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Abstract

Importance sampling is an essential component
of model-free off-policy learning algorithms.
Weighted importance sampling (WIS) is gener-
ally considered superior to ordinary importance
sampling but, when combined with function ap-
proximation, it has hitherto required computa-
tional complexity that is O(n2

) or more in the
number of features. In this paper we introduce
new off-policy learning algorithms that obtain
the benefits of WIS with O(n) computational
complexity. Our algorithms maintain for each
component of the parameter vector a measure of
the extent to which that component has been used
in previous examples. This measure is used to
determine component-wise step sizes, merging
the ideas of stochastic gradient descent and sam-
ple averages. We present our main WIS-based
algorithm first in an intuitive acausal form (the
forward view) and then derive a causal algorithm
using eligibility traces that is equivalent but more
efficient (the backward view). In three small
experiments, our algorithms performed signifi-
cantly better than prior O(n) algorithms for off-
policy policy evaluation. We also show that our
adaptive step-size technique alone can improve
the performance of on-policy algorithms such as
TD(�) and true online TD(�).

1 Weighted importance sampling for
off-policy Monte Carlo estimation

In off-policy learning problems, an agent learns about a
policy while its experience is generated by following a dif-
ferent policy. A Monte Carlo technique known as impor-
tance sampling (Kahn & Marshall 1953, Rubinstein 1981)
is often used to resolve this mismatch in policies (Sutton &
Barto 1998, Dann, Neumann & Peters 2014, Geist & Scher-
rer 2014). One of the most effective variants of importance

sampling is weighted importance sampling (WIS), which
often gives much lower variance than the ordinary form of
importance sampling and is generally preferred due to its
superior empirical performance (Hesterberg 1988, Precup,
Sutton & Singh 2000, Shelton 2001, Liu 2001, Robert &
Casella 2004, Koller & Friedman 2009).

Parametric function approximation is a widely used and
viewed as essential for large-scale reinforcement learning
applications. However, only recently has WIS been ex-
tended to this more general setting. Mahmood, van Hasselt
and Sutton (2014) have recently developed WIS-LSTD(�),
which extends WIS from tabular off-policy learning to lin-
ear function approximation and eligibility traces. However,
WIS-LSTD(�) is a least-squares algorithm that involves a
matrix inversion in its update, the computational complex-
ity of which scales O(n3

) in the number of features. In
large-scale applications, O(n) algorithms, such as stochas-
tic gradient descent, temporal-difference (TD) learning,
and its gradient-based variants, are often preferred.

WIS has not yet been extended to O(n) algorithms. Mod-
ern off-policy algorithms with O(n) computational com-
plexity, such as GTD(�) (Maei 2011), GQ(�) (Maei & Sut-
ton 2010), and true online GTD(�) (van Hasselt, Mahmood
& Sutton 2014), all use the ordinary variant of importance
sampling and can suffer severely due to the problem of
large variance (Defazio & Graepel 2014).

In this work, we take several steps to bridge the gap be-
tween the Monte Carlo estimator WIS and O(n) off-policy
algorithms with function approximation. The key to this
endeavor is to relate stochastic gradient descent (SGD) to
simple Monte Carlo estimators such as the sample average.
We realize that there is a missing link in that, when the
function approximation setting reduces to the tabular set-
ting, SGD does not mimic the sample average estimator.
This is not unique to off-policy learning, and the relation-
ship is missing even in the on-policy setting. Our first key
step is to develop a new SGD that bridges this gap in an on-
policy supervised-learning setting. Using insights from this
step, we subsequently develop O(n) off-policy algorithms
based on WIS in a general reinforcement learning setting.



2 Sample averages and stochastic gradient
descent

In this section, we investigate the relationship between the
sample average estimator and SGD. We first show that SGD
does not reduce to the sample average estimator in the
fully-representable case also known as the tabular repre-
sentation. Then we propose a modification to SGD and
show that it achieves the sample average estimator when
the feature representation is tabular.

The sample average is one of the simplest Monte Carlo es-
timators. In order to introduce it, consider that data arrives
as a sequence of samples Y

k

2 R drawn from a fixed distri-
bution. The goal of the learner is to estimate the expected
value of the samples, v

.
= EEE [Y

k

]. The sample average es-
timator ˆV

t+1 for data given up to time t can be defined and
incrementally updated in the following way:
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In the incremental update, 1
t

can be viewed as a form of
step size, modulating the amount of change made to the
current estimate, which decreases with time in this case. In
the parametric function approximation case, we have to go
beyond sample average and use stochastic approximation
methods such as SGD.

To introduce SGD, we use a supervised-learning setting
with linear function approximation. In this setting, data
arrives as a sequence of input-output pairs (X

k

, Y
k

), where
X

k

takes values from a finite set X and Y
k

2 R. The
learner observes a feature representation of the inputs,
where each input is mapped to a feature vector �

k

.
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�(X
k

) 2 Rn. The goal of the learner is to estimate the
conditional expectation of Y

k

for each unique input x 2 X
as a linear function of the features: ✓>�(x) ⇡ v(x)
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= x]. SGD incrementally updates the parameter
vector ✓ 2 Rn at each time step t in the following way:
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where ↵
t

> 0 is a scalar step-size parameter, which is often
set to a small constant. The per-update time and memory
complexity of SGD is O(n).

