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Abstract

We introduce the first temporal-difference learning algorithms that converge with
smooth value function approximators, such as neural networks. Conventional
temporal-difference (TD) methods, such as TD(λ), Q-learning and Sarsa have
been used successfully with function approximation in many applications. How-
ever, it is well known that off-policy sampling, as well as nonlinear function ap-
proximation, can cause these algorithms to become unstable (i.e., the parameters
of the approximator may diverge). Sutton et al. (2009a, 2009b) solved the prob-
lem of off-policy learning with linear TD algorithms by introducing a new objec-
tive function, related to the Bellman error, and algorithms that perform stochastic
gradient-descent on this function. These methods can be viewed as natural gener-
alizations to previous TD methods, as they converge to the same limit points when
used with linear function approximation methods. We generalize this work to non-
linear function approximation. We present a Bellman error objective function and
two gradient-descent TD algorithms that optimize it. We prove the asymptotic
almost-sure convergence of both algorithms, for any finite Markov decision pro-
cess and any smooth value function approximator, to a locally optimal solution.
The algorithms are incremental and the computational complexity per time step
scales linearly with the number of parameters of the approximator. Empirical re-
sults obtained in the game of Go demonstrate the algorithms’ effectiveness.

1 Introduction
We consider the problem of estimating the value function of a given stationary policy of a Markov
Decision Process (MDP). This problem arises as a subroutine of generalized policy iteration and
is generally thought to be an important step in developing algorithms that can learn good control
policies in reinforcement learning (e.g., see Sutton & Barto, 1998). One widely used technique
for value-function estimation is the TD(λ) algorithm (Sutton, 1988). A key property of the TD(λ)
algorithm is that it can be combined with function approximators in order to generalize the observed
data to unseen states. This generalization ability is crucial when the state space of the MDP is large
or infinite (e.g., TD-Gammon, Tesauro, 1995; elevator dispatching, Crites & Barto, 1997; job-shop
scheduling, Zhang & Dietterich, 1997). TD(λ) is known to converge when used with linear function
approximators, if states are sampled according to the policy being evaluated – a scenario called on-
policy learning (Tsitsiklis & Van Roy, 1997). However, the absence of either of these requirements
can cause the parameters of the function approximator to diverge when trained with TD methods
(e.g., Baird, 1995; Tsitsiklis & Van Roy, 1997; Boyan & Moore, 1995). The question of whether it
is possible to create TD-style algorithms that are guaranteed to converge when used with nonlinear
function approximation has remained open until now. Residual gradient algorithms (Baird, 1995)
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attempt to solve this problem by performing gradient descent on the Bellman error. However, unlike
TD, these algorithms usually require two independent samples from each state. Moreover, even if
two samples are provided, the solution to which they converge may not be desirable (Sutton et al.,
2009b provides an example).

In this paper we define the first TD algorithms that are stable when used with smooth nonlinear
function approximators (such as neural networks). Our starting point is the family of TD-style algo-
rithms introduced recently by Sutton et al. (2009a, 2009b). Their goal was to address the instability
of TD learning with linear function approximation, when the policy whose value function is sought
differs from the policy used to generate the samples (a scenario called off-policy learning). These al-
gorithms were designed to approximately follow the gradient of an objective function whose unique
optimum is the fixed point of the original TD(0) algorithm. Here, we extend the ideas underlying
this family of algorithms to design TD-like algorithms which converge, under mild assumptions,
almost surely, with smooth nonlinear approximators. Under some technical conditions, the limit
points of the new algorithms correspond to the limit points of the original (not necessarily conver-
gent) nonlinear TD algorithm. The algorithms are incremental, and the cost of each update is linear
in the number of parameters of the function approximator, as in the original TD algorithm.

