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Abstract

The term “nexting” has been used by psychologists to refer to the propensity of people and many other animals to continu-
ally predict what will happen next in an immediate, local, and personal sense. The ability to “next” constitutes a basic kind
of awareness and knowledge of one’s environment. In this paper we present results with a robot that learns to next in real
time, making thousands of predictions about sensory input signals at timescales from 0.1 to 8 seconds. Our predictions are
formulated as a generalization of the value functions commonly used in reinforcement learning, where now an arbitrary
function of the sensory input signals is used as a pseudo reward, and the discount rate determines the timescale. We show
that six thousand predictions, each computed as a function of six thousand features of the state, can be learned and updated
online ten times per second on a laptop computer, using the standard TD(λ) algorithm with linear function approximation.
This approach is sufficiently computationally efficient to be used for real-time learning on the robot and sufficiently data
efficient to achieve substantial accuracy within 30 minutes. Moreover, a single tile-coded feature representation suffices
to accurately predict many different signals over a significant range of timescales. We also extend nexting beyond simple
timescales by letting the discount rate be a function of the state and show that nexting predictions of this more general
form can also be learned with substantial accuracy. General nexting provides a simple yet powerful mechanism for a robot
to acquire predictive knowledge of the dynamics of its environment.

1. Multi-timescale Nexting

Psychologists have noted that people and other animals
seem to continually make large numbers of short-term pre-
dictions about their sensory input (Gilbert 2006, Brogden
1939, Pezzulo 2008, Carlsson et al. 2000). When we hear a
melody we predict what the next note will be or when the
next downbeat will occur, and we are surprised and inter-
ested (or annoyed) when our predictions are disconfirmed
(Huron 2006, Levitin 2006). When we see a bird in flight,
hear our own footsteps, or handle an object, we continually
make and confirm multiple predictions about our sensory

input. When we ride a bike, ski, or rollerblade, we have
finely tuned moment-by-moment predictions of whether we
will fall and of how our trajectory will change in a turn. In
all these examples, we continually predict what will hap-
pen to us next. Making predictions of this simple, personal,
short-term kind has been called nexting (Gilbert 2006).

Nexting predictions are specific to one individual and to
their personal, immediate sensory signals or state variables.
A special name for these predictions seems appropriate
because they are unlike predictions of the stock market, of
political events, or of fashion trends. Predictions of such
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Fig. 1. Examples of sensory signals varying over very different
time scales on the robot: (a) acceleration varying over tenths of
a second, (b) motor current varying over fractions of a second,
(c) infrared distance varying over seconds, and (d) ambient light
varying over tens of seconds. The ranges of the sensor readings
vary across the different sensor types.

public events seem to involve more cognition and delibera-
tion, and are fewer in number. In nexting, we envision that
one individual may be continually making massive num-
bers of small predictions in parallel. Moreover, nexting pre-
dictions seem to be made simultaneously at multiple time
scales. When we read, for example, it seems likely that we
next at the letter, word, and sentence levels, each involv-
ing substantially different time scales. In a similar fashion
to these regularities in a person’s experience, our robot has
predictable regularities at time scales ranging from tenths
of seconds to tens of seconds (Figure 1).

The ability to predict and anticipate has often been pro-
posed as a key part of intelligence (e.g., Tolman 1951,
Hawkins & Blakeslee 2004, Butz, Sigaud & Gérard 2003,
Wolpert, Ghahramani & Jordan 1995, Clark 2013). Nexting
can be seen as the most basic kind of prediction, preced-
ing and possibly underlying all the others. That people and
a wide variety of animals learn and make simple predic-
tions at a range of short time scales is the standard modern
interpretation of the basic learning phenomenon known as
classical conditioning (Rescorla 1980, Pavlov 1927). In a
standard classical conditioning experiment, an animal is
repeatedly given a sensory cue followed by a special stim-
ulus that elicits a reflex response. For example, the sound
of a bell might be followed by a shock to the paw, which

causes limb retraction. The phenomenon is that after a while
the limb starts to be retracted early, in response to the bell.
This is interpreted as the bell causing a prediction of the
shock, which then triggers limb retraction. In other experi-
ments, for example those known as sensory preconditioning

(Brogden 1939, Rescorla 1980), it has been shown that ani-
mals learn predictive relationships between stimuli even
when none of them are inherently good or bad (like food
and shock) or connected to an innate response. In this case
the predictions are made continually, but not expressed in
behavior until some later experimental manipulation con-
nects them to a response. Animals seem to be wired to learn
the many predictive relationships in their world.

To be able to next is to have a basic kind of knowledge
about how the world works in interaction with one’s body.
It is to have a limited form of forward model of the world’s
dynamics. To be able to learn to next—to notice any dis-
confirmed predictions and continually adjust your nexting
predictions—is to be aware of one’s world in a significant
way. Thus, to build a robot that can do both of these things
is a natural goal for artificial intelligence. Prior attempts to
achieve artificial nexting can be grouped in two approaches.

The first approach is to build a myopic forward model
of the world’s dynamics, either in terms of differential
equations or state-transition probabilities (e.g., Wolpert,
Ghahramani & Jordan 1995, Grush 2004, Sutton 1990). In
this approach a small number of carefully chosen predic-
tions are made of selected state variables. The model is
myopic in that the predictions are only short term, either
infinitesimally short in the case of differential equations, or
maximally short in the case of the one-step predictions of
Markov models. In these ways, this approach has ended up
in practice being very different from nexting.

The second approach, which we follow here, is to use
temporal-difference (TD) methods to learn long-term pre-
dictions directly. The prior work pursuing this approach has
almost all been in simulation and has used table-lookup rep-
resentations and a small number of predictions (e.g., Sutton
1995, Kaelbling 1993, Singh 1992, Sutton, Precup & Singh
1999, Dayan & Hinton 1993). Sutton et al. (2011) showed
real-time learning of TD predictions on a robot, but did not
demonstrate the ability to learn many predictions in real
time or with a single feature representation.
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The main contribution of this paper is a demonstration
that many nexting predictions can be learned in real-time
on a robot through the use of temporal difference methods.
Our results show that learning thousands of predictions in
parallel is feasible using a single representation and a sin-
gle set of learning parameters. The results also demonstrate
that the predictions achieve substantial accuracy within 30
minutes. Moreover, we show how simple extensions to the
standard algorithm can express substantially more general
forms of prediction, and predictions of this more general
form can also be learned both accurately and quickly.

