, for some α > 0:

Re (eigi(A)) > 0, 1 ≤ i ≤ n, ⇐⇒ I− αA is convergent, ∃α > 0 (9.14)

123

Therefore, having positive real parts of eigenvalues of the matrix A is the most important

thing regarding the convergence of the expected update. There is an easy way of checking

whether the eigenvalues of a matrix have positive real parts. It is to check whether a matrix

is strictly diagonally dominant, which we defined below:

Definition 1 (Strictly diagonally dominant). An n× n complex matrix B is strictly diag-

onally dominant if

|[B]ii| >
n∑
j=1
j 6=i

|[B]ij | , 1 ≤ i ≤ n. (9.15)

Then we can use the following lemma given by Varga (1962) to check whether the

eigenvalues of a matrix have positive real parts:

Lemma 14 (Eigenvalues and strictly diagonal dominance). If an n × n complex ma-
trix B is strictly diagonally dominant and its diagonal entries are positive, then the
eigenvalues have positive real parts:

Re (eigi(B)) > 0, 1 ≤ i ≤ n. (9.16)

9.2 Stability of Stochastic Updates

The stability of a stochastic update is directly related to the convergence of the expected

update. Divergence of a stochastic update algorithm for any positive step size occurs when

the expected update also diverges. We define a stochastic update to be stable if and only

if the corresponding expected update is convergent. We also call a stochastic update to be

unstable when the corresponding expected update diverges. Note that there can be cases

where the expected update is not convergent but does not diverge either. For example, in the

case where there are more than one solutions and the asymptotic estimate by the expected

update depends on the initial θ̄0. This case is often referred to as semi-convergence (Meyer

& Plemmons 1977), and we refer to the corresponding stochastic update as semi-stable.

Now, we turn into a specific algorithm based on stochastic update and analyze its

corresponding expected update. For this, we choose the prototypical temporal-difference

learning algorithm TD(λ). We use this algorithm to demonstrate how the key matrix A

influences the behavior of the updates. The update of off-policy TD(λ) for state-value

estimation is given as follows:

et = ρt (et−1γtλt + φt) , (9.17)

θt+1 = θt + α
(
Rt+1 + γt+1θ

>
t φt+1 − θ>t φt

)
et. (9.18)

In order to derive the expected update of (9.18), we rewrite it as follows:

θt+1 = θt + α
(
Rt+1 + γt+1θ

>
t φt+1 − θ>t φt

)
et (9.19)

124

= θt + α

Rt+1et︸ ︷︷ ︸
bt

− et (φt − γt+1φt+1)>︸ ︷︷ ︸
At

θt

 (9.20)

= θt + α (bt −Atθt) . (9.21)

Then the expected update of (9.18) is given by the expectation of bt−Atθt with respect

to the stationary Markov chain {(St, At, Rt+1)} induced by the behavior policy µ. Let E0

denote the expectation with respect to this stationary Markov chain. This follows similar

steps we have taken to derive the expected update of ABQ. Therefore, the corresponding

expected update of TD(λ) is given as follows:

θ̄t+1 = θ̄t + α
(
b−Aθ̄t

)
, (9.22)

b = Φ>Dµ (I−PπΓΛ)−1 rπ, (9.23)

A = Φ>KΦ, (9.24)

K = Dµ (I−PπΓΛ)−1 (I−PπΓ) . (9.25)

The stability of TD(λ) depends on whether or not the eigenvalues of its key matrix A

has all positive real parts. Given that typically N � n, this key matrix consists of a larger

N × N matrix K wrapped around by Φ> and Φ. Often we have more control over the

policies and state distributions than we have over the choice of the features. Accordingly,

the larger matrix K plays a key role in the stability of the algorithm. We call K the big

key matrix.

It is not always the case that N ≥ n, for example, in Baird’s counterexample. This

causes the feature matrix Φ to be column rank deficient. Furthermore, the feature matrix

can be column rank deficient even when N ≥ n. The column rank deficiency of Φ causes

A = Φ>KΦ to have eigenvalues with zero real parts, in which case the algorithm can at best

be semi-stable, resulting in convergence to non-unique θ̄∞. Although it is not practically an

issue, because the corresponding approximate value function Φθ̄∞ can still be unique, we

assume that the feature matrix is full column rank for the convenience of analysis. Another

assumption we make here is that Dµ is also full rank, that is, all diagonal elements are

positive.

One interesting property of the big key matrix for TD(λ) is that it always has positive

real parts in all its eigenvalues, even in the off-policy case and for arbitrary values for γt

and λt. Hence, it follows that in the tabular case, that is, with Φ = I, TD(λ) is stable. We

formally describe it in the following theorem.

Theorem 31 (Positive real parts of big key matrix). For γ(s), λ(s) ∈ [0, 1], and dµ(s) >
0, for all s, the big key matrix K of TD(λ) has positive real parts in all its eigenvalues:

Re (eigi(K)) > 0, ∀i. (9.26)

125

Proof. In this proof, we use Lemma 14 and show that K is strictly diagonally dominant.

In order to see that K has positive diagonal entries, we rewrite it as follows:

K = Dµ (I−PπΓΛ)−1 (I−PπΓ) (9.27)

= Dµ (I−PπΓΛ)−1 (I−PπΓΛ + PπΓΛ−PπΓ) (9.28)

= Dµ

[
I− (I−PπΓΛ)−1 PπΓ (Λ− I)

]
(9.29)

= Dµ

I−

I + PπΓΛPπΓ(Λ− I) + (PπΓΛ)2 PπΓ(Λ− I) + · · ·︸ ︷︷ ︸
Pλπ

 (9.30)

= Dµ

(
I−Pλ

π

)
. (9.31)

It is evident that the matrix (I−PπΓΛ)−1 is sub-stochastic, as it is a discounted power

series of the stochastic matrix Pπ. Therefore, Pλ
π = (I−PπΓΛ)−1 PπΓ (Λ− I) is also a

sub-stochastic matrix. Therefore, the matrices I − Pλ
π has positive diagonal entries. For

this, Dµ

(
I−Pλ

π

)
also has positive diagonal entries.

Note that Dµ(I−Pλ
π) also has non-positive non-diagonal entries. Strict-diagonal dom-

inance for a matrix with positive diagonal entries and non-positive non-diagonal entries

can be achieved if its row summations are positive, which is also true due to Pλ
π being a

sub-stochastic matrix.

It is surprising and frustrating that, although tabular TD(λ) is convergent for all the

variations of discounting, bootstrapping and off-policy-ness, TD(λ) may not be convergent

when extended to function approximation. In the following, we investigate different ways

TD(λ) can be unstable by showing different ways its key matrix A can have negative real

parts in its eigenvalues.

9.3 Instability Due to Off-policy Updating

TD(λ) is well known to diverge when applied with bootstrapping, off-policy updating, and

function approximation. This amounts to ∃s, λ(s) < 1, π 6= µ, and N > n. To demonstrate

this, we consider the following continuing off-policy policy-evaluation task. In this task,

there are two states, S = {1, 2} and only a single feature, hence: N > n. From each state,

there are two actions available: A = {1, 2}. Let Q ∈ R|S|·|A|×|S| denote the transition

probability for each given state-action pair: [Q]sa,: = p(·|s, a). The transition probability

for each state given state-action pairs is as follows:

Q =

1 0
0 1
1 0
0 1

 . (9.32)

126

↵ = 0.02

↵ = 0.01

↵ = 0.03

time steps

Estimate
✓✓

Figure 9.1: Demonstration of instability of TD(λ) on an off-policy prediction task.

The feature matrix is given by Φ = [[0.5], [1]]>. The behavior policy is given by µ = [0.5,

0.5, 0.5, 0.5], and the target policy is given by π = [0.1, 0.9, 0.1, 0.9]. The discount factor

and the bootstrapping parameter are state independent: γ = 0.9, and λ = 0. Then the

state-distribution induced by the behavior policy is dµ = [0.5, 0.5]>. The state-to-state

transition probability matrix induced by the target policy is given by [Pπ]ss′ = [µ]s[Q]s:,s′ :

Pπ =

[
0.1 0.9
0.1 0.9

]
. (9.33)

Reward is zero everywhere.

The resulting big key matrix K has the following eigenvalues: 0.5, 0.05. And the resulting

key matrix A is given by A = Φ>KΦ = −0.01625 < 0. It indicates that the off-policy TD(λ)

algorithm in this task is not stable.

To illustrate this instability empirically, we run the stochastic updates of TD(λ) on this

task, with the initial estimate θ0 = 1. Figure 9.1 illustrates the instability of off-policy

TD(λ) on this task for three different step sizes [0.01, 0.02, 0.03]. The plot shows the esti-

mated parameter θ over time. The dark curves correspond to the expected update, and the

bright curves correspond to the stochastic updates, 30 of them for each step size generated

using independent trajectories. Although the true solution is zero, all the estimates diverge

away from zero with time.

127

time steps

Estimate
✓✓

↵ = 2⇥ 10�4

↵ = 1⇥ 10�4

↵ = 3⇥ 10�4

Figure 9.2: Demonstration of instability of TD(λ) on an on-policy prediction task with
state-dependent bootstrapping.

9.4 Instability Due to State-Dependent Bootstrapping

Now, we show that with function approximation, even on-policy TD(λ) can be unstable.

This may happen when the bootstrapping parameter λ is state-dependent. For that, con-

sider that the two-state MDP in the previous section (9.3). This time, the target policy is

the same as the behavior policy: π = µ = [0.5, 0.5, 0.5, 0.5]. Then the transition probability

matrix induced by the target policy is given by the following:

Pπ =

[
0.5 0.5
0.5 0.5

]
, (9.34)

and the state-distribution induced by the target policy is dπ = [0.5, 0.5]>. The discount

factor is γ = 0.99, and the bootstrapping parameter is state-dependent: λ(1) = 1.0, λ(2) =

0.8. The rest remain the same. Then the resulting key matrix A is given by A = Φ>KΦ ≈
−0.056 < 0.

Figure 9.2 shows the estimates by stochastic update of TD(λ) for step sizes [1, 2, 3]×10−4.

As before, the estimates diverges away from zero with time.

9.5 Instability Due to Selective Updating

With function approximation, on-policy TD(λ) may diverge even with a single global λ.

This happens when updates are scaled selectively according to a user-defined interest of the

128

states. Let us define the user-defined state-dependent interest function as i : S → (0,∞).

We use the shorthand It = i(St). Then such user-defined interest can be incorporated into

TD(λ) by scaling the forward-view update of TD(λ) for state St with It:

∆θt = αIt

(
Gλt − θ>t φt

)
φt. (9.35)

The equivalent backward-view update of TD(λ) then is given by the following:

θt+1 = θt + α
(
Rt+1 + γt+1θ

>
t φt+1 − θ>t φt

)
et, (9.36)

et = (et−1γtλt + Itφt) ρt, (9.37)

where the interest function appears in the update of the eligibility trace vector. This is a

generalization of the standard off-policy TD(λ) update, which can be obtained by having

It = 1,∀t.
It is easy to see that the corresponding expected update is as follows:

θ̄t+1 = θ̄t + α
(
b−Aθ̄t

)
, (9.38)

b = Φ>Dµ·i (I−PπΓΛ)−1 rπ, (9.39)

A = Φ>KΦ, (9.40)

K = Dµ·i (I−PπΓΛ)−1 (I−PπΓ) . (9.41)

Here, the diagonal matrix Dµ·i contains the product of the state-distribution and interest

in its diagonal elements: [Dµ·i]s,s = [dµ]si(s).

Now, we provide an on-policy policy evaluation task where selective updating causes

instability. For that, we use the same two-state MDP from Section 9.3. Here, the target

policy is the same as the behavior policy: π = [0.5, 0.5]>. The discount factor is γ = 0.99.

The bootstrapping parameter is state-independent: λ(s) = 0.5, ∀s. The state-dependent

interest function is given by i(1) = 1.6, i(2) = 0.4. Then the resulting key matrix is

A ≈ −0.041 < 0.

Figure shows the instability of the stochastic update of TD(λ) in this task for step sizes

[1, 2, 3]× 10−3.

9.6 Stability with Arbitrary State-Dependent Discounting

It is reasonable to wonder whether on-policy TD(λ) with function approximation is unstable

for state-dependent discounting. The suspicion is more relevant because we found on-

policy TD(λ) to be unstable in two different ways involving state-dependent functions.

Surprisingly, it is not the case with state-dependent discounting. It is because, in this case,

the big key matrix K not only has positive real parts in all its eigenvalues, but also is

positive definite under the usual assumptions. It guarantees that the key matrix A has

positive real parts in all its eigenvalues. The following lemma describes this.

129

↵ = 2⇥ 10�3

↵ = 1⇥ 10�3

↵ = 3⇥ 10�3

time steps

Estimate
✓✓

Figure 9.3: Demonstration of instability of TD(λ) on an on-policy prediction task with
selective updating.

Lemma 15 (Sufficient condition for positive-definite key matrix). Let us consider an
asymmetric positive definite matrix K ∈ RN×N . Then A = Φ>KΦ is positive definite,
for any full column rank matrix Φ ∈ RN×n.