Our development relies on three main ideas. First, we extend the objective function of Sutton et
al. (2009b), in a natural way, to the nonlinear function approximation case. Second, we use the
weight-duplication trick of Sutton et al. (2009a) to derive a stochastic gradient algorithm. Third,
in order to implement the parameter update efficiently, we exploit a nice idea due to Pearlmutter
(1994), allowing one to compute exactly the product of a vector and a Hessian matrix in linear
time. To overcome potential instability issues, we introduce a projection step in the weight update.
The almost sure convergence of the algorithm then follows from standard two-time-scale stochastic
approximation arguments.

In the rest of the paper, we first introduce the setting and our notation (Section 2), review previ-
ous relevant work (Section 3), introduce the algorithms (Section 4), analyze them (Section 5) and
illustrate the algorithms’ performance (Section 6).

2 Notation and Background
We consider policy evaluation in finite state and action Markov Decision Processes (MDPs).1
An MDP is described by a 5-tuple (S,A, P, r, γ), where S is the finite state space, A is the fi-
nite action space, P = (P (s′|s, a))s,s′∈S,a∈A are the transition probabilities (P (s′|s, a) ≥ 0,∑

s′∈S P (s′|s, a) = 1, for all s ∈ S, a ∈ A), r = (r(s, a, s′))s,s′∈S,a∈A are the real-valued
immediate rewards and γ ∈ (0, 1) is the discount factor. The policy to be evaluated is a map-
ping π : S × A → [0, 1]. The value function of π, V π : S → R, maps each state s to a
number representing the infinite-horizon expected discounted return obtained if policy π is fol-
lowed from state s. Formally, let s0 = s and for t ≥ 0 let at ∼ π(st, ·), st+1 ∼ P (·|st, at)
and rt+1 = r(st, at, st+1). Then V π(s) = E[

∑∞
t=0 γtrt+1]. Let Rπ : S → R, with

Rπ(s) =
∑

s′∈S
∑

a∈A π(s, a)P (s′|s, a)r(s, a, s′), and let Pπ : S × S → [0, 1] be defined as
Pπ(s, s′) =

∑
a∈A π(s, a)P (s′|s, a). Assuming a canonical ordering on the elements of S, we

can treat V π and Rπ as vectors in R|S|, and Pπ as a matrix in R|S|×|S|. It is well-known that V π

satisfies the so-called Bellman equation:

V π = Rπ + γPπV π.

Defining the operator Tπ : R|S| → R|S| as TπV = Rπ+γPπV, the Bellman equation can be written
compactly as V π = TπV π. To simplify the notation, from now on we will drop the superscript π
everywhere, since the policy to be evaluated will be kept fixed.

Assume that the policy to be evaluated is followed and it gives rise to the trajectory
(s0, a0, r1, s1, a1, r2, s2, . . .). The problem is to estimate V , given a finite prefix of this trajec-
tory. More generally, we may assume that we are given an infinite sequence of 3-tuples, (sk, rk, s′k),
that satisfies the following:

Assumption A1 (sk)k≥0 is an S-valued stationary Markov process, sk ∼ d(·), rk = R(sk) and
s′k ∼ P (sk, ·).

1Under appropriate technical conditions, our results, can be generalized to MDPs with infinite state spaces,
but we do not address this here.
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We call (sk, rk, s′k) the kth transition. Since we assume stationarity, we will sometimes drop the
index k and use (s, r, s′) to denote a random transition. Here d(·) denotes the probability distribution
over initial states for a transition; let D ∈ R|S|×|S| be the corresponding diagonal matrix. The
problem is still to estimate V given a finite number of transitions.

When the state space is large (or infinite) a function approximation method can be used to facilitate
the generalization of observed transitions to unvisited or rarely visited states. In this paper we focus
on methods that are smoothly parameterized with a finite-dimensional parameter vector θ ∈ Rn. We
denote by Vθ(s) the value of state s ∈ S returned by the function approximator with parameters θ.
The goal of policy evaluation becomes to find θ such that Vθ ≈ V .

