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Abstract

We present the first temporal-difference
learning algorithm for off-policy control with
unrestricted linear function approximation
whose per-time-step complexity is linear in
the number of features. Our algorithm,
Greedy-GQ, is an extension of recent work on
gradient temporal-difference learning, which
has hitherto been restricted to a prediction
(policy evaluation) setting, to a control set-
ting in which the target policy is greedy with
respect to a linear approximation to the op-
timal action-value function. A limitation of
our control setting is that we require the be-
havior policy to be stationary. We call this
setting latent learning because the optimal
policy, though learned, is not manifest in be-
havior. Popular off-policy algorithms such as
Q-learning are known to be unstable in this
setting when used with linear function ap-
proximation.

In reinforcement learning, the term “off-policy learn-
ing” refers to learning about one way of behaving,
called the target policy, from data generated by an-
other way of selecting actions, called the behavior pol-

icy. The target policy is often an approximation to
the optimal policy, which is typically deterministic,
whereas the behavior policy is often stochastic, explor-
ing all possible actions in each state as part of finding
the optimal policy. Freeing the behavior policy from
the target policy enables a greater variety of explo-
ration strategies to be used. It also enables learning
from training data generated by unrelated controllers,
including manual human control, and from previously
collected data. A third reason for interest in off-policy
learning is that it permits learning about multiple tar-
get policies (e.g., optimal policies for multiple sub-
goals) from a single stream of data generated by a
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single behavior policy.

Off-policy learning for tabular (non-approximate) set-
tings is well understood; there exist simple, online al-
gorithms such as Q-learning (Watkins & Dayan, 1992)
which converge to the optimal target policy under min-
imal conditions. For approximation settings, however,
results are much weaker. One promising recent de-
velopment is gradient-based temporal-difference (TD)
learning methods, which have been proven stable un-
der off-policy learning for linear (Sutton et al., 2009a)
and nonlinear (Maei et al., 2010) function approxima-
tors. However, so far this work has only applied to pre-
diction settings, in which both the target and behavior
policy are stationary. In this paper we generalize prior
work with gradient TD methods by allowing changes
in the target policy. In particular, we consider learning
an approximation to the optimal action-value function
(thereby finding an approximately optimal target pol-
icy) from data generated by an arbitrary stationary
behavior policy. We call this problem setting latent

learning because the optimal policy is learned but re-
mains latent; it is not allowed to be overtly expressed
in behavior. Our latent learning result could be ex-
tended further, for example to allow the behavior pol-
icy to change slowly as long as it remained sufficiently
exploratory, but it is already a significant step. Our re-
sults build on ideas from prior work with gradient TD
methods but require substantially different techniques
to deal with the control case.

We present a new latent learning algorithm, Greedy-

GQ, which possesses a number of properties that we
find desirable: 1) Linear function approximation; 2)
No restriction on the features used; 3) Online, incre-
mental, with memory and per-time-step computation
costs that are linear in the number of features; and 4)
Convergent to a local optimum or equilibrium point.
Alternative ways of solving the latent learning problem
include using non-incremental methods that are more
computationally expensive (e.g., Lagoudakis & Parr,
2003; Antos et al., 2008; 2007), possibly with non-
linear value function approximation methods (e.g., An-
tos et al., 2008; 2007); putting restrictions on the lin-
ear function approximation method (Gordon, 1995;
Szepesvári & Smart, 2004), or on the interaction of
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the sample and the features (Melo et al., 2008). Non-
incremental methods that allow non-linear value func-
tion approximation are an interesting alternative. Be-
cause they are non-incremental, there are no stability
issues arising. The price is that their computational
complexity is harder to control. For a discussion of
the relative merits of (non-)incremental methods the
reader is referred to Section 2.2.3 of (Szepesvári, 2009).
Previous theoretical attempts to construct incremen-
tal methods with the above properties include that
of (Szepesvári & Smart, 2004) and (Melo et al., 2008),
which also discuss relevant prior literature. The first of
these works suggests to use interpolative function ap-
proximation techniques (restricting the features), the
second work proves convergence only in the case when
the sample distribution and the features are matched
in some sense. Both works prove convergence to a fixed
point of a suitably defined operator.

In contrast, our algorithm is not restricted in the
choice of the features. However, we are able to prove
only convergence to the equilibria of a suitably defined
cost function. The cost function that our algorithm
attempts to minimize is the projected Bellman error
(Sutton et al., 2009a) which is extended to the control
setting in this paper.

