
We must make automatic and habitual, as early as possible, as many useful actions
as we can, and as carefully guard against the growing into ways that are likely to

be disadvantageous.

– William James, 1899.
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Abstract

Performance and stability of many iterative algorithms such as stochastic gradient

descent largely depend on a fixed and scalar step-size parameter. Use of a fixed and

scalar step-size value may lead to limited performance in many problems. We study

several existing step-size adaptation algorithms in nonstationary, supervised learn-

ing problems using simulated and real-world data. We discover that effectiveness

of the existing step-size adaptation algorithms requires tuning of a meta parameter

across problems. We introduce a new algorithm—Autostep—by combining several

new techniques with an existing algorithm, and demonstrate that it can effectively

adapt a vector step-size parameter on all of our training and test problems without

tuning its meta parameter across them. Autostep is the first step-size adaptation

algorithm that can be used in widely different problems with the same setting of all

of its parameters.
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Chapter 1

The Problem of Step-Size Adaptation

Incremental updates of many iterative algorithms in machine learning, parameter

estimation, system identification and adaptive control can be viewed as products of

two factors. One of the factors can be thought as a step toward a direction close to

the solution and the other can be thought as defining the size of this step. The latter

is often known as the step-size parameter. Such a step-size parameter can either be

a scalar or a vector or a matrix quantity. A manually-tuned, scalar constant is the

most common.

Existence of a step-size parameter is often viewed as a disadvantage for such

algorithms because it has to be tuned. Typically, performance and stability of the

algorithms rely on the value of the step-size parameter. This brings the issue of

how to set the step size properly for a specific problem. Finding a good value

for the step size may require extensive manual tuning. Many practical problems

involve changing environments and the solution in such problems may also change

over time. In such problems, performance of algorithms with a constant step-size

value, found through initial tuning, may diminish over time.

Nevertheless, many iterative algorithms with a step-size parameter are important

and widely used in practice. Real-world problems can have high-volume, high-

dimensional data. Iterative methods such as stochastic gradient descent are scalable

to such large problems. Incremental updates are desired for these problems and

many iterative algorithms with a step-size parameter are suitable for them.

This thesis explores algorithms of automatic step-size adaptation. In the first

few chapters, we discuss several existing algorithms for step-size adaptation. A
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Figure 1.1: A spherical MSE function surface in weight-space. Target weight is at 〈1, 0〉.
This function is quadratic in the weight space.

number of them are experimented on toy and real-world robot data. In later chap-

ters, we introduce our proposed algorithm for automatic step-size adaptation.

1.1 The Least-Mean-Square (LMS) Setting

The LMS algorithm (Widrow and Hoff, 1960) is a concrete instance for studying

step-size adaptation. It is the most widely used algorithm in supervised regression

problems. Its typical use involves a fixed, scalar step-size parameter. For step-size

adaptation, we use supervised regression problems and the LMS setting throughout

this work.

In online supervised regression problems, a data sample zt = 〈xt, yt〉 is ob-

served at each time step t, where xt ∈ Rn is a vector of inputs and yt ∈ R is a

scalar, target output. In linear systems, the task of a learner is to predict the tar-

get output yt as a linear combination of the inputs w>t xt, where wt is the weight

vector. This task can be formulated as the minimization of an error function, the

Mean-Squared-Error (MSE) Ezt [δ2t ], where the sample error δt is the error in pre-

diction, yt−w>t xt, at time step t. MSE is a quadratic function on the weight vector

wt, as shown in Figure 1.1. A learner updates the estimated weight vector wt so

that the solution or the target weight vector w∗ = minwt Ezt [δ2t ] could be found.

Figure 1.1 shows the surface of one such function in weight space.
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Figure 1.2: Contour lines of weight-space MSE functions with (LEFT) a spheri-
cal surface (MIDDLE) an ellipsoidal surface with the narrow valley parallel to one
major axis and (RIGHT) an ellipsoidal surface with the narrow valley aligned diag-
onally across the major axes. The axes are the weight elements.

The LMS algorithm predicts the target output incrementally and online. LMS

updates the weight vector wt by following the opposite direction of the gradient of

the sample squared error δ2t , as in the following:

wt+1 = wt −
1

2
α∇wtδ

2
t

= wt − αδt∇wtδt

= wt − αδt∇wt(yt −w>t xt)

= wt + αδtxt,

where α > 0 is a fixed, scalar step-size parameter. The order of time and memory

complexity of LMS for each iteration is linear on the size of the input vector.

If the target weight vectorw∗ is fixed, then with certain conditions on α the esti-

mated weightswt of the LMS algorithm converges in expectation tow∗. Given that

the conditions for stability are satisfied, then the larger the step size is, the quicker

the LMS algorithm converges. On the other hand, asymptotic excess MSE for LMS

is proportional to the value of the step-size parameter. It means, the higher the step-

size value, the poorer will be the asymptotic performance. For stationary problems,

starting with a high initial step-size value and decreasing it over time to zero can

achieve both high convergence rate and better asymptotic performance. However,

the target w∗ may not be fixed and time-scheduling of the step-size parameter will

perform poorly over time in such cases. A fixed step-size value is used in practice.

3



The operation of the LMS algorithm can be illustrated conveniently in the con-

text of the weight space MSE-function surface. The MSE surface in the weight

space can take a form of a spherical bowl, as shown in Figure 1.1. This MSE

function was calculated from 3000 randomly generated inputs and outputs. Two di-

mensional input vectors x were drawn independently and randomly from a normal

distribution with zero mean and unit variance. The target outputs y were calcu-

lated as a linear combination of the inputs: w∗>x, where the target weight vector,

w∗ = 〈1, 0〉. The contour lines of the same function is shown in the left panel of

Figure 1.2.

Estimating the solution by following the opposite direction of gradient is a good

idea in this kind of surfaces, because the gradient direction always points toward the

solution in such surfaces and a small step in that direction reduces the MSE. Gra-

dient descent is the steepest-descent direction, i.e., error function reduces fastest at

one time step along the gradient direction (Bazaraa and Shetty, 1979). The sample

gradient ∇wtδ
2
t in LMS is a noisy gradient estimate on this surface at wt. A scalar

step-size parameter defines how much the weight update is scaled toward this noisy

gradient-descent direction. Typically, the LMS algorithm with a small value for a

scalar step-size parameter works well in this kind of problems.

Gradient direction with a scalar step-size value does not work out well in all

problems. An example of difficult problems for LMS is where the MSE function is

ellipsoidal, as shown in the middle panel of Figure 1.2. This function was found by

using the data samples for the spherical function, shown in the left of the same figure

and multiplying the second component of all the input vectors by three. The vari-

ance of the second input is then nine, while the variance of the first input is one. Due

to different variances in inputs, the surface has become an ellipsoid. Here the nar-

row valley is parallel to the X axis. The steepness is more along Y axis than along

the X axis. Performance of the LMS algorithm is slow in problems with ellipsoidal

MSE function. Although, a small step toward the gradient-descent direction can

still reduce the error, this direction on average does not point toward the solution.

A scalar step size can only scale the amount of the step toward the gradient-descent

direction. The LMS algorithm, which uses a noisy gadient-descent direction and a

4



scalar step-size parameter, takes zigzagging steps toward the minimum of the sur-

face.

By scaling the gradient elements along each direction separately using a vec-

tor step-size parameter, an effect similar to the case of spherical surface can be

achieved, i.e., the update direction will point toward the target in expectation. Us-

ing a vector step-size parameter requires the same order of complexity as LMS,

because the time and memory complexity of using a vector is only linear on the

size of the input vector. This clearly demonstrates the advantage of having a vector

step-size parameter in LMS without increasing the order of its time and memory

complexity.

In general, for a proper scaling of the gradient vector in ellipsoidal problems, a

matrix step-size parameter is needed. An instance where scaling through a vector

step-size parameter can be inadequate is when the narrow valley of an ellipsoidal

MSE is diagonally aligned across the axes. Such an example is shown in the right

panel of Figure 1.2. Here, both inputs have unit variance, but there is a non-zero

covariance of 0.7 between them. A matrix step size is needed to scale the gradient

elements properly in such cases.

Use of a matrix requires quadratic order of time and memory complexity on the

size of the input vector. Therefore, using a matrix step-size parameter would in-

crease the order of the complexity of LMS. There can be many applications, where

increasing the order of time or memory complexity is not desirable. Therefore, a

vector step-size parameter would be preferable to a matrix in many large problems.

In problems where the number of inputs is very large, i.e., a million, manual

tuning of the numerous elements of a vector step size can be impractical. In this

thesis we are interested in automatically adapting a vector step-size parameter of

the LMS algorithm.

1.2 Nonstationarity

The limitation of using a scalar step-size parameter can also be observed in non-

stationary problems. A source of nonstationarity is when the target solution w∗
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changes over time. Such nonstationarity can occur in dynamic systems with chang-

ing environments. Limited function approximation may also introduce such non-

stationarity.

In nonstationary problems, the step-size value needs to be adequately high in

order to track the solution as fast as possible. On the other hand, high step-size

values give high asymptotic excess MSE in stationary problems and a low step-

size value is desirable in such cases. A contrasting demand is posed on a scalar

step-size parameter when there are both stationary and nonstationary target weights

in the same problem. Due to having a scalar step size, performance of the LMS

algorithm is limited in such problems.

A per-input or vector step-size parameter can improve performance substan-

tially in problems with both stationary and non-staitonary target weights. The step-

size elements corresponding to the stationary target weights can be set to small

values, while for nonstationary target weights, to adequately high values.

Advantage of using a vector step-size parameter can be best demonstrated in

such nonstationary settings, i.e., where some target weights are stationary while

some others are nonstationary. Nonstationary problems are also relevant in real-

world applications. In this thesis we explore nonstationary problems for studying

step-size adaptation.

1.3 Feature Relevance and Learning Bias

Using per-input step-size parameters can be connected with the concept of feature

relevance. Inputs are often thought as features of learning. A good bias of learn-

ing can be achieved by selecting an appropriate set of features. Finding feature

relevance is one such criteria for feature selection. An input with a correspond-

ing non-zero positive step-size value can be interpreted as a relevant feature. On

the other hand, an input with zero step-size value does not contribute to the esti-

mation of weights and hence can be thought as an irrelevant feature. Good values

of step-size parameters, therefore, correspond to appropriate feature relevance and

thus form a good learning bias.
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A widely used technique for finding a good learning bias is using cross valida-

tion. The technique of cross validation is used to find appropriate parameter values

so that overfitting is avoided. In k-fold cross validation, the data set is divided

in k partitions. One partition is held out as a validation set and rest of the parti-

tions are used as a training set. For each choice of a system parameter, the learner

is trained on the training set and performance is validated over the validation set.

Validation error over k different validation sets is then averaged to find the over-

all performance. Values of the system parameters are chosen from this process so

that average validation error is minimum. An extreme form of this setting is hold-

one-out cross validation, where only one data sample is held out for the validation,

each time. Such process can be used to find the appropriate values of the step-size

parameter.

For conducting cross validation, all the data are needed together at the same

time. Therefore, this form of cross validation is offline and parameter tuning through

this process is an extensive form of search over the parameter space.

A step-size adaptation algorithm that iteratively updates the values of per-input

step-size parameters and validates the updated step-size value on a new data sample

at each step can be thought as an online form of hold-one-out cross validation.

This can update the parameter values incrementally and online without an extensive

search. Such a view is also held in a work by Sutton (1992a), where he proposed

one such algorithm for step-size adaptation and interprets it as an incremental form

of hold-one-out cross validation.

Viewing step-size adaptation as an incremental and online cross validation tech-

nique for finding good learning bias clearly establishes the need for such methods.

1.4 Desiderata of Step-Size Adaptation Algorithms

Here we establish a number of desirable criteria for step-size adaptation based on

our discussions of nonstationarity, learning bias and feature relevance. This thesis

explores other works in the context of these criteria. For our proposed algorithms,

these criteria are considered as the desirable goals of step-size adaptation.

7



Performance: In nonstationary problems, fast tracking is important for superior

performance. A primary goal of step-size adaptation is to track the solution

as fast as possible by adapting to an adequately high step-size value. This

goal is suggested in many prior works such as those by Sompolinsky et al.

(1995), Murata et al. (1996) and George and Powell (2006). On the other

hand, in problems with stationary solutions, a high step-size value deterio-

rates asymptotic performance (Haykin, 2001). Step-size values are required

to diminish over time so that asymptotic error is small.

In practical problems with large number of inputs, it is more common to have

both stationary and nonstationary target weights at the same time. The goal

of step-size adaptation in such a situation is to deal with both stationary and

nonstationary elements at the same time so that good performance can be

achieved.

Linear Complexity: In many real-time applications, data grows fast and abun-

dantly, imposing a time limit on the computation for each sample. Online,

incremental methods that estimate a solution as fast as possible have advan-

tage over computationally expensive methods in real-time systems. Methods

with linear time and memory complexity, thus, have clear advantage over

higher order methods. The LMS algorithm, which we consider as the base

system in this thesis, also requires linear time complexity. In adapting the

step-size parameter of LMS, our goal is to keep the order of time and mem-

ory complexity as much as that of LMS.

Vector Step Size: In problems where target weight elements can be both station-

ary and nonstationary, a vector step size is appropriate in dealing with such

weights separately. Adaptation of a vector step-size parameter can serve as

a feature selection procedure and form a good learning bias. A vector step-

size parameter also has an advantage over a scalar one when the error surface

has largely different curvatures in different directions. Sutton (1992a) also

viewed adaptation of a vector step-size parameter as a useful goal for nonsta-

tionary problems.

8



In large-scale, real-world problems, where both performance and computa-

tion time is crucial, use of a vector step-size parameter is preferable to a ma-

trix step-size parameter. A matrix step-size parameter will increase the order

of the complexity of LMS or such first order methods, by requiring quadratic

computation instead of linear. Using a vector step-size parameter, in that

sense, is the best we can do without increasing the order of the complexity of

LMS.

Automatic Adaptation: Given that an incremental algorithm uses a vector step-

size, manually setting the elements of a large vector step-size parameter for

a high-dimensional, nonstationary problem is extremely difficult. It is desir-

able to compute appropriate step-size values without an extensive parameter

tuning. Our goal of step-size adaptation is to achieve one that is completely

automatic in its procedure.

These goals are relevant for many practical problems. If a step-size adaptation

algorithm fulfilling these goals is applied in a learning algorithm, performance can

be substantially improved and other advantages such as feature selection can also

be gained.

1.5 Contributions

This thesis explores the ideas of step-size adaptation in LMS setting. We explore

several existing algorithms that adapt the step-size parameter. We find that such

algorithms are limited by requiring manual tuning of other parameters. This thesis

focuses on introducing techniques in order to develop a completely automated step-

size adaptation algorithm.

Following are the contributions of the thesis:

• We empirically analyze and compare the existing step-size adaptation algo-

rithms and demonstrate that applicability of these algorithms are limited by

their requirement of manual tuning of one or more parameters. Many algo-

rithms use a gradient-based rule for adapting the step-size parameter. We
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demonstrate that the effectiveness of these algorithms largely depends on the

choice of a meta-step-size parameter that controls the speed of the adapta-

tion. The best choice of the meta-step-size parameter is found to be problem

dependent, varying in orders of magnitude between problems. We also show

that the range of best values of this parameter for a specific problem is narrow

for most of these algorithms.