Linear function approximation includes tabular representa-
tions as a special case. For example, if the feature vectors
are |X |-dimensional standard basis vectors, then each fea-
ture uniquely represents an input, and the feature represen-
tation becomes tabular.

We are interested in finding whether SGD degenerates to
sample average when the linear function approximation
setting reduces to the tabular setting. Both incremental up-
dates are in a form where the previous estimate is incre-
mented with a product of an error and a step size. In the

SGD update, the product also has the feature vector as a
factor, but in the tabular setting it simply selects the input
for which an update is made.

A major difference between SGD and sample average is the
ability of SGD to track under non-stationarity through the
use of a constant step size. Typically, the step size of SGD
is set to a constant value or decreased with time, where
the latter does not work well under non-stationarity but is
similar to how sample average works. While we attempt
to accommodate sample average estimation more closely
within SGD, it is also desirable to retain the tracking ability
of SGD.

SGD clearly cannot achieve sample average with a constant
step size. On the other hand, if we set the step-size parame-
ter in the SGD update as ↵

t

=

1
t

, the SGD update still does
not subsume the sample average. This is because, in the
SGD update (2), time t is the total number of samples seen
so far, whereas, in the sample average update (1), it is the
number of samples seen so far only for one specific input.

We take two important steps to bridge the gap between the
sample average update and the SGD update. First, we ex-
tend the sample average estimator to incorporate tracking
through recency weighting, where the amount of weight
assigned to the recent samples is modulated by a scalar
recency-weighting constant. This new recency-weighted
average estimator subsumes sample average as a special
case and hence unifies both tracking and sample averag-
ing. Second, we propose a variant of SGD that reduces
to recency-weighted average in the tabular setting and still
uses only O(n) per-update memory and computation.

Our proposed recency-weighted average estimator can be
derived by minimizing an empirical mean squared objec-
tive with recency weighting:
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Here, the recency-weighting constant ⌘ exponentially
weights the past observations down and thus gives more
weight to the recent samples. When ⌘ = 0, all samples
are weighted equally. The recency-weighted average can
be defined and incrementally updated as follows:
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It is easy to see that the recency-weighted average is an
unbiased estimator of v. Moreover, when ⌘ = 0, it reduces
to the sample average estimator.

Now, we propose a modified SGD in the supervised-
learning setting that for tabular representation reduces to
the recency-weighted average. The updates are as follows:
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where ⌘ � 0 is the recency-weighting factor, � is
component-wise vector multiplication, ↵ is component-
wise vector division where a division by zero results in
zero, and 1 2 Rn is a vector of all ones. Here, ↵

t+1 2 Rn

is a vector step-size parameter, set as the vector division
of 1 by u

t+1 2 Rn, which parallels ˜U of the recency-
weighted average. We call u the usage vector, as it can
be seen as an estimate of how much each feature is “used”
over time by the update. We call this algorithm the usage-
based SGD (U-SGD). Replacing a division by zero with
zero in the step-size vector amounts to having no updates
for the corresponding component. This makes sense be-
cause a zero in any component of u can occur only at the
beginning when u is initialized to zero and the correspond-
ing feature has not been activated yet. Once a feature is
nonzero, the corresponding component of the step-size vec-
tor becomes positive and, with sufficiently small positive ⌘,
it always remains so.

In the following theorem, we show that U-SGD reduces to
recency-weighted average in the tabular setting and hence
is a generalization of the sample average estimator as well.
Theorem 1 (Backward consistency of U-SGD with sam-
ple average). If the feature representation is tabular, the
vectors u and ✓ are initially set to zero, and 0  ⌘ < 2,
then U-SGD defined by (5)-(7) degenerates to the recency-
weighted average estimator defined by (3) and (4), in the
sense that each component of the parameter vector ✓

t+1 of
U-SGD becomes the recency-weighted average estimator
of the corresponding input.

(Proved in Appendix A.1).

3 WIS and off-policy SGD

In this section, we carry over weighted importance sam-
pling (WIS) to off-policy SGD, drawing from the ideas de-
veloped in the previous section. We introduce two new off-
policy SGD algorithms based on WIS. The first one sub-
sumes WIS fully but does not lead to an O(n) implemen-
tation, whereas the other algorithm is more amenable to an
efficient implementation.

First we introduce both the ordinary importance sampling
(OIS) and WIS. Importance sampling is a technique for es-
timating an expectation under one distribution using sam-
ples drawn from a different distribution. OIS estimates the
expectation by forming a special kind of sample average.
Consider that samples Y

k

2 R are drawn from a sample dis-
tribution l, but the goal of the learner is to estimate the ex-
pectation v

g

.
= EEE

g

[Y
k

] under a different distribution g. OIS
estimates v

g

by scaling each sample Y
k

by the importance-
sampling ratio W

k

.
=

g(Y
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)
l(Y

k

) and forming a sample average

estimate of the scaled samples:
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WIS, on the other hand, estimates v
g

by forming a weighted
average estimate of the original samples. Its definition and
incremental update are as follows:
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If there is no discrepancy between the sample and the tar-
get distribution, then W

k

= 1, 8k, and both OIS and WIS
become equivalent to the sample average estimator.

