
Prediction Driven Behavior:

Learning Predictions that Drive Fixed Responses

Joseph Modayil and Richard S. Sutton

Reinforcement Learning and Artificial Intelligence Laboratory
University of Alberta

Abstract

We introduce a new method for robot control that combines
prediction learning with a fixed, crafted response—the robot
learns to make a temporally-extended prediction during its
normal operation, and the prediction is used to select actions
as part of a fixed behavioral response. Our method is inspired
by Pavlovian conditioning experiments in which an animal’s
behavior adapts as it learns to predict an event. Surprisingly
the animal’s behavior changes even in the absence of any ben-
efit to the animal (i.e. the animal is not modifying its behavior
to maximize reward). Our method for robot control combines
a fixed response with online prediction learning, thereby pro-
ducing an adaptive behavior. This method is different from
standard non-adaptive control methods and also from adap-
tive reward-maximizing control methods. We show that this
method improves upon the performance of two reactive con-
trols, with visible benefits within 2.5 minutes of real-time
learning on the robot. In the first experiment, the robot turns
off its motors when it predicts a future over-current condition,
which reduces the time spent in unsafe over-current condi-
tions and improves efficiency. In the second experiment, the
robot starts to move when it predicts a human-issued request,
which reduces the apparent latency of the human-robot inter-
face.

Introduction

Certain aspects of a robot’s behavior are commonly speci-
fied as a simple fixed response to a fixed stimulus, for ex-
ample turning the motors off when they are stalling, or re-
sponding to commands from a human operator. These fixed
stimulus-response pairings express domain knowledge for
the behavior desired from the system, such as obeying hu-
man commands and not destroying the motors. However, re-
sponding only to a fixed stimulus can lead to overly conser-
vative or risky behavior, as the robot and its environments
typically change over time. Tire treads wear down, a bat-
tery’s capacity decreases with use, floor textures change, and
motor loads vary. In addition to environmental variability,
the fixed response can have an effect after some time delay,
in this case it is beneficial to start the response before observ-
ing the stimulus. If the robot could predict when a motor will
stall and in response turn off the motor in advance, then the
long-term damage to the motor could be reduced. Moreover,
if the robot can improve its predictions by learning from on-
going experience, then the robot’s behavior would also be

continually adapted to its current operating environment.
Pavlovian conditioning is an extensively-studied mecha-

nism of prediction learning in animals. Pavlovian condition-
ing is typically visualized as a dog in a laboratory learning
to salivate on hearing a bell that signals the onset of food. In
Pavlovian conditioning there is no reward signal—the ani-
mal modifies its behavior even when there is no benefit ob-
served from the response (such as when the salivary glands
are removed) and even when a punishment is given for the
behavior modification (Mackintosh 1974). The simplest ex-
amples of Pavlovian conditioning are when the animal has
an unconditional fixed response to a learned prediction of
the stimulus.

This paper’s main contribution is a new method for
robot control that combines a fixed control response with
a temporally-extended prediction that is learned online dur-
ing the robot’s normal operation. The control response is a
fixed function that is freely crafted by the human designer
to specify the behavior desired from the robot. We call this
Pavlovian control due to its similarity with Pavlovian con-
ditioning. This method is different from methods that per-
form no learning during deployment (including reactive con-
trols, control policies learned offline, and control methods
that make predictions with a fixed model). This method is
also different from control methods in reinforcement learn-
ing that learn during deployment to maximize an explicit
reward signal.

We demonstrate Pavlovian control on two tasks with
physical robots that show how this method is able to im-
prove the robot’s behavior within minutes. The first demon-
stration is of safety, in which the robot anticipates wheel
stalls and turns off the motors in advance. This response re-
duces harm to the motors, and improves the efficiency of
the robot’s movement. The second demonstration is an an-
ticipatory human-robot interface, in which the robot learns
to predict a human-provided command and then responds in
advance of the command. The prediction-driven responses
reduce the apparent latency of the robot with few errors.