3 TD Algorithms with function approximation
The classical TD(0) algorithm with function approximation (Sutton, 1988; Sutton & Barto, 1998)
starts with an arbitrary value of the parameters, θ0. Upon observing the kth transition, it computes
the scalar-valued temporal-difference error,

δk = rk + γVθk(s′k)− Vθk(sk),
which is then used to update the parameter vector as follows:

θk+1 ← θk + αk δk∇Vθk(sk). (1)
Here αk is a deterministic positive step-size parameter, which is typically small, or (for the purpose
of convergence analysis) is assumed to satisfy the Robbins-Monro conditions:

∑∞
k=0 αk = ∞,∑∞

k=0 α2
k <∞. We denote by∇Vθ(s) ∈ Rn the gradient of V w.r.t. θ at s.

When the TD algorithm converges, it must converge to a parameter value where, in expectation, the
parameters do not change:

E[δ∇Vθ(s)] = 0, (2)
where s, δ are random and share the common distribution underlying (sk, δk); in particular, (s, r, s′)
are drawn as in Assumption A1 and δ = r + γVθ(s′)− Vθ(s).

However, it is well known that TD(0) may not converge; the stability of the algorithm is affected
both by the actual function approximator Vθ and by the way in which transitions are sampled. Sutton
et al (2009a, 2009b) tackled this problem in the case of linear function approximation, in which
Vθ(s) = θ'φ(s), where φ : S → Rn, but where transitions may be sampled in an off-policy
manner. From now on we use the shorthand notation φ = φ(s), φ′ = φ(s′).

Sutton et al. (2009b) rely on an error function, called mean-square projected Bellman error
(MSPBE)2, which has the same unique optimum as Equation (2). This function, which we de-
note J , projects the Bellman error measure, TVθ − Vθ onto the linear space M = {Vθ | θ ∈ Rn}
with respect to the metric ‖ · ‖D. Hence, ΠV = arg minV ′∈M ‖V ′ − V ‖2D. More precisely:

J(θ) =‖ Π(TVθ − Vθ) ‖2D=‖ Π TVθ − Vθ ‖2D= E[δφ]'E[φφ']−1E[δφ], (3)
where ‖V ‖D is the weighted quadratic norm defined by ‖V ‖2D =

∑
s∈S d(s)V (s)2, and the scalar

TD(0) error for a given transition (s, r, s′) is δ = r + γθ'φ′ − θ'φ.

The negative gradient of the MSPBE objective function is:

−1
2
∇J(θ) = E

[
(φ− γφ′)φ'w

]
= E[δφ]− γE

[
φ′φ'

]
w, (4)

where w = E[φφ']−1E[δφ]. Note that δ depends on θ, hence w depends on θ. In order to develop
an efficient (O(n)) stochastic gradient algorithm, Sutton et al. (2009a) use a weight-duplication
trick. They introduce a new set of weights, wk, whose purpose is to estimate w for a fixed value of
the θ parameter. These weights are updated on a “fast” timescale, as follows:

wk+1 = wk + βk(δk − φ'k wk)φk. (5)
The parameter vector θk is updated on a “slower” timescale. Two update rules can be obtained,
based on two slightly different calculations:

θk+1 = θk + αk(φk − γφ′k)(φ'k wk) (an algorithm called GTD2), or (6)
θk+1 = θk + αkδkφk − αkγφ′k(φ'k wk) (an algorithm called TDC). (7)

2This error function was also described in (Antos et al., 2008), although the algorithmic issue of how to
minimize it is not pursued there. Algorithmic issues in a batch setting are considered by Farahmand et al.
(2009) who also study regularization.
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4 Nonlinear Temporal Difference Learning
Our goal is to generalize this approach to the case in which Vθ is a smooth, nonlinear function
approximator. The first step is to find a good objective function on which to do gradient descent. In
the linear case, MSPBE was chosen as a projection of the Bellman error on a natural hyperplane–the
subspace to which Vθ is restricted. However, in the nonlinear case, the value function is no longer
restricted to a plane, but can move on a nonlinear surface. More precisely, assuming that Vθ is a
differentiable function of θ, M = {Vθ ∈ R|S| | θ ∈ Rn} becomes a differentiable submanifold
of R|S|. Projecting onto a nonlinear manifold is not computationally feasible; to get around this
problem, we will assume that the parameter vector θ changes very little in one step (given that
learning rates are usually small); in this case, the surface is locally close to linear, and we can
project onto the tangent plane at the given point. We now detail this approach and show that this is
indeed a good objective function.