We derive the recency-weighted WIS as a solution to a mean
squared objective with recency weighting and additionally
importance sampling:
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It is easy to see that, when ⌘ = 0, the recency-weighted
WIS estimator reduces to WIS. Recency-weighted WIS can
be updated incrementally in the following way:
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Now we introduce two variants of SGD based on WIS in a
more general off-policy reinforcement learning setting with
linear function approximation. In this setting, a learning
agent interacts with an environment by taking an action
A

k

2 A in a state of the environment S
k

2 S on each
time step k. Here A and S are considered finite. Upon
taking an action, the agent receives a scalar reward R

k+1

and transitions to state S
k+1. Instead of observing the

states directly, the agent observes a feature representation
of the states where each state is mapped to a feature vec-
tor �

k
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) 2 Rn. In an off-policy policy-evaluation
problem, the agent takes actions based on a fixed behavior
policy b(·|S

k

). The goal is to estimate the v
⇡

(s) (the ex-
pected sum of the future discounted reward when starting
in s and following ⇡) as a linear function of the features:
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where ✓ 2 Rn is the parameter vector to learn, and �
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) 2 [0, 1] denotes a state-dependent discounting (e.g.,



see Sutton et al. 2014). In a general value-function setting,
such state-dependent discounting can be used to denote ter-
mination in a state s by setting �(s) = 0 (Sutton et al.
2011).

In order to learn ✓ model-free from samples, we need to use
an importance sampling technique since the behavior pol-
icy and the target policy can be different. Given a partial
trajectory from time k to t + 1: S

k

, A
k

, R
k+1, · · · , S

t+1,
the importance-sampling ratio ⇢t+1

k

is defined as the likeli-
hood ratio of this trajectory starting at S

k

under the target
policy and the behavior policy:
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where p is the state-transition probability function. The
value v

⇡

(s) can be estimated using returns scaled by the
corresponding importance-sampling ratios. Consider that
data is available up to step t + 1 and no termination or dis-
counting occurs by that time. A return originating from
state S

k

can be approximated by using a full discounting at
the final step: �

t+1 = 0. Then a flat truncated return can be
defined as (Sutton et al. 2014):
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When the states are visible and the number of states are
small, the value v
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(s) for each state s can be estimated
using importance sampling such as OIS, WIS or recency-
weighted WIS by setting Y
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Now, we propose the first off-policy SGD based on WIS,
which we call WIS-SGD-1. With 0  k < t + 1 and
✓t

0
.
= ✓0, 8t, the following updates define WIS-SGD-1:
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Similar to U-SGD, WIS-SGD-1 maintains a vector step
size through the update of a usage vector, which in this
case also includes the importance-sampling ratios. Unlike
U-SGD, the parameters of WIS-SGD-1 use two time in-
dices. The time index in the subscript corresponds to the
time step of the prediction, and the time index in the su-
perscript stands for the data horizon. In the following, we
show that WIS-SGD-1 reduces to recency-weighted WIS,
and hence to WIS as well, in the tabular setting.

Theorem 2 (Backward consistency of WIS-SGD-1 with
WIS). If the feature representation is tabular, the vectors
u and ✓ are initially set to zero, and 0  ⌘ < 2, then

WIS-SGD-1 defined by (10)-(12) degenerates to recency-
weighted WIS defined by (8) and (9) with Y
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and W
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k

, in the sense that each component of
the parameter vector ✓t+1

t+1 of WIS-SGD-1 becomes the
recency-weighted WIS estimator of the corresponding in-
put. (Proved in Appendix A.2.)

Now we focus on whether and how WIS-SGD-1 can be im-
plemented efficiently. The updates as defined above cannot
be computed in O(n) per time step. An update for step k
requires computing an importance-sampling ratio and a flat
truncated return that are available only at t + 1 > k. It
can be computed by looking ahead into the future from k,
but then the update becomes acausal. It can alternatively be
computed by waiting until time t+1 and iterating for each
k. But then the update made at t + 1 becomes expensive,
scaling linearly with t, that is, O(tn).

Such updates, where samples are available in future from
the time step when the update is made, are often known
as forward-view updates (Sutton & Barto 1998). Forward-
view updates are typically expensive, but for some forward-
view updates it is possible to derive causal and efficient
updates, known as backward-view updates, that compute
exactly the same estimate at each time step. Classically
these equivalences were achieved for offline updating. Van
Seijen and Sutton (2014) showed that such equivalences
can also be achieved in the online case.

Converting a forward-view update into an efficient
backward-view update depends on combining the extra
data available at t + 1 with the current estimate ✓t

t

in an
efficient way to give the next estimate ✓t+1

t+1 . For linear re-
cursive updates, it is tantamount to unrolling both ✓t+1

t+1 and
✓t

t

and finding whether their difference can be written in
terms of data available only in the recent-most step. It is
often not possible to achieve such efficient backward-view
updates, and we believe WIS-SGD-1 is one such case.

To appreciate why an efficient backward-view update of
WIS-SGD-1 is not plausible, consider the update of ✓t
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rolled back to the beginning of time:

✓t

t

=

�
I� ⇢t

t�1(↵
t

t

� �
t�1)�

>
t�1

�
✓t

t�1 + ⇢t
t�1G

t

t�1�t�1

=

t�1Y

k=0

�
I� ⇢t

k

(↵t

k+1 � �k

)�>
k

�
✓t

0

+

t�1X

k=0

⇢t
k

Gt

k

t�1Y

j=k+1

�
I� ⇢t

j

(↵t

j+1 � �j

)�>
j

�
�

k

.