Proof. K is positive definite if and only if φ>Kφ > 0, for φ 6= 0. If Φ is full column rank,

then y = Φφ 6= 0, for φ 6= 0. Therefore, y>Ky = φ>Φ>KΦφ = φ>Aφ > 0, for φ 6= 0,

from which it follows that A is positive definite.

Having positive real parts of all eigenvalues follows from the fact that A is positive

definite. However, the converse does not hold for asymmetric matrices. We use the following

lemma involving asymmetric positive definite matrices.

Lemma 16 (Positive-definiteness of asymmetric matrices). For an asymmetric square
real matrix K, the following statements are equivalent:

1. K is positive definite.

2. K + K> is positive definite.

3. Re(eigi(K + K>)) > 0,∀i.

Yet another result we use is as follows:

130

Lemma 17. I−PπΓΛ is an M -matrix.

Proof. A matrix is a Z-matrix if its off-diagonal elements are non-positive. A matrix is a

M -matrix if it is a Z-matrix and can be written in the form sI − B, where B has only

non-negative entries and s > σ(B). Accordingly, I − PπΓΛ is a Z-matrix. On the other

hand, the spectral radius of PπΓΛ is less than one: σ(PπΓΛ) < 1, according to Perron–

Frobenius theorem. Therefore, according to the definition of M -matrix, I − PπΓΛ is an

M -matrix.

As I−PπΓΛ is an M -matrix, its inverse has all non-negative entries.

In the following, we show that when the user-defined interest is uniform i(s) = 1,∀s and

λ is state-independent, on-policy TD(λ) is stable even with state-dependent discounting

and linear function approximation.

Theorem 32 (Stability with state-dependent discounting). With state-dependent dis-
counting γ(s) ∈ [0, 1), ∀s, a single global λ ∈ [0, 1], that is, Λ = λI, and µ = π, the big
key matrix K = Dπ(I−Pλ

π) of TD(λ) is positive definite.

Proof. We show that K + K> is strictly diagonally dominant, and with positive diagonal

entries, from which it follows that Re(eigi(K + K>)) > 0, ∀i by Lemma 14.

We already showed that K has positive diagonal entries, which leads to the fact K+K>

has positive diagonal entries. For K + K> to be strictly diagonally dominant, it is enough

to show that its row sums and column sums are positive. We already showed that its row

sums are positive. The sub-stochastic matrix Pλ
π can be re-written as follows:

λPλ
π = λ

[
I− (I− λPπΓ)−1(I−PπΓ)

]
(9.42)

= λ
[
I− (I− λPπΓ)−1(I− λPπΓ + λPπΓ−PπΓ)

]
(9.43)

= (1− λ)(I− λPπΓ)−1λPπΓ (9.44)

= (1− λ)(I− λPπΓ)−1 (λPπΓ− I + I) (9.45)

= (1− λ)
(
(I− λPπΓ)−1 − I

)
. (9.46)

The column sum can be written as 1>K. Therefore, we can write:

λ1>K = λ1>K(I− λPπΓ)(I− λPπΓ)−1 (9.47)

= 1>Dπ(λI− λPλ
π)(I− λPπΓ)(I− λPπΓ)−1 (9.48)

= d>π
(
λI− (1− λ)

(
(I− λPπΓ)−1 − I

))
(I− λPπΓ)(I− λPπΓ)−1 (9.49)

= d>π
(
I− (1− λ)(I− λPπΓ)−1

)
(I− λPπΓ)(I− λPπΓ)−1 (9.50)

= d>π (I− λPπΓ− (1− λ)I) (I− λPπΓ)−1 (9.51)

= λ (dπ ◦ (1− γ))> (I− λPπΓ)−1. (9.52)

131

Each element of (dπ ◦ (1− γ)) is positive, and (I − λPπΓ) is M -matrix. Therefore, (I −
λPπΓ)−1 has non-negative entries. Hence, 1>K has all positive element for λ > 0. On the

other hand, when λ = 0, we can writen:

1>K = 1>Dπ(I−PπΓ) (9.53)

= d>π (I−PπΓ) (9.54)

= (dπ ◦ (1− γ))>, (9.55)

where each element is positive. Therefore, column sums of K are also positive, from which

it follows that K is positive definite.

9.7 Oscillation Due to Asymmetric Iteration Matrix

Finally, we illustrate a particular characteristic of TD updates—oscillation—that is not

observed in standard gradient-descent updates. It is often observed that TD estimates

produce oscillatory learning curves, both when the update is stable and unstable (Sutton

& Barto 1998). It is originated due to asymmetric key matrices, due to which they can

have eigenvalues with a non-zero imaginary part. The real part of the eigenvalues of the

key matrix, when positive, determines the rate of decay. On the other, the imaginary part

of the eigenvalues determines the frequency of the oscillation, the larger the magnitude, the

shorter the wavelength.

Note that the key matrix starts to have imaginary parts in its eigenvalues for N ≥ 3.

For N = 1, the key matrix is scalar and always real. In order to show that the key matrix

has real eigenvalues for N = 2, we use the following lemma.

Lemma 18 (Eigenvalues of 2× 2 matrix). For a 2× 2 real matrix B, the eigenvalues
are given by:

λ =
− trace(B)±

√
trace(B)− 4 det(B)

2
. (9.56)

The following theorem states that a 2× 2 big key matrix always has real eigenvalues, from

which it follows that the key matrix A for N = 2 also has all real eigenvalues.

Theorem 33 (Real eigenvalues of 2 × 2 matrix). For N = 2, the big key matrix
K = Dµ(I−Pλ

π) has real eigenvalues.

Proof. For this, we have to show that trace(K) ≥ 4 det(K). We already showed in Theorem

31 that K has positive diagonal elements and non-positive off-diagonal elements. Say, the

elements of (I−Pλ
π) are as follows:

I−Pλ
π =

[
p1 p12

p21 p2

]
. (9.57)

132

Estimate
✓✓

Estimate
✓✓

Estimate
✓✓

time steps

time steps

time steps

time steps

time steps

time steps

Figure 9.4: Estimates of TD(λ) may oscillate due to the asymmetry of its associated iter-
ation matrix. This is shown in six different on-policy prediction tasks. The two curves in
each plot are the two elements of the parameter vector θ.

133

The stationary state probabilities are uµ = [d1, d2]>. Therefore, p1, p2 ∈ (0, 1], and p12,

p21 ∈ (−1, 0]. Also note that, d1 = 1 − d2. Therefore, the trace and determinant of the

key matrix are given by: trace(K) = d1p1 + d2p2 > 0, det(K) = d1d2p1p2 − d1d2p12p21 ≤
d1d2p1p2.

Hence, it suffices to show that d1p1 + d2p2 − 4d1d2p1p2 ≥ 0.

We can assume d1 ≥ d2 without any loss of generality. Therefore, we can write:

d1p1 + d2p2 − 4d1d2p1p2 = d1p1 + (1− d1)p2 − 4d1(1− d1)p1p2 (9.58)

= d1p1 + (1− d1)p2 − p1p2 +
(
4d2

1 − 4d1 + 1
)
p1p2 (9.59)

= d1p1 + (1− d1)p2 − p1p2 + (2d1 − 1)2 p1p2 (9.60)

≥ d1p1 + (1− d1)p2 − p1p2 (9.61)

= d1(p1 − p2) + p2(1− p1) (9.62)

≥ d1 (p1 − p2 + p2 − p1p2) ; as p2(1− p1) ≥ d1p2(1− p1) (9.63)

= d1p1 (1− p2) ≥ 0. (9.64)

In order to illustrate the oscillation in TD update, we randomly generate MDPs with

three states. We chose n = 2, |A| = 2, and consider only on-policy tasks. The state-action

pair to next state probabilities, behavior policy µ, the target policy π, the discount matrix Γ,

the bootstrapping matrix Λ, and the feature matrix Φ were generated uniformly randomly.

From them we chose six, for which the real parts of the eigenvalues are positive but smaller

than the magnitude of the imaginary parts, so that the decay is slow enough to make the

oscillation visible. In each case, we ran both the expected and 30 runs of stochastic update

of TD(λ). Figure 9.4 shows the results for step size 0.1. In each case, both the expected

(dark curves) and estimated θ (bright curves) showed similar damped oscillation.

9.8 Conclusions

In this chapter, we explored the issue of instability by analyzing TD(λ) in different kinds

of prediction tasks with both on-policy and off-policy scenarios. We utilized the concept of

deterministic or expected updates corresponding to stochastic approximation algorithms.

The key to our analysis revolved around the properties of a certain “key” matrix associated

with the expected updates of the TD(λ) algorithm. TD(λ) becomes unstable whenever

the key matrix of expected updates has negative eigenvalues. We utilized this fact to

demonstrate the instability of TD(λ) in three different cases: off-policy updating, updates

with state-dependent bootstrapping and selective updating. We have also provided a result

showing that TD(λ) is stable with state-dependent discounting. Finally, we showed that

TD updates may oscillated, which resulted from the asymmetry of the iteration matrix of

its expected update.

134

Chapter 10

An Emphatic Approach to Stable
Temporal-Difference Learning1

In this chapter, we introduce a systematic approach to ensuring the stability of off-policy

temporal-difference learning algorithms, a key contribution in this thesis. In addition to

being stable under off-policy updating, this approach also ensures stability under the other

cases where TD(λ) can be unstable. The core idea behind this approach is ensuring positive

definiteness of the “key” matrix involved in the expected update, which causes the expected

update to be convergent. We show that it amounts to warping the effective stationary

state distribution. The resulting algorithms can be seen as selectively emphasizing and de-

emphasizing the updates. We call them emphatic algorithms. We show results confirming

that emphatic algorithms are stable.

Sutton et al. (2009) introduced another set of stable off-policy algorithms that are de-

rived by following a gradient-based approach to temporal-difference learning. We used this

approach to ensure the stability of algorithms based on action-dependent bootstrapping in

Chapter 8. However, this approach requires having two sets of parameters and adjusting

two different step sizes, which substantially increases the amount of parameter search. The

advantage of emphatic algorithms over gradient-based TD algorithms is that emphatic al-

gorithms only require tuning a single scalar step-size parameter and thus are practically

more convenient.

10.1 Warping the Update Distribution for Stability

Stability of temporal-difference learning algorithms can be ensured by having their big key

matrix K to be a positive definite matrix, as we have observed in Chapter 9. We have

also observed that if the matrix K + K> is strictly diagonally dominant, which amounts

to showing that the row and the column sums are positive, then K is positive definite.

However, we have also seen that it is generally not true for TD(λ). Although the row

1The core concepts in this chapter are developed in a published paper coauthored by this author (Sutton,
Mahmood & White 2016), which is summarized in another paper (Mahmood, Yu, White & Sutton 2015).

135

sums are always positive, the column sums may not be. To seek an opportunity to fix this

problem, let us look at the big key matrix of the most general form of TD(λ):

K = Dµ·i (I−PπΓΛ)−1 (I−PπΓ) = Dµ·i

I−Pλ
π︸ ︷︷ ︸

B

 = Dµ·iB. (10.1)

Salvaging the updates from instability amounts to sculpting this key matrix, but at the

same time being careful about preserving the core features of TD solutions. The big key

matrix has two separate components. The matrix B
def
== I−Pλ

π determines the form of the

multi-step TD error, and hence we call it the TD-error matrix. The matrix Dµ·i determines

the distribution of updating states, which we call the effective stationary state distribution

as the updating states can be seen being sampled according to this distribution. With

uniform interest, the effective stationary state distribution equates the actual stationary

state distribution induced by the behavior policy. However, as we have observed in Section

9.5, the stationary state distribution can be arbitrarily warped by scaling the updates in a

state-dependent manner. User-defined interest function is one such way of achieving that.

Here, we aim at preserving the TD-error matrix B and warp the effective stationary

state distribution to produce big key matrices that are positive definite. Let us say the

effective stationary state distribution vector m is such that the resulting big key matrix

K = MB is positive definite, where M = diag(m). As m is a warping of the original

stationary state distribution based on user-defined interest dµ·i, we can write m = Wdµ·i.

Where W is a N × N matrix, which we call the warping matrix. Our goal is to find a

warping matrix W such that the resulting big key matrix K is positive definite, which we

can achieve by having the column sums 1>K to be positive. The column sums with this

warped stationary state distribution m can be written as follows:

1>K = 1>MB (10.2)

= m>B (10.3)

= d>µ·iW
>B. (10.4)

One way we can ensure positive column sums is by choosing W in such a way that W>B

is a non-negative matrix.

Consider the following warping matrix:

W =
(
B>
)−1

. (10.5)

Then W>B is a non-negative matrix, as:

W>B = I. (10.6)

Therefore, the resulting key matrix A and the corresponding expected update are stable.

However, achieving stability of the expected update is not enough. We need stochastic

updates based on them.