The tangent plane PMθ of M at θ is the hyperplane of R|S| that (i) passes through Vθ and (ii)
is orthogonal to the normal of M at θ. The tangent space TMθ is the translation of PMθ to the
origin. Note that TMθ = {Φθa | a ∈ Rn}, where Φθ ∈ R|S|×n is defined by (Φθ)s,i = ∂

∂θi
Vθ(s).

Let Πθ be the projection that projects vectors of (R|S|, ‖ · ‖D) to TMθ. If Φ'θ DΦθ is non-singular
then Πθ can be written as:

Πθ = Φθ(Φ'θ DΦθ)−1Φ'θ D. (8)

The objective function that we will optimize is:

J(θ) = ‖ Πθ(TVθ − Vθ) ‖2D . (9)

This is a natural generalization of the objective function defined by (3), as the plane on which we
project is parallel to the tangent plane at θ. More precisely, let Υθ be the projection to PMθ and
let Πθ be the projection to TMθ. Because the two hyperplanes are parallel, for any V ∈ R|S|,
ΥθV − Vθ = Πθ(V − Vθ). In other words, projecting onto the tangent space gives exactly the same
distance as projecting onto the tangent plane, while being mathematically more convenient. Fig. 1
illustrates visually this objective function.

Vθ

Υ θ
TV θ

T

TVθ

√ J
(θ

)

Υ
θ

Tangent plane  

Υθ∗TVθ∗ = Vθ∗

V θ
∗

TVθ
∗

TD(0) solution 

Figure 1: The MSPBE objective for nonlin-
ear function approximation at two points in
the value function space. The figure shows a
point, Vθ, at which, J(θ), is not 0 and a point,
Vθ∗ , where J(θ∗) = 0, thus Υθ∗TVθ∗ = Vθ∗ ,
so this is a TD(0) solution.

We now show that J(θ) can be re-written in the same way as done in (Sutton et al., 2009b).
Lemma 1. Assume Vθ(s0) is continuously differentiable as a function of θ, for any s0 ∈ S s.t.
d(s0) > 0. Let (s, δ) be jointly distributed random variables as in Section 3 and assume that
E[∇Vθ(s)∇Vθ(s)'] is nonsingular. Then

J(θ) = E[ δ∇Vθ(s) ]' E[∇Vθ(s)∇Vθ(s)' ]−1 E[ δ∇Vθ(s) ]. (10)

Proof. The identity is obtained similarly to Sutton et. al (2009b), except that here Πθ is expressed
by (8). Details are omitted for brevity.

Note that the assumption that E[∇Vθ(s)∇Vθ(s)' ]−1 is non-singular is akin to the assumption that
the feature vectors are independent in the linear function approximation case. We make this assump-
tion here for convenience; it can be lifted, but the proofs become more involved.
Corollary 1. Under the conditions of Lemma 1, J(θ) = 0, if and only if Vθ satisfies (2).
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This is an important corollary, because it shows that the global optima of the proposed objective
function will not modify the set of solutions that the usual TD(0) algorithm would find (if it would
indeed converge). We now proceed to compute the gradient of this objective.
Theorem 1. Assume that (i) Vθ(s0) is twice continuously differentiable in θ for any s0 ∈
S s.t. d(s0) > 0 and (ii) W (·) defined by W (θ̂) = E[∇Vθ̂∇V '

θ̂
] is non-singular in a small neigh-

borhood of θ. Let (s, δ) be jointly distributed random variables as in Section 3. Let φ ≡ ∇Vθ(s),
φ′ ≡ ∇Vθ(s′) and

h(θ, u) = −E[ (δ − φ'u)∇2Vθ(s)u ], (11)
where u ∈ Rn. Then

−1
2
∇J(θ) = −E[(γφ′ − φ)φ'w] + h(θ, w) = −E[δφ]− γE[φ′φ'w] + h(θ, w), (12)

where w = E[φ φ']−1 E[δφ].