In order to obtain ✓t+1
t+1 by combining the new data �

t

and
R

t+1 with ✓t

t

, it is evident that each of the ⇢t
k

(↵t

k+1 �
�

k

)�>
k

terms in the first product needs to be replaced by
⇢t+1
k

(↵t+1
k+1 � �

k

)�>
k

, which is unlikely to be achieved in
an inexpensive way. This problem does not appear in previ-
ous algorithms with online equivalence such as true online
TD(�) (van Seijen & Sutton 2014) or true online GTD(�)



(van Hasselt, Mahmood & Sutton 2014), because the terms
involved in the product of the unrolled update in those al-
gorithms do not involve forward-view terms, that is, they
contain ⇢

k

and ↵
k+1 in those products instead of ⇢t+1
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and
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k+1. This specific problem with WIS-SGD-1 is due to
the fact that the error of the update in (12) is multiplied by
the forward-view terms ⇢t+1
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and ↵t+1
k+1.

The observation we made in the above leads us to develop
a second off-policy SGD. In this algorithm, first we replace
the forward-view term ↵t+1
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last two terms are adding a bias. Although this new algo-
rithm no longer reduces to WIS in the tabular setting, it is
developed based on WIS and still retains the main ideas be-
hind recency-weighted WIS. Hence, we call this algorithm
WIS-SGD-2. The following updates define WIS-SGD-2,
with 0  k < t + 1:
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Here, ✓
k

.
= ✓k

k

, and ✓�1 = 0. It can be easily verified
that, in the on-policy case, WIS-SGD-2 degenerates to U-
SGD and hence retains the backward consistency with the
sample average estimator.

Although this algorithm has much more plausibility of hav-
ing an efficient backward view due to the careful modifica-
tions, it is not yet immediately clear how such a backward-
view update can be obtained. Van Hasselt, Mahmood and
Sutton (2014) introduced an online equivalence technique
from which both true online TD(�) and true online GTD(�)
can be derived. Their technique requires the target in the
error to have a specific recurrence relation. Unfortunately,
that specific relation does not hold for the target in WIS-
SGD-2. A new technique is needed in order to derive an
efficient backward view for WIS-SGD-2.

4 A new online equivalence technique

In this section, we introduce a new technique for deriv-
ing efficient backward views from online forward-view up-
dates. We show that this technique subsumes the existing
technique for online equivalences (van Hasselt, Mahmood

& Sutton 2014). The following theorem describes the new
online equivalence technique (Proved in Appendix A.3).

Theorem 3 (Online equivalence technique). Consider any
forward view that updates toward an interim scalar target
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related to the temporal difference at k + 1 as follows:
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are scalars that can be com-
puted using data available at time k. Then the final
weight ✓
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This equivalence technique allows producing backward
views that contain a dutch trace e (van Hasselt et al. 2014)
and an extra set of weights d known as provisional weights
(Sutton et al. 2014) at the same time. In previous works
(Sutton et al. 2014, Mahmood et al. 2014), the provisional
weights appeared only in offline updates. Due to this online
equivalence technique, this is the first time the provisional
weights have emerged in online updates.

In the following theorem, we show that the new equiva-
lence technique is a generalization of the existing equiv-
alence technique developed by van Hasselt et al. (2014).
Hence, it readily follows that the existing algorithms with
an online equivalence, such as true online TD(�) and true
online GTD(�), can be derived using the new equivalence
technique. The proof is given in Appendix A.4.

Theorem 4 (Generality of the new equivalence technique).
The online equivalence technique by van Hasselt et al.
(2014, Theorem 1) can be retrieved as a special case of
the online equivalence technique given in Theorem 3.

5 A new off-policy TD(�) based on WIS

In this section, we develop a new off-policy algorithm that
generalizes WIS-SGD-2 to partial termination and boot-
strapping. Then we use the new online equivalence tech-
nique to derive an equivalent O(n) backward-view up-
date. We use a state-dependent bootstrapping parameter
�
k

.
= �(S

k

) 2 [0, 1] in developing the new algorithm.



First, we construct the target, and then we define a new
update for the usage vector u in this more general setting.

Based on the general off-policy forward view by Sutton et
al. (2014), we combine truncated returns Gt+1

k

and trun-
cated corrected returns Gt+1

k

+ �>
t+1✓t scaled by corre-

sponding weights due to discounting, bootstrapping and
importance sampling to develop an overall return:
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where Ct

k

.
=

Q
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.
= ✓k

k

, 0  k < t + 1

and ✓�1 = 0. It can be readily verified that, when no
bootstrapping is used, that is, �

k

= 1, 8k and discount-
ing occurs only at the data horizon t + 1, that is, �0 =

�1 = · · · = �
t

= 1 and �
t+1 = 0, then G⇢

k,t+1 =

⇢t+1
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✓
k�1. Hence G⇢

k,t+1
is a strict generalization of the WIS-SGD-2 target to the
state-dependent discounting and bootstrapping.