136

10.2 Emphatic Temporal Difference Learning Algorithms

In this section, we derive a systematic way of deriving stochastic updates based on stable

expected updates with warped stationary state distribution. Here, the key observation is

that, any warped stationary state distribution can be viewed as forming a particular interest

function:

m = dµ ◦
(
d−1
µ ◦m

)
= dµ ◦m0, (10.7)

where m0 = d−1
µ ◦m can be viewed as a particular form of interest function. We investigate

this interest function further:

m0 = d−1
µ ◦m = d−1

µ ◦ (Wdµ·i) (10.8)

= d−1
µ ◦ (W (dµ ◦ i)) . (10.9)

As with user-defined interest, we can also have stochastic updates associated with this

particular interest by applying its elements [d−1
µ ◦m]s for the updating states s. We can

view this scaling function as a way of emphasizing or de-emphasizing the updates depending

on whether [d−1
µ ◦m]s is greater than unity or not. Likewise, we call any approach based

on sculpting the stationary-state distribution for achieving stability to be an emphatic

approach.

We do not have access to the model to directly compute d−1
µ ◦m. But we can use an

unbiased estimate of this term. We derive a scalar estimate of d−1
µ ◦m, for the choice of

W =
(
B>
)−1

. With this choice, we can write the emphatic vector m0 as

m0 = d−1
µ ◦

[(
B>
)−1

(dµ ◦ i)

]
(10.10)

= d−1
µ ◦

[(
I− ΓΛP>π

)(
I− ΓP>π

)−1
(dµ ◦ i)

]
(10.11)

= d−1
µ ◦

[(
Λ
(
I− ΓP>π

)
+ (I−Λ)

)(
I− ΓP>π

)−1
(dµ ◦ i)

]
(10.12)

=

Λi + (I−Λ)

d−1
µ ◦

(
I− ΓP>π

)−1
(dµ ◦ i)︸ ︷︷ ︸

f

 (10.13)

= Λi + (I−Λ) f . (10.14)

The first term of the above can be sampled by using state-dependent bootstrapping and

interest. In order to see how to sample the second term, let us write f in the following way:

f = d−1
µ ◦

(
I− ΓP>π

)−1
(dµ ◦ i) (10.15)(

I− ΓP>π
)

(f ◦ dµ) = dµ ◦ i (10.16)

f ◦ dµ = ΓP>π (f ◦ dµ) + dµ ◦ i (10.17)

137

f = i + d−1
µ ◦

(
ΓP>π (f ◦ dµ)

)
. (10.18)

Therefore, each element can be written as:

[f]s = i(s) + γ(s)
∑
s̄,ā

p(s|ā, s̄)π(ā|s̄)dµ(s̄)

dµ(s)
[f]s̄ (10.19)

= i(s) + γ(s)
∑
s̄,ā

pµ(s, ā|s̄)dµ(s̄)

dµ(s)

π(ā|s̄)
µ(ā|s̄) [f]s̄ (10.20)

= i(s) + γ(s)
∑
s̄,ā

pµ(s̄, ā|s)π(ā|s̄)
µ(ā|s̄) [f]s̄. (10.21)

Then the following scalar statistic Ft is an unbiased estimate of [f]St under the corre-

sponding stationary Markov chain:

Ft = It + γtρt−1Ft−1. (10.22)

Similarly, the following scalar statistic Mt is an unbiased estimate of [mo]St under the

corresponding stationary Markov chain:

Mt = λtIt + (1− λt)Ft. (10.23)

We call Mt the update emphasis as this is used as a scaling factor for each update. Then

the resulting backward-view updates can be written as:

δt = Rt+1 + γt+1θ
>
t φt+1 − θ>t φt, (10.24)

θt+1 = θt + αδet, (10.25)

et = ρt (et−1γtλtρt +Mtφt) , (10.26)

where the update emphasis appears in the update of eligibility trace vector, similarly to

the user-defined interest function It in Section 9.5. We call this algorithm the emphatic

temporal-different learning algorithm, in short ETD(λ). It is evident from the above analysis

that ETD(λ) is stable, which we state in the following theorem.

Theorem 34 (Stability of Emphatic TD(λ)). For any

• Markov decision process {St, At, Rt+1}∞t=0 with finite state and action sets S and
A,

• behavior policy µ with a stationary invariant distribution dµ(s) > 0,∀s ∈ S,

• target policy π with coverage, i.e., s.t., if π(a|s) > 0, then µ(a|s) > 0,

• discount function γ : S → [0, 1] s.t.
∏∞
k=1 γ(St+k) = 0,w.p.1,∀t > 0,

• bootstrapping function λ : S → [0, 1],

• interest function i : S → (0,∞),

138

ETD

TD

time steps

Estimate
✓✓

Figure 10.1: Demonstration of stability of ETD(λ) on an off-policy prediction task where
TD(λ) is unstable. The three different groups of curves with different colors for each method
are for three different step sizes: 0.001 (blue), 0.005 (red), and 0.01 (green).

• feature function φ : S → Rn s.t. the matrix Φ ∈ R|S|×n with the φ(s) as its rows
has linearly independent columns,

the A matrix of emphatic TD(λ) (as given by (10.22–10.26), and assuming the existence
of E0 [Ft|St= s] and E0 [et|St= s], ∀s ∈ S),

A = E0 [At] = E0

[
et (φt − γt+1φt+1)>

]
= Φ>M(I−Pλ

π)Φ, (10.27)

is positive definite. Thus ETD(λ) is stable.

10.3 Experimental Results

In this section, we experimentally show that ETD is stable on the tasks where TD(λ) is

shown to be unstable in the previous chapter.

There are three tasks in total for three different scenarios, off-policy updating, state-

dependent bootstrapping, and selective updating, where TD(λ) was shown to be unstable.

Figure 10.1, 10.2, and 10.3 show the results on these tasks, respectively.

We also run ETD(λ) on the six prediction tasks from the previous chapter, where TD(λ)

was shown to oscillate. The results are shown in Figure 10.4. Although TD(λ) oscillated

widely in these tasks, the oscillation was largely diminished with ETD. However, ETD was

not completely oscillation free and exhibited a small dip in the curves of some of the tasks.

139

ETD

TD

time steps

Estimate
✓✓

Figure 10.2: Demonstration of stability of ETD(λ) on an on-policy prediction task with
state-dependent bootstrapping where TD(λ) is unstable. The three different groups of
curves with different colors for each method are for three different step sizes: 0.001 (blue),
0.002 (red), and 0.003 (green).

ETD

TD

time steps

Estimate
✓✓

Figure 10.3: Demonstration of stability of ETD(λ) on an on-policy prediction task with
selective updating where TD(λ) is unstable. The three different groups of curves with
different colors for each method are for three different step sizes: 0.001 (blue), 0.002 (red),
and 0.003 (green).

140

ETD

TD TD

TD
TD

TD
TD

ETD

ETD
ETD

ETD ETD

Estimate
✓✓

Estimate
✓✓

Estimate
✓✓

time steps

time steps

time steps

time steps

time steps

time steps

Figure 10.4: ETD oscillates less compared to TD on six prediction tasks. The top two curves
of the left-side of each plot belong to TD, and the other two belong to ETD. Although TD
oscillated widely, ETD largely diminished the oscillation by emphatic updates. The two
curves of each algorithm in each plot are the two elements of the parameter vector θ.

141

10.4 Conclusions

In this chapter, we developed the first stable off-policy TD algorithm that requires only

a single step-size parameter. To achieve this, we utilized our understanding of the issue

of instability in terms of the key matrix in the expected update of TD algorithms, which

we developed in the previous chapter. Although there can be different ways of achieving

stability, we took a simplistic approach where all we require is to ensure that the key

matrix is positive definite. We provided a principled way of ensuring a positive definite key

matrix, which can be achieved by warping the update distribution, resulting in the ETD(λ)

algorithm. We showed empirically that ETD is stable in the same prediction tasks where

TD was shown to be unstable in the previous chapter. Finally, we also showed that ETD

oscillates less compared to TD in six different prediction tasks.

142

Chapter 11

Representation Search Through
Generate and Test1

If off-policy predictions can be learned in a computationally cheap manner, it would be

useful to use them numerously as the units of knowledge representation. However, the

number of possible useful predictions that can be made in large environments is far greater

than the amount of resources available to us. Therefore, it would be prudent to ask only

those predictive questions relevant to the overall goal of the agent.

In this chapter, we simplify the problem of selecting and retaining the most useful pre-

dictive questions into an online supervised representation search problem. In this simplified

problem, the main task is to solve a supervised learning problem. The learner takes the

form of a non-linear network. It maps the observations first to a representation layer with

non-linear features and then maps the features linearly to produce the output of the system.

Both maps are parameterized, where the parameters of the first map are called the input

weights and the parameters of the second map are called the output weights. The output

weights are learned using a linear learner, for example, linear stochastic gradient descent or

the Least Mean Squares (LMS) algorithm.

The representation search problem here is about choosing the right set of features by

changing the input weights. There are many representation-learning algorithms that make

changes to the input weights to improve representation learning. Here, our main focus is on

the problem of searching over a discrete set of features, as if the search were being performed

over a discrete set of predictions. This is only a sub-problem of the overall representation

discovery problem because the features are parameterized with real-valued weights and are

not bound to remain in a discrete set. However, we aim at this specialized problem because it

is more pertinent to selecting among a list of potentially interesting predictions. Moreover,

a solution method for this problem may also compliment other representation discovery

methods. A crucial property we seek from a solution method for the representation search

problem is being strictly incremental. We consider the strongest case for this where the

1Some of the core concepts in this chapter are developed in a published paper coauthored by this author
(Mahmood & Sutton 2013).

143

system always contains a constant number of features.

This chapter introduces a solution method for the online representation search problem

that generates and selects features in a continual and automatic manner. This method

constitutes the final key contribution of this thesis. Our solution method is intuitive and

also computationally cheap at the same time. The method continually generates new fea-

tures and tests whether the existing features are useful. As the total number of features

remains constant, the method accommodates new features by replacing the least useful

ones. Through this continual process of generation, testing, and retention, our methods

seek to find a good set of features. Likewise, we call this method generate and test. This

chapter serves the purpose of describing the representation search problem in a simplified

supervised learning setting, and introducing the generate and test method.

11.1 A Simple Representation Search Problem

In this section, we introduce an online representation search problem for a supervised learn-

ing task. This task is adopted from Sutton and Whitehead’s (1993) work.

In this task, data arrives as a series of examples. The kth example is presented as a

vector of m = 20 binary inputs φk ∈ [0, 1]20 and a single target output Yk ∈ R. The

target output is computed by linearly mapping the target feature vector f∗k ∈ R20, which

are generated using linear threshold units:

[f∗k]i =

{
1 v∗>i φk > τi
0 otherwise

, (11.1)

where v∗i is the target input weight for the ith feature, and τi is the threshold for the ith

feature. The input weights are initialized with either +1 or −1 randomly. The threshold

τi is set in such a way that the ith feature activates only when at least β proportion of

the input bits matches the prototype of the feature. This can be achieved by setting the

thresholds as τi = mβ − Si, where Si is the number of negative input weights (−1) for the

ith feature. The threshold parameter β of these LTUs was set to 0.6.

The target output Yk was then generated as a linear map from the target features as

Yk =
∑n

i=1 θ
∗>f∗k + εk, where εk ∼ N(0, 1) is a random noise, and the elements of the target

output weight vector θ∗ was chosen randomly from a normal distribution with zero mean

and unit variance. Their values were chosen once and kept fixed for all examples. Figure

11.1 shows the architecture of this base learning system.

Here the task of the base system is to approximate the target output as a function of the

inputs in an online manner. The approximator only observes the inputs and the outputs.

If the approximator uses exactly the same network as the target network, then the MSE

performance of the learner would be at minimum, which is 1 in this setting.

144

01001100100110110010

fixed, random input weights vi∈{-1,1}20

output weight θ ∈ ℝ

binary inputs ! ∈ {0,1}20

linear output Y ∈ ℝ

∑

LTUs [f]i∈{0,1}

linear map

Figure 11.1: The general architecture of the base learning system for the online representa-
tion search problem. A binary input vector is nonlinearly mapped into an expanded feature
representation. The features are linear threshold units, which are linearly mapped to pro-
duce a scalar output. The base system learns the output weights whereas representation
search learns the input weights.

11.2 Search Through a Large Number of Random Features

Here, we describe a simple solution method for the representation search problem. The ap-

proximator uses a similar network as the target network, that is, it consists of a non-linear

input map through LTU features fk and an output map from the features to the output.

As the approximator has no way of knowing exactly how many and which LTU features

are being used in the target network, it contains a large number of them, which are gener-

ated randomly. Having a large number of features is the core idea utilized by this solution

method. The motivation behind this idea is that the more features the approximator net-

work contains, the more likely it is that some of them will be similar to the target features,

and in that sense, it performs a form of search.

The base system approximates the target output as a non-linear function of the inputs.

An additional “bias feature” is added to the representation, which always has a value of 1.

The input weights vk are initialized randomly from {−1,+1} and kept fixed. Therefore, the

features in the approximator neither increase in number nor alter in terms of its mapping,

145

limiting the search of this approximator only to the time of initialization. We refer to the

representation of this approximator as the fixed representation.