• We devise a new step-size adaptation algorithm for linear supervised regres-

sion learning that incrementally and effectively adapt step-size without re-

quiring any prior knowledge of the system or an extensive parameter tuning

of any kind. Performance of our algorithm is qualitatively less sensitive to the

choice of the meta-step-size parameter. We demonstrate that our algorithm

can effectively adapt the step-size parameter on all of our toy and real test

problems using the same setting of its parameters.

1.6 Application Areas

Adaptation of the step-size parameter has usefulness in many practical problems.

Examples include 3D hand tracking (Bray et al., 2004), learning sensorimotor trans-

formations of human and robot arm movements (Vijayakumar and Schaal, 1998),

aircraft-navigation trajectory tracking (Bousson, 2007) and learning the shape of a

receptive field in weighted regression (Schaal and Atkeson, 1997). In the following,

we list some of the problem domains where an automatic step-size adaptation can

be useful.

Problems with High-Volume Data: In many practical problems involving real-

time sensor signals, web-data, video, audio, image, etc., the size of data can

be extremely large and ever-growing. Making use of such big data sets is

a difficult challenge and classical optimization methods that perform passes

over a data set before providing a solution can be very expensive and unde-

sirable. An automatic and incremental step-size adaptation that can estimate

a solution and update the step-size parameter as soon as evaluating one data

sample is suitable for such applications.

10



On the contrary, problems where data is scarce and an incremental algorithm

is not a method of choice, step-size adaptation does not have a strong appli-

cation either.

Problems with Hi-Dimensional Data: In many problems, the input dimensions

of a sample data can be as large as millions. Examples include—neural

networks with a large number of hidden units, function approximation tech-

niques in reinforcement learning algorithms that produce a large number of

features from a relatively small number of inputs (Sutton and Barto, 1998)

and systems with large number of sensor fields. High dimensions enable a

system to capture a wide range of data patterns. Methods that require high

order computation time on the number of input dimension can be prohibitive.

A first order incremental algorithm is scalable in such problems. Using a vec-

tor step-size for these algorithms would require tuning of a large number of

step-size elements, as much as the number of input dimensions, if an adaptive

algorithm is not applied. Using a step-size adaptation algorithm have definite

advantage in such problems.

On the other hand, problems where extensive search of parameters is a fea-

sible option, step-size adaptation may not be a preferable alternative. These

include problems with a small number of input dimensions. However, low-

dimensional data does not necessarily mean that parameter search is feasible.

One example is nonstationary problems that we describe next.

Online Learning in Nonstationary Problems: In practical problems, it is com-

mon to have the distribution of data changing over time. Many classical

methods consider a batch of data together and hence can be ineffective for

such problems. Extensive parameter search for these problems is infeasible

even for low-dimensional data when they contain nonstationarity, because

parameter search is now required not only across the space but also across

the time. Many incremental algorithms are preferred for online learning and

step-size adaptation for these algorithms is an automated alternative to the

extensive parameter search.
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Lifelong learning: Besides all the areas of applications mentioned above, step-size

adaptation finds its best use in a lifelong learning setting where a system runs

for a long time without any human intervention. Examples include robotic

systems that are required to perform similarly to living animals or robots per-

forming a task in a remote place where human intervention is not a choice.

Such systems typically compose of several other sub-problems that might

be thought as concurrently running optimizations. Manual tuning of system

parameters for each of these sub-problems, specially when their best values

change over the time, is not an option for these systems. The idea of auto-

matic step-size adaptation can be extended to the automatic adaptation of any

kind of bias due to system parameters and thus is an appropriate solution for

these systems.

An automatic step-size adaptation algorithm can find its best use in large-scale

online learning problems. This thesis introduces one such algorithm for online

supervised regression by adapting a vector step-size parameter in LMS setting. Our

algorithm is the first such kind that does not require extensive parameter tuning in

adapting the step size.
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Chapter 2

Step-Size Adaptation Algorithms

In this chapter we discuss some of the basic ideas of step-size adaptation and de-

scribe several existing algorithms based on these ideas. Most of these algorithms

are introduced for fast tracking in nonstationary problems.

We categorize these algorithms into two groups: meta-descent algorithms and

running-average-based algorithms. Meta-descent algorithms iteratively update the

step-size parameter based on a gradient-descent rule. A gradient-descent rule is

typically used for updating the weights of the learning system. Therefore, when

a gradient-descent rule is also applied to learn the step-size parameter, we refer to

it as a meta-descent algorithm. There are also other forms of step-size adaptation

where the step-size parameter is iteratively updated as a running average of some

observable measure. The particular measure used for the average depends on the

specific algorithm.

Many of the existing step-size adaptation algorithms are proposed for a general

stochastic gradient descent setting. They can be easily extensible to linear super-

vised learning setting by considering them as stochastic gradient descent on the

sample squared error. In such cases, we first describe the algorithm in their general

setting and then discuss them in a linear supervised learning setting.

In some of these algorithms, it is proposed to update the step-size parameter

before updating the weight, while for some others, it is proposed to update the step

size after. For some of them, the order is not mentioned at all. Here in the de-

scription of all the algorithms in the linear supervised learning setting, the step-size

update is used before the weights in order to maintain a clear comparison among all
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the algorithms. These descriptions of algorithms will be used for experiments later

in this thesis. We made sure that such altering of the update orders did not harm the

performance of any of the algorithms.

Finally, at the end of this chapter, we point out the algorithms that are interesting

according to our goals of step-size adaptation, set in Chapter 1.

2.1 Step-Size Adaptation using Meta Descent

The idea of meta descent is to adapt the step-size parameter based on a gradient-

descent rule. Work by Sutton (1981) was among the first to propose such an idea. In

meta descent, the step-size parameter is adapted by following the opposite direction

of the gradient in the step-size space surface of a loss function:

αt+1 = αt −
1

2
θ∇αtl(αt), (2.1)

where θ > 0 is a fixed, scalar meta-step-size parameter, αt is a vector step-size

parameter that is being adapted, l(αt) is a loss function and ∇αtl(αt) is a meta-

gradient term. This loss function l(αt) can be the same loss function that the weight

update rule is minimizing, which is the sample squared error for the LMS algorithm.

Following is the weight update rule of the LMS algorithm with a vector step-size

parameter αt:

wt+1 = wt +αt+1 ◦ (δtxt) ,

where the operator ◦ is the element-wise vector product.

A vector step-size parameter is useful when the error surface have different

curvatures in different directions, as illustrated in Chapter 1. Such a vector step-size

parameter is also useful in nonstationary problems where there are irrelevant inputs.

The weight update ∆wt = αt+1◦(δtxt) is not any more a steepest descent direction.

However, positive values of the elements ofαt+1 ensure that ∆wt follows a descent

direction.

14



We define the gradient of a vector pwith respect to a vector r as a matrix∇rp>,

where—

{
∇rp>

}
i,j

=
∂pj
∂ri

.

Here, {M}i,j is the ith row and jth column of a matrix M and vi is the ith element

of a vector v.

It is worthy to note that, the gradient of an element-wise vector product p ◦ q

with respect to a vector r can be written as follows:

∇r [p ◦ q]> =
(
∇rp>

)
Diag (q) +

(
∇rq>

)
Diag (p) ,

where the operator Diag (.) takes a vector and produces a diagonal matrix:

{Diag (v)}i,i = vi and {Diag (v)}i,j = 0, where i 6= j.

If we consider the loss function minimized in the step-size update rule to be the

sample squared error δ2t , then Equation (2.1) can be manipulated as in the following:

αt+1 = αt −
1

2
θ∇αtδ

2
t

= αt −
1

2
θ
(
∇αtw

>
t

) (
∇wtδ

2
t

)
= αt + θ

(
∇αt [wt−1 +αt ◦ (δt−1xt−1)]

>
)
δtxt

= αt + θ
(
∇αt [αt ◦ (δt−1xt−1)]

>
)
δtxt

= αt + θDiag (δt−1xt−1) (δtxt)

= αt + θ (δtxt) ◦ (δt−1xt−1)

= αt + θ (−δtxt) ◦ (−δt−1xt−1)

= αt + θ
(
∇wtδ

2
t

)
◦
(
∇wt−1δ

2
t−1
)

. (2.2)

Rules similar to this have been proposed several times in the literature, e.g.,

by Sutton (1981), Jacobs (1988) and Almeida et al. (1998). Jacobs (1988) refers to

this as the delta-delta learning rule, where delta refers to both∇wtδ
2
t and∇wt−1δ

2
t−1,
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the gradients of the sample squared error with respect to the weight vector in two

successive time steps.

This method can enhance the performance of LMS. When a gradient element

has the same signs on consecutive time steps, it is frequently the case that the corre-

sponding weight in the error surface continues to slope down in the same direction.

It can occur in a case, where the curvature along this direction is small or the min-

imum at that direction is moving. For both cases, delta-delta rule accelerates the

speed of learning by increasing the step-size element in that direction according

to Equation (2.2). For stationary cases, it helps reach the minimum faster and for

nonstationary cases, it tracks the solution faster.

When a gradient element has opposite signs for a number of time steps, it is

more likely that the estimate is frequently overshooting the minimum in this di-

rection. Such frequent overshooting results in oscillation around the solution and

hence, large excess Mean Squared Error (MSE). Delta-delta rule improves perfor-

mance in such a case by reducing the step-size element along that direction.

Delta-delta rule, however, has a number of problems. This form of step-size up-

date rule is highly stochastic in nature as both of the gradient terms in the element-

wise product of the update in Equation (2.2) are noisy. The fact that the step-size

parameter does not only influence the current weight in the next time step but also

affects all future ones is not considered in this rule.

There are also several cases where delta-delta rule can be ineffective, for ex-

ample, problems where inputs are binary. An extreme case is when the inputs fre-

quently alternates between zero and one at every time step. The elements of the

step-size update, (∇wtδ
2
t ) ◦

(
∇wt−1δ

2
t−1
)
, will always remain zero in this case and

delta-delta rule will not be able to adapt step-sizes at all.

Moreover, step-size values in delta-delta rule can go negative and imposing

some lower bound is needed to keep it positive at every time step. The additive

form of this step-size update rule can also take a long time until the step-size pa-

rameter is adjusted to an appropriate value.

This stochasticity can be reduced by replacing the gradient term from the im-

mediate past, ∇wt−1δ
2
t−1 by a trace or running average of the past gradients. One
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such technique for batch learning is proposed by Jacobs (1988). He referred it as

delta-bar-delta rule, where delta bar refers to the average of the past gradients.

2.2 Incremental Delta-Bar-Delta (IDBD)

Sutton (1992a) proposed Incremental Delta-Bar-Delta (IDBD) that considers the

delta-bar-delta idea by Jacobs (1988) for online, incremental setting. However, it

does not use the delta-bar-delta idea by merely taking the running average of past

gradients. The effect of the step size on all future weights is taken into consideration

by considering the effect of all past step-size values on the current weights. An

incremental update of an extra variable maintains the propagation of this effect

from one time step to the next.

IDBD avoids the problem of negative step-size values and slow additive updates

by expressing the vector step-size parameter as an exponential function of another

vector parameter βt:

αt = eβt .

This vector parameterβt is updated by approximating the gradient of the sample

squared error with respect to β:

βt+1 ≈ βt −
1

2
θ∇βδ2t ,

where gradient with respect to β should be interpreted as an infinitesimal change in

βk at all time steps k, as in the following:

∇βδ2t =
t∑

k=0

∇βk
δ2t .

The gradient term∇βδ2t can be expressed as:

∇βδ2t =
(
∇βw>t

)
∇wtδ

2
t

= −2Gt (δtxt) ,
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where Gt = ∇βw>t is a matrix.

As the computation of a matrix requires quadratic time and memory complexity,

this matrix is diagonally approximated by considering the non-diagonal elements to

be zero. IDBD updates βt as:

βt+1 = βt + θδtxt ◦ ht,

where the vector ht, approximates the diagonal elements of the matrix Gt.

To diagonally approximate using the vector ht, first we manipulate Gt as fol-

lows:

Gt+1 = ∇βw>t+1

= ∇β [wt +αt+1 ◦ (δtxt)]
>

= ∇βw>t + (∇βαt+1) Diag (δtxt) + (∇βδt)x>t Diag (αt+1)

= Gt + Diag (αt+1) Diag (δtxt) +∇βw>t (∇wtδt)x
>
t Diag (αt+1) .

Notice that∇wtδt can be written simply as

∇wtδt = ∇wt

[
yt −w>t xt

]
= −xt.

Therefore, we can write the update for Gt as

Gt+1 = Gt + Diag (αt+1) Diag (δtxt)−∇βw>t xtx>t Diag (αt+1)

= Gt + Diag (αt+1) Diag (δtxt)−Gtxtx
>
t Diag (αt+1)

= Gt −Gt Diag (αt+1)xtx
>
t + Diag (αt+1) Diag (δtxt) . (2.3)

Now, the update of ht for IDBD can be found by diagonally approximating the

update of Gt as

ht+1 = ht − ht ◦αt+1 ◦ xt ◦ xt +αt+1 ◦ (δtxt) , (2.4)
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where the non-diagonal terms of Gt are considered zero. The vector consisting the

diagonal terms of Gt Diag (αt+1)xtx
>
t is ht ◦αt+1 ◦ xt ◦ xt.

The update rules of IDBD for each iteration in vector element form is as follows:

βi,t+1 = βi,t + θδtxi,thi,t,

αi,t+1 = eβi,t+1 ,

wi,t+1 = wi,t + αi,t+1δtxi,t,

hi,t+1 = hi,t
(
1− αi,t+1x

2
i,t

)+
+ αi,t+1δtxi,t,

where [v]+ is v, if v > 0, otherwise 0 to ensure that (1−αi,t+1x
2
i,t) is never negative.

The additional per-input memory variable hi can be interpreted as a trace of δtxi,t,

the gradient of the sample squared error with respect to wi. The term δtxi,thi,t is

sometimes referred as the meta-gradient term of IDBD in this thesis.

The update of IDBD remains less affected by the stochasticity than delta-delta

rule because the gradient term from the previous time step δt−1xt−1 is now replaced

by ht, the trace of past gradients.

The operation of IDBD can be explained in a similar way as the operation of the

delta-delta rule, i.e., it increases the step-size value when the estimate is frequently

heading to the solution from the same side of the surface and decreases it when the

weight estimate is likely to be oscillating around the target. A step-size element

αi increases when δtxi,thi,t has a positive sign, that is when the current gradient

element δtxi,t is in the same direction as the trace of past gradient elements hi.

Such a case frequently corresponds to a weight element, the estimated value of

which is still far from the target weight. For a nonstationary target weight element,

this kind of step-size update will keep the corresponding step size always high so

that tracking of the corresponding target weight element is possible.

A step-size element αi decreases when δtxi,t and hi,t have opposite signs. This

occurs when a target weight element is stationary and the corresponding estimated

weight element has already converged around the value of the target element. Sub-

sequent gradient elements start to oscillate in this case and IDBD step-size update

rule decreases the corresponding step-size element to reduce the oscillation along
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that direction.

Therefore, using a vector step-size parameter and adapting it using the meta

descent technique, IDBD increases step-size values so as to track nonstationary

weights and decreases it for stationary weights.

Each iteration in IDBD takes O(n) computation where n is the size of the input

vector. As such, IDBD meets many of our goals of step-size adaptation algorithms.