The main difference between Equation (12) and Equation (4), which shows the gradient for the linear
case, is the appearance of the term h(θ, w), which involves second-order derivatives of Vθ (which
are zero when Vθ is linear in θ).

Proof. The conditions of Lemma 1 are satisfied, so (10) holds. Denote ∂i = ∂
∂θi

. From its
definition and the assumptions, W (u) is a symmetric, positive definite matrix, so d

du (W−1)|u=θ =
−W−1(θ) ( d

duW |u=θ) W−1(θ), where we use the assumption that d
duW exists at θ and W−1

exists in a small neighborhood of θ. From this identity, we have:

−1
2

[∇J(θ)]i = −(∂iE[δφ])'E[φφ']−1E[δφ]− 1
2

E[δφ]' ∂i

(
E[φφ']−1

)
E[δφ]

= −(∂iE[δφ])'E[φφ']−1E[δφ] +
1
2

E[δφ]' E[φφ']−1(∂iE[φφ']) E[φφ']−1 E[δφ]

= −E[∂i(δφ)]'(E[φφ']−1E[δφ]) +
1
2

(E[φφ']−1E[δφ])' E[∂i(φφ')] (E[φφ']−1E[δφ]).

The interchange between the gradient and expectation is possible here because of assumptions (i)
and (ii) and the fact that S is finite. Now consider the identity

1
2
x'∂i(φφ')x = φ'x (∂iφ

')x,

which holds for any vector x ∈ Rn. Hence, using the definition of w,

−1
2

[∇J(θ)]i = −E[∂i(δφ)]'w +
1
2
w'E[∂i(φφ')]w

= −E[(∂iδ)φ'w]− E[δ(∂iφ
')w] + E[φ'w(∂iφ

')w].

Using ∇δ = γφ′ − φ and ∇φ' = ∇2Vθ(s), we get

−1
2
∇J(θ) = −E[(γφ′ − φ)φ'w]− E[(δ − φ'w)∇2V (s)w],

Finally, observe that :

E[(γφ′ − φ)φ'w] = E[(φ− γφ′)φ]' (E[φφ']−1E[δφ])
= E[δφ]− E[γφ′φ'](E[φφ']−1E[δφ]) = E[δφ]− E[γφ′φ'w].

which concludes the proof.

Theorem 1 suggests straightforward generalizations of GTD2 and TDC (cf. Equations (6) and (7))
to the nonlinear case. Weight wk is updated as before on a “faster” timescale:

wk+1 = wk + βk(δk − φ'k wk)φk. (13)

The parameter vector θk is updated on a “slower” timescale, either according to

θk+1 = Γ
(
θk + αk

{
(φk − γφ′k)(φ'k wk)− hk

} )
, (non-linear GTD2) (14)
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or, according to

θk+1 = Γ
(
θk + αk

{
δkφk − γφ′k(φ'k wk)− hk

} )
, (non-linear TDC) (15)

where
hk = (δk − φ'k wk)∇2Vθk(sk)wk. (16)

Besides hk, the only new ingredient compared to the linear case is Γ : Rn → Rn, a mapping
that projects its argument into an appropriately chosen compact set C with a smooth boundary.
The purpose of this projection is to prevent the parameters to diverge in the initial phase of the
algorithm, which could happen due to the presence of the nonlinearities in the algorithm. Projection
is a common technique for stabilizing the transient behavior of stochastic approximation algorithms
(see, e.g., Kushner & Yin, 2003). In practice, if one selects C large enough so that it contains the
set of possible solutions U = { θ |E[ δ∇Vθ(s)] = 0 } (by using known bounds on the size of the
rewards and on the derivative of the value function), it is very likely that no projections will take
place at all during the execution of the algorithm. We expect this to happen frequently in practice:
the main reason for the projection is to facilitate convergence analysis.