Background

Although Pavlovian conditioning has been a topic of study
for over a century, the underlying biological mechanisms are
still an active topic of study. Before examining the modern
biological understanding of this phenomenon, we introduce

AI and Robotics: Papers from the AAAI-14 Workshop

36

some of the basic terminology, by means of the canonical
example of a dog learning to associate a bell with food (as
measured by its salivation). There are three components. The
first is the unconditioned response (UR), which corresponds
to an aspect of the dog’s behavior, in this case salivation.
The second is the unconditioned stimulus (US), which corre-
sponds to presenting the dog with food. The third is the con-
ditioned stimulus (CS), which is the bell ringing for some
time before the food is presented. After some number of pre-
sentations of the bell preceding the food, the dog will start
salivating before the food is presented.

Although it seems as first glance that the dog can be learn-
ing to salivate using standard reward-seeking mechanisms,
the evidence points against this, as the dog will still learn
to salivate even when there is no benefit accrued from sali-
vation (when the salivary ducts are removed). This suggests
that another mechanism must be involved. As described in a
modern review of Pavlovian conditioning (Rescorla 1988),
the primary phenomenon involved in Pavlovian condition-
ing is “the learning that results from exposure to relations
among events in the environment”.

For Pavlovian responses, the animal is not wired to emit
the UR to the US, but rather the animal is wired to respond
to the prediction of the US. Although initially this seems to
be an unusual way to specify behavior, this explains much
of the data on Pavlovian conditioning.

The time course of Pavlovian conditioning has been care-
fully studied for the eyeblink of a rabbit’s nicitating mem-
brane (UR) when irritated by a puff of air (US), and this
event is preceded by a tone (CS). Under a variety of stimu-
lation profiles, the rabbit is able to learn precisely how much
time will elapse after hearing a tone, before the irritating
stimulus will arrive at its eye. Moreover, the rabbit keeps its
eye open until just before the irritating puff of air, and then
closes its eyelid just before the puff of air arrives (with an
accuracy in the tens of milliseconds), which means that the
nerve impulses to close the eyelid must precede the event
with precise timing. Indeed, experiments have shown this to
be the case. Experiments have carefully timed the physical
motion of these events under a variety of tone stimulus con-
figurations (Keyhoe and Macrae 2002). Experiments have
measured the time course of this phenomenon via electrical
activity in the muscles (Lepora et al. 2007). The underlying
circuit for this learned reflex resides in cerebellum, and re-
cent work has shown such learning directly on the relevant
cerebellum cells of live ferrets (Jirenhed and Hesslow 2011).
In the experiment, the animal is curarized, which prevents
any skeletal muscle motion, and the cerebellum is discon-
nected from the cerebrum to prevent influences from higher
brain functions. They demonstrated that learning the timing
relationships between CS, US, and UR happens within the
cerebellar neural circuitry, by stimulating the mossy fibers
(CS) and the climbing fibers (US), and measuring the output
of a Purkinje cell (UR). Their experiment showed a single
Purkinje cell can adapt to different CS-US timing intervals.
The cerebellum is understood to be a uniform parallel ar-
chitecture of this cellular pattern, and the cerebellum is the
basis of motor co-ordination in many animals. The broad
utility of this general control learning mechanism in animals

suggests that there could be many uses for similar mecha-
nisms in robots.

Although Pavlovian conditioning presents a promis-
ing direction for robot control, to the authors’ knowl-
edge there has been little study of Pavlovian condition-
ing as a general tool for engineering robot systems. In-
stead the focus of prior studies has largely been on de-
veloping computational models of the biological systems.
One study (Ludvig, Sutton, and Keyhoe 2008) has demon-
strated how temporal-difference learning algorithms can
match the experimentally-measured learning curves for the
rabbit-eyeblink, showing that temporal-difference learning
as a computational model can fit the empirical data on Pavlo-
vian conditioning. Work by Balkenius and Morén (1999)
compared various computational models of Pavlovian con-
ditioning, and related it to accelerating reward-based learn-
ing in mazes. Work by Mannella and colleagues (2009) at-
tempted to recreate Pavlovian responses, but largely to em-
ulate the underlying biology. Although many have followed
David Marr and James Albus in considering the computa-
tional role of the cerebellum as providing a model for feed-
back or feedforward control (see van der Smagt (2000) for
an overview), these works are largely hypothetical proposals
considering the cerebellum to be computing a full model of
a biological system’s dynamics that is used as part of com-
puting an optimal response, unlike the approach proposed
here of coupling a fixed response with prediction learning.