The usage vector u of the WIS-SGD algorithms rescales
the components of the parameter updates in order to
clamp down the updates proportionally when they be-
come large due to large importance-sampling ratios. How-
ever, when bootstrapping is used, larger trajectories are
given smaller weights, and hence their corresponding
importance-sampling ratios will have less severe effect on
the updates. For example, when full bootstrapping is used,
that is, �

k

= 0, 8k, the overall return becomes G⇢

k,t+1 =

⇢
k

�
R

k+1 + �
k+1�>

k+1�k

�
, with an importance-sampling

ratio of a one-transition long trajectory. In such cases, up-
dating u with the importance-sampling ratio of the full tra-
jectory ⇢t+1

k

is unnecessary. Hence, the amount of impor-
tance weighting in u at each step should be modulated by
the amount of discounting and bootstrapping.

Based on the overall return in (17) and the idea of dis-
counting and bootstrapping-aware update of u discussed
above, we propose a new off-policy TD algorithm based on
WIS, which we call WIS-TD(�). It consists of the following
forward-view updates:

⇢̃t+1
k

.
= ⇢

k

tX

i=k+1

Ci�1
k

(1� �
i

�
i

) + ⇢
k

Ct

k

; ⇢̃t
t

.
= 0, (18)

u

t+1
k+1

.
= (1� ⌘�

k

� �
k

) � ut+1
k

+ ⇢̃t+1
k

�
k

� �
k

, (19)

↵
k+1

.
= 1↵ u

k+1
k+1, (20)

✓t+1
k+1

.
= ✓t+1

k

+↵
k+1 �

⇣
G⇢

k,t+1� ⇢
k

�>
k

✓t+1
k

⌘
�

k

. (21)

It can be easily verified that, when no bootstrapping is used,
that is, �

k

= 1, 8k and discounting occurs only at the data

horizon t + 1, that is, �0 = �1 = · · · = �
t

= 1 and
�
t+1 = 0, then ⇢̃t+1

k

= ⇢t+1
k

, and we already showed that
the target of WIS-TD(�) G⇢

k,t+1 reduces to the WIS-SGD-
2 target in this case. Hence, WIS-TD(�) subsumes WIS-
SGD-2, establishing a direct backward consistency to sam-
ple average.

In the following, we apply the new online equivalence tech-
nique to the above forward-view update to derive an O(n)
backward-view update computing the same parameter vec-
tor ✓

t

at each t. For that, first we derive an O(n) backward-
view update for the step size that computes the same ↵

t

as
in the above algorithm at each t.
Theorem 5 (Backward view update for ↵

t

of WIS-TD(�)).
The step-size vector ↵

t

computed by the following
backward-view update and the forward-view update de-
fined by (18) – (20) are equal at each step t:
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(Proved in Appendix A.5.)

Now, we derive an O(n) backward-view update that com-
putes the same ✓t

t

as the above forward view.
Theorem 6 (Backward view update for ✓t

t

of WIS-TD(�)).
The parameter vector ✓

t

computed by the following
backward-view update and the parameter vector ✓t

t

com-
puted by the forward-view update defined by (17) and (21)
are equal at every time step t:
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(Proved in Appendix A.6.)

The overall backward view of WIS-TD(�) is defined by
(22) – (27), and its complete description is given in Ap-
pendix A.7. Note that, Theorem 6 does not depend on how
↵

t+1 is set. The per-update time and memory complex-
ity of WIS-TD(�) is O(n). An auxiliary parameter vector
might be included in WIS-TD(�) by making use of the x

k

vector of the online equivalence technique as was done by
van Hasselt et al. (2014), but we do not explore this possi-
bility here.

A seemingly related algorithm is fLSTD-SA (Prashanth,
Korda & Munos 2014), which is an on-policy stochas-
tic approximation method derived based on the on-policy



LSTD algorithm (Bradtke & Barto 1996) by randomizing
the transition samples. One might speculate whether an
O(n) off-policy stochastic-approximation algorithm based
on WIS can be derived from WIS-LSTD(�) by applying the
techniques used in fLSTD-SA. However, the application of
fLSTD-SA in the off-policy case does not appear to achieve
any form of WIS. Updating a vector step size based on the
usage of the features and importance-sampling weights is a
distinctive aspect of our new algorithm and is essential for
obtaining the benefits of WIS, which is absent in existing
stochastic-approximation methods.

6 Extending existing algorithms based on
the new adaptive step size

The vector step-size adaptation based on the update of the
usage vector u is only loosely coupled with WIS-TD(�)
and can be freely combined with existing off-policy al-
gorithms as well as the on-policy ones. When combined
with the existing algorithms, this step-size adaptation is ex-
pected to yield benefits due to the rescaling it performs ac-
cording to the magnitude of importance-sampling weights
and the frequency of feature activation.

We propose two new off-policy algorithms: WIS-GTD(�)
and WIS-TO-GTD(�), based on GTD(�) (Maei 2011) and
true online GTD(�) (van Hasselt et al. 2014), respectively.
In both algorithms, we propose replacing the scalar step
size of the main parameter vector with the vector step size
according to (22) – (24). The scalar step-size parameter
of the auxiliary parameter vector of GTD(�) and true on-
line GTD(�) could also be replaced with the vector step
size with a different recency-weighting factor, but we leave
it out here. The descriptions of these two algorithms are
given in Appendix A.7.

