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A neuron-like adaptive element with computational features suitable for classical conditioning, the Sution-Barto (S-B) model,
was extended to simulate real-time aspects of the conditioned nictitating membrane (NM) response. The aspects of concern were
response topography, CR-related nevronal firing, and interstimulus interval (ISI) effects for forward-delay and trace conditioning
paradigms. The topography of the NM CR has the following features: response latency afier C8 onset decreases over trials;
response amplitude increases gradually within the IST and attains its maximum coincidentally with the UR. A similar pattern
characterizes the firing of some (but not alf) neurons in brain regions demonstrated experimentally to be important for NM
conditioning. The variant of the S-B model described in this paper consists of a set of parameters and irnplementation rules based
on 10-ms computational time steps. It differs from the original 5-B model in a number of ways. The main difference is the
assumption that C§ inputs to the adaptive element are not instantaneous but are instead shaped by unspecified coding processes
so as to produce outputs that conform with the real-time properties of NM conditioning, The model successfully simulates the
aforementioned features of NM response topography. It is also capable of simulating appropriate 1S1 functions, ie. with
maximum conditioning strength with ISIs of 250 ms, for forward-defay and trace paradigms. The original model’s successful
treatment of multiple-CS phenomena, such as blocking, conditioned inhibition, and higher-order conditioning, are retained by
the present model.

INTRODUCTION

Sutton and Barto’s (S8-B) model of connec-
tionistic learning by a neuron-like adaptive ele-
ment predicts many facets of classical condition-
ing, including acquisition, extinction, inter-
stimulus interval (IST) eéffects in trace condition-
ing, blocking, and conditioned inhibition'?,
Basic processes of conditioning with which the
model might be identified have been discussed in
detail in the original articles, Learned connections
are portrayed as occurring at synaptic junctions
where CSs gain access to the element. The ele-

ment also receives input from the US. The magni-
tude of a CR to a CS depends on the value of the
corresponding synaptic weight. This report
describes simulations of the classically condi-
tioned nictitating membrane (NM) response and
correlated neuronal activity based on the S-B
model. The NM CR and related eye blink in the
rabbit offer an extensive experimental literature”
for assessing the model’s performance. The
degree to which the model and its various imple-
mentations are capable of describing this body of
data provides an index of its neurobiological
validity.
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Our primary aim was to develop a variant of the
S-B model capable of generating features of the
topography of NM CRs as they unfold in real time
within trials: CRs anticipate the US, and CR
latency decreases progressively during acquisition
and increases during extinction; CR amplitude
increases progressively during acquisition and
decreases during extinction, but peak CR ampli-
tude tends to coincide with the onset of the US.
Simulating CR topography necessitated not only
constraints on the variables and parameters of the
model but some additional assumptions as well.
Given these constraints, we required that the
model yield appropriate ISI functions, with an
optimum at 250 ms and tailing away as ISI
increases, while at the same time preserving the
model’s predictions regarding multiple-CS phe-
nomena, such as blocking, conditioned inhibition,
higher-order conditioning, and serial conditioning
that were described in an earlier report’,

Simulations with the S-B model presented in
earlier reports yielded appropriate 181 functions
for trace conditioning but not for forward-delay
conditioning (see ref. 20, p. 147). Furthermore,
previous simulations with the model assumed that
all computations within a training trial were com-
pleted before US offset. This assumption was
implemented by specifying a US duration of 30
time steps, each assumed to be 10-ms in duration.
Given the assumed rate of decay of the eligibility
trace (sce below) associated with the CS, the
300-ms US ensured that all computations within
a trial were completed prior to US offset.

%p= UGS

X1 :081

xa=C8»p
UCR and CR

xn =08,

Fig. 1. The original Sutton and Barto neuron-like adaptive
element, an analog of classical conditioning. Each input
pathway x; has transmission efficacy V¢ corresponding to
the associative strength of CS, The US (labeled UCS) is
signalled via a pathway of fixed efficacy A Prior to condi-
tioning, the output of the element contributes to the UR
{labeled UCR); following conditioning, the element output
contributes to both CR and UR (from Barto and Sutton!).