1. The learning problem

We assume that the reader is familiar with basic con-
cepts of MDPs (for a refreshment of these concepts, we
refer the reader to Sutton & Barto (1998)). The pur-
pose of this section is to define the learning problem
and to define our notation.

We consider the following latent learning scenario: An
agent interacts with its environment. The interaction
results in a sequence S0, A0, R1, S1, A1, . . . of random
variables, where for t ≥ 0, St ∈ S are states, At ∈ A
are actions, Rt+1 ∈ R are rewards.1 Fix t ≥ 0 and let
Ht = (S0, A0, R1, . . . , St) be the history up to time t.
It is assumed that a fixed behavior policy πb is used
to generate the actions: At ∼ πb(·|St), independently
of the history Ht given St. Thus, here for any s ∈ S,
πb(·|s) is a probability distribution over A. It is also
assumed that (St+1, Rt+1) ∼ P (·, ·|St, At), indepen-
dently of Ht given St, At. Here P is the joint next-
state and reward distribution kernel. For simplicity,
we assume that (St, At) is in its steady-state and we
use µ to denote the underlying distribution.

The goal of the agent is to learn an optimal policy
for the MDP, M = (S, A, P ), with respect to the to-
tal expected discounted reward criterion. The optimal
action-value function under this criterion shall be de-

1To avoid measurability issues assume that S,A are at
most countably infinite. However, the results extend to
more general spaces with some additional assumptions.

noted by Q∗. As it is well known, acting greedily w.r.t.
Q∗ leads to an optimal policy. Remember that a pol-
icy π is greedy w.r.t. an action-value function Q if for
every state s, π selects an action (possibly random)
amongst the maximizers of Q(s, ·). The Bellman op-
erator acting on action-value functions underlying a
stationary policy π shall be denoted by Tπ, and is de-
fined by

TπQ (s, a) =
�
{r(s, a, s�) + γQ(s�, b)}π(db|s�)PS(ds�|s, a),

where r(s, a, s�) is the expected immediate reward of
transition (s, a, s�), PS(·|s, a) is the next-state distri-
bution (the marginal of P (·, ·|s, a)) and we are slightly
abusing notation by using integral signs to denote both
sums and integrals, depending on whether the respec-
tive spaces are discrete or continuous.

2. Derivation of Greedy-GQ

The purpose of this section is to derive the new algo-
rithm.

We use linear value function approximation of the
form Qθ(s, a) = θ�ϕ(s, a), (s, a) ∈ S × A, to ap-
proximate Q∗. Here ϕ(s, a) ∈ Rd are the features,
θ ∈ Rd are the parameters to be tuned. We also
employ a class of stationary policies, (πθ; θ ∈ Rd).
For each θ ∈ Rd, πθ is a stationary policy (possibly
stochastic). We will use πθ(·|s) to denote the action-
selection probability distribution chosen by πθ at state
s. Two choices of particular interest are the greedy
class and the (truncated) Gibbs class: For the greedy

class, for any θ ∈ Rd, πθ(·|s) is a greedy policy w.r.t.
Qθ. For the Gibbs class, the set A is assumed to
be countable and πθ(a|s) ∝ eκ(Qθ(s,a)), where (e.g.)
κ(x) = c/(1 + exp(−x)) with some c > 0.

The main idea of the algorithm is to minimize the pro-
jected Bellman error

J(θ) = �ΠTπθQθ −Qθ�2µ
using (approximate) stochastic gradient descent. Here
�Q�2

µ
=

�
Q2(s, a)µ(da, ds) and Π is a projection op-

erator which projects action-value functions into the
linear space F =

�
Qθ : θ ∈ Rd

�
w.r.t. �·�

µ
: ΠQ̂ =

argmin
f∈F �Q̂− f�µ.

We aim at an algorithm that works both in the case
when (πθ; θ ∈ Rd) is the greedy class, or when (πθ; θ ∈
Rd) is a smooth class. Note that in the former case
πθ is non-differentiable w.r.t. θ, implying the lack of
differentiability of J . In this case we will use subd-
ifferentials and our method becomes an approximate
stochastic subgradient method.

The motivation to minimize J is twofold: (Approx-
imate) gradient descent lets us avoid divergence is-
sues. When (πθ) is the greedy class, TπθQθ = T ∗Qθ,
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where T ∗ is the Bellman optimality operator acting
on action-value functions. It can be shown that if
Q-learning converged, then it would converge to the
solution of ΠT ∗Qθ = Qθ, which defines the global op-
tima to J . Further, J has no other global maxima.
Thus, if our algorithm converged to a global maxi-
mizer of J then the limit would be the same as the
limit that Q-learning would choose. We note in passing
that although our objective function resembles that of
(Sutton et al., 2009a) and we use some ideas of this
previous work, our problem and techniques are sub-
stantially different from those of (Sutton et al., 2009a)
(and similar other works), who deal with prediction
problems only, while we focus on control learning.