We propose two new on-policy algorithms: usage-based
TD(�) (U-TD(�)) and usage-based true online TD(�) (U-
TO-TD(�)), by combining the vector-step-size adaptation
with two existing on-policy algorithms: TD(�) (Sutton &
Barto 1998) and true online TD(�) (van Seijen & Sutton
2014), respectively. There are interesting interrelationships
between these on-policy and off-policy algorithms. For ex-
ample, WIS-GTD(�) becomes equivalent to U-TD(�) in
the on-policy case when the second step-size parameter
� = 0. On the other hand, WIS-TD(�) directly degener-
ates to U-TO-TD(�) in the on-policy case, whereas WIS-
TO-GTD(�) reduces to U-TO-TD(�) in the on-policy case
with � = 0. We provide the description of U-TD(�) and
U-TO-TD(�) in Appendix A.7.

7 Experimental results

In this section we evaluate the new algorithms using two
sets of experiments with off-policy and on-policy policy-
evaluation tasks, respectively. Source code for both the

off-policy and on-policy experiments are available online1.
In the first set of experiments, we compared the new off-
policy algorithms: WIS-TD(�), WIS-GTD(�) and WIS-
TO-GTD(�) with two existing O(n) algorithms: GTD(�)
and true online GTD(�) (TO-GTD(�)), and with two least
squares algorithms: LSTD-TO(�), an off-policy algorithm
proposed by Dann, Neumann and Peters (2014), and WIS-
LSTD(�), an ideal extension of WIS. For evaluation, we
created three off-policy policy-evaluation tasks.

The first task was constructed based on a random-walk
Markov chain where the states can be imagined to be laid
out on a horizontal line. There were 11 non-terminal states
and two terminal states: on the left and the right ends of
the chain. From each non-terminal state, there are two ac-
tions available: left, leads to the state to the left, and right,
leads to the state to the right. The initial state was always
set to the state in the middle of the chain. The reward was
sparsely available: 0 for all transitions except for the right-
most transition to the terminal state, where it was +1. The
behavior policy was uniformly random between the two ac-
tions and the target policy chose right with 0.99 probability.
No discounting was used. The feature vectors were binary
representations of state indices. For 11 non-terminal states,
each feature vector was of length blog2(11)c + 1 = 4,
and these vectors for the states from left to right were
(0, 0, 0, 1)>, (0, 0, 1, 0)>, (0, 0, 1, 1, )>, · · · , (1, 0, 1, 1)>.
The features were all zero for the terminal states.

The second and the third tasks were constructed using ran-
domly generated MDPs. We represent a randomly gen-
erated MDP as (N, m, b,�) where N and m stand for
the number of states and actions, respectively, and b is a
branching factor denoting the number of next states for a
given state-action pair. Here, � 2 RN⇥N is a diagonal
matrix where the entries are the state-dependent discount-
ing �(·) for each state. We use such a state-dependent
discounting to denote termination under the target policy
while experience continues seamlessly under the behav-
ior policy. For each state, the next b states were chosen
from total N states randomly without replacement, and the
transition probabilities were generated by partitioning the
unit interval at b � 1 cut points which were selected uni-
formly randomly from [0, 1]. The rewards for a transition
from a state-action pair to the next state were selected uni-
formly randomly from [0, 1] and kept deterministic. The
behavior policy probabilities for different actions in a par-
ticular state were set using uniform random numbers from
[10

�15, 1 + 10

�15
] and normalized to sum to one. The tar-

get policy is much less stochastic: one of the actions in a
particular state is chosen to have probability 0.99 and the
rest of the actions are equiprobable.

1Source code for off-policy experiments is available at http:
//github.com/armahmood/wis-td-experiments

and for on-policy experiments at http://github.com/

armahmood/usage-td-experiments.

http://github.com/armahmood/wis-td-experiments
http://github.com/armahmood/wis-td-experiments
http://github.com/armahmood/usage-td-experiments
http://github.com/armahmood/usage-td-experiments
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Figure 1: Empirical comparison of the new WIS-based O(n) algorithms with two existing O(n) algorithms and two LSTD
algorithms on three off-policy policy-evaluation tasks. Performance is shown in the empirical normalized MSE (NMSE)
measured by averaging over 50 independent runs and 100 episodes for the first task, 500 steps for the second, and 5000
steps for the third. The new WIS-based algorithms performed significantly better than both existing O(n) algorithms in all
three off-policy tasks and competitively with one of the LSTD algorithms.

We constructed the second task by randomly generating an
MDP with parameters (10, 3, 3,�), where �(·) = 0 for 2
randomly chosen states to denote termination under the tar-
get policy and �(·) = 0.99 for the rest of the 8 states. For
the third task, we randomly generated an MDP with pa-
rameters (100, 3, 10,�), where �(·) = 0 for 5 randomly
chosen states and �(·) = 0.99 for the rest. The feature vec-
tors were binary representations of the indices of all states
including those for which �(·) = 0. In these two tasks, the
feature vectors were normalized to have unit length.

We tested all algorithms for different values of constant �,
from 0 to 0.9 in steps of 0.1 and from 0.9 to 1.0 in steps
of 0.01. The first step-size parameter ↵ of GTD(�) and
TO-GTD(�) was varied by powers of 10 with powers cho-
sen from �3 to 0 in steps of 0.25. The second step-size
parameter � of both algorithms was varied among values
[0, 0.001, 0.01, 0.1]. The initial value u0 of the components
of the usage vector u for WIS-TD(�), WIS-GTD(�) and
WIS-TO-GTD(�) was varied by powers of 10 with powers
chosen from 0 to 3 in steps of 0.25. The recency-weighting
factor ⌘ of the same algorithms was set as ⌘ = µ/u0, where
µ was varied among values [0, 0.001, 0.01, 0.1, 1]. The
second step-size parameter � for WIS-GTD(�) and WIS-
TO-GTD(�) was set to zero. The matrix to be inverted
in LSTD-TO(�) and WIS-LSTD(�) was initialized to ✏I,
where ✏ was varied by powers of 10 with powers chosen
from �3 to +3 in steps of 0.2. The initial parameter vector
✓0 was set to 0.