2. Nexting as Multiple Value Functions

We take a reinforcement-learning approach to achieving
nexting. In reinforcement learning it is commonplace to use
TD methods such as the TD(λ) algorithm (Sutton 1988) to
learn long-term predictions of reward, called value func-

tions. The TD(λ) algorithm has also been used as a model of
classical conditioning (Sutton & Barto, 1990) within which
various different stimuli are viewed as playing the role of
reward in the learning algorithm. Our approach to nexting
can be seen as taking this approach to the extreme, using
TD(λ) to predict massive numbers of a great variety of
reward-like signals at many time scales (cf. Sutton 1995,
Sutton & Tanner 2005, Sutton et al. 2011).

We use a notation for our multiple predictions that
mirrors—or rather multiplies—that used for conventional
value functions. Time is taken to be discrete, t = 1, 2, 3, . . .,
with each time step corresponding to 0.1 seconds of real
time. In conventional reinforcement learning, a single pre-
diction is learned about a special signal called the “reward”
and whose value at time t may be denoted Rt ∈ <. Here,
we consider many predictions about many different signals.
These signals are not goals in any sense, but they play the
same role in the prediction-learning algorithm as reward;
we call them pseudo rewards. The value at time t of the
pseudo reward pertaining to the ith prediction is denoted
Rit ∈ <. The prediction itself, denoted V it ∈ <, is meant to
approximate the discounted sum of the future values of the
corresponding pseudo reward:

V it ≈
∞∑
k=0

(γi)kRit+k+1
def
= Git, (1)

where γi ∈ [0, 1) is the discount rate for the ith prediction.
The discount rate determines the timescale of the predic-
tion: to obtain a timescale of T time steps, the discount rate
is set to γi = 1 − 1

T . Readers familiar with reinforcement
learning will recognize (1) as analogous to the definition of
a state-value function. The prediction at time t is analogous
to the approximated value of the state at time t, and Git is
analogous to the “return at time t” in reinforcement learning
terminology. In this paper, Git is the ideal value for the ith
prediction at time t, and we refer to it as the ideal predic-

tion. In our main experimental results, the pseudo reward
was either a raw sensory signal or else a component of a
state-feature vector (which we will introduce shortly), and
the discount rate was one of four fixed values, γi = 0, 0.8,
0.95, or 0.9875, corresponding to timescales (T values) of
0.1, 0.5, 2, or 8 seconds.

We use linear function approximation to form each pre-
diction. That is, we assume that the state of the world at
time t is characterized by a feature vector φt ∈ <n and that
all predictions V it are formed as inner products of φt with a
corresponding weight vector θit:

V it = φ>t θ
i
t

def
=

n∑
j=1

φt(j)θ
i
t(j), (2)

where φ>t denotes the transpose of φt (all vectors are col-
umn vectors unless transposed) and φt(j) denotes its jth
component. In our experiments the feature vectors had n =

6065 components, but only a fraction of them were nonzero,
so the sums could be very cheaply computed.

The predictions at each time are determined by the
weight vectors θit. One natural and computationally frugal
algorithm for learning the weight vectors is linear TD(λ),
in which a small increment is made to each vector on each
time step:

θit+1 = θit + α
(
Rit+1 + γiφ>t+1θ

i
t − φ>t θit

)
zit, (3)

where α > 0 is a step-size parameter, and zit ∈ <n, known
as the eligibility trace vector, is initially set to zero and then
updated on each step by

zit = γiλzit−1 + φt, (4)

where λ ∈ [0, 1] is a trace-decay parameter.
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Fig. 2. The robot used in all experiments (left) and an illustration of its wall-following behavior (right) that generated the data. The
circuits around the pen involved substantial random variation, but almost always included passing the bright light on the lower-left side.

Under common assumptions and a decreasing step-size
parameter, TD(λ) with λ = 1 converges asymptotically to
the weight vector that minimizes the mean squared error
between the prediction and the ideal prediction (1). In prac-
tice, smaller values of λ are almost always used because
they can result in significantly faster learning (e.g., see Sut-
ton & Barto 1998, Figure 8.15), but the λ = 1 case still
provides an important theoretical touchstone. In this case
we can define the best static weight vector θi∗ as that which
minimizes the squared error over the first N predictions:

θi∗ = arg min
θ

N∑
t=1

(
φ>t θ −Git

)2
. (5)

The best static weight vector can be computed offline by
standard algorithms for solving large least-squares regres-
sion problems. The standard algorithm isO(n2) in memory
and either O(n3) or O(Nn2) in computation, per predic-
tion, and is just barely tractable for offline use at the scale
we consider here (in which n = 6065). Although this algo-
rithm is not practical for online use, its solution θi∗ provides
a useful performance standard. Note that even the best static
weight vector will incur some error. It is even theoretically
possible that an online learning algorithm could perform
better than θi∗, by adapting to gradual changes in the world
or robot. But under normal circumstances an online learn-
ing algorithm will only hope to approach the performance
of the best static weight vector in the limit of infinite data.

Note that in presenting algorithms in this section we have
carefully avoided any mention of expectations or states. We

have written only of pseudo reward signals and feature vec-
tors that can be directly computed from sensor readings.
The algorithms are all well defined (and their performance
can be assessed) even though conventional expectations and
probabilities are not.