Since we will deal with non-differentiable functions, we
have to work with sub-gradients. The sub-gradient of
a non-convex function is defined as:
Definition 1. (Fréchet sub-gradient): The Fréchet
sub-gradient of f : Rd → R, at x ∈ Rd, denoted by
∂f(x) is the set of all u∗ ∈ Rd such that

lim
h→0

inf
h�=0

�h�−1 �
f(x + h)− f(x)− h�u∗

�
≥ 0.

Although when the greedy policy class is used, J(θ)
is not differentiable, it is still a piece-wise quadratic,
continuous function which is differentiable everywhere
except the boundaries between the regions defining the
pieces (J is not convex, unfortunately).

In order to derive a gradient for J , we notice that we
can rewrite J as 2

J(θ) = E[δt+1(θ)ϕt]�E[ϕtϕ
�
t

]−1E[δt+1(θ)ϕt],

where ϕt = ϕ(St, At) is the feature at time t,

δt+1(θ) = Rt+1 + γ V t+1(θ)− θ�ϕt

is the temporal difference error, and V t+1(θ) =
V θ(St+1) is the expected value of the next state under
πθ:

V θ(s) =
�

θ�ϕ(s, a)πθ(da|s). (1)

Due to the chain-rule of subdifferentials (e.g., Kruger,
2003), it follows that if ϕ̂t+1(θ) is an unbiased esti-
mate of the subgradient of V t+1(θ) (given St+1), then
bt+1(θ) = γϕ̂t+1(θ)− ϕt is a subdifferential to δt+1(θ)
and thus

E[ bt+1(θ)ϕ�t ] E
�
ϕtϕ

�
t

�−1 E[ δt+1(θ)ϕt ] =
= −E[ δt+1(θ)ϕt ] + γ E[ ϕ̂t+1(θ)ϕ�t ]w∗(θ)

2The derivation of this follows identical steps to the
derivation of the analogous identity derived for prediction
problems earlier and is thus omitted. The interested reader
is referred to e.g. (Sutton et al., 2009a) for the details.

is a subdifferential to 1
2J(θ). Here,

w∗(θ) = E
�
ϕtϕ

�
t

�−1 E[δt+1(θ)ϕt].

Making use of the weight-doubling trick of Sutton et al.
(2009b), we introduce a new set of weights wt ∈ Rd to
estimate w∗(θt). The update equations, which aim at
following a negated subgradient to J(·), then become

θt+1 = θt + αt

�
δt+1(θt)ϕt − γ(w�

t
ϕt)ϕ̂t+1(θt)

�
, (2)

wt+1 = wt + βt

�
δt+1(θt)− ϕ�

t
wt

�
ϕt , (3)

which define our algorithm Greedy-GQ.

Note that if the greedy class is used, an appropriate
choice for ϕ̂t+1(θt) is ϕ̂t+1(θt) = ϕ(St+1, A�t+1), where
A�

t+1 is some maximizing action of Qθt(St+1, ·). That
this holds follows from the definition of subdifferentials
immediately (see, e.g., Kruger 2003).

When πθ(a|s) is differentiable w.r.t. θ then
∇V θ(s) =

�
[ϕ(s, a) + Qθ(s, a)∇ lnπθ(a|s)]πθ(da|s)

and ∂V t+1(θ) =
�
∇V θ(St+1)

�
, i.e., the subd-

ifferential set is a singleton. Note that when
the action set is large, the algorithm can just
sample A�

t+1 ∼ πθt(·|St+1) and use ϕ̂t+1(θt) =
ϕ(St+1, A�t+1) + Qθ(St+1, A�t+1)ψθ(A�t+1|St+1), where
ψθ(a|s) = ∇ lnπθ(a|s) is the so-called score function
underlying the policy π.

Greedy-GQ uses an update-rule for parameter θ anal-
ogous to that of Q-learning with function approxima-
tion except that we have a correction term. The up-
date of the second set of weights, wt, follows the least
mean square (LMS) rule. These weights are normally
initialized to zero. As promised, the computation of
an update takes linear time in the dimension of the
features, d.

