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Abstract

Asynchronous Transfer Mode (ATM) is 2 fast emerging
information technology that promises to provide inter-
operable multi-media services for commercial and de-
fense applications. Unlike commercial broadband net-
works which ATM was originally designed for, defense or
tactical ATM networks must be able to traverse low-rate
transmission links. To allow more flexible and efficient
use of this limited bandwidth resource, optimal traffic
management in ATM networks is critical. This paper
demonstrates the feasibility of developing Self-Learning
Adaptive (SLA) scheduling algorithms using Reinforce-
ment Learning (RL). This technique was applied to sim-
ulated ATM data and proved to be more efficient than
fixed static scheduling methods.’

1 Introduction

Today’s information explosion is finding its way into
the Department of Defense’s tactical communication
networks. Asynchronous Transfer Mode (ATM) is a
fast emerging information technology that premises
to provide inter-operable multi-media services to the
warrior. Unlike commercial broadband networks
which ATM was originally designed for, tactical ATM
networks must be able to traverse low-rate transmis-
sion links that are typically between 236 kb/s and
4.096 Mb/s. These low-rate tactical transmission sys-
tems require more efficient ways to handle cell-based
ATM technology. Current tactical multiplexing tech-
nigues do not provide the flexibility for dynamically
allocating bandwidth that commercial ATM technol-
ogy promises. Methods must be provided for freeing
up the idle channel bandwidth on tactical links so
that it can be made available to support additional
mgulti-media and high speed data services. This will
provide an efficient method for utilizing all the avail-
able bandwidth while not degrading existing services.

Traffic on most ATM based networks is partitioned
into classes based upon their quality of service re-
quirements. A traffic class can be defined by its max-
imum allowable queuning delay and a minimum cell
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loss probability. Thus, congestion can be simply de-
fined as a failure to meet the quality of service re-
quirements. In switching nodes, congestion control
is typically achieved through multiple output buffers
and queue management schemes. Where there are
multiple service classes, the output controller must
decide in what sequence to service the queues in order
to maximize the number of cells transmitted subject
to the quality of service constraints. For example,
a simple control policy may be to service all high-
est priority cells first and, only when that queue is
empty, accept lower priority cells. This problem of
cell scheduling is addressed in this paper. A detailed
version of the paper can be found in (8],

" Service disciplines for cell scheduling with multi-
ple traffic classes that have been proposed often as-
sume knowledge of the entire busy period in advance,
or do not take into account the size of the load on
each queue. In addition, scheduling algorithms may
require heuristics along with causal algorithms to re-
duce-the computational cost. Fortunately, patterns
of ATM cell arrivals are highly correlated, a feature
which we have exploited with an adaptive scheduling
approach which uses an adaptive algorithm based on
Reinforcement Learning-

2 Reinforcement Learning

Reinforcement learning (RL) is a collection of mathe-
matically principled methods for approximately solv-
ing stochastic optimal control problems. RL meth-
ods are novel combinations of dynamic programming
(DP} methods, stochastic approximation methods,
and learning methods developed by artificial intelli-
gence and neural network researchers. RL is based on
classical optimal control methods and inherits much
of their mathematical structure, but also extends
them in three ways. 1. RL methods can learn optimal
behavior directly from experience, if necessary; they
do not require complete knowledge of the problem in
order to solve it. 2. RL uses function approxima-
tion methods such as neural networks to generalize
across states. 3. RL uses Monte Carlo sampling to
direct computation towards the most relevant parts
of the state space. The above extensions enable RL
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methods to effectively solve very large stochastic de-

cision problems that would be intractable using con-

ventional exact methods. In reinforcement learning
problems, a scalar value called a payoff is received by
the control systerm for transition from one state to the
other. The aim of the system is to find a control pol-
icy that maximizes the expected future discounted
sum of payoffs received, known as the return. The
-value function is a pred:cnon of the return available
from each state:

V7(s) = Eo{> _¥¥rs} {1)

k=0

where r is the payoff received for the transition from
state s to s’ and <y is the discount factor (0 <y < 1).

Consider learning the value function for a Markov
chain. These problem are often solved using algo-

rithms based upon dynamic programming {1, 2] and .

involves storing information associated which each
state, then updating the information in one state
based upon the information in subsequent states. For
predicting the outcome of a Markov chain, the learn-
ing algorithm:

V7(8) & 1t +4V(s) @

is equivalent to the TD{0) algorithm {3]. A Markov
chain is a degenerate Markov Decision Process
(MDP) for which there is only one possible action to
choose from in each state. Thus, consldenng a MDP,

for which there is more than one action in each state -

__ an incremental form of value iteration is:

| V*s) = mnga{r +4V*(s")} Vs€S (3)