3. Scaling Experiment

We explored the practicality of applying computational
nexting as described above to make and learn thousands of
predictions, from thousands of features, in real time. We
used a small mobile robot platform custom designed in our
laboratory (Figure 2, left). The robot’s primary actuators
were three wheels placed in a standard omni-drive con-
figuration enabling it to rotate and move in any direction.
Sensors attached to the motors reported the electrical cur-
rent, voltage, motor temperature, wheel rotational velocity,
and an overheating flag, providing substantial observability
of the internal physical state of the robot. Other sensors col-
lected information from the external environment. Passive
sensors detected ambient light in several directions in the
visible and infrared spectrum. Active sensors on the sides
of the robot emitted infrared (IR) light and measured the
amount of reflected IR light, providing information about
the distance to nearby obstacles. Other sensors measured
acceleration, rotation, and the magnetic field. All together,
the state of the robot was characterized by 53 real or virtual
sensors of 13 types, as summarized in the first two columns
of Table 1.
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Sensor type Num of tiling Num of Num of
sensors type intervals tilings

IRdistance 10 1D 8 8
1D 2 4
2D 4 4

2D+1 4 4
Light 4 1D 4 8

2D 4 1
IRlight 8 1D 8 6

1D 4 1
2D 8 1

2D+1 8 1
Thermal 4(8) 1D 8 4
RotationalVelocity 1 1D 8 8
Magnetic 3 1D 8 8
Acceleration 3 1D 8 8
MotorSpeed 3 1D 8 4

2D 8 8
MotorVoltage 3 1D 8 2
MotorCurrent 3 1D 8 2
MotorTemperature 3 1D 4 4
LastMotorRequest 3 1D 6 4
OverheatingFlag 1 1D 2 4

Table 1. Summary of the tile-coding strategy used to produce
feature vectors from sensory signals. For each sensor of a given
type, its tilings were either 1-dimensional or 2-dimensional, with
the given number of intervals (see text and Figure 3). Only the first
four of the robot’s eight thermal sensors were included in the tile
coding due to a coding error.

The robot’s interaction with its environment was struc-
tured in a tight loop with a 100 millisecond (ms) time step.
At each step, the sensory information was used to select one
of seven actions corresponding to basic movements of the
robot (forward, backward, slide right, slide left, turn right,
turn left, and stop). Each action caused a different set of
voltage commands to be sent to the three motors driving the
wheels.

The experiment was conducted in a square wooden pen,
approximately two meters on a side, with a lamp on one
edge (Figure 2, right). The robot selected actions according
to a fixed stochastic policy that caused it to generally fol-
low a wall on its right side. The policy selected the forward
action by default, the slide-left or slide-right action when
the right-side-facing IR distance sensor exceeded or fell
below given thresholds, and selected the backward action
when the front IR distance sensor exceeded another thresh-
old (indicating an obstacle ahead). We chose the thresholds
such that the robot rarely collided with the wall and rarely
strayed more than half a meter from the wall. By design,
the backward action also caused the robot to turn slightly

to the left, facilitating the many left turns needed for wall
following on the right. To inject some variability into the
behavior, on 5% of the time steps the policy instead chose
an action at random from the seven possibilities with equal
probability. Following this policy, the robot usually com-
pleted a circuit of the pen in about 40 seconds. A circuit
took significantly longer if the motors overheated and tem-
porarily shut themselves down. In this case the robot did not
move, irrespective of the action chosen by the policy. Shut
downs occurred approximately every 8 minutes and lasted
for about 7 minutes. This simple policy was sufficient for
the robot to reliably follow the wall for hours.

To produce the feature vectors needed for the TD(λ)
algorithm, the sensor readings were coarsely coded as 6065
binary features according to a tile-coding strategy as sum-
marized in Table 1 and exemplified in Figure 3. Tile coding
is a standard technique for converting continuous variables
into a sparse feature representation that is well suited for
online learning algorithms. The sensor readings are taken in
small groups and partitioned, or tiled, into non-overlapping
regions called tiles. One such tiling over two sensor read-
ings from our robot is shown on the left side of Figure 3. In
this case the tiling is a simple regular grid of square tiles of
equal width (for some other possibilities see Sutton & Barto
1998, p. 206-7).

Tile coding becomes much more powerful than a simple
discretizing of the state space through the use of multiple
overlapping tilings that are offset from each other as shown
in the right side of Figure 3. For each tiling, a given state
(e.g., the state marked by a white dot in the figure) is in
exactly one tile. The set of tiles that are activated by a state
constitute a coarse coding of the state’s location in sensor
space. The resolution of this coding is finer than that of
the individual tilings, as suggested by the greater density
of lines in Figure 3 (right). With four tilings, the effec-
tive resolution is roughly four times that of the original
tiling. The advantage of the multiple tilings over a single
tiling with four times the resolution is that generalization
will be broader with multiple tilings, which typically leads
to much faster learning. With tile coding one can quickly
learn a coarse approximation to the desired mapping, and
then refine it with further data, simultaneously obtaining the
benefits of both coarse and fine discretizations.
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Fig. 3. An example of how tile coding was used to map continuous sensor input into many binary features. On the left we see a single
tiling of the continuous 2D space corresponding to the readings from two non-consecutive (2D+1) IR distance sensors. The space was
tiled into 4 intervals in each dimension, for 16 tiles overall. On the right we see all four tilings, each offset by a different negative amount
such that they were equally spaced, with the first tiling starting at the lower left of the sensor space (as shown on the left) and the last
tiling ending at the upper right of the space. A sensor reading input to the tile coder is a point in the space, like that shown by the white
dot. The output of tile coding is the indices of the four tiles that contain the point, as shown on the right. These tiles are said to be active,
and their corresponding features take on the value 1, while all the non-active tiles correspond to features with the value 0. Note how the
four tilings provide a dense grid of lines, each a distinction that can be made between input points, yet the four active tiles together span
a substantial portion of the sensor space. In this way, multiple tilings provides a feature representation that enables both fine resolution
and broad generalization. This tile-coding example corresponds to the fourth row of Table 1.