Performance was measured as the empirical mean squared
error (MSE) between the estimated values of the states
and their true values under the target policy projected to
the space spanned by the given features. The error was
weighted according to the state-visitation distribution un-
der the behavior policy. As the scale of this MSE mea-
sure can vary between these tasks, we normalized it by

the squared weighted L2 norm of the projected true value,
which is equivalent to the MSE under ✓ = 0. As a re-
sult, the initial normalized MSE (NMSE) for each algo-
rithm was 1. For each run, we averaged this error over 100
episodes measured at the end of each episode for the first
task, over 500 steps for the second task, and over 5000 steps
for the third. We produced the final estimate by further av-
eraging over 50 independent runs.

Figure 1 shows the empirical performance together with
standard error on the three off-policy policy-evaluation
tasks with respect to different � and optimized over all
other parameters. In all three tasks, the new algorithms
significantly outperformed both GTD(�) and TO-GTD(�)
indicating the effectiveness of the adaptive vector step size
in retaining the advantage of WIS. The new algorithms also
performed competitively with LSTD-TO(�) in all tasks.
Among the new algorithms, WIS-GTD(�) performed su-
periorly with large values of �.

We also studied the sensitivity of the new algorithms with
respect to their parameters. Although these algorithms re-
place the scalar constant step-size parameter of their base
learner with an adaptive vector step size based on feature
usage, the estimate of the usage depends on two new pa-
rameters: the initial value u0 and the recency weighting
constant ⌘. The initial value u0 of the usage vector can be
interpreted as the inverse of the initial step size, and its tun-
ing can be as extensive as that of the step-size parameter in
other algorithms. On the other hand, ⌘ can be viewed as the
desired final step size. As a result, their product µ = u0⌘
is unit free and requires less rigorous tuning.

In our final set of experiments, we compared the new O(n)
on-policy algorithms: U-TD(�) and U-TO-TD(�), with
two O(n) on-policy algorithms: TD(�) with accumulating
traces and true online TD(�), which we call TO-TD(�).
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Figure 2: Empirical comparison of the new O(n) usage-
based algorithms with two existing O(n) TD algorithms
on on-policy policy-evaluation tasks. Performance is mea-
sured in empirical normalized MSE (NMSE).

We used randomly generated MDPs to produce two on-
policy policy-evaluation tasks. As the TD algorithms
here estimate state-value functions, it sufficed to con-
struct Markov Reward Processes (MRPs), which we ob-
tained by choosing the number of actions m to be 1 in
both tasks. Our first task used an MDP with 10 states:
(10, 1, 3, 0.99I) and the second task used an MDP with 100
states: (100, 1, 10, 0.99I). The feature vectors were binary
representations of the state indices as in the off-policy tasks
and were normalized to have unit length.

For each task, performance of each algorithm was mea-
sured for different values of their parameters. For TD(�)
and TO-TD(�), the scalar step-size parameter ↵ was varied
by powers of 10 with powers chosen from �3 to 1 in steps
of 0.25. For U-TD(�) and U-TO-TD(�), the parameter u0

was varied by powers of 10 with powers chosen from �1

to 3 in steps of 0.25. The rest of the parameters for all four
algorithms were varied using the same values as in the off-
policy tasks. Performance was measured using NMSE as
in the off-policy tasks. For each run, we averaged this er-
ror over 100 steps for the first task and 1000 steps for the
second. The final estimate is produced again by averaging
over 50 independent runs.

Figure 3 shows the performance on both tasks for different
� with rest of the parameters optimized. Left plot corre-
sponds to MDP (10, 1, 3, 0.99I) and the right plot corre-
sponds to MDP (100, 1, 10, 0.99I). On both tasks, the new
algorithms performed significantly better than their base
learning algorithms for higher values of � and performed
equally well for the smaller ones. The standard error in
each case was smaller than the width of the curves shown.
This set of experiments hints that the step-size adaptation
based on the usage of features can be useful in both off-
policy and on-policy tasks.

8 Discussion and Conclusions

Weighted importance sampling (WIS), one of the most ef-
fective variants of importance sampling, has long been ne-

glected in off-policy learning with parametric function ap-
proximation. Recently introduced WIS-LSTD(�) extends
WIS to linear function approximation and eligibility traces
but scales O(n3

) in computational complexity in the num-
ber of features. In this paper, we took this endeavor one
step further and carried over much of the benefits of WIS
to O(n) off-policy algorithms. In the process, we devel-
oped modifications of stochastic gradient descent that are
more closely related to sample averages. This endeavor
also resulted in developing a new online equivalence tech-
nique for deriving causal efficient updates from acausal in-
tuitive updates, which was deemed essential for achieving
O(n) updates for our new algorithms. On three off-policy
policy-evaluation experiments, the new algorithms outper-
formed the existing O(n) off-policy algorithms and per-
formed competitively with LSTD-TO(�).