The update rules of Greedy-GQ are similar to GQ(λ)
with λ = 0 (Maei & Sutton, 2010). However, GQ(λ) is
restricted to prediction problems, whereas the present
paper considers control learning.

3. Convergence analysis

We prove our results under the following condi-
tions. The first set of conditions concerns the data
((St, At, Rt+1); t ≥ 0).

(M1) (St+1, Rt+1) ∼ P (·, ·|St, At);

(M2) ∃R̂max s.t. Var [Rt+1|St] ≤ R̂max holds almost
surely (a.s.);

(M3) At ∼ πb(·|St);

(M4) The Markov process ((St, At); t ≥ 0) is in steady-
state.3

3 Note that (M4) could be replaced by a weaker con-
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We also make the following assumption on the features
ϕ : S ×A→ Rd:

(P1) Φmax = �ϕ�∞ < +∞;

(P2) The matrix C = E
�
ϕtϕ�t

�
is non-singular.

For s ∈ S, let πθ(·|s) be a probability distribution.
We assume that ϕ̂t+1(θ) is an unbiased estimate of
the subgradient of V t+1(θ) = V θ(St+1) (cf. (1) for the
definition of V θ):

(G1) E [ϕ̂t+1(θ)|St+1] ∈ ∂V t+1(θ).

We need the following additional assumption:

(B1) The second moment of ϕ̂t+1(θ) is uniformly
bounded: sup

θ∈Rd E
�
�ϕ̂t+1(θ)�2

�
< +∞.

Under this condition and (P1), it immediately follows
that the norm of the matrix

B(θ) = E
�
ϕ̂t+1(θ)ϕ�t

�

is uniformly bounded, too.

Note that when the greedy policy is used
this assumption is automatically satisfied un-
der (P1). When the policy πθ is differentiable
then it will be satisfied under (P1) provided that
sup

θ∈Rd,(s,a)∈S×A �∇ log πθ(a|s)� < +∞ also holds.

We also need the following assumption on the limiting
behavior of the parametric family πθ:

(L1) For any θ, the policy π(∞)
θ

defined by

π(∞)
θ

(a|s) = lim
c→∞

πcθ(a|s), (s, a) ∈ S ×A

exists and the convergence is uniform on compact
sets.

(L2) The set L =
�

π(∞)
θ

: θ ∈ Rd

�
is finite.

(L3) The matrices
C−γ

�
ϕ(s�, b)ϕ(s, a)�π(db|s�)PS(ds�|s, a)µ(ds, da)

are non-singular, for any π ∈ L.

Condition (L1) is satisfied for the typical choices of
policy classes. Note that if πθ is the greedy policy
then (L1) is automatically satisfied. Condition (L2)
will be naturally satisfied in finite state-action MDPs.

dition on the Harris recurrence of this Markov process.
The modifications to our analysis would be standard
(Szepesvári & Smart (2004) used this condition in a sim-
ilar context). The reason for relying on (M4) is to keep
matters relatively simple.

This is a technical condition that we believe can be
relaxed. It is used only in the proof of the bound-
edness of the iterates. Condition (L3) is similar to
the feature-independence condition. If it is not satis-
fied, the equilibrium set of J in fact can be unbounded
(which does not affect value convergence, but affects
the boundedness of parameters).

Now, write the algorithm in the form

θt+1 = θt + αt Gt+1(θt, wt), (4a)
wt+1 = wt + βt Ht+1(θt, wt), (4b)

where

Gt+1(θ, w) = δt+1(θ)ϕt − γϕ̂t+1(θ)ϕ�t w,

Ht+1(θ, w) = δt+1(θ)ϕt − ϕtϕ
�
t

w,

δt+1(θ) = Rt+1 + γ V t+1(θ)− θ�ϕt,

ϕt = ϕ(St, At).

We will use the following assumptions on the step-size
sequences:

(S1) αt, βt > 0 ∀t and are deterministic;

(S2)
�∞

t=0 αt =
�∞

t=0 βt = +∞;

(S3)
�∞

t=0(α
2
t

+ β2
t
) < +∞;

(S4) αt/βt → 0.

The last assumption puts the update into the class of
two timescale stochastic approximation algorithms.

Define the mean update directions g(θ, w) =
E [Gt+1(θ, w)] and h(θ, w) = E [Ht+1(θ, w)] 4 and
the noise sequences Vt+1 = Gt+1(θt, wt) − g(θt, wt),
Ut+1 = Ht+1(θt, wt) − h(θt, wt), t ≥ 0. With these
choices the algorithm takes the form

θt+1 = θt + αt

�
g(θt, wt) + Vt+1

�
,

wt+1 = wt + βt

�
h(θt, wt) + Ut+1

�
.