Each tile in a tiling corresponds to a single binary fea-
ture. If the current sensor readings fall in that tile, then
the feature is active and takes the value 1, otherwise it is
inactive and takes the value 0. In our representation, we
had n = 6065 such features making up our binary fea-
ture vectors, φt ∈ {0, 1}6065. The specifics of our tile-
coding strategy are summarized in Table 1. Most of our
tilings were 1-dimensional (1D), that is, over a single sen-
sor reading, in which case a tile was simply an interval of
the sensor reading’s value. For some sensors we formed
2-dimensional (2D) tilings by taking neighboring sensors
in pairs. This enabled the robot’s features to distinguish
between, for example, a wall and a corner. To provide fur-
ther discriminatory power, for some sensor types we also
formed 2-dimensional tilings from pairs consisting of a sen-
sor and its second-neighboring sensor. These are indicated
as 2D+1 tilings in Table 1 (and this is the specific case illus-
trated in Figure 3). Finally, we added a tiling with a single
tile that covered the entire sensor space and thus whose
corresponding feature, called the bias feature, was always
active. Altogether, our tile-coding strategy used 457 tilings,
producing feature vectors with n = 6065 components, most
of which were zeros, but exactly 457 of which were ones.

We first applied TD(λ) to make and learn 2160 predic-
tions. The pseudo-reward signalsRit of the predictions were
the 53 sensor readings and a random selection of 487 from
the 6064 non-bias features. For each of these signals, four
predictions were learned with the four values of the dis-
count rate, γi = 0, 0.8, 0.95, and 0.9875, corresponding to
timescales of 0.1, 0.5, 2, and 8 seconds respectively. Thus,
we sought to learn a total of (53 + 487)× 4 = 2160 predic-
tions. The learning parameters were λ = 0.9 and α = 0.1

457

(as there are 457 active features), and the initial weight vec-
tor was zero. Data was logged to disk for later analysis. The
total run time for this experiment was approximately three
hours and twenty minutes (120,000 time steps).

We can now address the main question: is real-time nex-
ting practical at this scale? In our setup, this comes down to
whether or not all the computations for making and learn-
ing so many complex predictions can be reliably completed
within the robot’s 100ms time step. The wall-following pol-
icy, tile-coding, and TD(λ) were all implemented in Java
and run on a laptop computer connected to the robot by a
dedicated wireless link. The laptop used an Intel Core 2 Duo
processor with a 2.4GHz clock cycle, 3MB of shared L3
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cache, and 4GB DDR3 RAM. The system garbage collec-
tor was called on every time step to reduce variability. Four
threads were used for the learning code. The total memory
consumption was 400MB. With this setup, the time required
to make and update all 2160 predictions was 55ms, well
within the 100ms duty cycle of the robot. This demonstrates
that it is indeed practical to do large-scale nexting on a robot
with conventional computational resources.

Later, on a newer laptop computer (Intel Core i7, 2.7 Ghz
quad core, 8GB 1600 Mhz DDR3 RAM, 8 threads), with the
same style of predictions and the same features, we found
that we were able to make 6000 predictions in 85ms. This
shows that with more computational resources, the num-
ber of predictions (or the size of the feature vectors) can
be increased proportionally. This strategy for nexting easily
scales to millions of predictions with foreseeable increases
in computing power over the next decade.

4. Accuracy of Learned Predictions

The predictions were learned with substantial accuracy.
For example, consider the eight-second prediction whose
pseudo reward is the third light-sensor reading (Light3).
Notice that there is a bright lamp in the lower-left corner of
the pen (Figure 2, right). On each trip around the pen, the
reading from this light sensor increased to its maximal level
and then fell back to a low level, as shown in the upper por-
tion of Figure 4. If the state features are sufficiently infor-
mative, then the robot should be able to anticipate the rising
and falling of this sensor reading. Also shown in the figure
is the ideal prediction for this time series, Git, computed
retrospectively from the subsequent readings of the light
sensor. Of course no real predictor could achieve this—our
learning algorithms seek to approximate this ‘clairvoyant’
prediction using only the sensory information available in
the current feature vector.

The prediction made by TD(λ) is shown in the lower por-
tion of Figure 4, along with the prediction made by the
best static weight vector θi∗ computed retrospectively as
described in Section 2. The key result is that the TD(λ) pre-
diction anticipates both the rise and fall of the light. Both
the learned prediction and the best static prediction track
the ideal prediction, though with visible fluctuations.

0 20 40 60 80 100 120
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60,000
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reward
(right scale)
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Fig. 4. Predictions of the Light3 pseudo reward at the eight-
second timescale. The upper graph shows the Light3 sensor read-
ing spiking and saturating on three circuits around the pen and
the corresponding ideal prediction (computed afterwards from the
future pseudo rewards). Note that the ideal prediction shows the
signature of nexting—a substantial increase prior to the spikes
in pseudo reward. The lower graph shows the same ideal predic-
tion compared to the prediction of the TD(λ) algorithm and of
the prediction of the best static weight vector. These feature-based
predictions are more variable, but substantially track the ideal.

                0
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TD(") prediction

Onset of 
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circuits 
around 
the pen

Fig. 5. Light3 predictions (like those in the lower portion of Fig-
ure 4) averaged over 100 circuits around the pen and aligned at the
onset of Light3 saturation.
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Fig. 6. Predictions of the MagneticX sensor at the eight-second
timescale. The TD(λ) prediction was close to the ideal prediction,
explaining 90 percent of its variance.

To remove these fluctuations and highlight the general
trends in the eight-second predictions of Light3, we aver-
aged the predictions over 100 circuits around the pen, align-
ing each circuit’s data to the time of initial saturation of
the light sensor. The average of the ideal, TD(λ), and best-
static-weight-vector predictions for 15 seconds near the
time of saturation are shown in Figure 5. All three averages
rise in anticipation of the onset of Light3 saturation and
fall rapidly afterwards. The ideal prediction peaks before
saturation, because the Light3 reading regularly became
elevated prior to saturation. The two learned predictions
are roughly similar to the ideal, and to each other, but
there are substantial differences. These differences do not
necessarily indicate error or essential characteristics of the
algorithms. For example, such differences can arise because
the average is over a biased sample of data—those time
steps that preceded a large rise in the pseudo reward. We
have established that some of the differences are due to the
motor shutdowns. Notably, if the data from the shutdowns
are excluded, then the prominent bump in the best-static-
θ prediction (in Figure 5) at the time of saturation onset
disappears.