However, IDBD contains a meta-step-size parameter θ and it is unclear how to set

the value of this parameter for a specific problem.

IDBD also requires the user to provide the initial values for the weights and

step sizes. The choice of the initial step-size value can also be critical as a very

high value can result in the divergence of the algorithm before the adaptation starts

to have a strong effect on the values of the step-size parameter. We illustrate these

issues later in this thesis.

2.3 The Recursive-Least-Squares (RLS) Filter

A standard supervised learning algorithm is the Recursive-Least-Square (RLS) filter

(Ljung, 1998). RLS requires quadratic time and memory computation and can be

thought as a matrix step-size adaptation algorithm. The RLS algorithm iteratively

minimizes the least-square error—

1

N

N−1∑
t=0

γN−t−1
[
yt −w>t xt

]2
, (2.5)

the weighted average of the sample squared error, where 0 < γ ≤ 1 is a discounting

factor and N is the number of samples.

Given that the number of samples N is large enough so that the matrix RN =∑N−1
t=0 γN−t−1xtx

>
t is invertible with probability one, the solution of minimizing

Equation 2.5 is—

w∗N = R−1n

N−1∑
t=0

γN−t−1ytxt.
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By expanding it in a recursive form and using matrix inversion lemma, the above

solution can be written in the following form, which comprise the update rules of

the RLS algorithm:

Initialization:

w0 : arbitrary,

B0 = λ−1I,

Updates:

At =
Bt

γ + x>t Btxt
,

wt+1 = wt + Atδtxt,

Bt+1 = γ−1
(
I − Atxtx>t

)
Bt,

where λ is a regularization parameter and 0 < γ ≤ 1 is a discounting factor.

By considering the weight update rule, RLS can be interpreted as LMS with a

matrix step-size parameter At adapted as a function of another matrix Bt.

Having a matrix step-size parameter, RLS require O(n2) computation, where n

is the size of the input vector. In problems where input dimensions is very large,

such second order methods can become infeasible. One limitation of RLS is that

the update rule for B matrix in RLS does not provide a scope for the elements of

the step-size A to reduce over time when its weights are converged on average.

This means that estimated weights of RLS would oscillate around the solution in

the asymptote.

2.4 K1: Meta Descent for Normalized LMS

The idea of incremental and online adaptation of a vector step-size as in IDBD

is transferable to other base learning systems than LMS. Sutton (1992b) proposed

K1, which is inspired by RLS, and which resembles and probably more akin to

the Normalized LMS. K1 approximates only the diagonal terms of Bt of RLS by

a vector bt. It uses a gradient-based rule similar to IDBD in order to have linear-

time computation and the adaptive benefits of IDBD. Update rules of K1 in vector
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element form is as follows:

βi,t+1 = βi,t + θδtxi,thi,t,

bi,t+1 = eβi,t+1 ,

αi,t+1 =
bi,t+1

R̂ +
∑

j bj,t+1x2j,t
,

wi,t+1 = wi,t + αi,t+1δtxi,t,

hi,t+1 = (hi,t + αi,t+1δtxi,t)
(
1− αi,t+1x

2
i,t

)+ ,

where θ > 0 is a meta-step-size parameter and R̂ is the estimated observational

noise.

Sutton (1992b) empirically demonstrated that K1 outperforms RLS on a non-

stationary problem. Computation of each iteration for K1 is linear on the number

of inputs.

K1 has an extra parameter R̂. Due to its relationship with RLS, it follows from

the Kalman filter algorithm (Kalman, 1960; Ljung, 1998) that the value of R̂ should

ideally be the observational noise variance. It is not clear what value to use in the

absence of such knowledge. Sutton (1992b) used a value of one in his experiments

and so we do in this study. However, for nonstationary observational noise, the best

choice of additional parameter R̂ in K1 needs to be adapted over time.

The weight update is normalized at each time-step by a scalar R̂+
∑

j bj,t+1x
2
j,t,

a function of the instantaneous values of inputs. It resembles a standard algorithm—

Normalized LMS (NLMS) (Goodwin and Sin, 1984)—where the effective step size

is normalized by the instantaneous values of inputs as follows:

wi,t+1 = wi,t +
α

ε+
∑

j x
2
j,t

δtxi,t,

where ε is a small positive constant and α is a fixed, scalar step-size parameter. Due

to this similarity, K1 can be thought as parallel to NLMS as IDBD is to LMS.

K1 also has two other parameters to be set: the initial values for βi and the

meta-step-size θ. It is not indicated how to set the value of θ in different problems.
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2.5 SMD: Meta Descent for Nonlinear Systems

Schraudolph (1999) proposed an extension to IDBD for nonlinear Systems (also

see Schraudolph et al. (2006)). He refers his algorithm as Stochastic Meta Descent

(SMD). The derivation of SMD is similar to IDBD except that it does not diagonally

approximate the matrix Gt in Equation (2.3).

For general optimization problems, the update rules of SMD in vector forms are

as follows:

αt+1 = αt max

(
1

2
, 1− θgt ◦ ht

)
,

wt+1 = wt −αt ◦ gt,

ht+1 = λht − λαt+1 ◦ (Rtht)−αt ◦ gt,

where 0 ≤ λ ≤ 1 is a discounting factor, gt = ∇wtl(zt;wt) is the gradient of

some sample loss function l(zt;wt) given sample zt and Rt = ∇2
wt
l(zt;wt) is the

second-order partial-derivative matrix of the sample loss function.

The update rules in the context of linear supervised learning are as follows:

αt+1 = αt max

(
1

2
, 1 + θδtxt ◦ ht

)
,

wt+1 = wt +αt+1 ◦ (δtxt) ,

ht+1 = λht − λαt+1 ◦
(
xtx

>
t ht
)

+αt+1 ◦ (δtxt) . (2.6)

The same algorithm in vector-element form:

αi,t+1 = αi,t max

(
1

2
, 1 + θδtxi,thi,t

)
,

wi,t+1 = wi,t + αi,t+1δtxi,t,

hi,t+1 = λ

(
hi,t − αi,t+1xi,t

∑
j

hj,txj,t

)
+ αi,t+1δtxi,t.

Note that, a linear approximation of the exponential increase in step-size is used and

a lower-bound is set on the maximum decrease at each time step to guard against

negative values.
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The update rule of ht for SMD in Equation (2.6) can be contrasted with that

of IDBD in Equation (2.4) to appreciate that the ht in SMD is not a diagonal ap-

proximation of the matrix Gt. The ht update contains xtx>t , which is ∇2
wt
δ2t , the

second-order partial-derivative matrix of the sample squared error. Because of the

symmetric nature of this matrix, it can be computed directly in linear time. IDBD

diagonally approximates this matrix.

The difference of SMD with IDBD in ht update can have some significance. It

is interesting to know whether keeping the non-diagonal terms of xtx>t improves

the performance of step-size adaptation.

Schraudolph (1999) acknowledged that stability of the algorithm is dependent

on the tuning of the meta-step-size parameter θ, indicating that this parameter can

be an obstacle in adapting the step-size parameter automatically.

2.6 ALAP: Meta Descent with Normalization

Having a tunable parameter such as the meta-step-size parameter is a major obstacle

for meta-descent based adaptation. Although many have acknowledged that the

choice of this parameter can be problem dependent (Schraudolph, 1999; George and

Powell, 2006), few works have suggested how to set this parameter methodically or

heuristically.

Almeida et al. (1998) proposed the only algorithm that we know of deploying

a strategy for achieving a problem-independent meta-step-size parameter. Their

strategy involves normalizing the meta-descent update at each time step. We call

this algorithm the Almeida-Langlois-Amaral-Plakhov algorithm or ALAP. It is pro-

posed for step-size adaptation in general stochastic optimization. Update rules of

ALAP for a general optimization problem is as follows:

vi,t+1 = (1− γ)vi,t + γ(gi,t)
2,

αi,t+1 = αi,t

(
1 + θ

gi,tgi,t−1
vi,t+1

)
,

wi,t+1 = wi,t − αi,t+1gi,t,

where gi,t = ∂l(zt;wt)
∂wi,t

is the ith element of the gradient of some sample loss function
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l(zt;wt) given sample zt, θ > 0 is the meta-step-size parameter and 0 < γ ≤ 1 is

a discounting factor for the update of the vector elements vi,t. The step-size update

gi,tgi,t−1 is the product of the current and the past sample gradient elements. There-

fore, ALAP follows the delta-delta rule for step-size update. The vector elements

vi,t are running average of the squared sample gradient elements (gi,t)
2.

The vector elements vi,t are used for element-wise normalization of the meta-

descent update gi,tgi,t−1 so that problem dependence of the meta-step-size value is

eliminated.

For linear supervised learning, we instantiate the algorithm as follows:

vi,t+1 = (1− γ)vi,t + γ(δtxi,t)
2,

αi,t+1 = αi,t

(
1 + θ

δtxi,tδt−1xi,t−1
vi,t+1

)
,

wi,t+1 = wi,t + αi,t+1δtxi,t.

ALAP adapts a vector step-size parameter using linear time computation for

each iteration. ALAP can be thought as a special case of IDBD where hi,t is

δt−1xi,t−1 from the immediate past, instead of being a trace of it over time. Step-

size updates in ALAP can be negative and a lower-bound is necessary to prevent

that.

Almeida et al. (1998) reported that θ = 0.01 was appropriate for most of the

problems they used in their experiments. ALAP still requires the user to provide an

initial step-size value.

2.7 Running-Average-Based Algorithms

Techniques other than the meta-descent strategy have also been developed to adapt

the step-size parameter. These algorithms adapt the step-size parameter as a run-

ning average of some observable measure. The specific measure depends on the

particular algorithm. Most of them adapt only a scalar step-size parameter.

One of the simplest kinds of step-size adaptation algorithms with a running-

average based strategy was proposed by Sompolinsky et al. (1995) (also see Barkai
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et al. (1995)). We refer to their algorithm as the Sompolinsky-Barkai-Seung (SBS)

algorithm. They have proposed their algorithm for binary classification. For a

general optimization setting, the update rules of their algorithm are:

αt+1 = αt (1 + γ (θl(zt;wt)− αt)) ,

wt+1 = wt − αt+1gt,

where θ > 0 is a meta parameter and 0 < γ ≤ 1 is a discounting factor.

We instantiate the algorithm for linear supervised learning setting as

αt+1 = αt
(
1 + γ

(
θδ2t − αt

))
,

wi,t+1 = wi,t + αt+1δtxi,t.

The step-size αt, here, is a running average of past sample squared errors δ2t . As

SBS adapts only a scalar step-size parameter, this algorithm essentially follows

the steepest-descent direction, which might not be appropriate for problems with

largely different curvatures in different directions of the error surface and for non-

stationary problems with irrelevant inputs. Their algorithm requires user to provide

appropriate values for θ, γ and initial step-size value.

Algorithms very similar to SBS are also proposed by others later. For exam-

ple, Amari (1998) extended the SBS algorithm by expressing the scalar step-size

parameter as an exponential function and applying it for a natural gradient-descent

rule. Murata et al. (1996) proposed an algorithm where a scalar step-size parameter

is adapted as a running average of the L2 norm of the trace of the past gradients.

An exception of running average-based adaptation is SGD-QN (Stochastic Gra-

dient Descent: Quasi Newton) by Bordes et al. (2009) where a vector step-size

parameter is adapted. It is proposed for general optimization. However, when we

derived their algorithm for linear supervised learning, the step-size update found

to be the same scalar amount for all the elements of the step-size parameter. It

essential makes the algorithm a scalar step-size adaptation algorithm.

SGD-QN is proposed for binary classification problems with convex loss func-

tions in linear Support Vector Machine systems. The step-size parameter in their
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algorithm diagonally approximates the inverse of the Hessian matrix. The diag-

onal elements of this matrix are approximated as the running average of the ratio

(wi,t+1 − wi,t) / (gi(zt,wt+1)− gi(zt,wt)), where gi is ithe element of sample gra-

dient vector g, defined as g(zt;wt) = ∇wtl(zt;wt) and l(zt;wt) is a sample loss

function, given a sample zt.

The update rules for general optimization are as follows:

wi,t+1 = wi,t − αt ◦ gi(zt,wt+1),

αi,t+1 = αi,t + γ

(
wi,t+1 − wi,t

gi(zt,wt+1)− gi(zt,wt)
− αi,t

)
,

where 0 < γ ≤ 1 is a discounting factor.

For linear supervised learning, we can derive the step-size update rule as in the

following:

αi,t+1 = αi,t + γ

(
wi,t+1 − wi,t

gi(zt,wt+1)− gi(zt,wt)
− αi,t

)
= αi,t + γ

(
αi,tδtxi,t

−δtxi,t + δtxi,t
∑

j αj,tx
2
j,t + δtxi,t

− αi,t

)

= αi,t + γ

(
αi,t∑
j αj,tx

2
j,t

− αi,t

)

= αi,t

(
1 + γ

(
1∑

j αj,tx
2
j,t

− 1

))
.

It is easy to note that this step-size update scales each step-size element by the

same scalar amount. Therefore, it is a scalar step-size adaptation algorithm in the

linear supervised setting.

2.8 Related Theoretical Works

Although a number of step-size adaptation algorithms are developed in the litera-

ture, few works have been done on the theoretical guarantees of these algorithms.

However, many theoretical works exist that relate to adaptive algorithms and par-

ticularly nonstationary problems.
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The meta-descent algorithms are based on gradient-descent rules, hence the sta-

bility of these algorithms should rely on some conditions of the meta-step-size pa-

rameter. However, such conditions of the meta-step-size parameter for the stability

of the step-size adaptation algorithms have not been worked out.

Theoretical guarantees on the convergence of stochastic gradient descent with-

out step-size adaptation such as the LMS algorithm already exist. Widrow (1971)

provided the following necessary condition on the step-size parameter of LMS for

converging on average to the solution:

α ≤ 2

λmax
,

where λmax is the maximum eigenvalue of the input correlation matrix E
[
xtx

>
t

]
.

A stricter bound is as follows (Diniz, 2002; Widrow and Stearns, 1985):

α ≤ 2

E
[
x>t xt

] .

Widrow et al. (1976) derived an expression for misadjustment, the ratio be-

tween average excess MSE and the minimum MSE, for LMS in a nonstationary

setting. They assumed that the target weights are Markovian, drifting by adding

white noise of equal variance for each element, and that the inputs are stationary.

Under these assumptions, they showed that the total misadjustment is a sum of the

misadjustment due to gradient noise and the misadjustment due to lag in tracking

target weights. The former is proportional to the step-size value whereas the latter is

inversely proportional to it. Therefore, an optimal value of the step-size parameter

in LMS exists which minimizes the total misadjustment error.

Theoretical works on a general setting that covers both stationary and nonsta-

tionary problems can also be found in regret minimization literature. For example,

Zinkevich (2003) introduced a gradient-descent algorithm for online convex pro-

gramming problems and established regret bounds for the algorithm on problems

with both stationary and nonstationary target weights.
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2.9 Discussion

Among the existing algorithms, only the meta-descent ones adapt a vector step-size

parameter. All the running-average-based algorithms adapt only a scalar step-size

parameter. As such, meta-descent algorithms are closer to achieving our goals of

step-size adaptation. We focus more on the meta-descent algorithms in the follow-

ing chapters and use running-average algorithms only for comparison.