Let us now analyze the computational complexity per update. Assume that Vθ(s) and its gradi-
ent can each be computed in O(n) time, the usual case for approximators of interest (e.g., neu-
ral networks). Equation (16) also requires computing the product of the Hessian of Vθ(s) and
w. Pearlmutter (1994) showed that this can be computed exactly in O(n) time. The key is to
note that ∇2Vθk(sk)wk = ∇(∇Vθk(s)'wk), because wk does not depend on θk. The scalar term
∇Vθk(s)'wk can be computed in O(n) and its gradient, which is a vector, can also be computed in
O(n). Hence, the computation time per update for the proposed algorithms is linear in the number
of parameters of the function approximator (just like in TD(0)).

5 Convergence Analysis
Given the compact set C ⊂ Rn, let C(C) be the space of C → Rn continuous functions. Given
projection Γ onto C, let operator Γ̂ : C(C)→ C(Rn) be

Γ̂v (θ) = lim
0<ε→0

Γ
(
θ + ε v(θ)

)
− θ

ε
.

By assumption, Γ(θ) = arg minθ′∈C ‖θ′−θ‖ and the boundary of C is smooth, so Γ̂ is well defined.
In particular, Γ̂v (θ) = v(θ) when θ ∈ C◦, otherwise, if θ ∈ ∂C, Γ̂v (θ) is the projection of v(θ) to
the tangent space of ∂C at θ. Consider the following ODE:

θ̇ = Γ̂(− 1
2∇J)(θ), θ(0) ∈ C. (17)

Let K be the set of all asymptotically stable equilibria of (17). By the definitions, K ⊂ C. Further-
more, U ∩ C ⊂ K.

The next theorem shows that under some technical conditions, the iterates produced by nonlinear
GTD2 converge to K with probability one.
Theorem 2 (Convergence of nonlinear GTD2). Let (sk, rk, s′k)k≥0 be a sequence of transitions that
satisfies A1. Consider the nonlinear GTD2 updates (13), (14). with positive step-size sequences that
satisfy

∑∞
k=0 αk =

∑∞
k=0 βk = ∞,

∑∞
k=0 α2

k,
∑∞

k=0 β2
k < ∞ and αk

βk
→ 0, as k → ∞. Assume

that for any θ ∈ C and s0 ∈ S s.t. d(s0) > 0, Vθ(s0) is three times continuously differentiable.
Further assume that for each θ ∈ C, E[φθφ'θ ] is nonsingular. Then θk → K, with probability one,
as k →∞.

Proof. Let (s, r, s′) be a random transition. Let φθ = ∇Vθ(s), φ′θ = ∇Vθ(s′), φk = ∇Vθk(sk), and
φ′k = ∇Vθk(s′k). We begin by rewriting the updates (13)-(14) as follows:

wk+1 = wk + βk(f(θk, wk) + Mk+1), (18)

θk+1 = Γ
(
θk + αk(g(θk, wk) + Nk+1)

)
, (19)

where

f(θk, wk) = E[δkφk|θk]− E[φkφ'k |θk]wk, Mk+1 = (δk − φ'k wk)φk − f(θk, wk),
g(θk, wk) = E

[
(φk − γφ′k)φ'k wk − hk|θk, wk

]
, Nk+1 = ((φk − γφ′k)φ'k wk − hk)− g(θk, wk).