Formalism

The robot interacts with the environment at discrete time
steps, t = 1, 2, 3, . . ., and at each time the robot receives
a sensor observation o

t

and then emits an action a

t

. The ob-
servation is a function of the environmental state, but the
robot does not observe this state. Instead, the robot’s infor-
mation about the state of the environment is acquired from
its stream of observations and actions and is expressed as a
feature vector x

t

2 Rn. A prediction task for the robot is
specified with some time-varying observable signal of inter-
est R, and a time-varying discount rate �:

G

t

⌘
1X

k=0

(

kY

j=1

�

t+j

)R

t+k+1.

The quantity G

t

is called the return, and its value depends
on the robot’s future experience. The term �

t

limits contri-
butions to the infinite sum when it goes to zero. For exam-
ple, �

t

can be 0.9 when the robot’s bump sensor is inactive
and 0 when the bump sensor is active; this causes any bump
to be a terminating event for predictions starting from ear-
lier time steps. A discount rate can also be interpreted as an
expected timescale for the prediction (Modayil, White, and
Sutton 2014), for a timescale of T steps the discount rate is
set to � = 1� 1

T

.
For the predictions in this paper, we restrict our attention

to the setting where the signal R
t

= I{E} is the indicator
function of a stimulus event E; this function is one when the
stimulus is present and zero when it is absent. Similarly, we
set

�

t

= (1� I{E})(1� 1

⌧

),

37

which terminates the prediction on observing the stimulus
event E or in ⌧ time steps in expectation.

We define a Pavlovian control to be a fixed response
to one or more predictions that are being learned continu-
ally during the robot’s normal operation. The fixed response
specifies the behavior desired of the robot as a function of
the predictions and other state variables. For this paper we
restrict our attention to Pavlovian controls that are a mod-
ification of a standard reactive control with one prediction.
For concreteness, let ⇡ denote the default policy being fol-
lowed by the robot (a policy is any function from the robot’s
state to a probability distribution over the actions it can take
from that state). Let % be the policy of the fixed response. If
the reactive control is activated on a stimulus E, the action
selected by the behavior policy b of the robot is expressed as

b = I{E}%+ (1� I{E})⇡.
We refer to the above behavior policy as a reactive control.

A Pavlovian control can be constructed by modifying a
reactive control to use a prediction v about E. This modi-
fication is to use a mixing function f

E

: R ! [0, 1] that
selects the response based on the observation of E or the
prediction v,

b = f

E

(v)%+ (1� f

E

(v))⇡.

The prediction is computed as a function of the robot’s state
at each time step. When the prediction function is adapted
by an online learning process, we refer to the above behavior
policy as a Pavlovian control.

If the latency of the response is known, then the mixing
function f

E

can be used to synchronize the response and un-
conditional stimulus. Namely, if the response takes K steps,
then an appropriate mixing function is the following,

f

E

(v) = I{E _ v > (1� 1

⌧

)

K}.

For example, consider the bell preceding the food for
Pavlov’s dog. Let R = I{Food} be the indicator function
for the presence of food, and let ⌧ = 50. If the latency be-
tween requesting salivation (%) and having saliva reach the
mouth is K = 10 time steps, then the dog should start sali-
vating when the prediction v is greater than (1 � 1

⌧

)

K ⇡
0.82.

We used the TD(�) algorithm to learn the predictions
during the robot’s normal operation. The TD(�) algorithm
learns to approximate the return, with features available to
the robot. The algorithm approximates the return with a
linear function of the feature vector x

t

, sometimes trans-
formed by a monotonic differentiable function � : R ! R
(which can be the identity function). The algorithm learns
the weight vector w

t

2 Rn,

v

t

⌘ �(w

>
t

x

t

) = �(

nX

j=1

w

t

(j)x

t

(j)),

to approximate the expected value of the return,

v

t

⇡ E[G
t

].

The TD(�) algorithm has linear complexity per time step
in the length of the feature vector which enables it to

function in real-time even for large values of n. The two
algorithm parameters are ↵ (the step-size which controls
the magnitude of the update, and is often set to 0.1

||x||2)
and � (the bootstrapping parameter, which can accelerate
learning). The weights are updated at each time step using
the algorithm shown below (in which �

0 is the derivative of
�).