All these step-size adaptation algorithms contain one or more tunable param-

eters in them. Most of the works introducing these algorithms demonstrate their

results using only one value of these parameters and some mention to manually

tune them to obtain the best values. Only ALAP considered this problem method-

ically and deployed a normalization technique in the meta-descent update in order

to obtain a problem-independent meta-step-size parameter. It is interesting to know

if the normalization technique is effective on widely different problems.
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Chapter 3

Tests on Toy Problems

We present our first contribution in this chapter. We empirically evaluate a number

of step-size adaptation algorithms on toy test problems to determine whether these

algorithms can adapt their step-size parameters effectively. We also investigate how

sensitive these algorithms are to their tunable parameters. For the first time we

empirically demonstrate that the step-size adaptation algorithms cannot be effective

without tuning of their meta parameters.

Nonstationary problems with a number of irrelevant inputs are appropriate for

appreciating the advantage of a vector step-size adaptation algorithm. Use of a vec-

tor step-size parameter can also provide substantial advantage in problems with dif-

ferent input variances, which create different curvatures in the performance surface

in different directions. However, a nonstationary problem is a more challenging

case for automatic vector step-size adaptation as it requires continuous adaptation

of the step-size parameter for tracking the solution. Hence, we focus only on non-

stationary problems for evaluating adaptation of a vector step-size parameter and

do not consider problems with different variances among the inputs.

It is interesting to know whether the meta-descent algorithms, which use a vec-

tor step-size parameter, can effectively adapt it in nonstationary problems. The

effectiveness of these algorithms can be verified by comparing their performance

with LMS, which use a fixed, scalar step-size parameter. For comparison, we use

IDBD, K1, SMD, ALAP and SBS, which are already described in Chapter 2. Time

and memory complexity of all these algorithms is linear, which is the case of our

interest. All of these except SBS are meta-descent algorithms. SBS is a running-
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average-based algorithm and adapts only a scalar step-size parameter.

We also investigate whether these algorithms can adapt the step-size parame-

ter in a problem-independent manner. All these algorithms contain one or more

tunable parameters. A step-size adaptation algorithm that is sensitive to the choice

of its tunable parameters is less interesting with respect to our goals of step-size

adaptation, because an adaptation algorithm is needed to get rid of the tuning of a

parameter, i.e, the step-size parameter, in the first place. It is important to know

whether the existing step-size adaptation algorithms can adapt effectively without

requiring any manual tuning across problems.

A good way of investigating the problem dependence of the choice of the tun-

able parameters is by experimenting the algorithms on different problems. We use

an idealized toy problem from the work by Sutton (1992b) and generate more toy

problems by varying some of the problem’s statistics. These problems are super-

vised regression learning problems, and contain nonstationarity, and irrelevant in-

puts. All the algorithms experimented here predict their target output as a linear

combination of the inputs.

We explore two issues of the algorithms with their tunable parameters: robust-

ness and sensitivity. We find whether the algorithms perform robustly by adapting

the step-size parameter using the same setting of the tunable parameters in all the

toy problems. We also investigate whether performance of the algorithms is sensi-

tive to the choice of the parameters within the same test problem.

To investigate robustness and sensitivity of these algorithms, we compare the

performance of each algorithm across different toy problems. We vary two different

tunable parameters of these algorithms at a time: the meta parameter and the initial

step-size value. For the meta-descent algorithms, the meta parameter is the meta-

step-size parameter. We find whether an algorithm can adapt the step-size parameter

effectively, i.e., perform significantly better than LMS on all the toy problems for

the same choice of their tunable parameters.
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3.1 Description of Problems and Setup

Here we describe three toy test problems that we use to empirically investigate the

existing step-size adaptation algorithms. Problem 1 is an idealized toy test problem

taken from Sutton (1992b). Problem 2 and 3 are variations of problem 1.

In problem 1, the data set contains 30,000 sequential data samples. Each sam-

ple contains a 20-element vector of inputs and a scalar target output. Inputs were

independently drawn from a normal distribution with zero mean and unit variance.

Outputs were calculated as a linear combination of the inputs. An observational,

white noise with zero mean and unit variance was added to the linear combina-

tion. All the target weights were initialized to zero and 15 of them always remain

so. Therefore, only five of the inputs are relevant to the output. For the five target

weights that correspond to the relevant inputs, a weight drift, drawn independently

from a zero mean, unit variance normal distribution, was added at each time step.

Therefore, these five target weights are nonstationary, forming a simple random

walk. Variances of inputs and weight drifts are two statistics of the problem and a

class of different problems can be generated by choosing different values for these

variances.

Problem 2 differs from problem 1 in that the variance of the weight drifts corre-

sponding to the five relevant inputs is 100, instead of 1. As the same randomization

sequence was used for both problems, the magnitudes of the target weights for the

second problem are ten times larger than the first one. Everything else between

problem 1 and 2 remains unchanged. Therefore, problem 2 is also a nonstationary

problem having similar properties as problem 1 except that the variance of the tar-

get output is 100 times larger than problem 1. Using the same algorithm on both

problems, it can be expected that Mean Squared Error (MSE) in problem 2 will also

be 100 times larger than problem 1.

Problem 3 differs from problem 1 only by the scale of the variance of inputs. In

problem 3, all the inputs have a variance of 100. Therefore, the magnitudes of the

inputs for problem 3 are ten times larger than problem 1. Problem 3 still remains

a nonstationary problem, however 100 times larger input variance results in 100
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times larger target-output variance.

In all the experiments in this chapter, each algorithm observed a data sample

at each time step and predicts the value of the current target output as a linear

combination of the current inputs. Every run was repeated 30 times using different

randomization and the average performance is shown. For both ALAP and SBS γ

was set to 0.01. For SMD, λ was set to 1.

3.2 Comparison of Performance

We compared performance of IDBD, K1, SMD, ALAP, SBS, RLS and LMS on

problem 1. Sutton (1992b) demonstrated performance of IDBD, K1, RLS and LMS

on this problem using the same setup. We reproduced the result here to verify the

findings by Sutton (1992b) and find the performance of SMD, ALAP and SBS, in

addition.

We varied the meta-step-size parameter θ for IDBD, K1, SMD, and ALAP, the

meta parameter θ for SBS, the step-size parameter α for LMS and 1− γ for RLS in

this experiment. The step-size parameter α for LMS and 1−γ for RLS were varied

between 10−3 to 1 by taking 10 values, equally spaced in logarithmic scale. For the

rest of the algorithms, their corresponding parameters were varied between 10−9 to

102 by taking 17 values, equally spaced in logarithmic scale. For each choice of

these parameter values, RMSE over the last 10,000 time steps was averaged over

30 runs. For all these algorithms except K1, initial step-size, be it scalar or vector,

is 0.1/ (# of inputs) = 0.005. For K1, the initial value of the elements of β vector

was chosen to be log(0.1).

Our particular experimental methodology relies on comparing performance of

different algorithms for different parameter values. Although many of the algo-

rithms have more than one parameters, we vary only one of them, the meta pa-

rameter in most cases, to compare performance in each experiment. Whenever we

state that one algorithm performs better than the other on a particular problem, we

imply that, for at least one of the parameter settings, performance of the former al-

gorithm is better than the performance for all of the parameter settings of the latter
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Figure 3.1: Performance of several existing step-size adaptation algorithms: IDBD, K1,
ALAP, SMD and SBS for different values of their meta parameters θ shown on a toy nonsta-
tionary problem. Performance of LMS for different step-size values α and RLS for different
values of 1− γ are also shown. The meta-descent algorithms IDBD, K1, ALAP and SMD
perform better than LMS.

algorithm. Although we demonstrate results for varying only one of the parameters

in such cases, the statement also holds for the variations in the other parameters,

too. A possible weakness of such comparison is that an algorithm which performs

better than another algorithm for a particular setting of its parameters can be so sen-

sitive to the choice of its parameters that it requires substantial fine tuning. Cases

where performance is more sensitive to its parameter choice than other algorithms,

superior performance of the former one does not lead to a straightforward advan-

tage. But, we demonstrate the performance curve for all of the parameter values

that we choose and hence the sensitivity of each algorithm to its parameter is read-

ily demonstrated. We notify such sensitivity of algorithms each time they occur.

Therefore, our methodology is not prone to the stated weakness.

Meta-descent algorithms: IDBD, K1, SMD and ALAP performed better than

LMS, as shown in Figure 3.1. Best average RMSE of LMS is slightly above 10

for a narrow range of step-size values between 10−2 to 10−1. As the meta-descent
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algorithms can be thought as adapting the step-size parameter of LMS in a vector

form, it can be concluded that they are adapting the step-size parameter effectively

in this nonstationary problem. These results are in harmony with those by Sutton

(1992b) except that the previous work has shown results only for one run and the

parameter values were varied in linear scale.

Meta-descent algorithms perform better than LMS on this problem because

these algorithms adapt the elements of the vector step size appropriately. For the

relevant inputs, they adapt the corresponding step size to high values. On the other

hand, for irrelevant inputs, the corresponding step-size values are drawn close to

zero.

SBS did not achieve a better performance than LMS for any values of θ. Its best

performance is also achieved for a narrow range of θ values. Best performance of

RLS is not lower than 10 and hence is outperformed by meta-descent algorithms.

Performance of IDBD, shown in blue, and performance of SMD in red with

diamond-shaped markers were almost similar. Therefore, no advantage of the ex-

tra terms added to the ht update of SMD can be seen in this problem. Such was

expected, as the update rules of SMD are almost the same as IDBD. We find simi-

lar results between IDBD and SMD for all the experiments throughout this thesis.

Hence, we only show the results for IDBD, in the rest.

3.3 Robustness and Sensitivity

We compare robustness and sensitivity of IDBD, K1, ALAP and SBS on the choice

of their meta parameters and initial step-size parameter across problem 1, 2, and

3. These problems differ in the variance of target output by orders of magnitude.

Therefore, MSE performance of these algorithms, shown in these plots, were nor-

malized by the variance of the target outputs, estimated over last 10,000 time steps.

We define robustness as an algorithm’s ability to get effective performance

across different problems with the same setting of its parameter values. By sen-

sitivity, we refer to the range of parameter values for which an algorithm achieves

its best performance within the same problem. If an algorithm obtains its best per-
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Figure 3.2: Performance of IDBD, K1, ALAP and SBS for different meta parameters on
problem 1, 2, and 3, demonstrating robustness and sensitivity. All the algorithms except
ALAP need different meta-parameter values for achieving their best performance on all
problems.

formance for a narrow range of parameter values, we consider it to be too sensitive

to the choice of its tunable parameter.

For problem 1, 2, and 3, Figure 3.2 shows performance curves of IDBD, K1,

ALAP and SBS, separately. These results discover that IDBD, K1 and SBS are not

robust algorithms in that they require tuning of their meta parameter to different

values for different problems. For example, IDBD achieved its best performance

for a range of θ around 10−4 on problem 1. Problem 2 and 3 created 100 times

larger MSE for IDBD than problem 1 and the best choice of θ shifted to 100 times

lower value, around 10−6. There is no overlap between these two ranges. Similar is

observed for K1 and SBS.

ALAP on the other hand demonstrates robust performance on three of the prob-

lems. ALAP performed best for a range of meta-step-size values between 10−3

to 10−2 on all these problems. It indicates that the normalization in meta-descent
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Figure 3.3: Performance of IDBD, K1, ALAP and SBS for different initial step-size values
on problem 1, and 3. All the algorithms except K1 need different initial step-size values for
achieving their best performance.

update deployed by ALAP was effective in these toy test problems.

SBS is the most sensitive to the choice of the meta parameter among all the

algorithms. It achieved its best performance for a narrow range of θ.

All these algorithms are sensitive to some extent in that performance largely

varies on the same problem depending on the value of the meta parameter. On a

single problem, performance of K1 is less sensitive. Its curves are relatively flatter

than other algorithms.

Figure 3.3 shows performance of IDBD, K1, ALAP and SBS separately on

problem 1, and 3 for different initial step-size values. Performance of IDBD, ALAP

and SBS was not robust on their initial step-size values. There is no overlap between

the best values of initial step size for these algorithms.

For K1, the initial condition for step-size parameter was modulated by setting

initial values for eβt . Results show that performance of K1 was more robust and

less sensitive to initial conditions of step-size parameter. A value larger than 10−1
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can be chosen to achieve its best performance in both problems.

Sensitivity of K1 on the initial step-size condition is less than other algorithms

within a single problem. The range of best values is flat for a large region.

SBS, on the other hand, is the most sensitive to the initial step-size values. Its

best performance can be achieved for a narrow range of initial step-size values.

3.4 Discussion

In this chapter we have established that step-size adaptation algorithms can ef-

fectively adapt the step-size parameter on nonstationary problems. Meta-descent

algorithms—IDBD, SMD, K1 and ALAP—achieved at least two times better per-

formance than LMS. SBS, which is a running-average-based algorithm adapting a

scalar step-size parameter, cannot achieve a performance better than LMS. SBS has

been demonstrated by Barkai et al. (1995) to be effective on nonstationary prob-

lems. However, it was demonstrated on problems with few inputs. In the problems

that we tested here, there are 20 inputs, where 15 of them are irrelevant. Advan-

tage of SBS in tracking nonstationary target is diminished due to stationary target

weights corresponding to irrelevant inputs, for which the scalar step-size parameter

creates large oscillation noise.

Our results indicate that most of the step-size adaptation algorithms require

problem dependent parameter tuning for effective adaptation. Best values of meta

parameters were different in these three problems for all the algorithms exept ALAP.

Therefore, most of these algorithms cannot adapt the step-size parameter in a com-

pletely automatic manner.

The normalization in meta-descent update deployed by ALAP was effective in

these problems. Almeida et al. (1998) found θ = 0.01 to be appropriate for the

problems they have experimented with ALAP. This value can also achieve best

performance on the three nonstationary problems that we have tried. It indicates

that the normalization strategy can be useful in achieving a step-size adaptation

algorithm that does not require parameter tuning across problems.

We also found that Initial step-size value requires problem-dependent tuning for
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most of these algorithms. It can be surprising as these algorithms are adapting the

step-size values over time. However, it takes a number of time steps before the step-

size value is drawn near the correct value. If a large initial step-size value is chosen,

the algorithm becomes unstable before the adaptation procedure sets the step-size

parameter properly.

Choosing an initial step-size value small can also affect performance, as shown

by our results. It is also surprising because we demonstrate performance in MSE

that is calculated over the last 10,000 times steps among total 30,000 time steps.

If an effective step-size adaptation algorithm can adapt the step-size parameter to

appropriate values within the first 20,000 time steps, then the affect of a low initial

step-size value should not remain in the next 10,000 time steps. Therefore, these

algorithms cannot adapt step-size parameter from a very low initial value to appro-

priate values within this time range. However, effect of a very low initial step-size

value should eventually be diminished if the experiments are run for a longer time.

K1 with a high initial value for eβt , e.g., as high as 10−1 or larger is effective

across the problems we experimented. It is probably due to the fact that the effec-

tive step-size value of K1 is a normalized term, being modified at every time steps

depending on the instantaneous values of the inputs. We state the weight update

rule for K1 again here:

αi,t+1 =
bi,t+1

R̂ +
∑

j bj,t+1x2j,t
,

wi,t+1 = wi,t + αi,t+1δtxi,t,

where bi,t+1 = eβi,t+1 and βi,t is adapted using a gradient-based rule. This normal-

ization helps K1 to reduce the impact of a large initial eβi,t on the effective step-size

value soon. When eβt is chosen high, the effective step-size value αi,t+1 is more

likely to get reduced to a small value. On the other hand, for a small initial value

of eβi,t , αi,t+1 can be small and it needs time for the adaptation procedure to adapt

βi,t, and hence the effective step size, to an appropriate high value.