The output weights θk are initialized to zero, and updated for each example using the

Least Mean Squares (LMS) algorithm:

θk+1 = θk + αδkfk, (11.2)

Here, δk is the estimation error Yk − θ>k fk, and α is the step-size parameter.

The cost for mapping each input vector to a feature vector is O(mn), and producing the

linear map from a feature vector to an output costs O(n). Therefore, the total cost of the

overall map is O(mn) for each example, that is, proportional to both the number of inputs

and features, and remains constant over examples. The computational cost for learning

the output weights using LMS is O(n) for each example. Therefore, the total per-example

computation used by this approximator is O(mn).

Our objective here is to test the intuition that having more features can make a better

approximator. To test this, we test different approximators with different number of fea-

tures n ∈
{

100, 200, 103, 104, 105, 106
}

and measure the estimated MSE. Each approximator

observes the same stream of samples. To estimate their performance, a running average of

squared error δ2 were further averaged over 50 indepedent runs.

Figure 11.2 shows the result of this experiment. It shows that performance increases as

the fixed representation contains more features. However, increase in performance decreases

as the number of features is increased. Similar results were also found by Sutton and

Whitehead (1993) in their work.

11.3 Search Through Generate and Test

In this section, we introduce three representation search methods that search features on an

example-by-example basis. Each method searches for features through generate and test.

All of the methods use the same generator that generates features randomly. The three

methods differ by their testers.

We first describe what is common between these methods. All the methods start with the

same representation. After each example is observed, the base system executes its operations

once. First the input example is mapped to produce the output, and the output weights are

then updated using the LMS algorithm (Eq. 1). When representation search is not used,

only these steps are repeated for each example. A representation search method does the

following in addition to the operations of the base system. The tester first estimates the

utility of each feature. The search method then replaces a small fraction ρ of the features

that are least useful with newly generated features. The replacement parameter ρ is a

constant and has to be tuned. Input weights vij of the new features are set with either +1

or −1 at random. The output weights wi of these new features are set to zero. This process

is repeated for each example. Note that selecting ρn features does not require sorting all

146

F:100

F:300

F:1K F:10K

F:100K
F:1M

Examples

Figure 11.2: The base system with fixed representation performs better in online learning
with larger representations. Best performance is achieved by a fixed representation with
one million features (F:1M), but the performance increase is negligible compared to the ten
times smaller representation (F:100K).

features. It only requires finding the ρnth order statistic and all the order statistics that

are smaller, which can be computed in O(n) (Blum et al. 1973). Generating ρn features

randomly requires O(ρnm) computation. Note that ρ is a small fraction.

Our three methods have three different testers. Our first tester uses the magnitude of

the instantaneous output weight as an estimate of the utility of each feature. This is not

an unreasonable choice, because the magnitude of the output weights is, to some extent,

representative of how much each feature contributes to the approximation of the output.

When magnitudes of the features are of the same scale, then the higher the output-weight

magnitude is, the more useful the feature is likely to be. Features that are newly generated

will have zero output weights, and will most likely become eligible for replacement on the

next example, which will be undesirable. In order to prevent this, we calculate the age

ai of each feature, which stands for how many examples are observed since the feature is

generated. A feature is not replaced as long as its age is less than a maturity threshold µ.

Therefore, the selection of ρn least-useful features occurs only among the features for which

ai ≥ µ. The maturity threshold µ is a tunable parameter. The age statistics ai can be kept

and updated using O(n) time and memory complexity. Table 11.1 describes all the steps

for the first method.

Our second tester uses the trace of the past weight magnitudes instead of the instanta-

147

Algorithm Simple Online Representation Search

Initialization:
Set input weights vi, i = 1...n randomly
Set output weights θ to zero
∗Set age ai of each feature to zero
∗Set replacement rate ρ, e.g., to 1

200 per example
∗Set maturity threshold µ as desired
for each example (φ, Y) do

Map inputs to features: [f]i ← LTU(v>i φ), for i = 1 . . . , n
Map features to output linearly: θ>f ; [f]0 = 1
Update each θ using LMS, Eq. (11.2)
∗Increase each ai by one
∗Find nρ features with smallest |[θ]i| s.t. ai ≥ µ
∗Set vi randomly for those nρ features
∗Set [θ]i ← 0 for those nρ features
∗Set ai ← 0 for those nρ features

end for
Steps marked by asterisks (∗) constitute search. When these steps

are not executed, this algorithm becomes the base system with fixed

representation.

Table 11.1: A simple online representation search method through generate and test.

neous ones. The trace is estimated as an exponential moving average, which can be updated

incrementally. Instead of using an age statistic for each feature, the trace of a newly gener-

ated feature is initialized using a particular order statistic of all the existing traces (e.g., the

median of all traces), so that newly generated features do not get replaced immediately. If a

feature is irrelevant, its weight will have a near-zero value, and its trace will also get smaller

with time, making the feature eligible for replacement. The decay rate of the exponential

average and the order statistic for initializing the traces are tunable.

Our third tester uses the instantaneous output weight magnitudes for estimating the

utility, but also uses learned step sizes as measures of how reliable the weight estimates

are. No age statistic is used in this tester. We use the Autostep method by Mahmood

et al. (2012) that learns one step size for each feature online without requiring any tuning

of its parameters. Higher confidence is ascribed to a weight estimate if the corresponding

feature has a smaller step size. The initial step size of a newly generated feature is set to

a particular order statistic of all step sizes. A feature is eligible for replacement only if its

step size is smaller than that statistic. The order statistic is a tunable parameter.

Per-example computation cost for all three testers is O(n), hence our online represen-

tation search methods use a total of O(n) +O(ρnm) computation. Therefore, the order of

per-example computation of the representation search methods is not more than that of the

base system. If we choose ρ always to be less than 1/m, then the total cost becomes O(n).

148

Moreover, each tester overcomes the difficulty of reliably estimating the feature utility by

using different measures (age statistics, traces and step sizes).

we empirically investigate whether our representation search methods are effective in

improving representations. The base system performs a supervised regression task, and the

task of a representation search method is to improve the performance by searching and

accumulating better features.

Data in our experiment was generated through simulation as a series examples of 20-

dimensional i.i.d. input vectors (i.e., m = 20) and a scalar target output. Inputs were

binary, chosen randomly between zero and one with equal probability. The target output

was computed by linearly combining 20 target features, which were generated from the

inputs using 20 fixed random LTUs. The threshold parameter β of these LTUs was set to

0.6. The target output yk was then generated as a linear map from the target features f∗k
as yk = θ∗>f∗k + εk, where εk ∼ N(0, 1) is a random noise. The target output weights θ∗

were randomly chosen from a normal distribution with zero mean and unit variance. Their

values were chosen once and kept fixed for all examples. The learner only observed the

inputs and the outputs. If the features and output weights of the learner are equal to the

target features f∗k and target output weights θ∗, respectively, then the MSE performance

E
[(
Yk − θ>fk

)2]
of the learner would be at minimum, which is 1 in this setting.

For all the methods except the third representation search method, the step-size pa-

rameter has been set to γ
λk

for the kth example, where 0 < γ < 1 is a small constant, that

we refer to as the effective step-size parameter. Here, λk is an incremental estimate of the

expected squared norm of the feature vector 1
T

∑T
k=1 f>k fk. The effective step-size parameter

γ is set to 0.1 for all the experiments. The replacement rate ρ is set to 1/200, which stands

for replacing one feature in every 200 for every example. The rest of the parameters of the

representation search methods are roughly tuned.

First we study how well the base system with fixed representations performs with dif-

ferent size of representations. Figure 2 shows the performance of fixed representations with

different sizes (from 100 up to one million features) over one hundred thousand examples.

Performance is measured as a running estimate of Mean Squared Error (MSE). Perfor-

mance is averaged over 50 runs. Results show that fixed representations with more features

perform better. However, as number of features is increased, the increase in performance

becomes smaller and smaller. Similar results were also found by Sutton and Whitehead

(1993) in their work on online learning with random representations.

The result of our first representation search method is shown in Figure 11.3 over one

million examples. This result is on the task as in the previous section. Performance is

measured as an estimate of MSE averaged over last 10,000 examples and 50 runs. The

search method performed substantially better than fixed representations and continued to

improve as more examples are seen. Performance of the fixed representation with 100

149

F:100

F:300

F:1K

F:10K
F:100K

F:1M
S:1K

S:100

S:10K

Examples

Figure 11.3: A simple representation search method outperforms much larger, fixed repre-
sentations. This method with 1,000 features (S:1K) outperforms a fixed representation with
one million features (F:1M) and continues to improve. Search with larger representations
perform even better, approaching the minimum possible value of 1.0.

features (F:100) settled at a certain level, but representation search with the same number

of features (S:100) outperformed it at an early stage and continued to improve until the

end of the sequence. Representation search with 1,000 features (S:1K) outperformed fixed

representation with 1,000 times more features (F:1M).

Figure 11.4 compares the three representation search methods on the same problem

as previous. Performance after observing one million examples is plotted against different

number of features. The simple tester is outperformed by the other testers. The tester with

learned step sizes performed the best.

Figure 11.5 shows the distribution of output-weight magnitudes for a fixed representation

and representation search methods with different testers. Two thousand features were used

for each representation. These results show that most weights in both fixed representations

and search are small. The tester using step sizes had the largest weights of all methods

among the top 0.5% of its weights and the smallest weights of all methods among the bottom

20% of its weights.

In the following we pursue a detailed discussion on how a generate and test process for

representation search can be developed. A generate and test process has two components:

a generator and a tester. A generator generates new features in various ways, for example,

by setting the input weights randomly. A tester estimates the utility of each features

individually based on the actual performance. A generate and test process uses both a

generator and a tester to search the feature space and accumulate the most useful features.

150

fixed representation

tester using
weight mag tester using

weight mag
trace

Number of features

tester using
weight mag
 & step size

Figure 11.4: The choice of a tester has
a significant effect on the performance
of representation search. Our simplest
tester using weight magnitudes is outper-
formed by testers that use more reliable
estimates of feature utility. However, all
of them perform better with more fea-
tures.

tester using
weight mag

trace

Proportion of features

99% 99.5% 100%

10

1

0.1

fixed
representation

tester using
weight mag

tester using
weight mag
 & step size

Figure 11.5: The distribution of weight
magnitudes (after 1M examples) for a
fixed representation and search methods
with three different testers. In all cases,
most features have small weights, but
there are differences at the extremes of
very large and very small weights.

In the following, we discuss the issues that can come up in developing a tester and a

generator, respectively.

11.4 Discussing Different Combinations of Generate and Test

Here we briefly discuss how a generator and a tester can be combined in different ways when

using the generate and test process online. In previous, we adopted a simple and straight-

forward way of combining these two: select a small fraction from the least useful features

identified by the tester and replace them with new features generated by the generator. We

found that this process is able to change the representation on every example using a small

extra computation.

A different method for combining a generator and a tester can diverge from our original

methods in different ways. For example, instead of always choosing the least useful features

for replacement, features can also be replaced randomly where their replacement probabil-

ities are based on their utility. Moreover, instead of using the generate and test process on

every example, it is also possible to change the representation after several examples are ob-

served. It is also possible to change the representation only after a particular event occurs,

for example, if the error does not decrease significantly for a certain number of examples,

as in the cascade-correlation method (Fahlman & Lebiere 1990), or if a sudden change in

the error level occurs, as in Q-learning with “hidden-unit restarts” (Anderson 1993).

151

Changing the representation on an example-by-example basis is not only an extreme

form of online learning, it is perhaps also a practical way of fulfilling the computational

constraints faced by online learning problems with frequent and unending stream of data.

When data is arriving at a fairly constant rate (e.g., through robot sensors), the overall

system can use a small constant amount of time between two examples to complete all the

mappings and learnings that need to be done for the current example. The computation

for representation change has to be allotted within this small period of time. Now, if the

representation changes only once in a while, the allotted time would be wasted for those

times when the representation does not change. It would be desirable, in that case, to

amortize the computation for representation change throughout all examples. Our previous

results shows that it is possible to change representation on every example and improve

the representation effectively at the same time. However, our methods do not differentiate

between different examples, and hence are not amortizing an event-based representation

change. It is not clear whether there can be a substantial advantage of using infrequent

or event-based representation changes over changing the representation on every example

in terms of efficiency in performance. If the former is more likely to be efficient in the

problems we are interested in, then it would be desirable to amortize them over every

example, too. For example, instead of making decisions on whether or not a representation

change should occur based on a binary event, the event can be quantified in terms of a per-

example intensity, and the representation change can then be proportional to the intensity

of the event. In that case, the representation change would be able to use roughly the same

amount of computation on every example.

The generate and test process involves several parameters of its own that need to be

tuned. For example, all our representation search methods, introduced previously, have

a replacement-rate parameter that determines the fraction of all features that would be

replaced on every example. There are other parameters too, for example, the maturity

threshold, the decay rate for traces and the initial value of the traces. In general, it might

be useful to automatically tune some of these parameters. For example, the replacement

rate might be automatically tuned to control how many features to replace on each example.