�

t

= R

t+1 + �

t+1�(w
>
t

x

t+1)� �(w

>
t

x

t

)

e

t

= �

t

�e

t�1 + �

0
(w

>
t

x

t

)x

t

w

t+1 = w

t

+ ↵�

t

e

t

The limiting accuracy of the predictions learned by TD(�)
are primarily a function of the expressiveness of the fea-
tures. Under some common formal assumptions, the algo-
rithm will converge to the best predictor that can be linearly
represented with the given features. Moreover, the weight
vector can be initialized to any desired vector (for example
the zero vector or the weight vector with the least squared
error over a batch of data).

Reducing Motor Stalls

Our first experiment shows how Pavlovian control can be ap-
plied to reduce motor stalls. Motor stalls occur when a mo-
bile robot pushes against a larger object than it can move.
An extended stall condition damages the motor and drains
the batteries. The net damage to the motor is typically not di-
rectly measurable by the robot’s sensors. However, the cur-
rent drawn by the motor can be measured, and the motor can
be turned off to prevent damage. A prototypical scenario for
a reactive safety control is to make a temporary corrective
response when a particular signal exceeds a threshold; here
it is to turn off the motors when excessive current is drawn.
The Pavlovian control is a modification of the reactive safety
control that turns off the motors when it predicts that exces-
sive current will be drawn.

The robot was an iRobot Create, a small two-wheeled mo-
bile robot that is the research version of a commercial robot
vacuum cleaner. The robot communicated by a Bluetooth
dongle to a laptop. The robot sent observation packets from
the sensors and received motor commands at a rate of 50
Hz. The corresponding duration of a time step for the learn-
ing algorithm was 20 milliseconds. The observation packet
contained the values of all 44 robot sensors, which included
contact sensors in the bumper, wheel-drop sensors, infrared
drop-off sensors, a battery voltage sensor, and many sensors
that reported constant values during the experiment. The
most important sensors for this experiment were the over-
current sensors. The robot sensed the current drawn by the
each wheel and reported a binary observation for each wheel
to indicate if it was drawing an excessive amount of current.

The sensor readings were stochastic, and isolated observa-
tions of an over-current condition occurred regularly in nor-
mal operation, such as when the robot overcame friction or
small irregularities on the floor. However, a persistent over-
current condition can damage the robot, either by partially
melting the robot’s shell, or causing the tires to become worn
down (both have occurred on our robots).

38

150 152 154 156 158 160
Time (seconds)

Motor Command

Over-current Signal

Timeline of Stall Protection: Reactive Control

150 152 154 156 158 160
Time (seconds)

Motor Command

Over-current Signal

Prediction

Timeline of Stall Protection: Pavlovian Control

Figure 1: After 2.5 minutes of learning, the Pavlovian con-
trol had a substantial reduction in motor stalls compared to
the reactive control. The graphs show relevant signals in the
stall experiment for the two control policies over 10 seconds,
which both end with the robot pushing against a wall. When
the reactive control was pushing, the behavior rapidly cy-
cled between the default policy (pushing against the wall
with a high motor command) and the fixed response to the
over-current signal that stopped the motors (the low mo-
tor command). In comparison, the Pavlovian control used
the learned prediction that the stall would persist, and spent
more time with the motors stopped.

We implemented a simple reactive control to turn off the
motors when stalls occurred. We defined a stall event (E) to
have occurred when a leaky integrator of the over-current
sensor readings exceeded 3 (using a leaky integrator that
incremented on an over-current signal, decremented other-
wise, and was clamped to values between 0 and 5). The re-
sponse of the control, %, was to turn off the motors with a
zero velocity command.

This reactive safety control interrupted action commands
provided by a default policy ⇡. The motor commands sent
to the robot are expressed as

b = I{E}%+ (1� I{E})⇡,

where b denotes the policy used to select actions for the
robot at each time step.