Allowing for computations affecting synaptic
weights to occur after US offset, as would be the
case if the CS’s eligibility for modification
remained above zero for a significant period of
time after US termination, profoundly compli-
cates successful implementation of the model. In
this regard it is worth noting that US durations
employed in NM conditioning are typically 50 ms
in duration or less. Thus, the model presented
here assumes that computations occur before,
during, and after the US.

ADAPTIVE ELEMENT AND CR RELATED NEURO-
NAL FIRING

With the imposition of certain constraints, the
S-B model can simulate CR-related firing patterns
of single neurons. Baseline firing rates of single
neurons with CRe-related activity recorded from
the brainstem of awake behaving rabbits is rarely
less than 10 Hz, and maximum firing rates during
CRs rarely exceeds 100 Hz (ref. 5). With an ISI
of 350 ms, spikes are recruited slowly following
CS onset. About 150 ms after CS onset, but rarely
before 70 ms, spike recruitment increases sharply
and may continue to increase throughout the
remainder of the ISI. Onset of the US results in
a rapid recruitment of spikes to a momentary

_ higher rate that seldom exceeds 200 Hz. This high

firing rate associated with the US may persist
until US offset, after which firing initiated by the
US declines toward baseline.

THE MODEL

Fig. 1 summarizes the S-B adaptive element as
applied to classical conditioning. Inputs to the
element, denoted x, in the case of the US and x,,
i=1,...,n,in the case of CSs, multiply with their
corresponding synaptic weights to determine the
output of the element. These weights are denoted
A for the US and ¥, for the respective CSs. The
latter weights are modifiable and carry the long-
term consequences of training. The element’s
output or response, denoted s, is simply the
weighted sum of its inputs. Despite the theoretical
possibility that weights might assume any real
value, s is bounded to remain between 0 and 1 in



this implementation. Other departures from the
original model are noted below.

Limiting s to the closed unit interval seemed
appropriate given our goal of modelling CR topo-
graphy. Consider, for example, the element’s
response to a CS with a negative synaptic weight,
e.g. a conditioned inhibitor. A negative (rather
than 0) output of the element to such a CS implies
an action opposite in direction to the CR.
Whereas the NM CR consists of eyeball retrac-
tion and NM extension (see e.g. ref. 3), the action
implied by a negative s is exophthalmus and NM
retraction. These CR-opposing responses to con-
ditioned inhibitors are generally not observed in
the rabbit NM preparation (see e.g. refs. 15 and
21).

The equations governing learning, i.e. the
moment to moment changes in CS synaptic
weights, depend on two trace processes. The first,
denoted X, is the so-called eligibility trace. It
defines the period and extent to which a C8’s
weight can be modified. The value of X becomes
positive at the same time {or shortly after) the CS
input, x, reaches the adaptive element. It rises in
value gradually with the CS input and decays
gradually after the CS is removed. The second
trace process, 5, is the trace or memory of the
element’s output during preceding computational
epochs. This variable can be interpreted as the
element’s prediction or expectation of its outiput
during the current time step. These two trace
processes, x and 5, have been discussed in detail
in the previously published descriptions of the
S-B model’*%,

In order to implement CR topography and IS1
effects, the model described below specifies an
additional trace process. This is a trace associated
with each input to the element, the variable
denoted x in the original S-B model, which is
distinct from the eligibility trace, x. Simulations in
the original articles describing model behavior
assumed that CSs affect the adaptive element
with 0 latency and with instantaneous rise and fall
times. The present implementation assumes that
inputs to the element from CSs are shaped by
unspecified mechanisms (preprocessing)in such a
way that, instead of reaching the adaptive element
instantaneously as a step function, CS inputs
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have a fixed latency and increase in value gradu-
ally to some maximum. In addition to this gradual
increase in CS input to the element, the effect of
these CS inputs persists for a period after CS
offset.