If it is possible to detect that further search would not improve the representation or even

deteriorate the current representation, the replacement rate can be reduced.

11.5 Conclusions

In this chapter, we introduced an online representation search problem as simplification of

the problem of searching for useful predictions. This opens up the possibility of curating

predictions as the features of knowledge representation. However, we do not explore this

possibility in this thesis but rather focus on this simplified setup. In this simple repre-

sentation search problem, the learner solved a supervised learning task while continually

searching over a discrete set of features in a strictly incremental manner. We provided some

152

solution methods based on a simple idea we call generate and test, where features were

continually generated and tested for their usefulness. These search methods constitute a

powerful approach to representation discovery complementing other representation learning

algorithms in a continual learning setting.

153

Chapter 12

Search as a Complementary
Approach to Representation
Learning1

In this chapter, we explore how our online representation search methods can be combined

with some of the existing representation learning methods and how the combination may

lead to performance improvement. We chose one of the online search methods we developed

in the previous chapter for this purpose. We explore how it interacts with an unsupervised

representation learning method by Sutton and Whitehead (1993) and a supervised repre-

sentation learning method known as the backpropagation method (Rumelhart et al. 1986).

12.1 Search with Unsupervised Learning

In this section, we discuss the interplay between representation search and a widely popular

representation learning strategy known as unsupervised feature learning. We discuss how

representation search through generate and test can be combined with unsupervised feature

learning methods in an online manner. We point out two benefits of doing that in a continual

learning problem. First, as in supervised gradient-descent learning, the continual injection

of feature variations through generate and test can also increase the generalization ability

of unsupervised learning. Second, a tester can be used to provide supervised feedback to

unsupervised feature learning and thus improve performance. We show some preliminary

results supporting them, and propose further investigations to fully explore them.

Unsupervised Feature Learning

First, we briefly describe the core ideas of unsupervised feature learning. Unsupervised

feature learning stands for a broad class of representation learning methods where the rep-

resentation of input data is learned without using any feedback of the performance on the

1Some of the core concepts in this chapter are developed in a published paper coauthored by this author
(Mahmood & Sutton 2013).

154

original learning task (Bengio et al. 2012). For example, in a classification task, the per-

formance depends on how well the learner predicts the correct label of the input data.

An unsupervised learning method disregards the labels, and uses information from the in-

put data only. Unsupervised criteria such as sparsity (Olshausen & Field 1997, Lee et

al. 2007), statistical independence (Comon 1994) and reproduction of the input data (Hin-

ton & Salakhutdinov 2006, Bengio et.al. 2007a, LeCun & Bengio 2007) are commonly used

for learning the features. For example, in autoencoders (Bengio et al. 2007a, Hinton &

Salakhutdinov 2006) features are learned in a way so that the input data can be recon-

structed from the features. An input vector is mapped into a feature representation, and

the target outputs are also exactly the same as the elements of the input vector. Both input

and output weights are learned through error backpropagation rule so that the autoencoder

can approximate the inputs. After the unsupervised learning is over, the output weights

are discarded, and the learned features are then used to solve the original classification

task. The map from the features to the correct labels are learned at this stage. Supervised

gradient-descent learning through error backpropagation can also be used to fine tune the

features. A related concept is called a restricted Boltzmann machine (RBM) (Smolensky

1986, Hinton & Salakhutdinov 2006) where a probability distribution of the input data is

learned.

Unsupervised feature learning have been successful in learning networks with many lay-

ers, a sub-field of machine learning often known as deep learning (Bengio et al. 2012, Erhan

et al. 2010). Deep networks can often represent concepts more compactly and efficiently

than shallow networks (Bengio & LeCun 2007b). They can use several levels of abstractions

to capture features that are invariant to low level transformations of the input data. How-

ever, learning features of deep networks is difficult. Supervised gradient-descent learning

through error backpropagation does not perform well in deep networks. Many bad local

minima can exist in deep networks, and gradient-descent learning can easily become suscep-

tible to them. Moreover, gradients of the early layers computed through backpropagation

become very small in deep networks, a problem known as the vanishing gradient problem

(Bengio et al. 1994). On the other hand, unsupervised feature learning have been successful

in learning the features of deep networks. One of the most common strategies is to develop

a deep network by stacking multiple autoencoders. Each hidden layer is learned through

a standalone autoencoder, and the learned features are then fed to the autoencoder of the

next hidden layer as inputs, and so on.

Unsupervised feature learning methods are almost always used in a batch based on a

fixed set of data. They are often viewed as a tool for finding a good set of initial weights for

supervised gradient-descent learning, and hence the process is often also called unsupervised

pre-training. Although the initial weights are extremely important in a short-lived batch

learning task, their importance diminishes with time in a continual learning task. When

learning occurs unendingly in an online learning setting, unsupervised learning methods

155

have to be used continually and on an example-by-example basis. Zhou et al. (2012) ex-

emplified how unsupervised learning methods can be interleaved with supervised gradient-

descent learning in order to use them continually. However, their method operates on mini

batches, not on an example-by-example basis. A detailed study is needed on how unsuper-

vised learning can be conducted fully online.

Continual Injection of Variations in Unsupervised Feature Learning

When unsupervised learning is conducted online, continual injection of variations to features

may have a similar effect as initial weights have in batch learning. Unsupervised learning

typically starts with random initialization of weights, which provides an initial search of

features. Online representation search through generate and test in a way amortizes this

search by injecting random variations to the representation continually. When unsupervised

learning is run online, this continued search may become useful. This can in fact help

unsupervised learning to avoid local minima. This constant source of new features might

also be helpful to increase the generalization ability of unsupervised learning.

The role of continual injection of variations can be essential in non-stationary or sequen-

tial learning problems. When the learner is faced with a new task, there is no straightforward

way to detect the change so that the weights can be reinitialized. Even if it is possible, it

would forget all the learnings from the previous task, and hence would be undesirable. The

continual injection of random variations that representation search introduces to a small

fraction of the features can be a reasonable remedy to this problem.

A potential problem may arise in unsupervised feature learning methods due to the

fact that features learned by them are not tested. These methods learn features based

on a criteria that is not directly related to the original learning task. Although, features

learned by unsupervised learning have been found to be useful, however there is no guaran-

tee that features learned in this manner would remain useful in general. As unsupervised

learning disregards the feedback from the actual performance, it may produce many irrel-

evant features together with the useful ones. When unsupervised learning is used online

for learning continually, the continual process of generating features through unsupervised

learning may also destroy some existing useful features in the process. Whenever, a less

useful or irrelevant feature would fulfil the unsupervised criteria more than a useful feature,

the unsupervised learning method would prefer the irrelevant feature over the useful one.

It has no way to tell which one is more relevant to the original learning task. In continual

learning tasks, it is not desirable to disregard the usefulness of features for too long.

As a tester in our generate and test process sifts through the feature set and determines

the usefulness of each feature, an unsupervised learning method might use it to get super-

vised feedbacks. For example, a tester might be used to identify a fraction of the most

useful features on a given example and protect them for that step. Unsupervised learning

can then be applied only to the rest of the features. It may enable unsupervised learning to

156

learn features selectively and accumulate the useful ones over times. This can also be viewed

as a form of representation search through generate and test where features are generated

through unsupervised learning, and they replace the least useful features identified by a

tester. This way, this combination may form a symbiosis between these two distinct ideas

of representation learning.

Empirical Study

Here we conduct a preliminary study to investigate the interplay between representation

search and unsupervised learning in an online learning task. Specifically, we run experi-

ments to verify whether the two proposed interactions of representation search in unsuper-

vised learning we discussed above, continual injection of variations and supervised feedback

through a tester, are indeed useful.

As part of the base system, we use an unsupervised learning method that learns sparse

features in an online manner, while the original learning task is also being solved at the

same time. The original learning task is an online supervised regression problem. The base

system, on which representation search would be applied, would take an input example,

map it to a feature representation of LTUs, and then would map linearly to an output.

The output weights are updated using the LMS rule (Eq. 11.2). The base system then

uses the online unsupervised learning method to adjust the sparsity of the LTUs on that

example. This process would repeat for each example. Its per-example complexity has to

scale linearly with the number of total weights.

Our chosen unsupervised learning method, developed by Sutton and Whitehead (1993),

applies two techniques, one after another. These techniques adjust the feature activations

both across examples and among features. These techniques are fully online, and their

per-example complexity scale linearly with the number of total weights.

The first technique modifies the frequency of the activation of each feature across exam-

ples. For this, it computes the running estimate of the activation frequency of each feature.

The threshold θi is incrementally changed so that the estimated frequency is within a small

bound around a target frequency. This unsupervised learning technique has two parameters:

the target frequency and the tolerance bound.

The second technique modifies the density or the total activation of all features so that it

achieves a target density. If the density of the feature set at any moment goes below a certain

limit of the target density, one of the inactivate features is chosen with a small probability

(0.0001), and then one of its input weights that do not match with their corresponding input

bits is selected randomly. The sign of that input weight is then flipped. The corresponding

threshold θi is then decreased by 1 to reduce the effect of this change on the frequency of

that feature. If the density of the feature set at any moment goes above a certain limit of

the target density, one of the activate features is chosen with a small probability (again,

0.0001), and then one of the input weights that match with their corresponding input bits

157

is selected randomly. The sign of that input weight is then flipped. The threshold is also

increased by 1 in this case. This technique in effect adjusts the features so that at least

some of them responds to the inputs to some degree. This technique has two parameters:

the target density and the tolerance bound.

We use two variations of representation search methods on top of the base system. In

the first variation, a tester is used to identify a fraction of the most useful features on

each example. There features are protected from being altered by unsupervised learning

on that example. The unsupervised learning method is applied only on the rest of the

features. For example, if a feature is protected, its threshold and input weights are not

adjusted to match the target frequency and density. Its usefulness would be preferred over

its sparsity. However, the feature itself might have been arrived at by adjusting the sparsity

at the beginning. We use the trace of the weight magnitudes as the tester. Here, additional

parameters due to search are the trace parameter and the selection rate which denotes the

percentage of features that are protected on each example.

The second variation of representation search includes every step from the first variation.

Additionally, it replaces a small fraction of the least useful features with randomly generated

features. This step is exactly the same as our representation search methods through

generate and test described in the previous chapter. Additional parameters it introduces

are the replacement rate and the order statistic of all traces with which the trace of a new

feature is initialized.

Representation search would be operated with unsupervised learning in the following

way. When an example is presented, it is mapped to the output through the feature

representation, and the output weights are learned. Then a fraction of the best features is

identified. The unsupervised learning method is applied on the rest of the features to update

their thresholds and input weights. If the second variation is used, then a small fraction of

the least useful features is also replaced with randomly generated features. These steps are

repeated for each example. Per-example computation of all these steps is O(mn), where m

is the number of inputs and n is the number of features.

We used an online supervised learning problem similar to that in section 3. The target

outputs were generated through the weighted sum of 100 target LTUs as functions of the

inputs, generated randomly. Threshold parameter β of the target LTUs were set randomly

between 0.0 and 1.0. The target output weights were generated from a standard normal

distribution. Inputs were binary as previous. In section 3, the activation probability of

inputs was 0.5, so all the input vectors were equally likely. Unsupervised learning would

not have any significant advantage in this kind of problems. In the current experiment,

we set the activation probability of inputs to 0.2. This way, some input vectors were more

likely than others, and unsupervised learning would have an advantage over fixed random

representations.

For the unsupervised learning method, we experimented with different target frequencies

158

fixed representation

search + unsupervised
learning: variation I

simple generate and test

search + unsupervised
learning: variation II

unsupervised learning

Examples

Figure 12.1: Representation search improves the performance of unsupervised learning.
When some of the useful features are preserved through representation search, and the
unsupervised learning method are applied only on the rest of the features (variation I), it
worked better than applying the unsupervised learning method on all features. When the
random generation of features was included to the first variation (variation II), it performed
the best among all variations.

and target densities, both between 0.0 and 1.0. Following Sutton and Whitehead (1993), The

tolerance bound around the target frequency was always set to 0.05. Unlike the experiments

in the previous chapter, we used different threshold parameter β for each different features,

chosen randomly between 0.0 and 1.0. The influence of the threshold parameter β on the

threshold θ remains only during the initial period, and the threshold θ eventually gets

modified by frequency adaptation.

For the representation search methods, the selection rate was tuned among [0.0 , 0.1,

0.2, . . . , 1.0] and the replacement rate was tuned among
[
5× 10−3 , 2 × 10−3, 1 × 10−3,

5 × 10−4, 2 × 10−4, 1 × 10−4, 5 × 10−5, 2× 10−5
]
. The trace rate was set to 0.001 and the

order statistic was set to the median.

