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Sutton and Barto's model of connectionistic learning by
a neuron-like adaptive element predicts many aspects of
classical conditioning, including acquisition, extinction,
interstimulus interval effects in trace conditioning,
overshadowing, Kamin blocking, and conditioned inhibition
(Barto % Sutton, 1982; Sutton &% Barto, 1981). The equations
governing the learning process, i.e., the moment to moment
changes in the "synaptic weights" associated with CSs, depend
on two memory processes. The first is a local decaying trace
representing the after—-effect of input to the element from a
C8. The second is the trace or memory of the element’'s output
during the preceding computational epoch. The element’s output
or response is simply the weighted sum of its inputs, and the
equation for modifying weights is basically equivalent to the
Rescorla-Wagner model of assuciative learning. The output
trace is interpreted as the element ‘s prediction of its
behavior during the current computational epoch.

This report outlines an extension of the Sutton-Barto
model to the classically conditioned nictitating membrane (NM)
response of the rabbit, a widely adopted "model system" for
theoretical and neurobiological studies of learning and memory.
The rabbit NM and related eye blink response offer an extensive
experimental literature for assessing the performance of the
model (Gormezano, Kehoe, % Marshall, 1983). Qur approach might
be applied to other instances of classical conditioning, but
the mathematical details, such as constraints on functions,
constants, and parameters, would no doubt vary from one case to
the next,.

Our studies of the properties of the Sutton-Barto model
are concerned with the development of variants of the basic
model capable of generating the form or topography of
conditioned responses (CRs) as they unfold in real time within
trials. Generating CR topography necessitates the imposition
of constraints on the variables of the model. Given
constraints that model CR topography for comparatively simple
protocols, such as acquisition with a single CS in a forward
delay paradigm, the question becomes whether the same
constraints hold for more complex protocols, such as serial
compounds conditioning and conditioned inhibition, in which two
CSs are involved. In short, how valid are the model ‘g
predictions over a range of training paradigms?

To appreciate why efforts to model CR topography are
interesting from the perspective of Al and neuroscience,
consider the following rationale: One begins with the



hypothesis that a single adaptive elamant, which is basically a
linear device with multiple input lines and a single graded
output, is capable of modeling all of the characteristics of
the system under consideration, in this case the NM CR. The
next step is to select specific mathematical expressions
relating variables and parameters of the model to each other
and to time. This step has many earmarks of curve fitting but
with the important difference that selected functions must
adhere to the broader constraints of the model. The third step
is to determine the extent to which the detailed model can
describe the expermental literature surrounding the system
under scrutiny and make novel predictions. Failures of the
model guide subsequent theoretical development. In the domain
of connectionistic learning of interest to the authors, these
theoretical developments would entail networks of adaptive
elements. We believe the problems associated with the
development of a comprehensive theoretical rendering of the NM
CR may point the way toward a better understanding of how
connectionistic learning might be linked to problems of
adaptive sensory-motor control encountered by living organisms
and intelligent machines.

Space limitations preclude a description of the
mathematical details of the Sutton—-Barto model that produced .
the simulations presented in this paper. The constraints
imposed on the model were designed to reflect the activity of
single neurons of the brain stem with firing patterns related
to the NM CR in a forward delay conditioning paradigm and with
an interstimulus interval of 350 msec between the onset of the
C8 and the onset of the UCS. The following are some of the
considerations that shaped the contraints imposed on the
Sutton—-Barto model:

1. CR related neurons in this paradigm rarely have
baseline firing rates lower than 10-Hz. Their maximum firing
rate rarely exceeds 130-Hz.

2. Following the onset of a CS, spikes are recruited
at a slow rate. About 150 msec after CS onset, spike
recruitment increases sharply and continues to increase in a
negatively accelerated fashion throughout the remainder of the
interstimulus interval.

3. Onset of the UCS results in a rapid recruitment of
spikes to a rate near the maximum of 13@-Hz. This high firing
rate persists until UCS offset, after which firing initiated by
the UCS declines geometrically toward baseline. The
contribution of the UCS to the neuron’s firing diminishes with
CR acquisition because the conditioning process anticipates the
UCS and therefore produces firing rates near the maximum. For
this reason, post-UCS firing tends to decline with learning, an
observation that might be related to "conditioned diminution of
the UCRY.

4. Other constraints concerned the changes in the
topography of the NM CR over the course of acquisition and
extinction trials: (a) CR latency decreases progressively
during acquisition and increases during extinction. (b) E€R
amplitude increases progressively during acquisition and
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decreases during extinction. Nevertheless, peak CR amplitude
tends to coincide with the onset of the UCS.

3. The final constraint concerns the effect of
interstimulus interval on the efficacy of conditioning. The
model was required to yield progressively poorer conditioning
under a delay conditioning paradigm with interstimulus
intervals greater than the recognised optimal interval for the
preparation of 250-3I50 msec. The unconstrained Sutton—-Rarto
model yields an appropriate interstimulus interval function for
trace conditioning but not for delay conditioning.

Modifications of the Sutton-Barto model that satisfy
the above constraints were arrived at largely by trial and
error. The fully implemented model successfully described CR
topography and its changes with training. It also lends itsel+#
to simulation of firing patterns of single neurons with
activity related to the CR.

Figure 1A shows simulated NM CR/UCRs (vertical axis) as
a function of acquisition trials (oblique axis). Notice that
the latency of the CR decreases over training. Peak CR
amplitude increases over trials, yet remains just before the
UCR. This process is reversed during simulated extinction
trials (Fig. 1B).

Figure 2 summarizes a simulation of conditioned
inhibition training. CS81 is reinforced with the UCS, and a
compound consisting of CS1 and CS2 is not reinforced. The two
trial types, designated CS+ and CS~, respectively, were
alternated in simulated training. Figure 2A shows simulated CR
topographies for the two trial types at the end of training.
Figure 2B shows changes of "synaptic weights" over the course
of training. Notice that the weight for CS2 becomes
increasingly negative in value. Figures 2C and 2D show
simulated cumulative peristimulus—time histograms of neuronal
firing for the two trial types.

Simulation experiments also indicate that this variant
of the Sutton-Barto model does a credible job of simulating
serial-compound conditioning, Kamin blocking and overshadowing,
and higher-order conditioning. In addition, simulations have
revealed a variety of subtle and largely untested effects on
conditioned responding associated with the within-trial timing
of onsets and offsets of £Ss in serial compound paradigms.

Whether the Sutton-Barto model can be constrained to
model other varieties of behavioral conditioning with the same
success that it has in the case of the NM CR remains an open
question. Also unresolved is whether the structure of the
model , and the particular constraints imposed for the NM CR,
truly have implications for understanding physiological
meachanisms of learning and memory. We believe this to be a
distinct possibility.
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