We need results on such stochastic approximation al-
gorithms when the mean update direction is discontin-
uous because g depends on E [ϕ̂t+1(θ)|St = s, At = a],
which might be a discontinuous function of θ (for
(s, a) ∈ S × A fixed). These results are listed in Ap-
pendix A. The main result of this paper is the following
theorem:

Theorem 1. Under the conditions listed in this sec-

tion the iterates updated by Greedy-GQ stay bounded.

Further, θt converges to M0 = { θ : 0 ∈ ∂J(θ) } with

probability one.

4These are well defined thanks to (M4).
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The plan of the analysis of the algorithm is as fol-
lows: We make the working hypothesis that the pa-
rameters updated by the algorithm remain bounded
almost surely:

sup
t

(�θt�+ �wt�) < +∞, a.s. (6)

Then, under this assumption we show that the limiting
behavior of the iterates can be reduced to that of an
appropriately defined differential equation. Next, we
study the limiting behavior of this differential equa-
tion. The analysis is finished by showing that (6) in-
deed holds. Note that by assuming further structure
on J (i.e., when (πθ) is the greedy class) and that the
“noise” is sufficiently rich (i.e., it “excites” every di-
rection), one can show that θt will converge to local
minima of J .5

In what follows we will always assume that (M1)–
(M4), (P1)–(P2), (G1), (L1)–(L3), (B1), (S1)–(S4)
hold, so these conditions will be omitted from the re-
sults that follow.

3.1. Convergence to an invariant set

We have the following result:
Proposition 2. Under (6), we have

(θt, wt) → { (θ, w∗(θ)) : θ ∈ M } , a.s.

Here the set M = M(ω) ⊂ Rd
is a possibly random

set for which it holds almost surely that it is a com-

pact, connected invariant set to the differential inclu-

sion θ̇(t) ∈ ∂J(θ).

Proof. We apply Theorem 5, identifying the master
equation with the update of θt and the slave equation
with the update of wt. We need to verify that the
conditions (D5–1)–(D5–3), (S5–1)-(S5–3) and (A5–1)
of Theorem 5 hold.

For this, note first that h(θ, w) = b−A(θ)θ−Cw, where
b =

�
r(s, a, s�)ϕ(s, a) PS(ds�|s, a)µ(ds, da), A(θ) =

C − γ
�

ϕ(s�, b)ϕ(s, a)� πθ(db|s�)PS(ds�|s, a)µ(ds, da),
and C was defined in (P2). Here µ denotes the sta-
tionary distribution underlying (St, At).

Now, let us verify if Condition (D5–2), which is a linear
growth condition, holds for h. We have �h(θ, w)� ≤
�b�+�A(θ)� �θ�+�C��w�. Thus, the condition follows
since �A(θ)� ≤ sup

θ
�A(θ)� < +∞, thanks to (P1).

Further, for θ fixed, h(θ, w) is Lipschitz with Lipschitz
constant �C�. Hence, it satisfies (D5–3).

5 Such assumptions are in fact necessary in the analy-
sis of stochastic gradient descent when the objective func-
tion is non-convex (cf. Section 4.3 “Avoidance of traps” of
(Borkar, 2008)). Note that the standard way to deal with
this is to add noise to the updates, which would also work
in our case.

With the help of b, A(θ) and B(θ), g can be writ-
ten as g(θ, w) = b − A(θ)θ − γB(θ)w. We see that
the growth condition (D5–1) is satisfied thanks to As-
sumption (B1).

Now, (S5–1) is verified thanks to (S1)–
(S4). To verify (S5–2), note that if Ft =
σ(θs, ws; s ≤ t) then, thanks to their construc-
tions, E [Vt+1|Ft] = 0, E [Ut+1|Ft] = 0. Finally,
(S5–3) is verified as follows: �Gt+1(θ, w)� ≤
|δt+1(θ)| �ϕt� + γ�ϕ̂t+1(θ)� �w� �ϕt� ≤
Φmax (|δt+1(θ)| + �ϕ̂t+1(θ)� �w�), where we
used (P1). Thanks to the definition of δt+1(θ),
|δt+1(θ)| ≤ |Rt+1| + γ|V t+1(θ)| + �θ� �ϕt�. From the
definition of V θ(s), we also get V θ(s) ≤ Φmax�θ�.
Hence, |δt+1(θ)| ≤ |Rt+1| + 2Φmax�θ�. By chain-
ing the inequalities obtained and then using
(
�2

i=1 ai)2 ≤ 2
�2

i=1 a2
i
, we get �Gt+1(θ, w)�2 ≤

2Φ2
max (|Rt+1|2 + 4Φ2

max�θ�2 + �ϕ̂t+1(θ)�2 �w�2).
Taking expectations and using (M2) and (B1), we get
that E

�
�Gt+1(θt, wt)�2 |Ft

�
≤ K �(1 + �θt�2 + �wt�2)

with a suitable constant K � > 0.