From our experiments we find that representation search has the effect on unsuper-

vised learning as we anticipated. The combination of search and unsupervised learning

outperformed both of their standalone variation. Moreover, search enabled unsupervised

learning to improve the representation continually with more data, whereas when only the

unsupervised learning method was used, its advantage was only during the initial period,

after which performance settled at a level. Figure 12.1 shows the results. When the first

159

variation of search is combined with the unsupervised learning method, it outperformed

the standalone unsupervised learning method and performed as well as the simple generate

and test search that replaced the least useful features with randomly generated features on

a base system that were only learning the output weights. When the second variation of

search was added to the unsupervised learning method, it increased the performance over

the first variation and performed the best. Both in the first and the second variation, the

best selection rate was 60%, which signifies that when applying unsupervised learning, a

large portion of the features needed protection. Note that, both variations of the com-

bination are improving the representation and performance, continually with more data,

whereas the standalone unsupervised learning method was not effective after an initial pe-

riod of learning. It signifies that, by applying the unsupervised learning method always on

the least useful features, more generalization ability could be extracted, and the continual

injection of variation boosted this generalization capacity further.

12.2 Search with Supervised Learning

In this section, we discuss the effect of using online representation search on a base system

that is already learning its representation using supervised gradient-descent (GD) learning

through error backpropagation.

The objective and the computational efficiency of supervised GD learning is similar to

those of online representation search. When backpropagation is used as a stochastic gradient

descent method, its per-example computation remains constant over time and scales linearly

with the number of total weights, which is in the same order as that of the overall input-

output map. Moreover, supervised GD method learns the hidden units or features through

error backpropagation in order to optimize the supervised performance. Therefore, both

GD learning and representation search through generate and test are fully compatible with

online learning, and they target at improving the performance of the original learning task.

There are some key differences that distinguish supervised GD learning from represen-

tation search. GD learns the features using a directional approach; it greedily updates

the weights toward the gradient descent direction. On the other hand, the generate-and-

test approach searches and accumulates good features in an undirected and retrospective

way. Unlike GD learning, representation search does not commit to any particular way of

generating features, but may generate them in many different ways and keeps only those

features that has been tested and proved useful on the original learning task. Therefore,

these two methods are quite different functionally, and they may have different strengths

and shortcomings.

We investigate here how the combination of both interplays with each other, and whether

the shortcoming of one can be alleviated by the inclusion of the other. A shortcoming of

representation search is that it is a slow process. As it searches and accumulates features

retrospectively, it requires a lot of time to try numerous possibilities and identify the most

160

useful features. On the other hand, GD is comparatively faster, as it conducts directional

fine tuning of all the weights simultaneously. For many problems, it leads to a fast improve-

ment to the representation. However, it does not necessarily mean that combining them

together would benefit both. It may happen that the fast change of features done by GD

learning completely overwhelms the representation search process and makes the effect of

search either insignificant or futile. On the other hand, the variations that search injects to

the representation may also hamper GD learning.

Two Issues with Supervised GD Learning

We figure out two issues with supervised GD learning which indicate that combining repre-

sentation search and supervised GD learning together can be useful. The first issues with

GD learning is that it is largely sensitive to the initialization of the weights. Some configu-

rations of initial weights, for example setting all weights to zero including the input weights,

can render the method to be totally ineffective. To avoid potentially harmful configurations,

weights are commonly initialized with different values at random. Random initialization is

so common in gradient-descent learning that it is often seen as a part of it. However, it is

worthy pointing out that random initialization is also a form of search, where the process of

generating random features occur only initially, and gradient descent uses this initial search

for its benefit. This initial search attempts to sprinkle the features at widely different places

of the feature space with the hope that at least some of them are placed close to favorable

areas. GD learning then fine tunes those features to improve the solution. Generate and

test can be seen as a continuation of this random variation through continual injection. If

the initial search provides enough variations, then continual injection of random variation

during GD learning may not provide any extra advantage. However, often the objective

function has many poor local optima, and an initial search of features may not cover enough

areas of the space. In this case, occasional injection of random variations through generate

and test may provide a way to continue exploring the space and a chance to improve the

representation. Moreover, if the solution is not stationary and needs tracking, an initial

search would hardly suffice, and a continual search in the feature space would be useful for

the tracking. Therefore, we recognize that, GD learning already uses a form search, and

combining continual search with it is a reasonable idea.

The second issue with GD learning is that it is ineffective in retaining the learning

acquired from a previous task while learning on a new task. When different tasks are posed

sequentially, its performance on previous tasks degrades abruptly. This problem is known

as the catastrophic interference problem (McCloskey & Cohen 1989, Ratcliff 1990, French

1999). It is not unique to backpropagation learning, but rather a common characteristic

to many learning methods for connectionist networks. Difficulty in retaining the acquired

knowledge from an early task is not uncommon in human learning, a phenomenon known

as retroactive interference (Barnes & Underwood 1959). However, forgetting in artificial

161

connectionist networks is much more abrupt and catastrophic. McCloskey and Cohen (1989)

demonstrated that after only a moderate amount of learning on the second task, the network

forgets almost completely about the first task. This is largely due to the distributed nature of

representations in connectionist networks. A connection is not tightly bound to a particular

kind of patterns, but it is rather shared among various kinds of inputs. Therefore, the weight

of a connection learned from one task soon gets recycled by successive tasks. This problem

becomes worse when the backpropagation learning rule is used. The update of the inner

weights of a feature through error backpropagation is proportional to the output weight

of that feature. As the magnitude of the output weight often signifies the importance of

the feature, the backpropagation update of inner weights tends to recycle the most useful

features the quickest (Sutton 1986). Consequently, during the second learning task, the

backpropagation rule quickly changes the features that contributed the most to the first

learning task. Long-lived continual learning problems such as life-long learning of robots

are often viewed as the sequential learning of many related tasks, for example, learning

to walk before learning to run. If GD learning is used as it is for continual learning, the

catastrophic interference would make it practically ineffective.

Several solutions have been proposed to amend the problem of catastrophic interference

in connectionist networks. One solution is to interleave examples from the two learning

tasks instead of presenting them sequentially (Ratchliff 1990, Robins 1995). In that case,

the representation will learn features that are relevant to both tasks together, and neither

of them will be forgotten. An issue with this solution is that it violates the continual nature

of learning and assumes that all learning tasks will be available at the same time. But tasks

are often sequential by construct in continual learning problems, and a task may appear

only after another one is learned (e.g., learning to walk before learning to run). This issue

is often addressed by using two networks at a time (Robins 1995, Robins & Frean 1998,

French 1999). One of the networks is used to learn based on the previous task. When the

first task is over, this network is used to produce pseudo-patterns based on the first task,

while the other network is learned on the new task. The pseudo-patterns are interleaved

with the examples from the new task and fed into the second network. These solutions do

not prevent the catastrophic interference in the learner, but rather attempt to cure it by

changing the learning model or the tasks altogether.

McCloskey and Cohen (1989), in one of the earliest works on catastrophic interference

problem, hinted about an obvious and straightforward solution to this problem, which

appears to be closely related to representation search. They proposed that the features

that are already learned based on previous tasks should be identified, and the learner

should avoid using them in subsequent tasks. They immediately acknowledged that it is

not known how to distinguish between a learned feature and a feature that is not utilized

enough by the learner. This may remind the reader of testers which is a core part of

representation search through generate and test. Testers are specifically used to identify

162

useful features. Moreover, the problem of distinguishing between features that are learned

reliably and features that are yet to be learned is one of the main concerns when generate

and test is used online and is already taken care of by the testers (see Section 4). Therefore,

it might be possible to use a tester to identify the useful features and protect them from

being modified abruptly during the subsequent tasks. This solution is more natural than

the other solutions as it does not change the model or the task, but rather applies small

modifications to the existing learning rule in order to alleviate the problem.

Role of Continual Feature Generation in Supervied GD Learning

From the above discussion, it turns out that the most important distinction between su-

pervised GD learning and representation search is that, despite both of them being com-

putationally suitable for online learning, search through generate and test naturally fits to

continual learning, whereas supervised GD learning evidently have issues that may prevent

it from being used effectively in continual learning problems. When posed with a sequence

of many tasks, supervised GD learning by itself cannot accumulate knowledge or gradu-

ally improve the representation. Even if the tasks are related, where many features can

be reused, backpropagation update will de-learn them and relearn again, hampering the

learning severely.

The role of injecting random variations in GD learning may also become more apparent

in the sequential learning of many tasks. Although GD learning benefits from initial random

variations to a large extent, its effects eventually diminishes in a continual learning task.

When a series of tasks is posed, the conventional GD learning can use the benefit of random

variations only on the first task. For all the subsequent tasks, GD learning is bound to start

with weights that are learned by the previous task. If these weights do not form a good

starting point for the new task, GD learning will severely suffer. On the other hand, starting

from a completely random set of weights each time a new task starts is neither feasible nor

desirable. Search with continual injection of random variations may play a substantial role

here by amortizing the role of initial randomization over many examples.

We pointed out that representation search through generate and test may play an im-

portant role in supervised GD learning and address two issues of it. We noted that GD

learning already utilizes a form of search through random initialization, and the random

feature generation in representation search may well be seen as an amortized version it.

Moreover, testers of feature utility may also be potentially used for solving the problem of

catastrophic interference in GD learning, and perhaps in connectionist networks, in general.

We propose to thoroughly investigate the role of representation search in addressing

these two issues of supervised GD learning. In all of our experiments next the supervised

GD learning is seen as the base system, and representation search operates as an auxiliary to

it. The overall input-output map consists of one hidden layer of features. In the following

we describe our preliminary studies and findings. Based on these we also discuss what

163

studies we plan to conduct in future.

We empirically investigate the role of continual feature generation in supervised GD

learning. In order to do that, we combine search with GD learning in a particular way and

compare it with the standalone GD learning.

Our first experiment is on a regression problem with simulation data similar to that

in the previous chapter. We use online backpropagation to minimize the squared error

δ2. Online backpropagation uses a stochastic gradient-descent rule to learn both input and

output weights. The output weights are updated using the same LMS rule as in Eq. (11.2).

The input weights vi,k in this case are updated as follows:

[vi,k+1]j = [vi,k]j −
1

2
α

∂δ2
k

∂[vi,k]j
= [vi,k]j + αδk[θk]i

∂[fk]i
∂[vi,k]j

, (12.1)

for i = 1, . . . , n, j = 1, . . . ,m.

In order to compare search with GD learning, We tuned the parameters of GD learning

method in various ways and obtained the best variant. We experimented with three different

kinds of features: logistic functions, hyperbolic tangent functions and LTUs. The GD

update of input weights requires computing the derivative of the features. As LTUs are

step functions, its partial derivative is zero everywhere except at the threshold. Therefore,

the exact GD update for LTUs will not be useful. In order to overcome this problem,

we used a modified backpropagation rule for LTUs. Whenever the derivative of a LTU

is needed, the derivative of the logistic function is used instead, with the inflection point

of the logistic function set at the threshold of the LTU. We tuned both the slope of the

sigmoid functions and the initial variance of the input weights. We also used an additional

variation of backpropagation. As we mentioned before, the input-weight update of the

backpropagation algorithm is proportional to the output weights (see Eq. 12.1). It worsens

the problem of catastrophic interference in backpropagation learning, because the update

tends to modify the most useful features the fastest due to this update. To alleviate this

problem, we use a simple modification where the input-weight update uses only the sign of

the output weights:

[vi,k+1]j = [vi,k]j + αδk sign ([θk]i)
∂[fk]i
∂[vi,k]j

, (12.2)

where i = 1, . . . , n, j = 1, . . . ,m. We refer to it as the modified gradient update. Note that,

it might be able to counter the worsening of catastrophic interference to some extent, but

it cannot eliminate the problem entirely.

When we applied search and GD learning in combination, the GD learning is regarded as

the base system. Therefore, for each example, first the backpropagation algorithm updates

both the input and the output weights, then the generate and test process is executed. For

search, we used the random generator, and the tester based on the trace of output-weight

magnitudes. This combination of search and GD learning can be viewed as GD learning

with continual injection of randomly generated features. As the total number of features is

164

fixed representation

search

GD

best GD
search + best GD

Examples

Figure 12.2: Combination of search with supervised gradient-descent (GD) learning per-
forms better than using GD alone.

always constant, the newly generated features always take place of the least useful features

so far identified.

For the experiment, we used the same problem as that in the previous chapter, this time

with 500 target features and 1000 learnable features. We used more target features than

in Section 3 (where we used 20 target features), because when only 20 target features were

used to produce the problem, GD learning quickly achieved a low error on the problem and

left a little for search to improve on. The results are shown in Figure 12.2. Here, ‘GD’ refers

to the variant of GD where the features are hyperbolic tangent functions, and the modified

gradient update is not used. The ‘best GD’ refers to the variant of GD where the features

are LTUs, and the modified gradient update is used. This performed the best among all

variants. All the differences in performance are highly statistically significant (the standard

errors are smaller than the widths of the lines). The combination of search and the best GD

learning reduced the final MSE by 13% more than the best GD alone. This improvement in

performance is achieved through a negligible increase to the computational overhead. The

extra runtime the combination took was less than 5% of the total runtime taken by the

standalone best GD.

This experiment shows that supervised GD learning can indeed benefit from represen-

tation search through continual injection of random variations.