Figure 6 shows another example of the accuracy of the
near-final TD(λ) predictions, in this case of one of the Mag-
netometer sensor readings at an eight-second timescale.

We turn now to consider how the quality of the eight-
second Light3 prediction evolves over time and data. As
a measure of the quality of a prediction sequence {V it } up
through time T , we use the root mean squared error, defined

0 30 60 90 120 150 180
0

5,000

20,000

25,000

Minutes

Best constant

TD(1)

 Best static !TD(") TD(0)

Bias

AutoregressiveRMSE of
8s Light3
prediction

Fig. 7. Learning curves for 8-second Light3 predictions made by
various algorithms over the full data set. Each point is the RMSE
of the prediction of the algorithm up to that time. Most algorithms
use only the data available up to that time, but the best-static-θ and
best-constant algorithms use knowledge of the whole data set. The
errors of all algorithms increased at about 130 and 150 minutes
because the motors overheated and shutdown at those times while
the robot was passing near the light, causing an unusual pattern
of sensor readings. In spite of the unusual events, the RMSE of
TD(λ) still approached that of the best static weight vector. See
text for the other algorithms.

as:

RMSE(i, T ) =

√√√√ 1

T

T∑
t=1

(V it −Git)2.

Figure 7 shows the RMSE of the eight-second Light3 pre-
dictions for various algorithms. For TD(λ), the parameters
were set as described above. For all the other algorithms,
their parameters were tuned manually to optimize the final
RMSE. The other algorithms included TD(λ) for λ = 0

and λ = 1, both of which performed slightly worse than
λ = 0.9. Also shown is the RMSE of the prediction of the
best static weight vector and of the best constant predic-
tion. In these cases the prediction function does not actually
change over time, but the RMSE measure varies as harder
or easier states from which to make predictions are encoun-
tered. Note that the RMSE of the TD(λ) prediction comes to
closely approach that of the best static weight vector after
about 90 minutes. This demonstrates that online learning
on robots can be effective in real time with a few hours of
experience, even with a large state representation.

The benefits of a large representation are shown in Figure
7 by the substantially improved performance over the ‘Bias’
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Fig. 8. Learning curves for the 212 predictions whose pseudo reward is a sensor reading. The median and several representative
learning curves are shown on a linear scale on the left, and the mean learning curve is shown on a logarithmic scale on the right. The
mean curve is high because of a minority of the sensors whose absolute values are high and whose variance is low. If the experiment
is rerun using pseudo rewards with their average value subtracted out, then the mean performance is greatly improved, as shown on the
right, explaining 78% of the variance in the ideal prediction by the end of the data set.

algorithm, which was TD(0) with a trivial representation
consisting only of the bias feature (the single feature that
is always 1). As an additional performance standard, also
shown is the RMSE of an autoregressive algorithm (e.g., see
Box, Jenkins & Reinsel 2011) that uses previous readings of
the Light3 sensor as features of a linear predictor, with the
weights trained according to the least-mean-square rule. To
incrementally train the autoregressive model, the learning
was delayed by 600 timesteps to compute the ideal predic-
tion. The best performance of this algorithm was obtained
using a model of order 300, meaning the last 300 readings
of the Light3 sensor were used. The autoregressive model
performed much worse than all the algorithms that used a
rich feature representation.

Moving beyond the single prediction of one light sensor
at one timescale, we next evaluate the accuracy of all 212
predictions about sensors at various timescales. To measure
the accuracy of predictions with different magnitudes, we
used a normalized mean squared error,

NMSE(i, t) =
RMSE2(i, t)

var(i)
,

in which the mean squared error is scaled by var(i), the
sample variance of the ideal predictions Git over all the
timesteps. This error measure can be interpreted as the per-
cent of variance not explained by the prediction. It is equal

to one when the prediction is constant at the average ideal
prediction.

Learning curves using the NMSE measure for the 212
predictions whose pseudo reward was a sensor reading are
shown in Figure 8. The left panel shows the median learning
curve and curves for a selection of individual predictions.
In most cases, the error decreased rapidly over time, falling
substantially below the unit variance line. The median pre-
diction explained 80% of the variance at the end of training
and 71% of the variance after just 30 minutes. In many
cases the decrease in error was not monotonic, sometimes
rising sharply (presumably as a new part of the state space
was encountered) before falling further. In some cases, such
as the 2-second Y-acceleration prediction shown, the sen-
sor was never effectively predicted, evidenced by its NMSE
never falling below one. We believe this signal was simply
unpredictable with the feature representation provided.

The mean learning curve, shown in the right panel of
Figure 8 on a log scale, fell rapidly but was always substan-
tially above one. This was due to a minority of the sensors
(mainly the thermal sensors) whose values were far from
zero but whose variance was small. The learning curves
for the corresponding predictions were all very high (and
do not appear in the left panel because they were way off
the scale). Why did this happen? Note that our prediction
algorithm was biased in that all the initial predictions were
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zero (because the weight vector was initialized to zero).
When the pseudo rewards are large relative to their vari-
ance, this bias can result in a very large NMSE that takes
a long time to subside. One way to eliminate the bias is to
modify the pseudo rewards by subtracting from each sensor
value the average of its values up to that time (e.g., the first
pseudo reward is always zero). This is easily computed and
uses only information readily available at the time. Most
importantly, choosing the initial predictions to be zero is no
longer a bias but simply the right choice. When we mod-
ified our pseudo rewards in this way, and reran TD(λ) on
the logged data, we obtained the much lower mean learning
curve shown in Figure 8 (right). In the mean, the prediction
learned with the average subtracted explained 78% of the
variance of the ideal prediction by the end of the data set.

Finally, consider the majority of the predictions whose
pseudo reward was one of the binary features making up the
feature vector. There were 170 constant features among the
487 binary features that were selected to be pseudo rewards,
and thus with the average subtracted, both the ideal pre-
dictions and the learned predictions were constant at zero.
For these constant predictions, the RMSE was zero and the
variance was zero, and we excluded these predictions from
further analysis. For the remainder of the predictions, both
the median and mean explained 30% of the variance of the
ideal prediction by the end of the data set.