Specifically, the present model assumes that
the onset of CS; causes x, to increase in value with
a latency (justified below) of 70 ms. This increase
in the value of x; continues in an S-shaped fashion
until CS offset, at which point it decreases pro-
gressively to its baseline value of 0. The value of
the corresponding eligibility trace, %, follows the
same temporal course, but with a latency relative
to x, of 30 ms. It also decays after CS§ offset, but
at a slower rate than that of x. The relative rates

- of growth and decay of x, and X, determine how

the corresponding synaptic weight, V,, changes
from one time step to the next. As discussed more
fully below, these changes in V, determine CR
topography at various stages of training and ISI
effects.

Assumptions regarding the US follow the origi-
nal model in specifying a positive input to the
element; A, related directly to US intensity and
with instantaneous onset and rise time. Rather
than assuming that the US’s input falls instan-
taneously to 0 at US offset, however, the present
model assumes that the US’s input to the element
decays progressively following US offset. This
decaying trace of the US influences post-US com-
putations affecting synaptic weights of CSs. (As
previously noted, earlier implementations of the
model assumed for simplicity that all compu-
tations affecting CS synaptic weights occurred
before US offset.) Another important change is
that, instead of assuming that 4 summates with
the weighted sum of inputs from CSs to determine
the output, s, the contribution to s of the US in the
present implementation is equal to the difference
between A and the largest starting weight among
CSs presented on that trial. Thus, as CS synaptic
weights increase with training, the effectiveness of
the US decreases. Although this rule allows for a
progressive diminution of the UR as anticipated
by other models (see e.g. ref. 6), its main value is
in preventing post-US decrements in synaptic
weight from canceling the increments accruing
from the US.
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IMPLEMENTATION

Implementation rules and parameterization of
the model were arrived at largely by trial and error
and by searching parameter spaces. Computa-
tional epochs (time steps) were assumed fo
represent 10 ms of real time. The S-B model is
basically defined by Equations 1 and 2:

Letting ¢ designate a given time step, the
synaptic weight of the CS,, ¥, is modified as in the
original model by the rule

Vit + 1) = V() + c[s())-s(1}]x ), (1)

where ¢ is the learning rate parameter such that
D<=,

Prior to US onset, the output of the element at
time ¢, 5{t), is given by

s(f) = Z} V(0)x,(0). (2)

As noted, s(z) is confined to the closed unit
interval and linear only within this range.

The summation in Eqn. 2 refers only to time
steps that include CSs but not the US. When the
US occurs, the summation includes an additional
term, A’, equal to the difference between 4, which
was treated as a parameter between 0 and 1, and
the largest positive staring weight among the CSs
present at the beginning of the trial. This differ-
ence is bounded to the closed unit interval, i.e.
0 = A’ = 1. Specialiy, if ¥, is the largest starting
weight among CSs present on a given trial on
which the US occurs,

A-V, fO<SV.<i
2 =<0 if V,> A;
A if ¥,<0.

Immediately following US offset, the contribution
of A’ to #(¢) is replaced by

M@+ D =092,

which represents a geometrically decaying after-
effect of the US. As in Eqgn. 2, at no time was s(f)
permitted to exceed 1 or be less than 0; s(r) was
linear only within this range.

The element’s prediction of its output based on
prior activity, 5(z} in Eqn. 1, is given by

5+ 1) = f3() + (1 - fs (o),

where 0 < f =< 1. In the present implementation,
B = 0.6. Other values of fresulted in a variety of
predictions that were seriously at odds with NM

_ conditioning data. Therefore, = 0.6 might be

regarded as constant in the present application of
the model.