It remains to check (A5–1), i.e., if ẇ(t) = h(θ, w(t))
admits a unique, globally asymptotically stable equi-
librium, w∗(θ), given any fixed value of θ. Since C
is a positive definite matrix, this is immediate. Fur-
ther, w∗(θ) = C−1(b − A(θ)θ), where C−1 exists
thanks to (P2). It is immediate that w∗(·) is a Lip-
schitz continuous function since, as discussed before,
sup

θ
�A(θ)� < +∞. This finishes the verification of

the conditions of Theorem 5.

Thus, we conclude that there exists a set M =
M(ω) ⊂ Rd, which is (almost surely) a compact, con-
nected invariant set to θ̇(t) = g(θ(t), w∗(θ(t))) and
(θt, wt) → { (θ, w∗(θ)) : θ ∈ M }, a.s. Since by con-
struction g(θ, w∗(θ)) ∈ −1

2 ∂J(θ) holds for any θ ∈ Rd,
the statement follows.

3.2. The study of the invariant set

Proposition 3. Let M be a bounded invariant set

to the differential inclusion θ̇(t) ∈ − 1
2∂J(θ). Then

M is a subset of the set of stationary points S =
{ θ : 0 ∈ ∂J(θ) } to J .

Proof. The statement is immediate when J is differ-
entiable. When J is not differentiable, the solutions
are defined in the sense of Filippov (1988) and a more
careful analysis is needed. This is however omitted due
to the lack of space.

3.3. Boundedness

Proposition 4. The iterates remain bounded, that is

(6) holds.
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Proof. We use Theorem 6. Since we have already ver-
ified the conditions of Theorem 5, it remains to show
that the extra conditions of Theorem 6 hold.

Consider the function g. We need to show the exis-
tence of g∞ such that

lim
c→∞

g(cθ, w∗(cθ))
c

∈ g∞(θ)

where the convergence is uniform. We also need that
g∞(θ) is such that zero is the unique global exponen-
tially stable equilibrium to the differential inclusion

θ̇ ∈ g∞(θ). (7)

We know that f(θ, w∗(θ)) ∈ − 1
2∂J(θ). Since ∂J(cθ) =

c∂J(cθ), c−1 f(cθ, w∗(cθ)) = c−2∂J(cθ). Using the
definition of J , we get

∂J(cθ)
c2

= ∂
���

b

c
−A(cθ) θ

���
2

C−1
. (8)

Let
A∞(θ) = lim

c→∞
A(cθ). (9)

Note that

A∞(θ) = C−
γ

�
ϕ(s�, b)ϕ(s, a)�π(∞)

θ
(db|s�)PS(ds�|s, a)µ(ds, da)

exists and the convergence in (9) is uniform on com-
pact sets thanks to (L1). Now, take the limit of c →∞
in (8). Thanks to (L2), the interchange of limit and
subdifferentials is justified and we have

lim
c→∞

∂J(cθ)
c2

= ∂�A∞(θ)θ �2
C−1

= co {N(θ)θ : N(θ) = limt�→θ N∞(θ�) } ,

where N∞(θ) = 2A∞(θ)�A∞(θ). Note that
A∞ is piecewise constant, hence so is N∞. Let
{N1, . . . , NK} =

�
N∞(θ) : θ ∈ Rd

�
and partition Rd

into non-overlapping regions Ri, i = 1, . . . ,K, such
that Ni = N∞(θ) for all θ ∈ Ri.

Notice that the matrices Ni are all normal. Further,
they are positive definite, because Ni = M�

i
Mi for

some nonsingular matrix Mi, thanks to (L3). Further,
by definition, the solutions to (7) are exactly the same
as that of the switched linear system with dynamics

θ̇ = −
K�

i=1

I{θ∈Ri}Niθ. (10)

Thus, it suffices to study the latter system. By
Lemma 2 of (Zhai et al., 2006), ∃ρ > 0 s.t.