These results provide evidence that real-time parallel
learning of thousands of accurate nexting predictions on a
physical robot is possible and practical. Learning to sub-
stantial accuracy was achieved within 30 minutes of train-
ing, with no tuning of algorithm parameters, and using a
single feature representation for all predictions. The par-
allel scalability of knowledge-acquisition in this approach
is substantially novel when compared with the predomi-
nately sequential existing approaches common for robot
learning. Our results also show that online methods can
be competitive in accuracy with an offline optimization
method.

5. Beyond Simple Timescales

In this section we present a small generalization of the
TD(λ) algorithm that enables it to learn predictions of a sig-
nificantly more general and expressive form. Up to now, the

discount rate, γi, has been varied only from prediction to
prediction; for the ith prediction, γi was constant and deter-
mined its timescale. Now we will allow the discount rate for
an individual prediction to vary over time depending on the
state the robot finds itself in; we will denote its value at time
t as γit ∈ [0, 1]. With a constant discount rate, predictions
are restricted to simple timescales in which pseudo rewards
are weighted geometrically less the more they are delayed,
as was given by the earlier definition of the ideal prediction:

V it ≈
∞∑
k=0

(γi)kRit+k+1
def
= Git. (1)

With a variable discount rate, the weighting is not by simple
powers of γi, but by products of γit :

V it ≈
∞∑
k=0

(
Πk
j=1γ

i
t+j

)
Rit+k+1

def
= Git. (6)

The learning algorithm remains unchanged in form and
computational complexity; it is exactly as given earlier,
except with γi replaced by γit or γit+1, as appropriate:

θit+1 = θit + α
(
Rit+1 + γit+1φ

>
t+1θ

i
t − φ>t θit

)
zit, (7)

zit = γitλz
i
t−1 + φt. (8)

This small change results in a significant increase in the
kinds of ideal predictions that can be expressed (Sutton
1995, Maei & Sutton 2010, Sutton et al. 2011). Our con-
tribution in this section is to apply and demonstrate this
generalization of TD(λ) in three examples of nexting in
robots.

For the first example, consider a discount rate that is usu-
ally constant and near one, but falls to zero when some
designated event occurs. In particular, consider

γit =

{
0 if Light3 is saturated at time t;
0.9875 otherwise.

As long as Light3 is not saturated, this discount rate works
like an ordinary eight-second timescale—pseudo rewards
are weighted by 0.9875 carried to the power of how many
steps they are delayed. But if Light3 ever becomes satu-
rated, then all pseudo rewards after that time are given zero
weight. This kind of discount enables us to predict how
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Fig. 9. Predictions of total power consumption, over an eight-
second time scale, or up until the Light3 sensor reading is sat-
urated. To express this kind of prediction, the discount rate
must vary with time (in this case dropping to zero upon Light3
saturation).

much of something will occur prior to a designated event
(in this case, prior to Light3 saturation).

The pseudo reward in this example is a measure of the
total power consumption of the three motors,

Rit =

3∑
j=1

|MotorVoltagejt ×MotorCurrentjt|.

As shown in Figure 9, power consumption tended to vary
between 1000 and 3000 depending on how many motors
were active. The ideal prediction, also shown in Figure 9,
was similar to that of an eight-second prediction for much
of the time, but notice how it falls all the way to zero during
Light3 saturation. Even though there was substantial power
consumption within the subsequent eight seconds, this has
no effect on the ideal prediction because of the saturation-
triggered discounting. The figure shows that the modified
TD(λ) algorithm performed well here (after training on the
previous 150 minutes of experience): over the entire data set
the predictions captured approximately 88% of the variance
in the ideal prediction.

The ideal prediction in the above example, like those of
simple timescales, always weights delayed pseudo rewards
less than immediate ones. It cannot put higher weight on the
pseudo rewards received later than those received immedi-
ately. This limitation is inherent in the definition of the ideal
prediction (6) together with the restriction of the discount
rate to [0, 1]. However, it is only a limitation with respect

to the pseudo reward; if signals are mixed into the pseudo
reward in the right way, then predictions about the signals
can be made with general temporal profiles. In particular,
it may be useful to predict what value a signal will have
at the time some event occurs. For example, suppose we
have some signal Xt whose value we wish to predict not in
the short term, but rather at the time of some event. To do
this, we construct a discount rate γit that is one up until the
event has occurred, then is zero. The pseudo reward is then
constructed as follows:

Rit = (1− γit)Xt. (9)

This pseudo reward is forced to be zero prior to the event
(because 1 − γit is zero) and thus nothing that happens
during this time can affect the ideal prediction. The ideal
prediction will be exactly the value ofXt at the time γit first
becomes zero.

Constructing the pseudo reward by (9) has several possi-
ble interpretations depending on the exact form of Xt and
γit . If Xt is the indicator function for an event (equal to
one during it, zero otherwise), and γit is a constant less
than one prior to the event (and zero during the event),
then the prediction will be of how imminent the onset of
the event is. Figure 10 shows results with an example of
this using the data from our robot: γit prior to the event
was 0.8 (corresponding to a half-second timescale), and the
event was a right-facing IR sensor exceeding a threshold
(corresponding to being within 12cm of the wall).

Our final example, in Figure 11, illustrates the use of sig-
nals Xt that are not binary and discount rates γit that do not
fall all the way to zero. The idea here is to predict what the
four light-sensor readings will be as the robot rounds the
next corner of the pen. Four predictions are created, one for
each light sensor, with signals Xi

t = Lighti equal to the
sensor reading. Rounding a corner is an event indicated by
a value from the side IR distance sensor corresponding to
a large distance (>≈25cm). This typically occurs for sev-
eral seconds during the corner’s turn. We set the discount
rate γit equal to 0.9875 (an eight-second timescale) most of
the time, and equal to 0.3 when rounding a corner. Because
the discount rate is greater than zero during the event, the
light readings from several time steps contribute to the ideal
prediction as the corner is entered.