The idea of normalization in the meta-descent update seems promising in mak-

ing a step-size adaptation algorithm less sensitive to its meta-step-size parameter.
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Chapter 4

Tests on Robot Data

In this chapter we use real-world, robot data for evaluating performance of step-size

adaptation algorithms.

We use a large data set from a sensor-rich robot called Critterbot and experiment

with IDBD, K1 and ALAP on this data. This data set consists of high-dimensional

sensor signals collected by running the Critterbot for a long time. The tasks for the

algorithms are to predict six signals of the robot in the next time step by using all the

signals from current the time step. Predicting such signal values by establishing a

linear relationship with all the signals from previous time step is a complex task. As

the robot is run for a long time and faces changes in surrounding environment while

it moves, the relationship between signals may also change over time. Therefore,

such problems are potentially nonstationary. Experimenting the algorithms on such

data set necessarily pose them on a large, real-world problem.

In all of our robot experiments, SMD performed similarly to IDBD. SBS also

did not perform better than LMS in any problem. These results are similar to those

in Chapter 3. In that chapter we have already found that performance of SMD

is almost similar to IDBD. On the other hand, SBS adapts only a scalar step-size

parameter and was not found performing better than LMS on any of the toy non-

stationary problems. Hence we do not demonstrate the results of SMD and SBS in

this chapter.

We will demonstrate, in this chapter, that all the algorithms are sensitive to the

meta-step-size parameter by orders of magnitude. We will also find that ALAP,

which performed robustly on toy test problems, has a different best meta-step-size
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Figure 4.1: The Critterbot from the front. The tail of the robot can be seen at its backside.
It has three omni-directional, motor-driven wheels at the bottom. A number of sensor fields
surround the Crittebot’s body.

value on robot problems.

4.1 Description of Critterbot

Critterbot, a custom built mobile robot (RLAI, 2010), is used to generate the data

set. Critterbot is a sensor-rich robot with a comma-shaped frame where a ‘tail’

facilitates object interaction. Picture of the robot is shown in Figure 4.1. It is

driven by three omni-directional, motor-driven wheels positioned at 120 degrees

of separation. Critterbot contains a diverse set of sensors, which include sensors

for sensing the environment such as ambient light, infrared light, heat and mag-

netic fields as well as sensors capturing proprioceptive information such as motor

speed, rotational velocity, wheel acceleration, motor current, motor voltage, motor

temperature, battery voltage, etc.
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Figure 4.2: Values of sensors—Motor0Speed, RotationVel, IRLight1 and IRDistance0 over
4000 time steps.

4.2 Description of Problems and Setup

Critterbot was run continuously for ∼ 40 hours using a random policy inside a

closed testing environment and the sensor data were sampled at a frequency of

10ms. Our data set contains first 3 million samples from this data, which is ∼ 8

hours and 20 minutes of Critterbot activity. Sensor data contains time record of

56 sensors. 6 sensors among them are chosen for predicting their values in the

next time step. They are listed here: Light2—signal from one of the light sensors,

Motor0Speed—speed of one of the motors, Motor0Current—current of one of the

motors, AccelZ—acceleration of one of the wheels, RotationVel—rotational veloc-

ity and IRDistance0—one of the infrared distance sensors sensing distance from a

nearby obstacle. Values of all these signals are presented using integers in specific

ranges, which are different between the signals.

These sets of prediction problems are challenging for the step-size adaptation

algorithms as the scales of the values of the six target signals are largely differ-

ent. For example, values of the IRDistance0 sensor varied between 1.0 to 255 over
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the 3 million samples, with a variance of about 60. On the other hand, minimum,

maximum and variance of RotationVel were −454.0, 503.0 and 157.26, respec-

tively. This may lead to different best meta-step-size values in predicting different

sensors. Figure 4.2 shows the time series of the sensor values for Motor0Speed, Ro-

tationVel, IRLight1 and IRDistance0 over 4000 time steps, which is equivalent to 40

seconds period of Critterbot activity. As can be seen from the plot, characteristics

of the signal values are changing over the time. Correlations also exist between the

signals, which means one signal can be used to predict another signal. Predicting

such a sensor value at next time step as a linear combination of all the sensors from

current time step is a highly nonstationary task and step-size adaptation can play an

important role here.

As we only focus on testing the advantage of adapting a vector step-size pa-

rameter in nonstationary environment, we do not focus the other case where such

adaptation can also have an advantage, i.e., problems with different curvatures in

different directions of the performance surface. Such problems typically arise when

variance of inputs are different. To focus only on the challenge of nonstationarity,

we normalize all of our inputs by subtracting the sample mean and dividing by the

sample standard deviation. However, all the experiments can also be repeated using

the raw values for the inputs to make the problem more complex and difficult. In

the experiments of this thesis, we only focus on inputs with similar variance and

hence use the data with normalized inputs.

The data set with 3 million samples is divided into 30 sets so that each one is

100,000 time-steps long. All the inputs in each set are normalized by subtracting

the sample mean of the input values for the corresponding set and dividing the result

by the sample standard deviation of the particular set. A bias input, which is always

one, is added to the set of inputs. Therefore, there are 57 inputs linearly predicting

a target signal in the next time step.

For the prediction of each sensors, an algorithm is run on these 30 sets separately

and the performance is averaged. Performance is measured in MSE, time-averaged

over last 50,000 time-steps for each data set and then averaged over 30 data sets.

Then the average MSE is divided by the squared difference between the overall
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minimum and maximum values of the signals.

Estimated weights wi for all the algorithms are initialized to zero. We find the

initial value of step-size of IDBD for which the algorithm does not diverge, after

several trial and error. This value is 0.0001

# of inputs = 0.0001
57

= 1.754× 10−06 for each

elements. Same is used for ALAP. For ALAP µ is set to 0.01. Initial eβt values for

K1 is set to 0.1.

4.3 Results

In this section, we compare some of the meta-descent algorithms and find their

robustness and sensitivity on their meta-step-size parameter by experimenting them

on Critterbot data.

IDBD, K1, ALAP and LMS were run on the tasks of predicting six different

sensor values of Critterbot in the next time step. Each algorithm was run for a

range of values for their meta-step-size parameter (or the step-size parameter for

LMS). For a choice of the parameter, each algorithm is run on 30 data sets and the

performance in scaled MSE over last 50,000 time steps were averaged over 30 sets.

This way, we can find for what value of the parameters these algorithms perform

the best. We can compare the best performance among the algorithms. We find how

the choice of the best value of the meta-step-size parameter vary within (sensitivity)

and across problems (robustness).

IDBD performed better than LMS in all the problems, as shown in Figure 4.3.

For example, in the IRDistance0 prediction problem, IDBD with the meta-step-size

value of 10−6 achieves its best performance of a value about 0.000015 in scaled

MSE, which is about four times better than the best performance of LMS.

ALAP did not achieve a performance better than LMS in any of these problems.

The best performance of LMS is about two times better than ALAP in most of the

problems.

K1 as well as IDBD has shown the best performance in all these six problems.

Performance of K1 was almost the same for every value of meta-step-size parame-

ter. However, the value where K1 starts to diverge is drastically different for differ-
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Figure 4.3: Performance of IDBD, K1 and ALAP for different meta parameters on the
problems of predicting six sensor values of Critterbot in the next time step. Performance of
LMS for different fixed step-size values is also shown.
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Figure 4.4: Performance of IDBD and ALAP demonstrating the shifts in the best choice
of meta-step-size parameter. Performance is scaled so that the values for the smallest meta-
step-size parameter (10−11) for different problems are the same. For ALAP, results on toy
problems are also shown.

ent problems. For example, in the problem of predicting AccelZ signals, K1 starts

to diverge for a meta-step-size value more than 10−8. But, for the Motor0Current

prediction problem, this value is above 10−4.

The best value of the meta-step-size parameter for IDBD is largely different

between the problems. Left panel in Figure 4.4 shows performance of IDBD for

five different problems. Performance values in MSE are scaled so that the per-

formance for the smallest meta-step-size value (10−11 here) is always 1. The best

value for the problem of predicting AccelZ signals is between 10−9 to 10−8 and for

Motor0Speed, it is 10−4.

Although, ALAP performed poorly on the Critterbot data, its best value is

achieved for the same range of meta-step-size values. Right panel of Figure 4.4

shows performance of ALAP for four prediction problems on Critterbot data. Its

best performance is achieved for θ between 10−5 and 10−4 for each case. Perfor-

mance curve of ALAP on three toy test problems from Chapter 3 is also given in

this figure for comparison. It is clear from this figure that the range of best values

of meta-step-size parameter has shifted from 10−3 to 10−2 for toy test problems

to values between 10−5 and 10−4 on the Critterbot data. It clearly establishes that

ALAP is not completely robust across different classes of problems.
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4.4 Discussion

Some of the results from the toy test problems are reinforced in the results of this

chapter. We find that step-size adaptation can perform better than LMS in large,

complex problems. None of the algorithms, however, are found to be robust on the

meta-step-size parameter.

IDBD is sensitive to the choice of its meta-step-size values. Best performance is

achieved for a narrow range of values. Performance is poor, i.e., MSE is high, when

a meta-step-size value lower than the best value is chosen. A higher value than the

best meta-step-size value results in divergence. It indicates that, the meta-step-size

parameter should be tuned very carefully into a small range of values in order to

receive the benefit of step-size adaptation from IDBD. It also requires to tune the

value again when the problem is different.

K1 performs the best in all the problems that we experimented here, but the

meta-step-size value for which it starts to diverge is different for different problems.

K1 has a different base setting than LMS. Its effective step-size value is normalized

by a function of the power of the inputs at every time step. Superiority of the

performance of K1 is not only due to its step-size adaptation strategy but also due

to this normalized LMS (NLMS) setting. It is best to consider algorithms such as

IDBD or ALAP that directly adapt the step-size parameter of LMS to be candidate

step-size adaptation solutions for LMS and consider K1 to be a step-size adaptation

solution for NLMS. As K1 diverges for different values in different problems, it

demonstrates that K1 also needs problem-dependent tuning of its meta-step-size

parameter.

We find that ALAP is not independent of the tuning of its meta-step-size pa-

rameter. Almeida et al. (1998) mentioned the value of 10−2 to be working in most

of their experiments. That value also achieved the best performance in the three

toy test problems that we demonstrated in Chapter 3. But, ALAP diverges in all

the problems on Critterbot data for this value of meta-step-size parameter. The best

value now has shifted between 10−5 and 10−4. Certainly, ALAP is more robust on

the choice of its meta-step-size parameter compared to IDBD, indicating that the
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normalization strategy helps to achieve a problem independent meta-step-size pa-

rameter to some extent. However, it does not achieve the goal of being completely

automatic and its performance has also considerably degraded, i.e., become worse

than LMS, in Critterbot prediction problems.

A step-size adaptation algorithm that can adapt the step-size parameter effec-

tively and in a completely automatic manner is still absent. In the following chap-

ters, we work toward achieving such an algorithm.
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Chapter 5

Meta-Normalization: Normalization
in Meta Descent

This is the first chapter where we introduce new algorithmic ideas. We provide

some insights about why IDBD needs to be tuned to different meta-step-size values

on different problems. We combine new techniques with IDBD in order to make the

resulting algorithm less sensitive to the meta-step-size parameter. These techniques

revolve around the idea of normalizing the meta-descent update term. This idea is

similar to that used in ALAP and we refer to it as meta-normalization technique.

Although, this idea can be used both in combination with IDBD and K1, we

demonstrate experimental results only for the IDBD versions. Our preliminary ex-

periments with the K1 versions indicate similar results to the IDBD ones. We leave

the comprehensive experimentation of the K1 counterparts for future works.

5.1 New Meta-Normalization Algorithms

The best choice of the meta-step-size parameter for IDBD varies across problems

and there is no straightforward way to set the value of this parameter without man-

ually tuning it. To find some insights about how different statistics of a problem

interplay with the choice of the meta-step-size parameter, we recall the results of

IDBD from the toy test experiments in Chapter 3. Three nonstationary toy problems

were used. In problem 2, variance of weight drift was 100 times more than problem

1. In problem 3, variance of the inputs was 100 times more than that of problem

1. We reproduce the results of IDBD on these three problems again in Figure 5.1.
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Figure 5.1: Performance curve in scaled MSE for IDBD on the non-staionary, toy-test
problems. The range of the best meta-step-size values shifts to lower values from problem
1 to problem 2, and 3.

The curve for problem 1 shifted to lower meta-step-size values in problem 2 and 3.

The MSE also shifted to higher values for problem 2 and 3, however it is not appar-

ent from this figure as the performance is shown in scaled MSE for convenience of

comparison. MSE was divided by the variance of the target output and it was 100

times larger for problem 2 and 3 than problem 1. Interestingly, the best range of

meta-step-size values has also shifted to 100 times lower values from problem 1 to

problem 2 and 3.

It is apparent that choosing a suitable meta-step-size value may depend on the

variance of the target weights or the variance of the inputs or for both cases, on

the variance of the target output. If the meta-step-size parameter is normalized by

the variance of the target output, the same range of values for this parameter would

perhaps apply to all three problems in a similar way. When the variance of the target

output is not known a priori, a running estimate can be used.

The update rules of IDBD reveals some more insights about the interaction of

the choice of meta-step-size value with different observable measures of the prob-

lem. To have some idea on how the meta-step-size affects the step-size in IDBD,

we relate them in the following way:
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αi,t+1 = eβi,t+1

= e(βi,t+θδtxi,thi,t)

= elogαi,teθδtxi,thi,t

∴ αi,t+1 = αi,te
θδtxi,thi,t (5.1)

From the equation (5.1), we find that eθδtxi,thi,t is a scaling factor for the step-size

αi,t. The unit of αi,t+1 and αi,t is the same, as they both are step-size values for two

successive time steps. Therefore, the scaling factor eθδtxi,thi,t and hence the step-

size-update term θδtxi,thi,t should be free of units, i.e., the scale of the magnitude

of θδtxi,thi,t should not be affected for similar performance when the scale of a

statistic such as the variance of target output is different between problems.

We further verify our claim that the scale of the magnitude of step-size update

θδtxi,thi,t should remain the same even if the variance of the target output is dif-

ferent between two problems by observing the traces of θδtxi,thi,t over time for the

three toy problems. As the best range of meta-step-size values has shifted to 100

times lower values from problem 1 to problem 2 and 3, the meta-step-size value of

10−4 for problem 1 is similar to the meta-step-size value of 10−6 for problem 2 and

3. We plot the trace of θδtxi,thi,t for i = 0 by using the meta-step-size parameter

θ = 10−4 for problem 1 and θ = 10−6 for problem 2 and 3 in the top panel Figure

5.2. As expected, the values are exactly the same and completely overlap. We have

shifted the curves in time so that all of them can be visible. We have shown it only

for one of the elements with i = 0, however the same is observed for all of the

elements.