Watkins [4] introduced the idea of Q-Learning where

the idea is to learn the value of a state-action pair

(s,a) rather than to learn the value of a state (s)

. alone. The prediction is updated with respect to the
predicted return of the next state visited:

Or(s,0) « r+vymax@™(s'a) (4
) aEA
The update equation for this case is:

0(5,0) = @7(z,0) +alr+ ymax (s, ) - §(s, )]
(5)

. Thzs has been shown to converge for finite—state MDP
“Problems when a lookup table is used to store val-

.- Ues of the Q-functions [4]. Once the Q-functions has

. tonverged, the optimal policy is to take the action in
" fach state with the highest predicted return; this is
- talled the greedy policy. In formulating Q-Learning,
-1t is assumed that max,e 4 Q7 (s,a) provides the best
-Stimate of the return of the state s. Sutton i3]

* &long with Rummery and Niranjan 6] argues against -
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this and present a case for using Q7(s’,¢’) instead of
maxaca @7(s, e} and use:

Q™(s,0) + r +vG(s',a") (6)

to update the predmt:on In this case the update
equation is:

G7(s,a) = G~ (s,a) +a{r+’yQ""(5, a) -G (s, a}} (7)

Sutton calls this algorithm SARSA because you
need to know State Action Reward State Action be-
fore an update is performed. Rummery and Niranjan
call this algorithm Modified Q-Learning.

Sutton [5] has applied SARSA to continucus-state
control problems. These include puddle world, moun-
tain cer, and acrobot. In puddle world, the object
is navigate around puddies in a 2D terrain en-route
from a start to a finish position. In mountain car,
a car must climb up a mountain, but the engine is
too weak to accelerate directly up the slope, hence,
it must first move away from it. The acrobat is a
two link under actuated robot. The first joint cannot
exert torque, but the second joint can. The object is
to swing the endpoint above the bars by an amount
equal to one of the links. In all of these problems
SARSA reports robust performance.

3 ATM Scheduling Using Rein-

forcement Learning
Schwartz {7} developed an adaptive scheduling algo-

,nthm based on an urgency function that maximizes

the long term payoff from using a given policy. His
learning algorithm is based on the TD{0) algorithm,
which does not involve any optimization. The result-
ing algorithm is, therefore, not optimal in the sense of
Dynamic Programming. We reformulate the urgency

~ scheduling problem and use the SARSA learning al-

gorithm.

The incoming traffic into an ATM switch is stored
in buffers corresponding to their traffic class, and the
problem of scheduling corresponds to deciding what
sequence to service the buffers in order to maximize
the cells transmitted subject to the quality of ser-
vice constraints. The states {z) are a combination
of both the length (n) of a buffer and the waiting
time (7) of the packet at the head of the buffer, i.e.
z = {n,7). Since the waiting time information for
a call is not available and the queue lengths can be

- large, we model the state as representing some com-

bination of buffer occupancy fractions. For simplic-
ity consider the case where there are only two traf-

_ fic classes and we quantize the buffer occupancy cor-

responding to each traffic class into 3 classes, cor-
responding to empty, half full, or a completely full
buffer. For this example there are nine states as
shown in Table 1.
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Table 1: States Representing Buffer Occupancy

Buffer 1 occupying Bl can be 0,1,or 2. Likewise
B2 has three classes. And, state 1 represents the case
where B1 = 0 and B2 = 0. state 2 represents the case
where Bl = 0 and B2 == 1 etc. At each state we would
like the adaptive scheduling algorithm to service the
buffers in an optimal fashion.

SARSA attempts to obtain a DP feedback policy
by associating with each state an action that specifies
the optimal choice of service for that state. Table 2
shows an outline of the SARSA algorithm we use.
This version of the algorithm is a simplified version
of the SARSA algorithm described in [5} and does not
use eligibility traces or CMAC tilings because of the
size of the state space.

Step 1. Initialize Q{s,a), Vs € S,a € A(s)
Step 2. Start Trial: Initialize 5,0

Step 3: Take action a-
Observe resultant reward, r, and state s’

Step 4: Choose next action:
a’= e-greedy-policy(s’, Q)

Step 5: Use TD to update value:
Q(S, a) = Q(ss ﬂ) + C!(T + 7@(5’!0") - Q(sl a)]

Step 6: If &' is terminal end,
else set s = s" and ¢ = o' and goto to Step 3

Table 2: The SARSA algorithm

Ezample 1: 9 States

We begin with applying the SARSA algorithm to a
simplified problem. The network model we use is as
follows: Packets arrive from two traffic classes and are
sorted into two buffers. Each buffer has three states
Thus the state space is described as in Table 1.-The
packets arrive with probabilities as shown in Table 3
In this example I1 corresponds to an input that fills
up half of buffer 1 At the output, only one unit can
be drained per time step. This is akin to specifying
the output link capacity as half of the buffer size per
decision step. Thus at each time step the controller
must choose between one of two actions. Action One:
remove & unit from Bl, and Action Two: remove a