12 Adaptive Behavior ()

0 2 4 6 8 10
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Seconds

Ideal
predictionTD(λ)

prediction
of event
onset

Times of close-
to-wall events

Fig. 10. Predictions of the imminence of the onset of an event
regardless of its duration. The event here is being too close
(<≈12cm) to a side wall of the pen, and imminence is with respect
to a half-second timescale. The learned predictions rise before the
event and follow the shape of the ideal predictions. Overall, the
residual unexplained variance of this prediction was 23%.

6. Discussion

We have successfully implemented a robot version of the
psychological phenomenon of nexting. The robot learned
to predict thousands of aspects of its near future expe-
rience ten times each second. It predicted at a range of
timescales, from one-tenth of a second to eight seconds, and
also beyond simple timescales. Perhaps our most important
result was to show that robot nexting is not only possible,
but eminently practical. Using computationally inexpensive
methods such as TD(λ), linear function approximation, and
tile coding, we showed that the nexting computations eas-
ily scale to thousands of predictions based on thousands of
features on a small computer. Although these algorithms
are computationally cheap, they worked well. An extensive
analysis of a subset of the learned predictions found them
to be substantially accurate within 30 minutes of real-time
training—fast enough for frequent retraining or adaptation
to new sensors or environments. It is also notable that we
used a single set of parameters and a single set of fea-
tures for all predictions, despite variations in signal scales,
signal variability, and timescales. Being able to treat all
predictions uniformly in these ways facilitates the general
application of nexting.
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Fig. 11. Predictions of what each of the four light-sensor read-
ings will be when the robot rounds its next corner. The greyed
time steps indicate those in which the robot was considered to be
rounding a corner. The residual unexplained variances for the four
predictions were 6%, 10%, 10%, and 11% over the course of the
data set.

6.1. Relationship to conventional robotics

From the perspective of conventional robotics research,
there are three aspects of our nexting robot that are distinc-
tive.

The first is that the robot updates a very large number of
predictions, in real time, about diverse aspects of its expe-
rience, giving it a distinctively rich awareness of its sur-
roundings. This contrasts with the conventional approach to
robot engineering, in which designers identify the minimal
set of state variables needed to solve a specific task, and
the robot is oblivious to all others. This approach is per-
haps the source of the popular notion that to perform some
task “like a robot” is to do it with minimal awareness and
understanding.

Nowadays, it is not unusual for advanced robots to have
a substantial awareness of their environment. The premier
example of this is probably self-driving cars (e.g., Wang,
Thorpe & Thrun 2003, see Markoff 2010). These systems
can simultaneously track many objects including cars, peo-
ple, bicycles, and traffic signs. Another important exam-
ple is given by Simultaneous Localization And Mapping
(SLAM) robots that construct occupancy maps for the space
around the robot (Thrun, Montemerlo, et al. 2006). SLAM
robots have considerable scale but do not predict a diver-
sity of objects or sensor types. Both of these systems are
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highly engineered and the things predicted by the under-
lying algorithms are highly interrelated and cover a few
structured types. This contrasts with our approach to nex-
ting, in which no prior model is used and each prediction
is formed independently of the others. Whatever the other
merits or drawbacks of our approach, it does enable easy
scaling to large numbers of sensors of arbitrary types. Even
on our small research robot, we demonstrated learning with
a greater variety of sensor types than in any SLAM robot,
and perhaps more even than in current self-driving cars.

The second way in which our nexting robot is unusual is
that it learns to make its predictions online, during its nor-
mal operation. Most learning robots complete their learn-
ing before being put into use, in special training sessions
requiring information that will not be available during use,
such as human-provided labels, demonstrations, or calibra-
tions. Most of the learning in self-driving cars and in SLAM
robots is of this sort, with important final tuning and local
mapping done online. Classical state-estimation methods
such as Kalman filters adapt only low-dimensional gain
parameters online. Finally, there have been a handful of
works with reinforcement learning robots that learn value
functions or policies online (e.g., Peters & Schaal 2008,
Tedrake, Zhang & Seung 2005, see Degris et al. 2012).
In all cases, the online learning is limited in its scale and
diversity; it never approaches the adaptive awareness of our
nexting robot with its online, ten-times-per-second learning
of thousands of diverse predictions.

The third way in which our nexting robot is distinctive
is that its predictions are relatively long-term, extending
significantly beyond a single time step. Although predic-
tion is widely used in modern control theory, it is almost
always limited to one-step (or differential) predictions (e.g.,
conventional Kalman filtering (Welch & Bishop 1995) and
system identification (Ljung 1998)). Often, one-step pre-
dictive models are iterated to make multi-step predictions
(e.g., model-predictive control (Camacho & Bordons 2004)
and motion planning (LaValle 2006)). That can work well,
but it does not scale to long timescales or to large numbers
of predictions such as we have used here. Another way of
making longer-term predictions with one-step methods is to
make the step larger, subsampling or jumping through the
data stream at multiple temporal resolutions. A weakness
of this approach is that the longer-term predictions are also

made less frequently and are thus not available to affect a
rapid response if needed. In addition, it seems unlikely that
this approach could extend beyond simple timescales to the
more general predictions described in the previous section.
Why are all these techniques, and nexting itself, focused
on constructing longer-term predictions? The advantage of
predicting events substantially in advance of their occur-
rence is that it enables appropriate action to be taken to head
off or otherwise prepare for them. In brief, long-term pre-
diction is essential to anticipation, and thus to the timely
generation of appropriate responses.

6.2. The distinctiveness of predictions in AI

Predictions are a potentially powerful organizing principle
for artificial intelligence (AI) systems. Through our focus
on nexting in this paper, we have explored one small way
in which predictions can be important in an AI system.
Even so, our nexting robot constitutes one of the most well-
developed uses of predictions in AI research to date, as we
discuss in this subsection.