Then why does the choice of the meta-step-size parameter depend on the change

in the scale of the target output variance between problems? It turns out that the

scale of magnitude of meta-gradient δtxi,thi,t is different for different target output

variances. In the bottom panel of Figure 5.2, we have plotted the trace of |δtxi,thi,t|

for i = 0 with the same setup as for the top panel. i.e., using the same meta-step-

size values for the same problems. Values for problem 3 are shifted in time so that

the values for problem 2 are visible. The values of |δtxi,thi,t| for problem 2 and
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Figure 5.2: The traces of step-size update θδtx0,th0,t (in top) and meta-gradient magni-
tudes |δtx0,th0,t| (in bottom) for IDBD on the toy-test problems. For similar meta-step-size
values, the step-size update values are the same for all problems, however the absolute
values of meta-gradient are different in orders of magnitude, as shown in log scale.
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3 are 100 times larger than that for problem 1. Therefore, the values of δtxi,thi,t

are affected by the target output variance, i.e., when the scale of the magnitude of

the target weights or inputs are different in these problems. This is the reason the

performance curves for different meta-step-size values and hence the best range of

meta-step-size values are shifted 100 times in Figure 5.1.

We can view the step-size update term as θui,t having two components: the

update ui,t and the meta-step-size parameter θ, where ui,t = δtxi,thi,t in this case.

When the scale of the magnitude of ui,t is increased, a lower value for the meta-

step-size parameter needs to be chosen so that the scale of the magnitude of the

update term θui,t remains the same.

For a problem-independent choice of meta-step-size parameter, the order of the

magnitude of θ should not change across problems. In order to be able to use the

same values for θ, it is then necessary that the order of the magnitude for the update

term ui,t remains unchanged across problems.

One way of achieving it is to normalize the update term by a measure which

has the same orders of magnitude as δtxi,thi,t. However, the order of the magnitude

of δtxi,thi,t cannot be known a priori. A straight-forward way of achieving this

normalization is to divide the update term by a running average of some norm of

δtxi,thi,t in the following way:

vi,t+1 = vi,t + λαi,tx
2
i,t(|δtxi,thi,t|p − vi,t), (5.2)

βi,t+1 = βi,t + θ
δtxi,thi,t

vi,t+1

1
p

,

where p is some positive integer and vi,t is a running estimate of p norm of δtxi,thi,t.

As the normalizer should be a positive quantity so that the approximate gradient di-

rection is not altered by the normalization, the absolute value of δtxi,thi,t is consid-

ered. This running estimate requires another parameter λ for discounting previous

values of δtxi,thi,t. We multiply this parameter by the term αi,tx
2
i,t. As αi,t itself is

being adapted based on data, this running estimate is self regulated by the step-size

element αi,t and λ should not be different for different problems. By multiplying

with x2i,t, the term αi,tx
2
i,t becomes free of units, because the unit of αi,t is the in-
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verse of the squared inputs. It also prevents the running estimate to become small

when the inputs are frequently zeros.

The simplest choice of p is 1, for which vi,t becomes a running average of the

absolute values of δtxi,thi,t. The scale of the magnitude of this vi,t should be sim-

ilar to δtxi,thi,t and as the values vary for δtxi,thi,t over time, the running estimate

would also be able to track the scale. Therefore, by normalizing with vi,t, the scale

of the magnitude of the resulting normalized update term δtxi,thi,t
vi,t+1

should remain

independent of the scale of the magnitude of any statistic of the problems.

If we choose p = 2, then vi,t becomes an estimate of the variance of δtxi,thi,t

and in the update rule of βi,t, the update term is normalized by vi,t1/2, which is an

estimate of the standard deviation. Such any p can be chosen and experimented to

see the effect. However, all of them should ideally be able to achieve the problem

independence in the scale of the magnitude of the update term.

In this work, we only consider p = 1 as the effect of the different choices of this

parameter is empirically found to be insignificant.

This meta-normalization strategy can be applied both to IDBD and K1. In the

following we describe the meta-normalization algorithm applied to IDBD, which

we call Meta-Normalized IDBD:

Meta-Normalized IDBD :

vi,t+1 = vi,t + λαi,tx
2
i,t(|δtxi,thi,t| − vi,t),

βi,t+1 = βi,t + θ
δtxi,thi,t
vi,t+1

,

αi,t+1 = eβi,t+1 ,

wi,t+1 = wi,t + αi,t+1δtxi,t,

hi,t+1 = hi,t
(
1− αi,t+1x

2
i,t

)+
+ αi,t+1δtxi,t.

Similarly, this meta-normalization idea can be applied to K1:
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Meta-Normalized K1:

vi,t+1 = vi,t + λαi,tx
2
i,t(|δtxi,thi,t| − vi,t),

βi,t+1 = βi,t + θ
δtxi,thi,t
vi,t+1

,

bi,t+1 = eβi,t+1 ,

αi,t+1 =
bi,t+1

R̂ +
∑

j bj,t+1x2j,t
,

wi,t+1 = wi,t + αi,t+1δtxi,t,

hi,t+1 = (hi,t + αi,t+1δtxi,t)
(
1− αi,t+1x

2
i,t

)+ .

We pursue detailed experimentation only on Meta-Normalized IDBD. We pre-

vent numerical instability due to zero values in vi,t+1 by not updating βi,t in those

cases.

Our hypothesis regarding this algorithm is that, the choice of the meta-step-size

parameter is less sensitive across problems than the original algorithm—IDBD—

while retaining the effectiveness of it. It is the first algorithm along our journey

toward achieving a completely automated step-size adaptation algorithm. It is in-

teresting to know how far this algorithm can achieve toward this goal.

5.2 Results

In this section, we demonstrate the performance of Meta-Normalized IDBD on both

toy test problems and robot problems. We focus on the robustness and sensitivity

of this algorithm and does not explore the effect of the discounting factor λ here.

We choose λ = 10−2 for all the problems in this chapter and leave detailed experi-

mentation with this parameter for later.

Figure 5.3 shows the results for the three toy problems. For Meta-Normalized

IDBD, we used the same experimental setup as IDBD. The initial step-size value

for problem 1, and 2 was 0.1
20

and for problem 3, it was 0.1
20×100 .

We find that Meta-Normalized IDBD is more robust across problems than IDBD

in terms of the choice of the meta-step-size parameter. A value between 10−4 and
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Figure 5.3: Performance vs. meta-step-size value for Meta-Normalized IDBD on toy
problem 1, 2, and 3. Performance is scaled to superimpose the curves. Performance of
LMS and IDBD on problem 2 is also given in dotted lines for comparison. A narrow range
of meta-step-size values between 10−4 to 10−3 is best for Max-Normalized IDBD on all
problems.

10−3 is found which can be used in all three problems and achieve almost as good

performance as the best of IDBD.

However, the range of good values of the meta-step-size parameter is narrow

for problem 2 and 3.

Next, we show the performance of Meta-Normalized IDBD on robot problems.

Experimental setup of Meta-Normalized IDBD is the same as IDBD. Therefore, the

initial step-size value was set to 0.0001
57

= 1.754× 10−06.

Figure 5.4 shows the results of Meta-Normalized IDBD on the six robot prob-

lems. Performance of IDBD and LMS is also shown for comparison. In all these

problems, the best performance of Meta-Normalized IDBD is at least as good as

IDBD. Meta-Normalized IDBD is also more robust than IDBD as all of its best

meta-step-size values are between 10−6 and 10−4.

Figure 5.5 shows the performance of meta-norm IDBD for four robot problems

and three of the toy problems in a scaled performance measure. MSE is scaled in
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Figure 5.4: Performance vs. meta-step-size value for Meta-Normalized IDBD on six robot
problems of predicting sensor signals in the next time step. Performance of IDBD and LMS
is also given in dotted lines. Performance of Meta-Normalized IDBD is as good as IDBD.
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Figure 5.5: Meta-Normalized IDBD on three toy problems and six robot problems. There
is no common range of meta-step-size values for Max-Normalized IDBD that is best on
all problems. The best meta-step-size value also differs by orders of magnitude on robot
problems.

a way that the performance for the smallest meta-step-size value for all the curves

are one.

This figure shows that, although Meta-Normalized IDBD is more robust than

IDBD, it is still not as robust as we would expect from an automatic step-size adap-

tation requiring no extensive manual tuning of the parameter. The best values of

the meta-step-size parameter are different for different problems. The ranges of the

best values are also narrow, requiring fine tuning.

We conclude these results by stating that meta-normalization strategy helped

IDBD becoming more robust, however, it cannot still get rid of extensive parameter

tuning.

5.3 Max Normalization

The fact that a single value or range of values for the meta-step-size parameter

could not be achieved indicates that the scale of the magnitude of the update term

δtxi,thi,t/ (vi,t+1) is still affected by the variations in statistics, e.g., different target

output variances across problems. Robot data is not as uniform or systematic as the
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toy data and the variation in the best values of the meta-step-size parameter is more

pronounced in the robot problems.

Extremely high values in signals, even if occurs rarely, can cause temporary

high magnitude for the term δtxi,thi,t, which the running estimate vi,t+1 may not

take into consideration immediately to mitigate its effect on the stability of the step-

size values. Such occurrence can be more common in real-world data. Therefore,

normalization by a running estimate alone cannot prevent such instability. The

meta-step-size value should be smaller at least temporarily to ensure stability in

these cases. This affects the overall choice of the meta-step-size parameter. A usual

value for this parameter that typically works in most situations leads to instability

in such extreme cases.

A good way to prevent instability due to radical or extreme fluctuations in data

is to upper-bound the magnitudes of the ratio δtxi,thi,t/ (vi,t+1). Then the meta-

step-size parameter does not need to be set to smaller values temporarily. Then

one should be able to choose a suitable meta-step-size value which works for most

typical cases and also does not result into instability in extreme cases. We upper

bound the ratio to unity in the following way:

if
|δtxi,thi,t|
vi,t+1

> 1 :

vi,t+1 = |δtxi,thi,t|,

which is equivalent to writing

vi,t+1 = max (vi,t+1, |δtxi,thi,t|) . (5.3)

In fact, Equation (5.2) and (5.4) together can be written as

vi,t+1 = max
(
|δtxi,thi,t|, vi,t + λαi,tx

2
i,t(|δtxi,thi,t| − vi,t)

)
We call the resulting algorithm—Max-Normalized IDBD. Each iteration of this

algorithm is as follows:
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Figure 5.6: Performance vs. meta-step-size value for Max-Normalized IDBD on toy prob-
lem 1, 2, and 3. Performance is scaled to superimpose the curves. Performance of LMS and
IDBD on problem 2 is also given in dotted lines for comparison. Max-Normalized IDBD
with a meta-step-size value between 10−2 and 10−1 is best for all toy problems.

Max-Normalized IDBD :

vi,t+1 = max
(
|δtxi,thi,t|, vi,t + λαi,tx

2
i,t(|δtxi,thi,t| − vi,t)

)
,

βi,t+1 = βi,t + θ
δtxi,thi,t
vi,t+1

,

αi,t+1 = eβi,t+1 ,

wi,t+1 = wi,t + αi,t+1δtxi,t,

hi,t+1 = hi,t
(
1− αi,t+1x

2
i,t

)+
+ αi,t+1δtxi,t.

A similar algorithm can also be devised for K1.

5.4 Results

In this section, we investigate the performance, robustness and sensitivity of Max-

Normalized IDBD by testing it on the toy and robot problems. All the experimental
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Figure 5.7: Max-Normalized IDBD on six robot problems of predicting sensor signals in
the next time step. Performance of LMS, IDBD and Meta-Normalized IDBD is given in
dotted lines for comparison. Performance of Meta-Normalized IDBD is as good as IDBD.
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Figure 5.8: Max-Normalized IDBD on three toy problems and four robot problems. There
is no common range of meta-step-size values for Max-Normalized IDBD that is best on all
problems. There is, however, a common range of best meta-step-size values around 10−3

on all the robot problems.

setups are the same as IDBD on the same problems. The discounting factor λ was

chosen to be 10−2.

Max-Normalized IDBD is robust on the toy problems as shown in Figure 5.6.

Three of the performance curves in scaled MSE overlap on each other completely.

The range of the best values are between 10−2 and 10−1. Max-Normalized IDBD

with the meta-step-size parameter within this range of values is almost as good as

the best performance of IDBD.

Figure 5.7 shows the results of Max-Normalized IDBD on the robot problems.

We have also given the results of the Meta-Normalized IDBD, LMS and IDBD for

comparison.

Max-Normalized IDBD is more robust than Meta-Normalized IDBD and per-

forms best in all these problems.

Figure 5.8 shows the performance of Max-Normalized IDBD for four of the

robot problems and three toy problems together.

This figure shows that Max-Normalized IDBD is robust up to some degree. But

it indicates that Max-Normalized IDBD still needs some tuning of the meta-step-
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size parameter. The range of the best values for the toy problems starts from about

10−2, but Max-Normalized IDBD becomes unstable for this value in all the robot

problems. Max-Normalized IDBD achieves its best performance for a value of the

meta-step-size parameter around 10−3 on robot problems. In toy problems, MSE

for the meta-step-size value of 10−3 is more than five times than the lowest MSE.

The ranges of the best value of meta-step-size parameter for robot problems are also

narrow.

5.5 Discussion

We have introduced new algorithms aiming at effective step-size adaptation that is

more robust and less sensitive to the choice of the meta-step-size parameter than

IDBD.

Our first algorithm is meta-noramalized IDBD. Here we normalize the step-size

update term by a running estimate so that for the same meta-step-size value, the

magnitude scale of the resulting update term does not change across problems. We

provide insights on why the magnitude scale of the update term need not change

in order to achieve a problem-independent meta-step-size parameter. This algo-

rithm is more robust than IDBD while retaining superior performance of it. How-

ever, it is not less sensitive to the choice of the meta-step-size parameter within the

same problem than IDBD. This algorithm is also not automatic enough to get rid

of extensive manual tuning of its parameters. The best values of the meta-step-size

parameter still varies by orders of magnitude between robot and toy problems.

We hypothesized that a single choice of the meta-step-size value for Meta-

Normalized IDBD did not work in all the problems as for a sudden and infre-

quent increase in a statistic of the problem, the meta-step-size value may need to be

smaller to ensure stability. This makes the choice of the meta-step-size parameter

problem dependent.

Based on Meta-Normalized IDBD, we then introduced Max-Normalized IDBD

where the update term cannot be affected arbitrarily by a sudden increase in the

statistics of the problem. The update term is upper bounded in this algorithm.
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Max-Normalized IDBD is more robust than Meta-Normalized IDBD and per-

forms almost as well as IDBD. However, performance of Max-Normalized IDBD

is as sensitive as IDBD and Meta-Normalized IDBD on a same problem. It also re-

quires some tuning of the meta-step-size parameter. A common range of meta-step-

size values was not found for which this algorithm achieves its best performance on

all problems.

If Max-Normalized IDBD was even less sensitive to the choice of the meta-

step-size parameter, e.g., if the range of the best values for the robot problems was

extended toward the higher meta-step-size values, a common range of best values

could have been found.

Another problem-dependence that still remains in these algorithms is with the

initial step-size value. Three different scales of values were used in our experiments.

In problem 1 and 2, the initial step-size value is 5×10−3, for problem 3, it is 5×10−5

and for the robot problems it is about 1.75× 10−6. Its sensitivity with respect to the

initial choice of the step-size value is in fact as much as IDBD.