The default policy ⇡ was a deterministic policy that ro-
tated right for 3 seconds, then drove forward for 7 seconds,
rotated right for 3 seconds, and then drove backward for 7
seconds. This policy was designed to repeatedly invoke the
reactive safety control in a small testing environment, an en-
closure in the shape of right angle triangle, where the short
walls were one meter in length. In addition, a small weight
(approximately two kilograms) was placed on the back of
the robot so that the wheels would not spin on the wooden
floor when the robot was pushing against a wall.

This policy caused the robot to push up against one of
walls during the 7 seconds of driving. The motors quickly
stalled and the reactive safety response was started. The re-
active safety response turned off the motors, which after
some latency caused the over-current condition to become
false. After the over-current condition stopped, the default
policy started to push on the wall again, which led the robot
back to the over-current condition.

This reactive control method presented an opportunity for
Pavlovian control. Although the information about the over-
current condition was binary, another sensor on the robot
measured the current drawn from the battery. The current

0 50 100 150 200 250 300 350
Time (seconds)

0

500

1000

1500

2000

2500

3000

O
ve

r-c
ur

re
nt

 O
bs

er
va

tio
ns

Pavlovian
Control

Reactive
Control

Cumulative over-current observations

0 500 1000 1500 2000 2500
Energy consumed (Joules)

0
1
2
3
4
5
6
7
8
9

D
is

ta
nc

e
dr

iv
en

 (m
et

er
s)

Pavlovian
Control

Reactive
Control

Driving Efficiency

Figure 2: (left) The Pavlovian control achieved a 41% re-
duction of the over-current condition in the course of a 6
minute trial, and thus provided more safety than the reactive
control. Learning provided almost immediate performance
gains. (right) The Pavlovian control had a 10% gain in driv-
ing efficiency over the reactive control, so the robot’s safety
gains were not at the cost of functionality. The results are
shown with standard error bars from 10 runs of each control
policy.

drawn from the battery varied with the motor outputs, the
type of floor, and the force with which the robot pushed
against an obstacle. In particular, the battery current pro-
vided information relevant to predicting whether the robot
was pushing against something. The robot’s bump sensors
also contained information about whether the robot was
pushing against something when it drove forward. The in-
formation in these sensors suggested that the robot could use
its sensor observations to predict whether a stall would be
observed soon.

We constructed a prediction about an upcoming over-
current condition at a timescale of 0.5 seconds, by setting
R

t

= I{E} and �

t

= (1� I{E})(1� 1
⌧

) where ⌧ = 25 time
steps. For the feature vector x, we used a single tiling of 10
tiles for each of the 44 dimensions of the observation vector.
This resulted in a sparse 440 dimensional vector where 44

elements were one, and the remainder were zero. A tiling is
a standard mechanism for converting continuous variables
into sparse binary features in reinforcement learning (Sutton
and Barto 1998). A tiling covers the domain of a continu-
ous variable with tiles of uniform size and shape, and each
binary feature is an indicator function which is one exactly
when the value of the input variable falls on the tile. Here,
each dimension of the robot’s observation vector was scaled
to between [0,1] and the tiles had a width of 0.1.

Using the learned prediction, the robot’s behavior is speci-
fied with a mixing function f

E

that activates if the prediction
is above 0.5,

f

E

(v) = I{E _ v > 0.5},
b = f

E

(v)%+ (1� f

E

(v))⇡.

Converted into durations, the response is activated if a stall
is predicted in K = log(1 � 1/25)/ log(0.5) ⇡ 17 time
steps (0.34 seconds),

We collected data from 20 interleaved runs, where the
robot first used the reactive control policy and then the
Pavlovian control policy. Each run lasted 6 minutes, and 10
runs were collected for each policy. For the learning algo-
rithm, we set � to the identity, � = 0.5, and ↵ =

.1
44 .