%)

0 1
o[1/4]1/4
1 [i/41i/3

Table 3: Input Arrival Probability Distribution

unit from B2. We also design these actions such that
when Action One is chosen and Bl is empty, then it
will drain one unit from B2. Thus, these actions can
be generalized and specified as Action One: Drain
B1 per the link capacity and then drain B2. Action
Two: Drain B2 per the link capacity and then drain
B1. We also place a priority on B1 over B2 and stip-
ulate that it is twice as expensive to drop a unit from
Bl compared to B2. Thus, observe that a highest
priority first policy will always choose Action One if
there are one or more units of packets in B1. An op-
timal policy will specify either Action One or Action
Two depending on the given state. A purely ran-
dom policy will randomly decide between Action One
and Action Two independent of the state. Note that
both the random policy and the highest priority first
policy are valid policies, even though they are not
optimal policies under all circumstances. As per the
description in Table 2 we have described the states
and actions. We now describe the specification of re-
wards. The reward corresponds to the function we
want to optimize: in this case it is the loss function J
defined as J = gd—s[w2* L1+ w2 L2}, where L1 =
{ Units Dropped in B1 / Units Received in B1) and
L2 = {Units Dropped in B2 / Units Received in B2).
We also place a priority on Bl over B2 and stipulate
that it is twice as expensive to drop a unit from Bl
compared to B2, thus wl = 2 and wl = 1. Now the
reward 7 at each time step is: r = w2 % dl + w2 + d2
where dl is the number of units from B1 dropped in
that time step and d2 is the pumber of units from
B2 dropped in that time step. The network model
we use is as follows: Units of packets arrive from two
traffic classes and are sorted into two buffers. The
state space corresponding to three levels of buffer oc-
cupancy is described as in Table 1. The inputs arrive
with probability per time step as shown in Table 3.
At the output, only one unit is drained per time step.
In this example the average input arrival rate is one
unit per time step. However, congestion can occur
because with probability 1/4 one unit can arrive into
Bl and one unit can arrive into B2, and there is no
guarantee that either Bl or B2 will have room for
these units. At each time, step the controller chooses
between one of {two actions. Action One: Drain Bl
per the link capacity and then drain B2. Action Two:
Drain B2 per the link capacity and then drain Bil.
We also place a priority on Bl over B2 and stipulate
that it is twice as expensive to drop a unit from Bl
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compared to B2, thus wl = 2 and w2 = 1. We use
SARSA algorithm to compute the optimal policy and
compare it against a highest priority first (HPF) pol-
icy that always chooses Action One if there are one
or more units of packets in B1. Figure 1 shows the
cost functions from a sample run. The network was
run for 20000 time steps. Notice that it took about
2000 time steps for SARSA to learn, and from that
‘point on it behaves better than HPF, The loss rate
by using the SARSA policy is 20% lower than the loss
rate using HPF.

Figures 4 and 5 show “snapshots” of examples us-
ing the SARSA and Highest Priority First policy, re-
spectively. Note that these snapshots are only for 100
time steps and they do not reflect the time average
performances as shown by the loss (J) function plots.
Each figure has six panels. The top left panel shows
the traffic coming in to B1. The top right shows the
traffic coming in to B2. The middle left panel shows
the buffer occupancy in Bl. The middle right panel
shows the buffer occupancy in B2, The bottom left
panel shows the buffer occupancy in B2. The bottom
right panel shows the buffer occupancy in B2.

Ezample 2: 36 Stotes

The input and output parameters for this model are
similar to the parameters in Example 1. However, the
buffer occupancy states are quantized into 6 levels of
occupancy. Thus, the state space is larger and has
36 states. Figure 2 shows the Loss functions from
a sample run. The network was run for 20000 time
steps. Notice that it took about 2000 time steps for
SARSA to learn, and from that point on it behaves
better than HPF. The loss rate by using the SARSA
‘policy is 33% lower than the loss rate using HPF.

Ezomple 3: 36 States, Unegual Arrival Rotes

Example 3 is similar to Example 2 except that, the

input traffic model is changed and is shown in Table
4. In this case, the arrival rate for B2 is greater than™

the arrival rate for Bl. In this example the average
arrival rate is 1.5 units per time step (0.5 umits per
 time step for B1 and 1.0 units per time step for B2).
Since the drain rate is 1 unit per time step, congestion
will occur In this case SARSA took about 60000 time
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4 Simplified Implementations
of Reinforcement Learning

Reinforcement Learning (RL) policies are optimal,
but require a large amount of computation. In this
section we describe some techniques to implement
the RL policies by approximating them with simple
heuristic policies.