Equally critical for the model’s behavior are the
functions adopted for the variables x, and x,. For
the initial 7 time steps (i.e. 70 ms) after onset of
CS;, x(f) = 0. For time steps ¢ > 7 until offset of
CS,, x,(r) is an increasing function of ¢ in the open
interval (0,1). In the present simulations,

x(f) = [tan—1(0.35¢ — 5.3) + 90]/180

For time steps following CS; bffset,

o x At + 1) = 0.85x,02).

These implementation rules for x imply that a
CS’s effective input to the element begins 70 ms
after its onset at the periphery, that it rises in an
S-shaped fashion to a maximum of 1, and that it
decays geometrically toward 0 following CS
offset. This pattern of increase and decline of x
determines the form of the CR. The 70 ms delay
of CS input to the element was chosen because
conditioning of the NM CR in rabbits does not
occur with ISIs less than this value!”. Thus, ISTs
of less than 70 ms are ineffective because there is
insufficient time for the CS input to influence the
element.

The variable x(¢) = x{r — 3) whenever ¢ is less
than or equal to the duration of CS, (in time steps)
plus 3. Tor 1 greater than the duration of CS;
plus 3,

%t + 1) = &)

The d factor is given by the expression & = e ™7,
where 4 is a variable equal to the duration of the
CS in 10-ms time steps, provided that d = 25.
These implementation rules for X imply that a



CS’s synaptic weight becomes eligible for modifi-
cation 30 ms after activation of its stimulus trace,
x, and that the temporal course of ¥ is identical
to that of x until 30 ms after CS offset, at which
point the decay of x depends on CS duration.
These rather complex rules governing the varia-
ble rate of decay of CS cligibility traces were
dictated by our aim of simulating ISI functions for
forward-delay, as well as trace, conditioning.
Slowing the rate of decay of X for CSs of relatively
long duration, as would be encountered in a long-
delay conditioning protocol, provides more
opportunities for decrementing V during post-US
time steps and thereby causes less conditioning
than in the case of ISIs nearer the optimal
interval. This point is discussed more fully below.,

IMPLEMENTATION OF CR TOPOGRAPHY

CR topography is basicailly determined by the
adaptive element’s output, s. However, a linear
relationship between the amplitude of the CR, as
observed at the periphery, and s is unrealistic
because of the physical constraints of the system.
An NM response occurs passively when the eye-
ball retracts into the orbit from its resting position,
and its amplitude, which depends on the intensity
of the eliciting stimulus, has an upper limit*?. This
was one consideration in setting an upper bound
of 1 on s for generating NM amplitude at each
time step. '

The cutput of the S-B element cannot simulate
the progressive decrease in CR latency that occurs
over traiming without additional assumptions.
Since s is determined by the input trace from the
CS, the variable x in the model, one approach to
implementation of decreasing CR latency over
training would be to assume that the onset of x,
rather than occurring 70 ms after CS onset as
described above, begins late in the 181 and some-
how migrates over trials toward CS onset. An
alternative approach, one that is physiologically
easier to justify than the former, is to interpose a
threshold between the element’s output and moto-
neurons that generate the peripherially observed
response. In the model described here, s had to
exceed 0.I in order to produce a detectable
response. Also, in order to smooth the transition
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from CR to UR, response profiles were generated
by the sliding arithmetic mean value of 5 from the
current and two preceding time steps. In sum,
NM topography is defined by the arithmetic mean
of the element’s current output, s, and those of the
two preceding time steps. Furthermore, this
sliding mean is bounded to remain between 0.1
and 1. This implementation rule tends to smooth
response profiles, ensure that NM amplitude is
bounded, and yields progressively decreasing CR
latency (not less than 70 ms) over training.