The Pavlovian control had visibly fewer over-current
events than the original safety control. An example of the

39

150 152 154 156 158 160
Time (seconds)

Elbow Angle

Threshold

Command
Request

Battery
Current

Lag

Timeline of interaction: Reactive Control

150 152 154 156 158 160
Time (seconds)

 Early
ResponsePrediction

Lag

Timeline of interaction: Pavlovian Control

Figure 3: Timing of signals in the interaction experiment af-
ter 2.5 minutes. A human commanding the robot was ob-
served by a stationary Xtion-Pro sensor. The reactive con-
trol sent desired motor velocities to the robot when the per-
son’s sensed elbow joint angle crossed a threshold. There
was a lag from when the command was requested to when
the robot started to move (as measured by the large negative
current flow from the robot’s batteries). The Pavlovian con-
trol reduced by apparent lag by starting an early response
using the prediction of the command.

individual time course of a push against a wall is shown
in Figure 1, where the reactive control experienced many
more over-current observations than the Pavlovian control.
The averages across the 10 runs for each policy is shown
in Figure 2. The results show a 41% reduction in the num-
ber of over-current observations. However, an even more
impressive decrease could be achieved by not letting the
robot move at all. One measure of the progress enabled by
the two controls is to measure the efficiency of the robot,
namely how far it travels for a given amount of battery en-
ergy. An overly conservative control policy will cause the
robot to not move at all and still consume power while idle,
but the reactive control can waste power by pushing against
walls. We evaluate the efficiency of the Pavlovian control
against the reactive control in Figure 2. The graph shows a
measurable performance improvement of the Pavlovian con-
trol over the reactive control. The Pavlovian control travels
10% farther than the reactive control for the same amount of
energy consumed (the distance, battery voltage and battery
current were measured by the robot’s sensors, and the en-
ergy consumed was computed as the sum across time of the
product of the instantaneous battery voltage and battery cur-
rent). These results demonstrate that Pavlovian control can
improve a robot’s behavior.

Reducing Lag By Predicting the Next

Command

Fixed reactive controls are often used to implement com-
mand interfaces to robots, in which a person issues a com-
mand request via a physical gesture, and the robot moves to
follow the command. However, there are delays in the pro-
cess from when the robot receives the command to when
it begins to move. This situation can benefit from a Pavlo-
vian control by having the robot initiate movement before
the person requests it using a gesture.

A potential challenge for this scenario is that starting the
wrong command could be dangerous. However, a dog can
anticipate a command from a person and will commence
movement when it has enough information to proceed, with-

out necessarily waiting for the person to finish with the com-
mand. Analogous auto-completion capabilities exist for text
entry boxes on web browsers. Thus preemptively initiating
movement is only dangerous in certain settings, and the er-
rors from recognizing gesture-based commands would be a
more pressing concern in such settings.

For this experiment, we used a stationary Xtion Pro
RGBD depth sensor (a device similar to the Microsoft
Kinect sensor). This depth sensor has active light sensing
to infer a depth for every pixel. The associated OpenNI soft-
ware libraries separated the pixels associated with human
bodies from the background scene, and fitted an approxi-
mate three dimensional skeleton to the visible bodies. The
libraries provided the computed joint positions of a person’s
hands, elbows, and shoulders in a Cartesian reference frame.

We used these joint positions to define a simple command
interface to the Create. If the observed left elbow joint was
bent more than 90 degrees, then the robot spun left. If the
observed right elbow was bent more than 90 degrees, then
the robot spun right. When both elbows were bent beyond
90 degrees, the robot drove forward. This interface provided
a simple, reactive control interface to the robot. However for
simplicity, the following experiment only tested the left spin
motion.

In this control interface, there was a measurable lag be-
tween the time that a request was observed via the elbow
joint passing the threshold to when the robot started to move.
The sensor measurements indicated a lag of 0.1 seconds
before drawing battery current, and 0.3 seconds before the
robot’s odometry reported subsequent motion.

We implemented a Pavlovian control to replace the reac-
tive control. The stimulus event E was to observe a com-
mand request from the left elbow, R = I{LeftElbow <

90}. The timescale was set to 0.5 seconds (⌧ =

.5
.02 = 25

time steps), with � = (1� I{E})(1� 1
⌧

). The threshold for
the mixing function was set for 0.3 seconds (K = 15 time
steps), with f

E

(v) = I{E _ v > (1� 1
⌧

)

K}. The response
% was the left spin command.