Of the previous AI systems that have learned from a
robot’s sensorimotor experience, most have not expressed
their knowledge in a predictive form and validated it
by comparison with subsequent experience. Pierce and
Kuipers (1997) gathered sensorimotor experience from ran-
dom motion on a simulated robot, and then constructed a
low dimensional embedding of the sensors from observed
correlations between sensor readings. The validity of the
embedding was assessed by how well the constructed
embedding matched the spatial configuration of the robot’s
sensors provided by the experimenter. Oates, Schmill, and
Cohen (2000) described an algorithm that segments time-
series data from a robot’s sensors and forms clusters from
temporal segments with similar dynamics. The clustering
was validated by how well these clusters matched clusters
generated by people. Predictions were used by Yamashita
and Tani (2008), but the predictions were constrained only
be learning from people during a special supervisory train-
ing period. They taught a humanoid robot to perform goal-
directed reaching motions in response to human-issued
commands using predictions about how a person would
move the robot within a supervisory training mode. Our
work with nexting shows how predictions can be learned
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from normal robot operation without the need for external
validation. Predictions are a special form of sensorimotor
knowledge for which future experience is both necessary
and sufficient for validation.

Compared to previous AI research on predictive knowl-
edge validated from experience, our work is distinctive in
showing practicality and scalability with a physical robot.
That knowledge might be expressed in terms of predic-
tions has been explored by Cunningham (1972), Becker
(1973), Drescher (1990), and Sutton (2009, 2012), but only
in small scale simulations, in most cases with substantial
abstractions given a priori. Our results show that a predic-
tive approach is practical on a physical robot from the level
of sensors and motors, using features that are constructed
from the same. The required computation for making and
updating thousands of predictions was provided by a laptop
that can be carried by a small robot. Moreover, the predic-
tions were learned with accuracy, with uniform parameter
settings and within a few hours of experience. Our results
demonstrate that a single mathematical form of expectation
suffices for expressing these many different predictions,
covering many sensors, features, and timescales, and that
this form generalizes beyond timescales.

From the perspective of AI more generally, our approach
is distinctive in pursuing knowledge representation empir-
ically through a diverse set of predictions. In contrast to
conventional approaches, we are abandoning the need for
the robot’s knowledge to be consistent or complete with
respect to some human-constructed model of the world.
Instead we formulate precise empirical predictions and then
learn them from the robot’s experience. This is a piecewise
approach to knowledge that we see as part of respecting the
complexity of the world. We expect that many robots will
have neither the ability nor the need to model all aspects of
the world, and can do well by predicting those aspects of the
world that are manifest in their sensorimotor experience.

6.3. Uses of predictions

This paper has extensively treated the learning of nexting-
style predictions without proposing specific ways that the
predictions should be used. On balance we believe that this
is appropriate; learning large number of predictions in real

time is itself very challenging, and the potential uses of pre-
dictions are too many and too varied to treat properly in
the same paper. Nevertheless, it is appropriate to at least
briefly mention some of the possible uses of nexting-style
predictions.

Suppose a self-driving car is using visual input to pre-
dict subsequent laser readings corresponding to obstacles or
rough terrain. These predictions might be used to slow the
vehicle in advance to avoid abrupt braking, a rough ride, or
collisions. Such predictions could also be used to choose
between alternate routes. As another example, a vacuuming
robot could predict its remaining battery life and its time
to return to its docking station to determine when to head
back to recharge. Or, taking a cue from psychology and the
biological examples of nexting, predictions could be used
for anticipatory reflexes for self-preservation. Just as a rab-
bit closes its eye in anticipation of an oncoming irritant, a
robot could cover its sensory surfaces, or spin down its hard
disk, if it predicted that it might topple. Predictions would
also be useful as part of anomaly detection, for example, in
detecting unusual patterns of computer use that indicate an
intruder.

In addition to these fairly obvious ways to use predic-
tions, there are others that are more nuanced, with a less
direct connection to behavior. One sophisticated use of pre-
dictions is to package them into option models, a special
form of temporally abstract prediction specially suited to
planning (Sutton, Precup & Singh 1999). Another nuanced
use of predictions is as components of state representa-
tions, as in predictive state representations (Littman, Sutton
& Singh 2002, Singh, James & Rudary 2004, Boots, Sid-
diqi & Gordon 2011, Sutton & Tanner 2005). The scale at
which we have demonstrated nexting-style predictions sug-
gests that practical benefits might be achieved from using
predictions in such ways.

7. Limitations and Conclusion

The most important limitation of this work is that all of
the predictions learned were conditional on the one way
in which the robot behaved. In other words, they were all
on-policy predictions rather than off-policy predictions. Off-
policy learning adds substantial expressive power and is
significantly more challenging (e.g., see Sutton, Szepesvári
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& Maei 2009). Gradient-TD methods (Maei 2011, Sutton
et al. 2009) have been developed to deal with the most
serious challenges of off-policy learning, and Sutton et
al. (2011) have already used them to demonstrate off-policy
TD learning in robots on a small scale. These methods
could probably be extended to real-time parallel learning
of many predictions with modest increases in the compu-
tational resources (see White, Modayil & Sutton 2012).
Perhaps the most important advantage of moving to off-
policy prediction is that it frees us to choose the robot’s
behavior for other purposes. In particular, we may desire
the robot’s behavior to change over time, say to maximize
either some extrinsic reward or the total amount of learning,
as in work on computational curiosity (e.g., see Oudeyer,
Kaplan & Hafner 2007).

We have demonstrated that the psychological phenomena
of nexting—learning and making thousands of local, short-
term, personal predictions—can be produced in a robot in
a practical, scalable way using modern conventional com-
puters. Our approach was to formulate the predictions in
the form of value functions, like those conventionally used
in reinforcement learning, but on a much larger scale. Our
robot predicted 6000 aspects of 53 sensory signals at four
timescales, with the predictions made and learned every
tenth of a second. We used a large feature representation
and the TD(λ) online learning algorithm. We showed that
a single feature representation and a single set of learning
parameters was sufficient for learning many diverse pre-
dictions in 30 minutes or less. Finally, we showed that a
natural extension of our approach—allowing the discount
rate of a prediction to vary with the current state instead of
being constant—provides substantial additional flexibility
and expressive power. Overall, our results suggest that nex-
ting might form a competent starting place for developing a
sensorimotor approach to artificial intelligence.
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