Ni + N�
i
� 2ρI, (11)

holds for i = 1, . . . ,K. Consider the Lyapunov func-
tion candidate V (θ) = 1

2θ�θ. Let θ(t) be a solution
to (10). Take t such that θ̇(t) exists. By the definition
of Filippov solutions, there exists µi(t) ≥ 0, such that�

i:θ(t)∈Ri
µi(t) = 1 and θ̇(t) =

�
i:θ(t)∈Ri

µi(t)Niθ(t).
Hence,

V̇ =
1
2

�
θ(t)�θ̇(t) + θ̇(t)�θ(t)

�

= −1
2

�

i:θ(t)∈Ri

µi(t)
�
θ(t)�Niθ(t) + θ(t)�N�

i
θ(t)

�

≤ −ρ�θ(t)�2,

where the last inequality follows from (11). Hence,
V is a Lyapunov function to (10). From (10) it is
clear that zero is the only equilibrium point. Fur-
ther, because V̇ (t) ≤ −2ρV (t), integrating both sides
yields �θ(t)�2 = 2V (t) ≤ C exp(−2ρt) for some C > 0.
Therefore, zero is the unique globally exponentially
asymptotically stable equilibrium to (10) and thus also
to (7).

Hence, we have verified all the conditions of Theo-
rem 6 and it follows that the parameters stay uniformly
bounded with probability one.

4. Solving Baird’s counterexample on

Q-learning

In this section, we illustrate the convergence result
of Greedy-GQ on a well known off-policy example;
Baird’s counterexample (Baird, 1995), for which Q-
learning diverges. This has been demonstrated in
Fig.1. Here, we have used the 7-star version of the

5 10 15 20 25 30 35 40 45 500
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Sweeps
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Greedy GQ

Figure 1. Empirical illustration for Baird’s counterexam-
ple. The graph shows that Greedy-GQ converges to the
true solution, while Q-learning diverges.

“star” counterexample. The MDP consists of 7 states
and 2 actions for each state. The reward is always
zero and the discount factor is γ = 0.99. In this
problem, the true action value is zero for all state–
action pairs. The initial value of θ parameters for
the action that causes transition to the 7th state is
(1, 1, 1, 1, 1, 1, 10, 1) and the rest are 1. The initial val-
ues for auxiliary weights w were set to zero. Updating
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was done synchronously in dynamic-programming-like
sweeps through the state-action space. The step-size
parameter α = 0.1 was used for Q-learning, and for
Greedy-GQ we used α = 0.05, β = 0.25. Fig.1 shows
how the performance measure,

√
J , evolves with re-

spect to the number of updates. Both algorithms used
expected updates. The graph shows that Greedy-GQ
finds the optimal weights, while Q-learning diverges.

Here, the choice of step-sizes goes beyond our theoret-
ical conditions, testifying that our results are robust
beyond what we can prove. For α, β converging to
zero according to our theorem statement, the graphs
would not differ in their behavior from the one that
we presented here.

5. Conclusions and future work

In this paper we have made significant progress to-
ward solving a long-standing open problem in rein-
forcement learning: the problem of off-policy learn-
ing control. Our new algorithm, Greedy-GQ, achieves
the four desirable properties identified in the intro-
duction (linear approximation, unrestricted features,
an online, incremental, linear-complexity implementa-
tion, and convergence to an optimum or equilibria) in
the latent-learning setting. On the other hand, our re-
sult is limited in several ways. First, we focused on the
case when the behavior policy is fixed. Although this
is an important case, better performance can be ex-
pected if one is allowed to actively change the way the
data is sampled. Next, the algorithm might converge
to local optima. This follows from the nature of the
objective function considered. Unfortunately, conver-
gence to local optima might make it difficult to derive
performance bounds on the resulting policy. Never-
theless, we think that the approach considered here is
a significant step towards a practical, incremental al-
gorithm to learn a good control policy in the difficult
off-policy setting. Our future plans involve extensive
testing of the algorithm on various test domains and
its possible extensions to prevent convergence to lo-
cal minima and to handle the case when the behavior
policy is allowed to change sufficiently slowly.
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A. Results on stochastic approximation

The results here are extensions of various results
in (Borkar, 2008) and can be proved using the same
techniques as developed there. For brevity, the proofs
of these technical results are omitted. The first result
is an extension of previous two timescale stochastic ap-
proximation results where the update functions on the
right-hand side (RHS) might be discontinuous.