The feature vector used to learn the prediction contained
500 binary features, with 5 active features. The sensed el-
bow angles were augmented with an exponentially weighted
moving average of the elbow angles (µ

t+1 = 0.8µ

t

+

0.2LeftElbow

t

). These continuous values were used to
generate 5 two-dimensional tilings, each with 100 tiles, by
splitting the range of each input dimension into 10 bins of
equal size. Two tilings were used for the left elbow with its
average (offset from each other), two tilings were for the
right elbow with its average (also offset), and the final tiling
was for the left elbow with the right elbow. The parameters
were set to standard values ↵ = 0.1/5, and � = 0.8. For the
prediction algorithm, we used TD(�) with a sigmoid non-
linearity, �(y) = (1 + e

�y

)

�1, to keep the predictions in
the range [0, 1]. To prevent the predictions from impacting
the control initially, every component of the weight vector
was initialized to -1, corresponding to a initial prediction of
(1+exp(�5))

�1 over the state space. The parameters of the
learning algorithm were � = 0.8, and ↵ =

0.1
5 .

The Pavlovian control was able to make anticipatory pre-
dictions in less than 3 minutes, as seen in Figure 3. To an-

40

-10 -5 0 5 10 15 20 25
Timesteps

-450

-400

-350

-300

-250

-200

-150

Ba
tte

ry
 C

ur
re

nt
 (m

A)

Pavlovian
Control

Reactive
Control

Battery Current aligned with a command at T=0
Averaged over 40 events

-10 -5 0 5 10 15 20 25
Timesteps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
um

ul
at

iv
e

W
he

el
 R

ot
at

io
n

(d
eg

re
es

)

Pavlovian
Control

Reactive
Control

Wheel movement aligned with a command at T=0
Averaged over 40 events

Figure 4: The graphs show averaged sensor observations
from 40 commands, that are aligned to the onset of the com-
mand request. The reactive control took 5 time steps (0.1
seconds) before any additional current is consumed, and had
a longer delay for the odometry to report wheel rotation. The
Pavlovian control had an increased current draw at the time
the command was requested, and had the wheels rotate ear-
lier.

alyze the system’s ability to initiate motion preemptively,
we aligned the sensor readings at the moment the left elbow
command was observed. The left graph of Figure 4 shows
that the battery current began to change when the command
was observed under Pavlovian control, approximately 0.1
seconds before the reactive control showed a change. The
right graph of Figure 4 shows that the wheels began to move
earlier with Pavlovian control. The data comes from the last
40 commands over a single run of each policy (each run
lasted less than 10 minutes), and the gap in performance at
most points is statistically significant (p < .05).

Discussion

Reactive controls are often deployed in situations with an
asymmetric cost, where it is costly to not perform an re-
sponse in the event of a stimulus, but not so costly to oc-
casionally perform the activity in the absence of a stimulus.
The experiments show that Pavlovian control can be used
to improve on reactive controls, by decreasing the latency
between the stimulus and the response, while still limiting
the cost of unnecessary responses. Moreover, the prediction
learning was fast in two ways; the learning algorithm oper-
ated within the 20 millisecond time step of the robot and the
benefits of learning were measurable within minutes.

The method described in this paper generalizes in cer-
tain natural ways. One extension is to learn predictions off-
policy, and thus enable the robot to make responses that pre-
vent the occurrence of the event. Such predictions would im-
prove the performance of the motor stall control. Another
extension would be to consider more than a simple fixed
response to a single prediction, which is not a complete
characterization of Pavlovian conditioning in animals. In an-
imals, the same information can elicit different responses
depending on the modality by which the information ar-
rives (Rescorla 1988). Studies of latent learning in animals
have shown examples of how information gained by Pavlo-
vian conditioning can be later used to accelerate the learning
of reward-seeking behavior. Related ideas could be used to
improve learning reward-seeking policies on robots.

The use of a prediction in a fixed response is a constrained
use of the idea of predictive state representations (Littman,

Sutton, and Singh 2002), in that the learned prediction is
used as a state variable for selecting actions. Results for pre-
dictive state representations have shown that a large enough
set of predictions can serve as a sufficient statistic for the
environment. However, a complete representation of the en-
vironment is often not necessary for control, and this work
shows that even a single well-chosen prediction can be use-
ful. More complex decisions could be made with several
carefully selected predictions.