6



We need to verify that there exists a compact set B ⊂ R2n such that (a) the functions f(θ, w),
g(θ, w) are Lipschitz continuous over B, (b) (Mk,Gk), (Nk,Gk), k ≥ 1 are martingale difference
sequences, where Gk = σ(ri, θi, wi, si, i ≤ k; s′i, i < k), k ≥ 1 are increasing sigma fields, (c)
{(wk(θ), θ)} with wk(θ) obtained as δk(θ) = rk + γVθ(s′k)− Vθ(sk), φk(θ) = ∇Vθ(sk),

wk+1(θ) = wk(θ) + βk

(
δk(θ)− φk(θ)'wk(θ)

)
φk(θ)

almost surely stays in B for any choice of (w0(θ), θ) ∈ B, and (d) {(w, θk)} almost surely stays in
B for any choice of (w, θ0) ∈ B. From these and the conditions on the step-sizes, using standard
arguments (c.f. Theorem 2 of Sutton et al. (2009b)), it follows that θk converges almost surely to
the set of asymptotically stable equilibria of θ̇ = Γ̂F (θ), (θ(0) ∈ C), where F (θ) = g(θ, wθ). Here
for θ ∈ C fixed, wθ is the (unique) equilibrium point of

ẇ = E[δθφθ]− E[φθφ
'
θ ]w, (20)

where δθ = r + γVθ(s′)− Vθ(s). Clearly, wθ = E
[
φθφ'θ

]−1 E[δθφθ], which exists by assumption.
Then by Theorem 1 it follows that F (θ) = − 1

2 ∇J(θ). Hence, the statement will follow once (a)–(d)
are verified.

Note that (a) is satisfied because Vθ is three times continuously differentiable. For (b), we need to
verify that for any k ≥ 0, E[Mk+1 | Gk] = 0 and E[Nk+1 | Gk] = 0, which in fact follow from
the definitions. Condition (c) follows since, by a standard argument (e.g., Borkar & Meyn, 2000),
wk(θ) converges to wθ, which by assumption stays bounded if θ comes from a bounded set. For
condition (d), note that {θk} is uniformly bounded since for any k ≥ 0, θk ∈ C, and by assumption
C is a compact set.

Theorem 3 (Convergence of nonlinear TDC). Under the same conditions as in Theorem 2, the
iterates computed via (13), (15) satisfy θk → K, with probability one, as k →∞.

The proof follows in a similar manner as that of Theorem 2 and is omitted for brevity.

6 Empirical results
To illustrate the convergence properties of the algorithms, we applied them to the “spiral” coun-
terexample of Tsitsikilis & Van Roy (1997), originally used to show the divergence of TD(0) with
nonlinear function approximation. The Markov chain with 3 states is shown in the left panel of
Figure 2. The reward is always zero and the discount factor is γ = 0.9. The value function has a sin-
gle parameter, θ, and takes the nonlinear spiral form Vθ(s) =

(
a(s) cos (λ̂θ)− b(s) sin (λ̂θ)

)
eεθ.

The true value function is V = (0, 0, 0)' which is achieved as θ → −∞. Here we used
V0 = (100,−70,−30)', a = V0, b = (23.094,−98.15, 75.056)', λ̂ = 0.866 and ε = 0.05.
Note that this is a degenerate example, in which our theorems do not apply, because the optimal
parameter values are infinite. Hence, we run our algorithms without a projection step. We also use
constant learning rates, in order to facilitate gradient descent through an error surface which is es-
sentially flat. For TDC we used α = 0.5, β = 0.05, and for GTD2, α = 0.8 and β = 0.1. For TD(0)
we used α = 2×10−3 (as argued by Tsitsiklis & Van Roy (1997), tuning the step-size does not help
with the divergence problem). All step sizes are then normalized by ‖V '

θ D d
dθ Vθ‖. The graph shows

the performance measure,
√

J , as a function of the number of updates (we used expected updates
for all algorithms). GTD2 and TDC converge to the correct solution, while TD(0) diverges. We note
that convergence happens despite the fact that this example is outside the scope of the theory.