Consider the stochastic approximation algorithm

xn+1 = xn + a(n)
�
h(xn, yn) + M (1)

n+1

�
, (12a)

yn+1 = yn + b(n)
�
g(xn, yn) + M (2)

n+1

�
, (12b)

where xn ∈ Rd, yn ∈ Rk and x0 ∈ Rd, y0 ∈ Rk are
fixed (non-random), (a(n), b(n);n ≥ 0) are step-size
sequences, h, g : Rd × Rk → Rd are possibly discon-
tinuous, functions. As before, (M (1)

n , M (2)
n ;n ≥ 1) is a

noise sequence.

We shall assume that b(n) = o(a(n)), separating the
speed at which xn is updated from that of the update
of yn, making the algorithm a two timescale algorithm.
In fact, because of this assumption the update of yn

is much smaller than the update of xn. In the limit,
we can think of that by the time yn is updated xn

has already converged. For this reason, the update
equation for yn is called the master update equation,
while the update for xn is called the slave update equa-

tion. Analogously, yn (xn) is called the master (resp.,
slave) parameter. The above intuition suggests that
if for any fixed value of yn = y the slave equation
converges to some point λ(y) fast enough then it will
be sufficient to analyze the ordinary differential equa-
tion ẏ = g(λ(y), y) to understand the limiting behav-
ior of yn. The following theorem makes this intu-
ition precise. We shall need the following notation for
this theorem: Let f : Rp → Rq. Then, for x ∈ Rp

let Limf (x) = ∩ε>0co ({f(x�) | �x− x�� < ε}) be the
closed convex set spanned by the limit-values of f at
x. Here co(H) denotes the closed convex hull of set
H ⊂ Rd.
Theorem 5. Consider the coupled equations (12a)–
(12b). For (x, y) ∈ Rd×Rk

, let G(x, y) = Limg(x,·)(y),
H(x, y) = Limh(·,y)(x). Let the following assumptions

hold: ∃K > 0 s.t. for all (x, y) ∈ Rd × Rk
,

(D5–1) sup
g∈G(x,y) �g� ≤ K(1 + �x�+ �y�);

(D5–2) sup
h∈H(x,y) �h� ≤ K(1 + �x�+ �y�);

(D5–3) h is Lipschitz in its first argument, uniformly

w.r.t. the second.

Further, assume that the step-size and noise sequences

satisfy:
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(S5–1)
�∞

n=0 a(n) =
�∞

n=0 b(n) = ∞,
�∞

n=0(a(n)2 +
b(n)2) < +∞,

b(n)
a(n) → 0, n → ∞ and (a(n)),

(b(n)) are eventually decreasing;

(S5–2) for all n ≥ 0, i = 1, 2, E
�
M (i)

n+1|Fn

�
= 0, where

Fn = σ(xm, ym, M (1)
m , M (2)

m ;m ≤ n);

(S5–3) ∃K � > 0 s.t. for all n ≥ 0, i = 1, 2,
E

�
�M (i)

n+1�2|Fn

�
≤ K �(1 + �xn�2 + �yn�2).

In addition, assume that

(A5–1) there exists a Lipschitz map λ : Rk → Rd
such

that for any y ∈ Rk
, λ(y) is the globally asymp-

totically (uniformly) stable equilibrium to ẋ(t) =
h(x(t), y).

Then under sup
n
(�xn� + �yn�) < +∞, a.s., it holds

that there exists a (random, i.e., path-dependent) sub-

set M of Rd
such that with probability one M is a

compact, connected and internally chain transitive in-

variant set to the differential equation

ẏ = g(λ(y), y), (13)

such that (xn, yn) → M̂ = { (λ(y), y) : y ∈ M } a.s.

Note that M̂ is a random set. Also, the RHS of (13)
is possibly discontinuous. When this is the case then
the solutions are understood in the Filippov sense (see
Filippov 1988).

The final general result concerns the boundedness of
the iterates of two timescale algorithms.
Theorem 6. Consider the update equations (12a)–
(12b). Assume that in addition to the conditions (D5–

1)–(D5–3), (S5–1)-(S5–3), (A5–1) of Theorem 5,

1. ∃G∞ : Rk → 2Rk
s.t. for any y ∈ Rk

, G∞(y)
is closed convex and limc→∞ infy�∈G∞(y) �y� −
g(λ(cy),cy)

c
� = 0 and the convergence is uniform

on compacta;

2. Zero is the unique, globally asymptotically expo-

nentially stable equilibrium to

ẏ ∈ G∞(y).

Then, sup
n
(�xn�+ �yn�) < +∞ holds almost surely.
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