165

12.3 Conclusions

In this chapter, we explored how online representation search interacts with unsupervised

learning and backpropagation. We showed that by carefully combining the generate and

test method for representation search with unsupervised learning, it is possible to continue

harnessing the benefits of unsupervised learning, which is typically utilized for the initial-

ization of the learner. On the other hand, the combination of representation search with

backpropagation had been trickier, and the benefits were limiting. We conjecture that as

backpropagation can tune the parameters of a learner much faster than a search method

can proceed, in single stationary problems it is difficult to improve the performance of back-

propagation by adding search. Our study shed some light on how search can play a role in

complementing existing representation learning methods, extending their benefits to some

novel scenarios, and boosting their performance in some other.

166

Chapter 13

Conclusions

The core motivation of this thesis has been developing algorithms for large-scale, long-

term predictions. We adopted a powerful formulation of this problem: off-policy prediction

under the general value function framework, which builds on well-founded concepts such as

Markov decision processes and value function estimation. This allows semantic clarity of

the prediction problem and utilization of the computational efficiency of temporal-difference

(TD) learning algorithms in prediction tasks.

13.1 Summary

We analyzed two core issues with off-policy TD algorithms: they often produce high vari-

ance, and they may diverge in some tasks. We made some definitive progress toward

overcoming these shortcomings by broadening our understanding of why these issues occur

and how they can be prevented. For the issue of high variance, which occurs due to the

use of importance sampling and ratios in off-policy algorithms, we took two complemen-

tary approaches: utilizing a well-known Monte Carlo estimation method known as weighted

importance sampling with function approximation and avoiding an explicit presence of im-

portance sampling ratios altogether. For the issue of instability, we provided a principled

approach for analyzing the stability of the TD algorithm and utilized it to produce a stable

modification of it.

In the following, we provide a list of key off-policy prediction algorithms developed in

this thesis:

• WIS2: A variation of tabular weighted importance sampling that reduces the effect of

importance sampling ratios by being aware of state-dependent discounting along the

trajectory.

• WIS-LS: A backward-compatible extension of the conventional weighted importance

sampling estimator to linear function approximation.

167

• WIS2-LS: A backward-compatible extension of the WIS2 estimator to linear function

approximation.

• WIS-LSTD(λ): A real-time strictly incremental algorithm extending WIS2-LS with

bootstrapping and TD updates.

• WIS-TD(λ): An off-policy algorithm with O(n) computational complexity based on

weighted importance sampling.

• WIS-GTD(λ): An extension of GTD(λ) based on weighted importance sampling.

• ABQ(ζ): An off-policy algorithm for action-value estimation that avoids an explicit

presence of importance sampling ratios by varying the amount of bootstrapping based

on state-action pairs in a particular way.

• ETD(λ): An off-policy algorithm with a single tunable parameter and a stability

guarantee.

In addition, we introduced a systematic approach to deriving strictly incremental algorithms

and producing stable stochastic updates for reinforcement learning. Finally, we developed a

computationally efficient method for searching for effective features online, which provides

some insight into how knowledge can be curated by a life-long learning agent.

13.2 Future Directions

Off-policy prediction has come a long way through several works including those included

in this thesis. Our algorithms are among the state-of-the-art methods for large-scale predic-

tions, and they can be seen as strong solutions to the most notorious issues with off-policy

prediction. However, new works always lead to further works and investigations. In the

following, we list some of the future directions we deem important:

• Convergence analysis: There have been some significant advancements toward

our understanding of the convergence of off-policy algorithms. Several recent works

(Yu 2010, 2012, 2015, 2016, Maei 2011, Chandrashekar & Bhatnagar 2016) provided

convergence proofs for off-policy least-squares algorithms and linear computational

complexity algorithms with both simple and two time-scale schemes. These can be

adopted to provide convergence proofs for some of the algorithms we introduced in

this work.

• Off-policy prediction with non-linear function approximation: Theoretical

understanding of TD learning with the non-linear function approximation is limited.

Nonetheless, many TD algorithms have been developed for non-linear function ap-

proximation based on intuitions and heuristics. Although some of these algorithms

168

have been shown to perform well empirically, the theoretical understanding of these

algorithms are still missing, and working toward this can be a significant step for

reinforcement learning algorithms.

Having developed algorithms to undertake the issues with off-policy TD learning, the

next step would be to utilize them for predictive knowledge representation. Some prior

works (Sutton et al. 2011, Modayil 2012, White 2015) have addressed how off-policy TD

algorithms can be used for large-scale, long-term predictions. We looked at the problem of

curating predictions based on their usefulness by reducing the problem to a supervised rep-

resentation search problem. However, there are other components of predictive knowledge

representation that need to be explored in details, which we list in the following:

• Grounding knowledge representation to off-policy prediction: There are some

prior works showing how off-policy predictions can be used for knowledge represen-

tation. In most of those works, the predictions are used directly as the features.

However, some works in predictive state representation hint that a shared feature rep-

resentation can all be used together to learn some preset predictions. This may also

facilitate a substantial transfer of knowledge. These variations need to be explored to

determine what would be a preferable scheme for grounding knowledge representation

to off-policy prediction.

• Extending representation search to predictive knowledge representation:

We simplified the problem of curating predictions to the problem of supervised rep-

resentation search. Therefore, an obvious future step from here is to extend the

representation search work to predictive knowledge representation. Both varieties of

predictive knowledge representations discussed in the above need to be explored with

representation search. If the predictions are used only as the targets but not as fea-

tures, then our representation search methods readily apply. In this case, the features

are of the regular form and can be similar to those we used in our work. On the other

hand, if the predictions are used directly as features, then we need to address the

problem of how to generate new predictions.

• Generation of new predictions: With predictive knowledge representation, a core

question, is how to come up with the predictions in the first place that can be used both

as the target of learning as well as the elements of the representation. Modayil et al.

(2014) hypothesized that, as with animal learning, a knowledge representation could

be developed by grounding them to the predictions of the most primitive sensorimotor

facts of the agent experience. Starting from such primitive predictions, more complex

predictions can be developed through composition and learning sub-goals that are

useful for the overall goal of the agent. Moreover, the predictions can be parameterized

and learned through gradient descent.

169

A culmination of our vision of predictive knowledge representation comprises a large

number of predictive questions curated through a process of generate and test and cor-

responding predictive answers learned using an off-policy TD algorithm. Our work is a

definitive contribution toward this vision, fleshing out some of the core elements. This

brings closer to reality a future where a life-long learning agent can improve and expand

continually its knowledge by curating and answering a large number of off-policy predictive

questions about the world.

170

References

Anderson, C. (1993) Q-Learning with hidden-unit restarting. Advances in Neural Infor-

mation Processing Systems, volume 5, S. J. Hanson, J. D. Cowan, and C. L. Giles, eds.,

Morgan Kaufmann Publishers, San Mateo, CA, pp. 81–88.

Andradóttir, S., Heyman, D. P., Ott, T. J. (1995). On the choice of alternative measures

in importance sampling with Markov chains. Operations Research, 43 (3):509–519.

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function approxi-

mation. In Proceedings of the 12th International Conference on Machine Learning , pp.

30–37.

Baird, A. A., Fugelsang, J. A. (2004). The emergence of consequential thought: Evidence

from neuroscience. Phil. Trans. R. Soc. Lond. B 359 :1797–1804.

Barnes, J. M., Underwood, B. J. (1959). “Fate” of first-list associations in transfer theory.

Journal of Experimental Psychology 58 :97–105.

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H. (2007a). Greedy layer-wise training

of deep networks. Advances in neural information processing systems, 19.

Bengio, Y., LeCun, Y. (2007b). Scaling learning algorithms towards AI. In DeCoste, D.,

Bottou, L., Chapelle, O., Weston, J., (Eds.), Large-Scale Kernel Machines. MIT Press.

Bengio, Y., Courville, A., Vincent, P. (2012). Unsupervised feature learning and deep

learning: A review and new perspectives. arXiv preprint arXiv :1206.5538.

Bertsekas, D. P. (1994). A counterexample to temporal-difference learning, Neural Compu-

tation 7 :270–279.

Blum, M., Floyd, R. W., Pratt, V., Rivest, R., Tarjan, R. (1973). Time bounds for selection.

J ournal of Computer and System Sciences 7: 448–461.

Bousquet, O., Bottou, L. (2008). The tradeoffs of large scale learning. Advances in neural

information processing systems 21 :161–168.

Boyan, J. A., Moore, A. W. (1995). Generalization in reinforcement learning: Safely approx-

imating the value function. Advances in Neural Information Processing Systems 1994 ,

pp. 369–376. MIT Press, Cambridge, MA.

Boyan, J. A. (2002). Technical update: Least-squares temporal difference learning. Machine

Learning 49 (2):233-246.

Casella, G., Robert, C. P. (1998). Post-processing accept-reject samples: recycling and

rescaling. Journal of Computational and Graphical Statistics, 7 (2):139–157.

171

Chandrashekar L. and Bhatnagar. S. (2016). A stability criterion for two timescale stochas-

tic approximation schemes, Automatica.

Clarkson, P. M. (1993). Optimal and Adaptive Signal Processing. CRC press.

Comon, P. (1994). Independent component analysis, a new concept? Signal Processing

36 (3):287–314.

Cormen, T. H. (2009). Introduction to Algorithms. MIT press.

Dann, C., Neumann, G., Peters, J. (2014). Policy evaluation with temporal differences: a

survey and comparison. Journal of Machine Learning Research, 15 :809–883.

David, I. P., Sukhatme, B. V. (1974). On the bias and mean square error of the ratio

estimator. Journal of the American Statistical Association 69 (346):464–466.

Defazio, A., Graepel, T. (2014). A comparison of learning algorithms on the Arcade Learn-

ing Environment. arXiv preprint , arXiv:1410.8620.

Eicker, F. (1963). Asymptotic normality and consistency of the least squares estimators for

families of linear regressions. The Annals of Mathematical Statistics 34 (2): 447–456.

Eltinge, J. L. (1994). Sufficient conditions for moment approximations for a sample ratio

or regression coefficient under simple random sampling. Sankhyā: The Indian Journal of

Statistics, Series B, 400–414.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P. A., Vincent, P., Bengio, S. (2010). Why

does unsupervised pre-training help deep learning? Journal of Machine Learning Research

11 :625–660.

Fahlman, S. E., Lebiere, C. (1990). The cascade-correlation learning architecture. Advances

in Neural Information Processing Systems, pp. 524–532.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in Cogni-

tive Sciences 3 :128–135.

Geist, M., Scherrer, B. (2014). Off-policy learning with eligibility traces: A survey. Journal

of Machine Learning Research, 15 :289–333.

Gordon, G. J. (1995). Stable function approximation in dynamic programming, Tech. Rep.

CMU-CS-95-103 , Carnegie Mellon University.

Graham, R. L., Knuth, D. E., Patashnik, O. (1989). Concrete Mathematics. Addison

Wesley.

Hammersley, J. M. Handscomb, D. C. (1964). Monte Carlo methods, Methuen & co. Ltd.,

London, pp. 40,

Harutyunyan, A., Bellemare, M. G., Stepleton, T., Munos, R. (2016). Q (λ) with off-policy

corrections. arXiv preprint arXiv:1602.04951.

Hastie, T., Tibshirani, R., Friedman, J. (2001). The Elements of Statistical Learning: Data

Mining, Inference and Prediction. Springer, New York.

Hazan, E., Kale, S. (2008). Extracting certainty from uncertainty: Regret bounded by

variation in costs. In The 21st Annual Conference on Learning Theory : 57–68.

172

Hesterberg, T. C. (1988), Advances in importance sampling , Ph.D. Dissertation, Statistics

Department, Stanford University.

Hinton, G. E., Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with

neural networks. Science 313(5786):504–507.

Kleijnen, J. P. C. (1978). Communication: Reply to Fox and Schruben. Management

Science 24 :1772–1774.

Koller, D., Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques.

MIT Press, 2009.

Kushner, H. J., Yin G. G. (2003). Stochastic Approximation and Recursive Algorithms and

Applications, second edition. Springer-Verlag.

LeCun, Y. and Bengio, Y. (2007) Scaling Learning Algorithms Towards AI. In Bottou et

al. (Eds.) Large-Scale Kernel Machines, MIT Press.

Lee, H., Battle, A., Raina, R., Ng, A. Y. (2007). Efficient sparse coding algorithms. Ad-

vances in neural information processing systems 19.

Ling, R. F. (1974). Comparison of several algorithms for computing sample means and

variances. Journal of the American Statistical Association, 69 (348):859–866.

Liu, J. S. (2001). Monte Carlo Strategies in Scientific Computing. Berlin, Springer-Verlag.

Maei, H. R., Sutton, R. S. (2010). GQ(λ): A general gradient algorithm for temporal-

difference prediction learning with eligibility traces. In Proceedings of the Third Confer-

ence on Artificial General Intelligence:91–96. Atlantis Press.

Maei, H. R. (2011). Gradient Temporal-Difference Learning Algorithms. PhD thesis, Uni-

versity of Alberta.

Mahmood, A. R., Sutton, R. S., Degris, T., Pilarski, P. M. (2012). Tuning-free step-size

adaptation. Proceedings of the 2012 IEEE International Conference on Acoustics, Speech,

and Signal Processing, Kyoto, Japan, pp. 2121–2124.