First, we examine the policies found by the SARSA
RL algorithm. The RL actions corresponding to each
state for Example 1 are shown in Table 5. For

B2
0 1 2
0 Al]A2TA2

Bl 1]AIJA1TTA2
21 A1 A1 Al

Table 5: Optimal T‘olicy Learned by Sarsa for Exam-
plel

Example 2, the RL actions for each state are shown
in Table 6. Similarly, the RL actions for Example
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Table 6: Optimal Policy Learned by Sarsa for Exam-

ple 2

3 are shown in Table 7. We would like to examine
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Table 4: Inp_ut Arrival Distribution

'. S-teps to converge. These Q values are saved and the
* Simulation is started again with Q values initialized
- o the saved Q values. This is run for about 5000

- time steps, Figure 3 shows the Loss functions for the .

“last 500 time steps from a sample run. Observe that
* SARSA has lower loss than HPF.

Table 7: Optimal Policy Learned by Sarsa for Exam-
ple 3

if these actions intuitively make sense. To verify this
let us Jook at the actions taken when the buffers are
full. For all three examples the optimal actions drain
B1 when B1 is full, and B2 when B2 is full, and favors
B1 when they are tied. Further in Example 3, look

" at the scenario when B2 has 4 units of packets in

it. In this example, because the peak arrival rate for
B2 is 2 units of packets, it is possible for the B2 to
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overflow even when it is not full. Therefore, for some
combination of buffer occupancy fractions, action A2
is optimal.

One simple rule that performs close to the learned
strategies is a proportional feedback policy, under
which the drain rates are proportional to buffer oc-
cupancy levels. In this case the choice of an action is
determined by computing the following. Drain from
Bl: Linkmaz+wl*bl/(wl «bl +w2+b2) and Drain
from B2 : Linkmaz+w2xb2/(wl+bl+w2+b2) where
bl is the occupancy level of Bl and b2 is the occu-
pancy level of B2. If ties are broken in favor of the
longest buffer, we can derive actions that are close to
the learned strategies. The action maps for each ex-
ample based on the above proportional feedback pol-
icy are shown in Tables 8 and 9. (The action maps
are the same for Examples 2 and 3). Notice that for

B2
0 1 2
07 AT A2} A2
Bl 1{Al1[Al} A2
21 A1 ] Al | Al

Table 8: Proportional Feedback Policy for Example
1

Example 1 the performance of proportional feedback
and SARSA are identical. SARSA performs better

B2
0 1 2 3 4 5
A1 1 A2 1 A2 | A2 | A2 T A2
Al | A1 | A2 ] A2 A2 A2
Al | A1 A1 Al ] A2 A2
Al } A1} A1} AT [ AT | AT
Al T AL AT TAL | ATT AT
AT | AT | A1 | AT} AT | AT

B1

LS NUR N R T

Table 9: Proportional Feedback Policy for Examples
2and 3

than proportional feedback for Examples 2 and 3 be-
canse it deals more effectively with the case when B2
is full. This can be seen via the action map in Table
9: Proportional Feedback does not serve buffer Bl as
often as Highest Priority First, but does serve buffer
B1 more often than SARSA.

In these experiments we evaluated the performance
of RL learned policies as compared to a highest-
priority-first (HPF) policy and derived a proportional
feedback {PF) policy as a close approximation to that
found by RL. One remaining concern is that RL meth-
ods might suffer from an initial period of low per-
formance while learning occurs. We also explored
several ways in which this initial learning transient
can be minimized or eliminated, by priming RL with
an initial PF pelicy. Finally, we noted that SARSA

Proceedings of the Ninth Yale Workshop on Adaptive and Learning Systems

performed better that HPF when the buffer lengths
were the same. We also experimented with the case
where the buffer lengths were varied. In these exam-
ples we assigned the higher priority queue a longer
buffer length, and observed that the performance of
SARSA over Higher Priority First was even better.
These details can be found in [8].

5 Conclusions

This paper demonstrates the feasibility of developing
Self-Learning Adaptive (SLA) scheduling algorithms
using Reinforcement Learning (RL). This technique
was applied to simulated ATM data and proved to be
more efficient than static methods. Using RL policies
as a guide, a simple proportional feedback policy has
been identified that performs close to the RL policies
and is easy to implement.
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Figure 1: Loss Function for Sarsa and Highest Prior-
ity First (HPF) Example 1
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‘Figure 2: Loss Function for Sarsa and Highest Prior-
ity First (HPF) Example 2

Coal Function for Sarea and Fighast Priottly Feat

01885

F igure 3: Loss Function for Sarsa and Highest Prior-
fity First (HPF) Example 3
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Figure 4: Snapshot of Example 1 using SARSA
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Figure 5: Snapshot of Example 1 using Highest Pri-
ority First