An intriguing outcome of our work is an adaptive vector
step size that is updated based on the usage of features,
which has emerged naturally from our goal to incorporate
the sample average within SGD. It is distinct from the ex-
isting adaptive step-size algorithms but not the only possi-
ble one that can achieve a Monte Carlo equivalence. An
interesting direction for future work would be to explore
the other possible variants. Although beyond the scope
of this work, it is interesting to investigate how the in-
sights from the new step-size adaptation idea can be in-
corporated in existing step-size adaptation algorithms such
as Autostep (Mahmood et al. 2012), vSGD (Schaul et al.
2013) or Adam (Kingma et al. 2014). Convergence anal-
ysis of the new algorithms is another interesting direction
for future work.
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Appendix

A.1 Proof of Theorem 1

Theorem 1 (Backward consistency of U-SGD with sample average). If the feature representation is tabular, the vectors u
and ✓ are initially set to zero, and 0  ⌘ < 1, then U-SGD defined by (5)-(7) degenerates to the recency-weighted average
estimator defined by (3) and (4), in the sense that each component of the parameter vector ✓

t+1 of U-SGD becomes the
recency-weighted average estimator of the corresponding input.

Proof. Consider that t samples have been observed and among them t
x

samples correspond to input x. Hence,
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denote the kth output corresponding to input x. Then the recency-weighted average estimator of v(x) given
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A.2 Proof of Theorem 2

Theorem 2 (Backward consistency of WIS-SGD-1 with WIS). If the feature representation is tabular, the vectors u and ✓
are initially set to zero, and 0  ⌘ < 1, then WIS-SGD-1 defined by (10)-(12) degenerates to recency-weighted WIS defined
by (8) and (9) with Y
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, in the sense that each component of the parameter vector of WIS-SGD-1
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t+1 becomes the recency-weighted WIS estimator of the corresponding input.

Proof. The proof is similar to that of Theorem 1.

Consider that data is available up to time t + 1, among which state s was visited on t
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WIS estimator of v(s) given overall data up to t + 1 can be equivalently redefined in the following way:
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A.3 Proof of Theorem 3

Theorem 3 (Online equivalence technique). Consider any forward view that updates toward an interim scalar target Y t
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A.4 Proof of Theorem 4

Theorem 4 (Generality of the new equivalence technique). The online equivalence technique by van Hasselt, Mahmood
and Sutton (2014, Theorem 1) can be retrieved as a special case from the online equivalence technique given in Theorem
3.

Proof. We describe the online equivalence technique by van Hasselt et al. (2014) in the following.
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The above equivalence technique can be obtained from Theorem 3 as a special case by substituting F
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A.5 Proof of Theorem 5

Theorem 5 (Backward view update for ↵
t

of WIS-TD(�)). The step-size vector ↵
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computed by the following backward-
view update and the forward-view update defined by (18) – (20) are equal at each step t:
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Proof. First, note that the component-wise vector multiplication in (19) can be written equivalently as a matrix-vector
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Hence, it proves that
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Inserting these substitutes in Theorem 3 yields us the backward-view defined by (22) – (24).

A.6 Proof of Theorem 6

Theorem 6 (Backward view update for ✓t

t

of WIS-TD(�)). The parameter vector ✓
t

computed by the following backward-
view update and the parameter vector ✓t

t

computed by the forward-view update defined by (17) and (21) are equal at every
time step t:

e

t

.
= ⇢

t

↵
t+1 � �t

+ �
t

�
t

⇢
t

�
e

t�1 � ⇢
t

(↵
t+1 � �t

)�>
t

e

t�1

�
, (25)

✓
t+1

.
= ✓

t

+↵
t+1 � ⇢

t

�
✓>
t�1�t

� ✓>
t

�
t

�
�

t

+ (R
t+1 + �

t+1✓
>
t

�
t+1 � ✓>

t�1�t

)e

t

+ (⇢
t

� 1)�
t

�
t

�
d

t

� ⇢
t

(↵
t+1 � �t

)�>
t

d

t

�
, (26)

d

t+1
.
= �

t

�
t

⇢
t

�
d

t

� ⇢
t

(↵
t+1 � �t

)�>
t

d

t

�
+

�
R

t+1 + ✓>
t

�
t+1 � ✓>

t�1�t

�
e

t

. (27)
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The above recurrence relation establishes
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Theorem 3 yields us the backward-view defined by (25) – (27).



A.7 Description of WIS-TD(�), WIS-GTD(�), WIS-TO-GTD(�), U-TD(�) and U-TO-TD(�)

Algorithm 1 WIS-TD(�)
Initialization:
Choose ✓0, u0 � 0, ⌘ � 0
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Algorithm 2 WIS-GTD(�)
Initialization:
Choose ✓0,w0, u0 � 0, ⌘ � 0, � � 0
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Algorithm 3 WIS-TO-GTD(�)
Initialization:
Choose ✓0,w0, u0 � 0, ⌘ � 0, � � 0
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Algorithm 4 U-TD(�)
Initialization:
Choose ✓0, u0 � 0, ⌘ � 0

Set u0 = u01, , e�1 = 0
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Algorithm 5 U-TO-TD(�)
Initialization:
Choose ✓0, u0 � 0, ⌘ � 0
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