Max-Normalized IDBD is the algorithm of choice among the two we have intro-

duced here. To achieve an automatic step-size adaptation, it still needs to be more

robust and less sensitive with respect to the choice of its meta-step-size parameter.
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Chapter 6

Pre-normalization in Step Size

In this chapter we introduce a new modification to our Max-Normalized IDBD

algorithm, developed in Chapter 5. Our goal of step-size adaptation in terms of

robustness is to find a common range of meta-step-size values that can achieve best

performance in all of the toy and robot problems. Here, we aim at developing an

algorithm that is more robust and less sensitive than Max-Normalized IDBD.

To achieve a more robust algorithm, we deploy a strategy of normalizing the

step size that helps in keeping its values stable for higher meta-step-size values. It

is applied without using the knowledge of the sample error or target output value

and hence we call this pre-normalization. We will find through experiments on

toy and robot problems that this new modification helps the step-size adaptation

algorithm to become more robust.

6.1 The Technique of Pre-normalization

Why does the step-size adaptation in Max-Normalized IDBD become unstable for

higher values of the meta-step-size parameter? The range of the best values of

the meta-step-size parameter for Max-Normalized IDBD is narrow. When a value

slightly larger than the values in that range is chosen, performance worsens consid-

erably. Large meta-step-size values result in larger changes in the step-size param-

eter. The algorithm can become sensitive due to such large changes in the step-size

parameter and may also result into instability of the algorithm. If we do not let the

step-size parameter grow larger, a large meta-step-size value would not be able to
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let the algorithm become unstable.

In deterministic problems where the gradient in known exactly, a sufficient con-

dition on the step-size parameter for the stability of the algorithm can be easily

found. For example, if the step-size values at each time step are chosen in a way

that the successive gradients have a positive inner product, then the algorithm can-

not diverge. In stochastic problems, where only a noisy gradient estimate is avail-

able at each time step, such conditions on the successive exact gradients cannot be

ensured. Albeit, a similar idea can be used to keep the step-size parameter from

growing large.

Stochastic gradient descent such as LMS can be thought as a gradient descent

in a surface based on the single sample considered at each time step. This sur-

face is defined as a quadratic function
(
yt −w>xt

)2 of w. This is also the sam-

ple squared error. A Gradient on this surface at the current weight vector wt is

∇w
(
yt −w>xt

)2 ∣∣
w=wt

or can be simply written as ∇wt

(
yt −w>t xt

)2
= ∇wtδ

2
t .

We can define largeness of the step-size value based on this surface so that it can

prevent the step-size value from being unstable in the global performance surface.

Adaptation using a vector step-size parameter scales the sample gradient direc-

tion −δtxt to a direction −αt+1 ◦ (δtxt), which is no longer a gradient direction if

the elements of the step-size vector have different values. However, it is a descent

direction in the surface of the sample squared error, because this direction has a

positive inner product with the gradient direction, as shown below:

(−αt+1 ◦ (δtxt))
> (−δtxt)

= δ2t (αt+1 ◦ xt)> (xt)

= δ2t
∑
j

αj,t+1x
2
j,t

≥ 0,

given that the elements of step-size αt are non-negative. This new direction vector

−αt+1 ◦ (δtxt) can be an improvement over the gradient direction in a global sense.

If the weight moves too much along the direction vector −αt+1 ◦ (δtxt), it may

start to diverge. A linear scaling of this direction vector is necessary when the step
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toward this direction is large.

We can scale down the direction vector −αt+1 ◦ (δtxt) linearly to ensure that

the gradient in the current weight value wt and the gradient in the updated weight

value wt+1 = wt +αt+1 ◦ (δtxt) have a nonnegative inner product:

(
∇wt+1

(
yt −w>t+1xt

)2)> (∇wt

(
yt −w>t xt

)2) ≥ 0. (6.1)

If the elements of the step-size vector is arbitrarily large, this condition cannot be

true.

The expression in (6.1) can be simplified in the following way:

(
∇wt+1

(
yt −w>t+1xt

)2)> (∇wt

(
yt −w>t xt

)2) ≥ 0,(
−2
(
yt −w>t+1xt

)
xt
)> (−2

(
yt −w>t xt

)
xt
)
≥ 0,

4
(
yt − (wt +αt+1 ◦ (δtxt))

> xt

)
x>t (δtxt) ≥ 0,

δt

(
yt −w>t xt − δt (αt+1 ◦ xt)> xt

)
x>t xt ≥ 0,

δt

(
δt − δt (αt+1 ◦ xt)> xt

)
x>t xt ≥ 0,

δ2t

(
1− (αt+1 ◦ xt)> xt

)
x>t xt ≥ 0,

(αt+1 ◦ xt)> xt ≤ 1,

or equivalently
∑
j

αj,t+1x
2
j,t ≤ 1. (6.2)

When this condition is false, the step-size value causes the update of the weight

vector to overshoot the minimum point of the surface along the direction −αt+1 ◦

(δtxt).

We detect a step-size parameter to be large whenever the condition in Equation

(6.2) is false. If a large step-size parameter is detected, i.e., condition
∑

j αj,t+1x
2
j,t

≤ 1 is false, all the step-size elements should then be reduced in a way that the

condition in Equation (6.2) is true again. All the elements of the vector step-size

parameter should be reduced by the same scalar amount to retain the direction given

by the update term −αt+1 ◦ (δxt).
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Let us normalize the step-size vector by a scalar quantity c(t) at each time step

t to guarantee the condition in Equation (6.2). If we repeat the above derivation by

using the definition of the updated weight aswt+1 = wt + 1
c(t)
αt+1 ◦ (δtxt) instead

of wt+1 = wt + αt+1 ◦ (δtxt), then it follows immediately that the condition on

c(t) is

c(t) ≥ (αt+1 ◦ xt)> xt,

or equivalently c(t) ≥
∑
j

αj,t+1x
2
j,t.

We choose, c(t) =
∑

j αj,t+1x
2
j,t and consider the new step-size value to be αi,t+1 =

αi,t+1/c(t) whenever the condition
∑

j αj,t+1x
2
j,t ≤ 1 is false. It can be easily

verified that by doing so, the condition
∑

j αj,t+1x
2
j,t ≤ 1 becomes true again.

This conditional normalization of the step-size vector is used before the weight

is updated in Max-Normalized IDBD:

if
∑
j

αj,t+1x
2
j,t > 1 :

αi,t+1 =
αi,t+1∑
j αj,tx

2
j,t

,

wi,t+1 = wi,t + αi,t+1δtxi,t,

hi,t+1 = hi,t
(
1− αi,t+1x

2
i,t

)
+ αi,t+1δtxi,t. (6.3)

As the step-size parameter is changed, the auxiliary variable βi,t in the next time step

will no longer correspond to the logarithm of αi,t. Hence, following modifications

on the βi,t update rule is used in Max-Normalized IDBD:

βi,t+1 = logαi,t + θ
δtxi,thi,t
vi,t+1

,

αi,t+1 = eβi,t+1 ,

i.e., logαi,t is used instead of βi,t.

The truncation [v]+ for
(
1− αi,t+1x

2
i,t

)
in the update rule of hi,t in Equation

(6.3) is not used as this term here is never negative now. This follows directly from

satisfying the condition in Equation (6.2).

68



Figure 6.1: Performance vs. meta-step-size value for Pre-normalization technique applied
to Max-Normalized IDBD on toy problem 1, 2, and 3. Performance is scaled to superimpose
the curves. Performance of LMS and IDBD on problem 2 is also given in dotted lines for
comparison. Meta-step-size value between 10−2 and 10−1 is best on all problems.

As this normalization is done before weight update and without using the knowl-

edge of the sample error or the target output, we call it pre-normalization technique.

Pre-normalization technique ensures that the updated weight does not overshoot the

minimum of its immediate loss function δ2t in a single time-step.

This pre-normalization technique is useful to detect a large step-size at every

time-step. Therefore, this strategy may help the algorithm remain stable whenever

the step-size parameter increases abruptly due to a large meta-step-size value.

6.2 Results

We experiment with this pre-normalization technique applied to Max-Normalized

IDBD and find its robustness and sensitivity in toy and robot problems. We choose

λ = 10−2 and the initial step-size value to be 0.1 in all the experiments in this

chapter.

This pre-normalization technique applied to Max-Normalized IDBD is more
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Figure 6.2: Performance vs. meta-step-size value for Pre-normalization applied to Max-
Normalized IDBD on six robot problems of predicting sensor signals in the next time step.
Performance of LMS, IDBD and Max-Normalized IDBD is given in dotted lines for com-
parison. Pre-normalized algorithm is less sensitive than IDBD and Max-Normalized IDBD.
Performance of it is as good as IDBD in most of the problems and better in problem IRDis-
tance0 and RotationVel.
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Figure 6.3: Performance vs. meta-step-size value for pre-normalization applied to Max-
Normalized IDBD on three toy problems and six robot problems. For the meta-step-size
value around 10−2, this algorithm achieves its best performance on most of the problems.

robust and less sensitive than IDBD on the toy problems as shown in Figure 6.1.

The range of the best meta-step-size values is between 10−2 and 10−1. Performance

for the smallest meta-step-size value shown at the leftmost side of the performance

curve is also not more than three times of the best performance. It means perfor-

mance is less sensitive to the choice of meta-step-size value comparing to IDBD.

However, this is achieved at the expense of increasing MSE. Best performance of

pre-normalization technique is worse than that of IDBD, although it is better than

LMS.

This pre-normalization technique makes Max-Normalized IDBD less sensitive

to the meta-step-size parameter for the robot problems, as shown in Figure 6.2. All

of the curves are flatter than IDBD and Max-Normalized IDBD. For many of these

problems, performance for the smallest meta-step-size value is almost as good as

the best performance of IDBD.

In robot problems, the best performance of this pre-normalization technique is

at least as good as that of IDBD. In problems IRDistance0 and RotationVel, its

performance is better than IDBD.

Finally, we summarize the results on all the toy and robot problems on a scaled

71



performance measure in Figure 6.3. MSE is scaled in a way that the performance

for the smallest meta-step-size value for all the curves are one.

This pre-normalization technique is the most robust among all the algorithms

that we have experimented so far. Near best performance is achieved for a meta-

step-size value around 10−2 on all these problems. A meta-step-size value between

10−3 and 10−2 is safe and adapts the step-size parameter effectively in all these

problems. On some of the problems a meta-step-size value less than 10−2 may not

be the best, however it can still achieve superior performance than LMS in all the

problems.

6.3 Discussion

The pre-normalization technique applied to Max-Normalized IDBD has performed

most robustly among all the algorithms that we have experimented with. We have

devised this technique so that abrupt increases in the step-size parameter due to

large meta-step-size values can be detected and reduced to ensure stability. This

technique could indeed extend the range of the best meta-step-size values for Max-

Normalized IDBD toward higher values.

There is a common range of meta-step-size values around 10−2 that achieves

near-best performance in all the problems that we have demonstrated. This pre-

normalization based algorithm is the only one for which a common range of good

meta-step-size values is found.

This algorithm is also less sensitive than our previous algorithms and the exist-

ing ones. Performance for the smallest meta-step-size value such as 10−11 is better

than the best of LMS in all cases.

This pre-normalization technique has also achieved robustness with respect to

the initial step-size value. We have used an initial step-size value of 0.1 on all of

the toy and robot test problems.
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Chapter 7

Autostep

This chapter summarizes our final algorithm—Autostep—that puts all of our algo-

rithmic contributions together. Autostep generalizes the step-size adaptation algo-

rithm based on pre-normalization that we have introduced in Chapter 6. Autostep

combines three modifications on IDBD: normalization in the step-size update, up-

per bound on the step-size update and reducing the step-size value when detected

to be large.

Autostep is the result of applying our last algorithmic technique presented in

Chapter 6. All the algorithmic ideas are again briefly described here and the de-

scription of the full algorithm is given in this chapter. Autostep has three param-

eters, the discounting factor, the meta-step-size parameter and the initial step-size

value. Here, we empirically demonstrate on the toy and robot test problems that

performance of Autostep is robust on the choice of all these parameters.

Our empirical results demonstrate that by developing Autostep we satisfactorily

achieve most of our goals of automatic step-size adaptation in linear supervised set-

ting. Since this final algorithm already appears in the previous chapter, some of the

results of empirical experiments are also presented there. In this chapter we rigor-

ously test Autostep for different parameters it contains. Most importantly, we test

Autostep on six new robot problems in this chapter. We already gain confidence on

our final algorithm in the previous chapter by empirically testing it over the three

toy problems and the six robot problems. In that sense, these nine problems can be

considered as the training set for the Autostep because these problems were intro-

duced before developing Autostep. On the other hand, we gain more confidence on
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the robustness of Autostep by testing it on the six new robot problems. These six

new robot problems are introduced after Autostep is developed and hence can be

considered as the test set for Autostep.

7.1 The Autostep Algorithm

IDBD can adapt the step-size parameter, however the effectiveness of adaptation

or even stability depends on its meta-step-size parameter. Following is the IDBD

algorithm:

βi,t+1 = βi,t + θδtxi,thi,t, (7.1)

αi,t+1 = eβi,t+1 ,

wi,t+1 = wi,t + αi,t+1δtxi,t,

hi,t+1 = hi,t
(
1− αi,t+1x

2
i,t

)+
+ αi,t+1δtxi,t,

where xi,t is the ith element of input vector, yt is a scalar, target output, wi,t is the ith

element of the estimated weight vector, αi,t+1 is the ith element of step-size vector

being adapted, βi,t is the ith element of a vector that is the logarithm of the step-

size element αi,t and updated using a gradient-descent based rule and θ > 0 is the

meta-step-size parameter. Extra memory hi,t is an element of a vector incrementally

updated in order to approximate the gradient update of βi,t.

There is no straightforward way of setting the meta-step-size parameter. In

Chapter 3 and 4 we have shown that an appropriate meta-step-size value is differ-

ent in orders of magnitude in different problems. We have introduced a series of

techniques in this work so that manual tuning of this parameter can be avoided, i.e.,

the same algorithm can be used on various problems without changing its setting of

parameters.

Our first technique, introduced in Chapter 5, was to normalize the step-size

update θδtxi,thi,t in Equation (7.1) by a running average of the absolute value of

δtxi,thi,t:
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vi,t+1 = vi,t + λαi,tx
2
i,t(|δtxi,thi,t| − vi,t), (7.2)

βi,t+1 = βi,t + θ
δtxi,thi,t
vi,t+1

. (7.3)

The meta-step-size parameter θ in IDBD has the same unit as the inverse of δtxi,thi,t

and this normalization makes the meta-step-size parameter θ in Equation (7.3) free

of units. However, it does not make θ completely problem independent. The choice

of this parameter can still be affected by problem-dependent statistics when occa-

sional but extreme changes occur in the value of target output or inputs.

Our second technique is to modify the normalizer vi,t+1 in order to upper bound

the update term δtxi,thi,t/vi,t+1, by replacing the update in Equation (7.2) with the

following:

vi,t+1 = max
(
|δtxi,thi,t|, vi,t + λαi,tx

2
i,t(|δtxi,thi,t| − vi,t)

)
.

It is introduced in Chapter 5. By using this modification, the term δtxi,thi,t/vi,t+1 is

essentially upper bounded to one. This way, the choice of θ is guarded against the

effect of occasional and abrupt increases in the value of δtxi,thi,t.