To assess the performance of the new algorithms on a large scale problem, we used them to learn
an evaluation function in 9x9 computer Go. We used a version of RLGO (Silver, 2009), in which a
logistic function is fit to evaluate the probability of winning from a given position. Positions were
described using 969,894 binary features corresponding to all possible shapes in every 3x3, 2x2, and
1x1 region of the board. Using weight sharing to take advantage of symmetries, the million features
were reduced to a parameter vector of n = 63, 303 components. Experience was generated by self-
play, with actions chosen uniformly randomly among the legal moves. All rewards were zero, except
upon winning the game, when the reward was 1. We applied four algorithms to this problem: TD(0),
the proposed algorithms (GTD2 and TDC) and residual gradient (RG). In the experiments, RG was
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Figure 2: Empirical evaluation results. Left panel: example MDP from Tsitsiklis & Van Roy (1994).
Right panel: 9x9 Computer Go.
run with only one sample3. In each run, θ was initialized to random values uniformly distributed in
[−0.1, 0.1]; for GTD2 and TDC, the second parameter vector, w, was initialized to 0. Training then
proceeded for 5000 complete games, after which θ was frozen. This problem is too large to compute
the objective function J . Instead, to assess the quality of the solutions obtained, we estimated the
average prediction error of each algorithm. More precisely, we generated 2500 test games; for
every state occurring in a game, we computed the squared error between its predicted value and the
actual return that was obtained in that game. We then computed the root of the mean-squared error,
averaged over all time steps. The right panel in Figure 2 plots this measure over a range of values of
the learning rate α. The results are averages over 50 independent runs. For TDC and GTD we used
several values of the β parameter, which generate the different curves. As was noted in previous
empirical work, TD provides slightly better estimates than the RG algorithm. TDC’s performance
is very similar to TD, for a wide range of parameter values. GTD2 is slightly worse. These results
are very similar in flavor to those obtained in Sutton et al. (2009b) using the same domain, but with
linear function approximation.

7 Conclusions and future work
In this paper, we solved a long-standing open problem in reinforcement learning, by establishing a
family of temporal-difference learning algorithms that converge with arbitrary differentiable func-
tion approximators (including neural networks). The algorithms perform gradient descent on a nat-
ural objective function, the projected Bellman error. The local optima of this function coincide with
solutions that could be obtained by TD(0). Of course, TD(0) need not converge with non-linear
function approximation. Our algorithms are on-line, incremental and their computational cost per
update is linear in the number of parameters. Our theoretical results guarantee convergence to a
local optimum, under standard technical assumptions. Local optimality is the best one can hope
for, since nonlinear function approximation creates non-convex optimization problems. The early
empirical results obtained for computer Go are very promising. However, more practical experience
with these algorithms is needed. We are currently working on extensions of these algorithms using
eligibility traces, and on using them for solving control problems.

Acknowledgments
This research was supported in part by NSERC, iCore, AICML and AIF. We thank the three anonymous re-
viewers for their useful comments on previous drafts of this paper.

3Unlike TD, RG would require two independent transition samples from a given state. This requires knowl-
edge about the model of the environment which is not always available. In the experiments only one transition
sample was used following Baird’s original recommendation.
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1. There is a sign error in equations (11) and (12). The correct equations are:

h(θ, u) = E[ (δ − φ"u)∇2Vθ(s)u ], (11)

−1
2
∇J(θ) = E[(φ− γφ′)φ"w]− h(θ, w) = E[δφ]− γE[φ′φ"w]− h(θ, w). (12)

2. The last equation in the proof of theorem 1 (after the term “Finally, observe that:” ) has a
sign error. The correct equation is:

−E[(γφ′ − φ)φ"w] = E[(φ− γφ′)φ]" (E[φφ"]−1E[δφ])
= E[δφ]− E[γφ′φ"](E[φφ"]−1E[δφ]) = E[δφ]− E[γφ′φ"w].
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