IMPLEMENTATION OF NEURONAL FIRING

The S-B model readily lends itself to simulation
of neuronal firing on single trials. These can be
cumulated over trials into peristimulus—time
histograms (PSTHs). Simulated neuronal spikes
are derived from the momentary output of the
system, s, bounded between by 0 and 1. Because
momentary firing rates up to 200 Hz are allowed,
the number of spikes that can be assigned to a
10-ms time bin is & = 0, I, or 2. The value of k
selected by the implementation rules at time step
¢t was obtained by treating & as a Poisson random
variable with parameter s(s). In addition, a
random threshold variable, denoted I and
obtained from a uniform distribution in the unit
interval, governs the value of & selected at time .
Specifically, letting P[k; s(¢)] denote the proba-
bility of exactly k spikes given the current value of

S(t)a

Pk s()] = S

= P(k.1). 3
The simulation selects L at random, 0 <L <1,
and computes the sum over & of P{k) for
k = 0,1,2 until the sum of P(k,) = L. If this sum
attains L when &k = 0, the spike count at £ is 0; if
it attains L when k& = 1, the spike count at ¢ is 1;
if it attains L when k = 2, the spike count at 7is
2.

METHOD

As noted, all simulations assumed that time
steps corresponded to 10 ms. Because compu-
tations did not mnvolve static contextual cues, it
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was sufficient to define a string of computational
steps on each trial that was limited to (1) pretrial
period, used only for the purpose of generating
pretrial neuronal activity with Eqn. 3; (2) an
on-trial period that varied in duration depending
on the duration of the longest CS and the
temporal locus and duration of the US; and (3) a
post-trial period of sufficient length to encompass
the decaying CS eligibility traces and the after-
effects of the US.

CR TOPOGRAPHY

Fig. 2 shows simulated NM CR/UR complexes
for single trials of both early (Trial7) and
asymptotic (Trial 30} stages of training. The
synaptic weight of the CS, ¥, was 0 at the outset.
Response topography at various stages of training
depends on a number of variables and parameters
of the model, including the rise and fall of x and
x associated with CS onsets and offsets. As
illustrated in Fig. 2, response topography also
depends on the learning rate parameter, ¢ in
Eqn. 1, and on the effectiveness of the US, speci-
fied by the parameter Z. The paradigm illustrated
in Fig. 2 is single-CS training in a forward-delay
arrangment with an ISI of 350 ms and a 30 ms
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US (US onset occurring at CS offset). Various
combinations of the parameters ¢ and A are illus-
trated. In Fig.2A, ¢=0.04 and A =10.6. In
Fig.2B, ¢=004 and 1=09 In Fig 2C,
¢ = 0.40 and A = 0.6. The top row of panels are
simulated responses on Trial 7; the middle row
shows simulated responses on Trial 30. Associ-
ated simulated PSTHs of neuronal firing, dis-
cussed below, are shown in the bottom row.

The top and middle rows of Fig. 2 indicate that
response topography mimics, albeit ideally, those
typically observed in actual experiments (e.g.
Fig. 4): peak CR amplitude increasing with
training, yet remaining just before the UR, and
CR latency decreasing. This process reverses over
simulated extinction trials. In addition, UR ampli-
tude became smaller with training, i.e. condi-
tioned diminution of the UR, as reported by some
experimenters®,

Given a near-optimal IST such as 350 ms,
robust CRs during asymptotic stages of training
typically blend inte the UR without the dis-
continuity that is evident in the simulated CR/UR
complexes in Fig. 2A and B in which ¢ = 0.04.
They more nearly resemble those in Fig. 2C in
which ¢ = 0.40. Although response topography

st}

o i

e s

Fig. 2. Simulated CR/UR complexes and PSTHs for single-CS forward-delay training with a 350-ms CS that terminated
simultaneously with the onset of a 30-ms US. Top row of panels refer to Trial 7; middle row refers to Trial 30; bottom row are
corresponding PSTHs A:c =004 and y=0.6.B: ¢ =004 and 1 =0.9. C: ¢ = 0.4 and 1 = 0.6.