Mahmood, A. R., Sutton, R. S. (2013). Representation search through generate and test.

In AAAI Workshop: Learning Rich Representations from Low-Level Sensors.

Mahmood, A. R., van Hasselt, H., Sutton, R. S. (2014). Weighted importance sampling for

off-policy learning with linear function approximation. In Advances in Neural Information

Processing Systems 27 , Montreal, Canada.

Mahmood, A. R., Sutton, R. S. (2015). Off-policy learning based on weighted importance

sampling with linear computational complexity. In Proceedings of the 31st Conference on

Uncertainty in Artificial Intelligence.

Mahmood, A. R., Yu, H., White, M., Sutton, R. S. (2015). Emphatic temporal-difference

learning. European Workshop on Reinforcement Learning 12 ,arXiv preprint ArXiv:1507.

01569.

Mahmood, A. R., Yu, H., Sutton, R. S. (2017). Multi-step off-policy learning without

importance sampling ratios. arXiv preprint arXiv:1702.03006.

McCloskey, M., Cohen, N. (1989). Catastrophic interference in connectionist networks:

173

the sequential learning problem, in The Psychology of Learning and Motivation (Vol. 24)

(Bower, G.H., ed.), pp. 109–164, Academic Press.

McMahan, H. B. (2011). Follow-the-regularized-leader and mirror descent: equivalence

theorems and L1 regularization. In Proceedings of the 14th International Conference on

Artificial Intelligence and Statistics.

Meyer, Jr, C. D., Plemmons, R. J. (1977). Convergent powers of a matrix with applications

to iterative methods for singular linear systems. SIAM Journal on Numerical Analysis

14 (4): 699–705.

Modayil, J., White, A., Sutton, R. S. (2014). Multi-timescale Nexting in a Reinforcement

Learning Robot. Adaptive Behavior 22 (2):146–160.

Munos, R, Stepleton, T, Harutyunyan, A, Bellemare, M. G. (2016). Safe and efficient off-

policy reinforcement learning. In Proceedings of Neural Information Processing Systems.

Olshausen, B. A., Field, D. J. (1997). Sparse coding with an overcomplete basis set: A

strategy employed by VI? Vision research, 37(23), 3311–3325.

Paduraru, C. (2013). Off-policy evaluation in Markov decision processes. Doctoral disser-

tation, PhD thesis, McGill University.

Precup, D., Sutton, R. S., Singh, S. (2000). Eligibility traces for off-policy policy evalua-

tion. In Proceedings of the 17th International Conference on Machine Learning :759–766.

Morgan Kaufmann.

Precup, D., Sutton, R. S., Dasgupta, S. (2001). Off-policy temporal-difference learning with

function approximation. In ICML:417–424.

Precup, D., Paduraru, C., Koop, A., Sutton, R. S., Singh, S. P. (2005). Off-policy learn-

ing with options and recognizers. In Advances in Neural Information Processing Sys-

tems:1097–1104.

Rafols, E. (2006). Temporal Abstraction in Temporal-difference Networks Master’s thesis.

University of Alberta.

Ratcliff, R. (1990). Connectionist models of recognition memory: constraints imposed by

learning and forgetting functions. Psychological Review 97 :285–308.

Robins, A. (1995). Catastrophic forgetting, rehearsal, and pseudorehearsal. Connection

Science 7 :123–146.

Robins A. V., Frean M. R. (1998). Local learning algorithms for sequential learning tasks

in neural networks. Journal of Advanced Computational Intelligence 2 (6):107–111.

Roese, N. J. (1997). Counterfactual thinking. Psychological bulletin 121 (1), 133.

Robert, C. P., and Casella, G., (2004). Monte Carlo Statistical Methods, New York,

Springer-Verlag.

Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method , New York, Wiley.

Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning representations by

back-propagating errors. Nature 323 :533–536.

174

Shelton, C. R. (2001). Importance Sampling for Reinforcement Learning with Multiple

Objectives. Ph.D. thesis, Massachusetts Institute of Technology.

Shimodaira, H. (2000). Improving predictive inference under covariate shift by weighting

the log-likelihood function. Journal of Statistical Planning and Inference, 90 (2):227–244.

Singh, S. P., Sutton, R. S. (1996). Reinforcement learning with replacing eligibility traces.

Machine learning 22 (1-3):123–158.

Smolensky, P. (1986) Information processing in dynamical systems: foundations of harmony

theory. In D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, eds.,

Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume

1: Foundations, p. 194-281. MIT Press/Bradford Books, Cambridge, MA.

Srebro, N., Sridharan, K., Tewari, A. (2011). On the universality of online mirror descent.

In Advances in Neural Information Processing Systems 24 : 2645–2653.

Sutton, R. S. (1986). Two problems with backpropagation and other steepest-descent learn-

ing procedures for networks. In Proceedings of the Eighth Annual Conference of the Cog-

nitive Science Society , pp. 823–831.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine

learning 3 (1):9–44.

Sutton, R. S., Whitehead, S. D., (1993). Online learning with random representations.

Proceedings of the Tenth International Conference on Machine Learning, pp. 314–321.

Sutton, R.S., Singh, S.P. (1994). On bias and step size in temporal-difference learning. In

Proceedings of the Eighth Yale Workshop on Adaptive and Learning Systems, pp. 91-96.

Sutton, R. S. (1995). TD models: Modeling the world at a mixture of time scales. In

Proceedings of the Twelfth International Conference on Machine Learning , pp. 531–539.

Sutton, R. S., Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press.

Sutton, R. S., Precup, D., Singh, S. (1999). Between MDPs and semi-MDPs: A framework

for temporal abstraction in reinforcement learning. Artificial intelligence 112(1):181–211.

Sutton, R. S., Rafols, E. J., Koop, A. (2006). Temporal abstraction in temporal-difference

networks. Advances in Neural Information Processing Systems 18 , MIT Press.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, Cs., &

Wiewiora, E. (2009). Fast gradient-descent methods for temporal-difference learning with

linear function approximation. In Proceedings of the 26th Annual International Confer-

ence on Machine Learning :993–1000, ACM.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., Precup, D.

(2011). Horde: A scalable real-time architecture for learning knowledge from unsuper-

vised sensorimotor interaction. In Proceedings of the Tenth International Conference on

Autonomous Agents and Multiagent Systems, pp. 761–768, Taipei, Taiwan.

Sutton, R. S., Mahmood, A. R., Precup, D., van Hasselt, H. (2014). A new Q(λ) with in-

terim forward view and Monte Carlo equivalence. In Proceedings of the 31st International

Conference on Machine Learning , Beijing, China.

175

Sutton, R. S., Mahmood, A. R., White, M. (2016). An emphatic approach to the problem

of off-policy temporal-difference learning. Journal of Machine Learning Research 17 ,

(73):1–29.

Thomas, P. S. (2015). Safe Reinforcement Learning. PhD Thesis, School of Computer

Science, University of Massachusetts Amherst.

Tsitsiklis, J. N., Van Roy, B. (1996). Feature-based methods for large scale dynamic pro-

gramming. Machine Learning 22 :59–94.

Tsitsiklis, J. N., Van Roy, B. (1997). An analysis of temporal-difference learning with

function approximation. IEEE Transactions on Automatic Control 42 :674–690.

van Hasselt, H. (2011). Insights in Reinforcement Learning: formal analysis and empirical

evaluation of temporal-difference learning algorithms. PhD thesis, Universiteit Utrecht.

van Hasselt, H., Mahmood, A. R., Sutton, R. S. (2014). Off-policy TD(λ) with a true

online equivalence. In Proceedings of the 30th Conference on Uncertainty in Artificial

Intelligence, Quebec City, Canada.

Van Reeken, A. J. (1968). Letters to the editor: Dealing with Neely’s algorithms. Commu-

nications of the ACM, 11 (3):149–150.

van Reeken, A. J. (1970). The effect of truncation in statistical computation. E.I.T. Re-

search Memorandum No. 10, Tilburg Institute of Economics, Tilburg School of Economic.

van Seijen, H., & Sutton, R. S. (2014). True online TD(λ). In Proceedings of the 31st

International Conference on Machine Learning. JMLR W&CP 32(1):692–700.

van Seijen, H., Mahmood, A. R., Pilarski, P. M., Machado, M. C., Sutton, R. S. (2016). True

online temporal-difference learning. Journal of Machine Learning Research 17 (145):1–40.

Vapnik, V. (1998) Statistical Learning Theory. John Wiley and Sons, Inc., New York.

Varga, R. S. (1962). Matrix Iterative Analysis. Englewood Cliffs, NJ: Prentice-Hall.

White, A. (2015). Developing a Predictive Approach to Knowledge. PhD thesis, University

of Alberta.

White, A., White, M. (2016). Investigating practical, linear temporal difference learning.

In Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent

Systems, 494–502.

White, M. (2016). Unifying task specification in reinforcement learning. arXiv preprint

arXiv :1609.01995.

Yu, H. (2010). Convergence of least squares temporal difference methods under general

conditions. In Proceedings of the 27th International Conference on Machine Learning ,

pp. 1207–1214.

Yu, H. (2012). Least squares temporal difference methods: An analysis under general

conditions. SIAM Journal on Control and Optimization 50 (6):3310–3343.

Yu, H. (2015). On convergence of emphatic temporal-difference learning. arXiv preprint

arXiv:1506.02582; a shorter version appeared in The 28th Annual Conference on Learning

Theory (COLT) 2015.

176

Yu, H. (2016). Weak convergence properties of constrained emphatic temporal-difference

learning with constant and slowly diminishing stepsize. Journal of Machine Learning

Research 17 (220):1–58.

Zhou, G., Sohn, K., Lee, H. (2012). Online incremental feature learning with denoising au-

toencoders. In Proceedings of the 15th International Conference on Artificial Intelligence

and Statistics.

177

	List of Figures
	List of Tables
	Introduction
	Key Ideas and Approaches
	Related Works
	Contributions

	The Problem Setup and Background
	The Agent-Environment Interaction Model
	Predictions as General Value Functions (GVFs)
	Model-free and Model-based Learning
	Tabular and Linear Function Approximation Settings
	Off-line, Per-trajectory, and Real-time Learning Settings
	Computational Goals for Learning Algorithms
	Bias, Consistency and Mean Squared Error of Average and Ratio Estimators
	The Importance Sampling Technique
	Conclusions

	Algorithmic Equivalences for Incremental Reinforcement Learning
	Algorithmic Equivalences
	Equivalences for the Method of Least-Squares
	Equivalences for Stochastic Gradient Descent
	Counterexamples to Strict Incrementality
	Equivalence Techniques and Intuitions
	Conclusions

	Tabular Off-policy Algorithms for Value Function Estimation
	Off-policy Tabular Estimators with Importance Sampling
	Discounting-aware Off-policy Estimators
	Reward-Specific Off-policy Estimators
	Incremental Updates of Off-policy Estimators
	Discussion and Conclusions

	Weighted Importance Sampling with Function Approximation
	WIS as Weighted Least Squares
	WIS with Linear Function Approximation
	WIS2 with Linear Function Approximation
	Conclusions

	Real-Time Weighted Importance Sampling with Bootstrapping
	Forming Targets with State-dependent Bootstrapping
	Interim Targets for Real-time Updates
	Putting It All Together
	Strictly Incremental Updates with Algorithmic Equivalence Technique
	Experimental Results
	Conclusions

	Weighted Importance Sampling with Linear Computational Complexity
	 Merging Sample Average and SGD
	Merging WIS and off-policy SGD
	Usage-based Algorithms
	Experimental Results
	Discussion and Conclusions

	Multi-step Off-policy Learning without Importance Sampling Ratios
	 Formulation of the Action-value Estimation Task
	 The Advantage of Multi-step Learning
	 Multi-step Off-policy Learning with Importance-Sampling Ratios
	 Avoiding Importance-Sampling Ratios
	 The ABQ() Algorithm with Gradient Correction and Scalable Updates
	 Experimental Results
	 Action-dependent Bootstrapping as a Framework for Off-policy Algorithms
	Conclusions

	Instability of Temporal-Difference Learning Algorithms
	Convergence of Expected Updates
	Stability of Stochastic Updates
	Instability Due to Off-policy Updating
	Instability Due to State-Dependent Bootstrapping
	Instability Due to Selective Updating
	Stability with Arbitrary State-Dependent Discounting
	Oscillation Due to Asymmetric Iteration Matrix
	Conclusions

	An Emphatic Approach to Stable Temporal-Difference Learning
	Warping the Update Distribution for Stability
	Emphatic Temporal Difference Learning Algorithms
	Experimental Results
	Conclusions

	Representation Search Through Generate and Test
	A Simple Representation Search Problem
	 Search Through a Large Number of Random Features
	Search Through Generate and Test
	Discussing Different Combinations of Generate and Test
	Conclusions

	Search as a Complementary Approach to Representation Learning
	Search with Unsupervised Learning
	Search with Supervised Learning
	Conclusions

	Conclusions
	Summary
	Future Directions

	References