Our last technique is to detect a high step along the direction of weight update

in the surface of the sample squared error and scale the step-size vector to smaller

values so that updated weight vector does not overshoot the minimum in the surface

along the update direction. We detect such large step sizes and reduce it as follows:

if
∑
j

αj,t+1x
2
j,t > 1 :

αi,t+1 =
αi,t+1∑
j αj,tx

2
j,t

.

To transmit this updated step-size values into the next time step through βi,t, the

update rule of βi,t is modified in the following way:

βi,t+1 = logαi,t + θ
δtxi,thi,t
vi,t+1

.
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Initialization:
λ← 10−4 or a value less than 1
θ ← 0.01
hi ← vi ← 0
αi ← 0.1 or a higher value

for each new data sample (x1, . . . , xn, y) do
δ ← y −

∑n
i=1wixi

for i = 1, . . . , n do
vi ← max (|δxihi|, vi + λαix

2
i (|δxihi| − vi))

if vi 6= 0 then
αi ← αi exp

(
θ δxihi

vi

)
end if

end for
m←

∑n
i=1 αix

2
i

if m > 1 then
for i = 1, . . . , n do

αi ← αi

m

end for
end if
for i = 1, . . . , n do

wi ← wi + αiδxi
hi ← hi (1− αix2i ) + αiδxi

end for
end for

Figure 7.1: The Autostep Algorithm

This technique is introduced in Chapter 6. Due to this modification, large and

detrimental increases of the step-size parameter is guarded.

All these techniques can be used separately on IDBD. However, we found that

using three of them together achieves us the most robust algorithm.

Our resulting algorithm—Autostep—is given in Figure 7.1.

This algorithm has three parameters: meta-step-size θ, discounting factor λ and

initial step-size vector α0. This algorithm requires 4n memory, where n is the size

of the input vector.

In Chapter 6 we have shown that this algorithm for λ = 10−2 is robust on the

choice of the meta-step-size parameter. A common range of meta-step-size values

around 10−2 exists, for which best performance can be achieved on all of our test

problems. No other algorithm can perform similarly.

76



Figure 7.2: Performance of Autostep for different initial step-size values is shown on two
toy problems and six robot problems. Curves for toy problems are in dotted lines. For an
initial step-size value more than 10−2, Autostep achieves minimum MSE in most of these
problems.

Autostep is also robust on the choice of the initial step-size value. We have used

initial step-size value to be 0.1 on all the toy and robot problems in the Chapter 6

and found it to be effectively adapting the step-size parameter.

The modifications of Autostep can also be applied to K1. It is not clear whether

the conditional pre-normalization of the step-size values should be applied to K1,

because a form of normalization is already used in K1. Our preliminary results

applying first two modification techniques on K1 show that the resulting algorithm

is also robust and less sensitive to the choice of the meta-step-size parameter, while

retaining the superior performance of K1. However, we did not conduct thorough

experimentation of this algorithm and hence do not provide the experimental results.

In the following, we thoroughly explore the effect of the choice of the initial

step-size value on Autostep. We also experiment with Autostep to find how robust

this algorithm is on the choice of the parameter λ.
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7.2 Tests for Initial Step-Size Values

In this section, we empirically find how robust Autostep is on its initial step-size

values. We have varied the initial step-size values of Autostep for all the test prob-

lems. The description and setup of the toy and robot test problems are given in

Chapter 3 and Chapter 4, respectively. We have chosen meta-step-size θ = 10−2 as

this value is found to achieve best performance in all of the problems in the results

of Chapter 6. We have chosen λ = 10−2 following the setup in Chapter 6. We show

the results for all the problems in Figure 7.2. The MSE vs. initial step-size value

curves are superimposed in a single figure by aligning the smallest initial step-size

values (10−9 here) for each curve together. MSE is calculated by averaging over 30

different runs.

There is a common range—values greater than 10−2—for which near-best per-

formance is achieved on all problems. There are some fluctuations in values for

Light2 and RotationVel. However, differences in the fluctuated values are not sig-

nificant in that the standard error is high for those values. Initial step-size value can

be chosen as large as 100 in all these problems and still achieve near-best perfor-

mance.

No initial step-size values were found for which Autostep diverges in any of

these problems.

The pre-normalization technique, where large step-size values are reduced, helps

to find a good step-size value quickly. If large initial step-size value is chosen, it

is more likely that it will be reduced by pre-normalization quickly. On the other

hand, if a small initial step-size value is chosen, it may take some time before pre-

normalization is enacted. Therefore, small initial step-size value can be slow to

adapt to correct values. We recommend using an initial step-size value 0.1 or more.

7.3 Tests for λ

In this section we test whether the robustness and sensitivity of Autostep with re-

spect to the meta-step-size parameter is affected by different choices of λ. We

experiment wih five different combinations of these values: we have chosen λ =
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Figure 7.3: Performance vs. meta-step-size value for Autostep with three different settings
of λ on toy problem 1. Performance is scaled to superimpose the curves. Performance of
IDBD and LMS is also given in dotted lines. Curves do not shift in an order of magnitude
for different choices λ.

10−1, 10−2, 10−4. Initial step-size value is chosen to be 0.1. For each case, we have

varied the meta-step-size θ.

Figure 7.3 shows performance of these five variants of Autostep on toy problem

1. These curves are very close to each other. Robustness and sensitivity of Autostep

does not seem to be affected by the choice these parameter values.

Figure 7.4 shows performance of the three of Autostep with different λ values

on robot problems. Curves are close to each other in all these problems. There is a

slight shift of the curves toward higher meta-step-size values for smaller values of

λ. For smaller values of λ, the normalizer estimates the average slowly and hence

it is less sensitive to the changes in recent values. Therefore, Autostep with smaller

λ values can remain stable for higher meta-step-size values.

7.4 Summary Results

In this section we summarize the results of Autostep and provide new results on a

test set of six new robot problems. Parameter setting for Autostep in these results:

initial step-size value αi,0 = 0.1 and λ = 10−4.
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Figure 7.4: Performance vs. meta-step-size value for Autostep with three different settings
of λ on six robot problems. Performance of IDBD and LMS is also given in dotted lines.
Curves do not shift in an order of magnitude for different choices of λ.
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Figure 7.5: Summary of Autostep’s performance with λ = 10−4 on all three toy problems
and six robot problems. For the meta-step-size value of 10−2, Autostep achieves its near-
best performance on all these problems.

Figure 7.6: Validation of Autostep on six new robot problems. Here the inputs of the robot
problems are unnormalized. For the meta-step-size value of 10−2 and λ = 10−4, Autostep
achieves its near-best performance on all these problems.
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Figure 7.5 shows the performance curves of Autostep for different meta-step-

size values on all of the test problems. Curves for the toy problems are shown in

dotted lines. Near-best performance can be achieved with a meta-step-size value

of 10−2 on all these problems. No other algorithms that we have experimented can

adapt the step-size parameter effectively on all the test problems using the same

parameter setting.

Figure 7.6 shows the results of Autostep on six new robot problems. In previous

robot problems, the inputs were normalized. In these new robot problems, the in-

puts are unnormalized. Therefore, a learning algorithm faces two challenges. First,

the problems are essentially nonstationary as is the previous robot problems. Sec-

ond, the variance are now different for different inputs. Therefore, the performance

surface can be elongated. In previous problems, due to normalization of inputs, the

variance of the inputs were similar. The initial step-size value is 0.1 and λ = 10−4.

Results on the new six robot problems show that Autostep again achieves near-

best performance with a meta-step-size value of 10−2. It means, our suggested

choice of parameters also works well on this test set. This result validates that

Autostep can effectively adapt step-size with the same setting of its parameters

across widely different problems.

7.5 Discussion

In this chapter, we have summarized Autostep, our final algorithm of this work.

Autostep contains four different parameters that can be set by the user: the meta-

step-size parameter θ, the initial step-size value and the discounting factor λ of the

running estimate. We have demonstrated that our algorithm can be used for adapting

the step-size parameter effectively with the same setup of these parameters.

Autostep can achieve its near-best performance with meta-step-size values θ

around 10−2 in all the problems that we have experimented including the training

set containing three toy problems and six original robot problems and the test set

including six new robot problems. Autostep is the least sensitive and most robust

among all the existing step-size adaptation algorithms.
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Autostep is also robust on the choice of the initial step-size values. A value of

10−2 or higher can be chosen for all the toy and robot problems and achieve near

best performance. For IDBD, this choice is sensitive across problems and a wrong

choice may even lead to divergence. For Autostep, we have experimented by setting

initial step-size value as high as 100 and still haven’t found Autostep diverging in

any case. We have used 0.1 in most of our experiments and suggest to do so for an

arbitrary problem.

For values of the discounting factor λ lower than 1, robustness of Autostep does

not get affected. However, we have found that, smaller the value of the discounting

factor, lesser is the sensitivity of Autostep to the meta-step-size parameter. We

suggest a value of 10−4 for an arbitrary problem.

Autostep is a step-size adaptation algorithm that is the most robust and least

sensitive to its parameters among all the algorithms that we have experimented. For

an arbitrary problem, θ = 10−2, initial step-size value of 0.1 and λ = 10−2 should

be a good parameter setting to start with. Our results indicate that Autostep with this

parameter setting can effectively adapt the step-size parameter in widely different

problems. In extreme cases, when Autostep diverges for this setting, if at all, we

suggest reducing the meta-step-size value, and then the discounting factor.
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Chapter 8

Conclusions

In this thesis, we have introduced Autostep, a step-size adaptation algorithm, that is

more robust and less sensitive to its tunable parameters than any other existing algo-

rithms. We have verified this claim on two separate classes of problems consisting

data from simulation and a real-world robotic platform. Autostep effectively adapts

the step-size parameter on all these problems with the same setup of its tunable

parameters.

By developing Autostep, we have achieved a significant milestone of our goals

of step-size adaptation. Our goals of step-size adaptation include: superior per-

formance than fixed step-size in non-stationary problems, linear time and memory

complexity, adaptation of a vector step-size parameter and automatic adaptation

without requiring any kind of manual tuning. All of our problems are potentially

nonstationary and contain irrelevant inputs. Autostep adapts a vector step-size in

LMS setting and performs significantly better than LMS in all of our experiments. It

indicates that Autostep can effectively adapts the vector step-size parameter in such

problems. Calculations of Autostep at each iteration only involves vector arithmetic

and hence requires only linear time and memory complexity. Autostep adapts more

automatically than any other existing algorithms. All the existing algorithms re-

quire manual tuning of one or more parameters. On the other hand, our results

show that, in all of the problems, Autostep adapts the step size effectively with the

same setup of its parameters. In our test problems, Autostep can be used in a com-

pletely automatic manner. For any arbitrary problem, it is also expected to be more

automatic, requiring less tuning than any other algorithms. In that regard, Autostep
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approaches all of our goals of step-size adaptation with a significant success.

Autostep comprises three new algorithmic techniques: meta-normalization, up-

per bounding the step-size update and pre-normalization. We have combined these

ideas with the meta-descent technique of IDBD so that its meta-step-size parameter

does not need manual tuning.

Although, they are combined with IDBD in this work, the techniques them-

selves are not specific to IDBD or supervised setting. All these techniques are

gradient based. Our preliminary works indicate that our algorithm can be expressed

in terms of sample gradients only. Therefore, if the sample gradients in a perfor-

mance surface is analytically known in a problem, our algorithm can be extended to

it. It would, of course, require re-derivation of the update rules of Autostep for the

particular problem. However, the techniques of Autostep can be the starting point

in avoiding manual tuning of free parameters.

How helpful are these techniques, when applied separately? Each of these tech-

niques help step-size adaptation in becoming a bit more robust. These techniques,

in fact, can also be considered separately in aiding automation of a system.

Autostep can be considered as another step toward the automation of step-size

adaptation. It demonstrates that it is possible to design a step-size adaptation algo-

rithm that can perform effectively in widely different problems without requiring

tuning of its parameters. Autostep leads to new possibilities of developing algo-

rithms in different problems that are less sensitive to their tunable parameters. In

the following, we describe several natural directions for future works.

Extension to Other Step-Size Adaptation Algorithms: It can be possible to ex-

tend the ideas used in Autostep to other step-size adaptation algorithms. Au-

tostep is developed based on IDBD and it applies a number of techniques

to achieve an algorithm that is less sensitive to its meta-step-size parameter

across problems. Nothing restricts these ideas from being extended to other

steps-size adaptation algorithms, e.g., K1. The same ideas can be applied to

achieve a problem independent meta-step-size in K1. Our preliminary results

applying such techniques on K1 indicate that it might well be the case. An

extensive work and experimentation is needed to develop a fully worked out
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automatic step-size adaptation algorithm based on K1.

Finding theoretical Guarantees for Stability: As we demonstrated that Autostep

with our suggested setup for parameters is stable on a number of problems,

a theoretical guarantee of its stability should also exist. However, no such

theory exists in the literature for any of the meta-descent algorithms we have

presented here. Working on the theoretical analysis of these algorithms, in-

cluding Autostep is a potential future direction.

Extension to Gradient-Based Reinforcement Learning Algorithms: Autostep

techniques may also be extended to problems beyond supervised learning.

New class of gradient-based reinforcement learning algorithms have recently

been introduced for solving online reinforcement learning problems (Sutton

et al., 2009). It introduces the possibility of solving a number of online

robotic challenges, such as learning different tasks by using a single sequence

of exploratory data. Currently, these algorithms use only scalar step-size pa-

rameters. Adaptation of a vector step-size parameter can enable these algo-

rithms in performing more efficiently in large-scale, reinforcement learning

tasks.

Extension of Autostep to these algorithms is a natural direction for a future

work. A suitable range of meta-step-size values can be empirically found,

which can then be used for many different online reinforcement learning

problems without tuning it every time.

Extension to Non-Quadratic Optimization: A challenge for automatic step-size

adaptation is to devise such an algorithm for problems with non-quadratic

objective functions. In the linear supervised setting where Autostep is devel-

oped, the objective function is quadratic. Objective functions of many nonlin-

ear systems are non-quadratic and many techniques developed for quadratic

optimization does not readily apply to such systems. Extending Autostep to

such problems and guaranteeing stability at every time-step is a great chal-

lenge and can be a potential future work.
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Gradient-Based Adaptation of Arbitrary System Parameters: Adaptation of

step-size parameter is only one instance of adapting tunable parameters. We

have indicated in Chapter 1 that the step-size parameter is a form of bias. In

general, any tunable parameter in a learning system forms a learning bias.

It might be possible to adapt such tunable parameters of learning systems

that currently require considerable amount of manual tuning. Some exam-

ples already exists. For example, Haykin (2001) adapted the exponential dis-

counting factor γ of Recursive Least Squares filter using a gradient-based

rule. Schaal and Atkeson (1997) adapted the parameters defining the shape

of receptive fields in weighted regression using a rule similar to IDBD. Sim-

ilarly, gradient-based approach can be applied to automatically adapt tunable

parameters such as discounting factors, regularization parameters, etc., that

exist in many systems. Extension of Autostep to these systems for adapting

their arbitrary tunable parameters in a problem-independent manner can be a

potential direction for future works.

We hypothesized that it is possible to adapt the step-size parameter more auto-

matically than the existing algorithms. To establish this claim we developed Au-

tostep and conducted a number of experiments with this algorithm on several dif-

ferent problems. We have established the statement by demonstrating that Autostep

can effectively adapt the step-size parameter on all of our test problems using the

same setting of its parameters. The establishment of this statement has opened up

new possibilities in the applications of incremental learning.
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