Our experiments show how a single prediction can be
thought of as a piece of knowledge that is both functional
and learnable. The robot uses its prediction to select ac-
tions, and the robot learns more accurate predictions with
time. Knowledge represented in a predictive form could be
suitable foundation for intelligent and flexible robot behav-
ior. Previous work has shown that very general forms of
predictions can be learned online on a robot (Sutton et al.
2011), that many predictions can be learned in parallel on
a robot (Modayil, White, and Sutton 2014; White, Modayil,
and Sutton 2012), and that collections of predictions can be
used as models for planning (Sutton et al. 2008). A robot
requires a substantial amount of knowledge to demonstrate
intelligent behavior (e.g. robot navigation (Kuipers 2000)),
and learning predictions is a scalable mechanism for a robot
to acquire knowledge.

Summary

We introduced a method that combines online prediction
learning with a fixed crafted response to produce an adap-
tive behavior. The robot learns to make temporally-extended
predictions during its normal operation, and the fixed re-
sponse uses the prediction at each time step to select a task-
appropriate action. We applied this method to two tasks,
one was to reduce motor stalls and the other was a human-
command interface. Learning was fast on both tasks, and led
to better performance than reactive controls within minutes.

Acknowledgments

This research was supported by Alberta Innovates—
Technology Futures through the Alberta Innovates Centre
for Machine Learning, and the Reinforcement Learning and
Artificial Intelligence Laboratory.

References

Balkenius, C., and Morén, J. 1999. Dynamics of a classical
conditioning model. Autonomous Robots 7:41–56.
Jirenhed, D.-A., and Hesslow, G. 2011. Learning stimu-
lus intervals—adaptive timing of conditioned Purkinje cell
responses. Cerebellum 10:523–535.
Keyhoe, E. J., and Macrae, M. 2002. Fundamental
behavioural methods and findings in classical condition-
ing. In A Neuroscientist’s Guide to Classical Conditioning.
Springer. 171–231.
Kuipers, B. J. 2000. The Spatial Semantic Hierarchy. Arti-

ficial Intelligence 119:191–233.
Lepora, N.; Mavritsaki, E.; Porrill, J.; Yeo, C.; Evinger,
C.; and Dean, P. 2007. Evidence from retractor bulbi

41

EMG for linearized motor control of conditioned nictitating
membrane responses. Journal of Neurophysiology 98:2074–
2088.
Littman, M. L.; Sutton, R. S.; and Singh, S. 2002. Predictive
representations of state. In Advances in Neural Information

Processing Systems 14, 1555–1561.
Ludvig, E. A.; Sutton, R. S.; and Keyhoe, E. J. 2008. Stim-
ulus representation and the timing of reward-prediction er-
rors in models of the dopamine system. Neural Computation

20:3034–3054.
Mackintosh, N. J. 1974. The Psychology of Animal Learn-

ing. Academic Press.
Mannella, F.; Koene, A.; and Baldassarre, G. 2009. Naviga-
tion via Pavlovian conditioning: A robotic bio-constrained
model of autoshaping in rats. In The 9th International Con-

ference on Epigenetic Robotics.
Modayil, J.; White, A.; and Sutton, R. S. 2014. Multi-
timescale nexting in a reinforcement learning robot. Adap-

tive Behavior 22(2):146–160.
Rescorla, R. 1988. Pavlovian conditioning: It’s not what
you think it is. American Psychologist 43(3):151–160.
Sutton, R. S., and Barto, A. 1998. Reinforcement Learning:

An Introduction. MIT Press.
Sutton, R. S.; Szepesvári, C.; Geramifard, A.; and Bowling,
M. H. 2008. Dyna-style planning with linear function ap-
proximation and prioritized sweeping. In UAI, 528–536.
Sutton, R. S.; Modayil, J.; Delp, M.; Degris, T.; Pilarski,
P. M.; and Precup, D. 2011. Horde: A scalable real-time ar-
chitecture for learning knowledge from unsupervised senso-
rimotor interaction. In Proceedings of the 10th International

Conference on Autonomous Agents and Multiagent Systems

(AAMAS).
van der Smagt, P. 2000. Benchmarking cerebellar control.
Robotics and Autonomous Systems 32:237–251.
White, A.; Modayil, J.; and Sutton, R. S. 2012. Scaling
life-long off-policy learning. In Second Joint IEEE Inter-

national Conference on Development and Learning and on

Epigenetic Robotics (ICDL-Epirob).

42