and rate of leamning are greatly affected by the
value of ¢, asymptotic Vs for single-CS training
are less strongly affected by this parameter. For
example, with ¢ = (.04, the values of V after 30
trials are 0.31 with A = 0.6 and 0.47 with A = 0.9.
With ¢ = 0.40, the corresponding values of V after
30 trials are 0.39 and 0.56 for 1 values of 0.6 and
0.9, respectively. Unfortunately, values of ¢ that
yield realistic topographies, as in Fig. 2C, also
cause overly fast acquisition. That is, V increases
too quickly over trials to reflect rates of CR
acquisition that are typically observed in the labo-
ratory. For example, with ¢ = 0.40 and 4 = 0.9,
the value of V after only 7 trials is the same as
after 30 trials (¥ = 0.56).

There are several approaches to restraining the
growth of V' while also ensuring realistic response
topography at asymptotic stages of training. For

example, rather than treating ¢ as a constant, it

might be treated as a variable with a low initial
value that increases progressively over reinforced
trials. Computational models with this feature
have been successfully applied to NM condition-
ing by Moore and Stickney'*. In the
Moore-Stickney model, the rate-of-learning
parameter on any trial depends not only on events
that occur during and immediately after CS
occurrences, but also on the duration of intertrial
infervals. Although intertrial interval has a power-
ful effect on the rate of CR acquisition (see e.g.
ref. 18), the present model does not encompass
this variable.

With some combinations of parameters, the
present model produces non-monotonic acquisi-
tion curves. For example, when ¢ is greater than
0.50, A values less than (.40 vield acquisition
curves whereby V initially increases sharply and
then oscillates for a few trials before stabilizing at
some value lower than the initial peak. With ¢
values suitably small relative to A, the problem of
non-maenotonic acquisition curves does not arise.

One problem regarding CR topography in the
present model concerns trace conditioning. As
tliustrated in Fig. 3, a simulated CR for trace
conditioning does not blend into the UR
instead reverts toward baseline within the trace
interval. With near-optimal ISIs such as 350 ms,
real trace-conditioned CRs tend to increase in
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Fig. 3. Simulated CR/UR complex for Trial 48 of trace con-
ditioning with a 250-ms CS followed after 150 ms by a 30-ms
US;e=015and 1 =009.

amplitude within the trace interval in much the
same way as in a forward-delay training
paradigm. Premature decline of simulated CR
amplitude in trace conditioning is due to the decay
of x, which in the present model begins at CS
offset. Because x essentially carries CR topo-
graphy, the problem might be rectified by allowing
x to begin to decay at some point in time beyond
CS offset. Any change in assumptions about the
decay of x would necessitate compensatory
changes in rates of decay of X and 2.

NEURONAL FIRING

The bottom row of Fig. 2 shows simulated
PSTHs of neuronal firing cumulated over 30 trials
of simulated training as specified in the corre-
sponding panels of the middle row. These PSTHs
were generated by the Poisson rule described
above in connection with Eqn. 3. Their shape
tends to model CR/UR topography. This model-
ling of CR topography (see Fig. 4A) has been
widely reported as characteristic of firing patterns
of neurons in a number of brain regions important
for NM conditioning: brainstem®, cerebellum*!?,
and hippocampus?.

Although CR-modelling neuronal firing similar
to that generated by the model is commonplace,
other patterns of CR-related neuronal activity in
these same brain regions have been reported. For
example, CR-related decreases in firing®” yield
PSTHs that resemble mirror images of CR topo-
graphy (Fig. 4B). The model can easily implement
such CR-related decreases in firing by interposing
a signal inverter between the element’s output and
the variable used in Eqn. 3 for generating spikes.
The challenge, of course, lies in formulating a
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Fig.- 4. Average CR/UR compiexes and corresponding
PSTHs for cells 53 (A) and 17 (B) of Desmond’s® study of
brainstem neuronal activity during NM conditioning in a
forward-delay paradigm with an ISI of 350 ms.

model that successfully integrates the contribu-
tions of the various types of CR-related firing
patterns to conditioned responding and brain
processes generally. Such an integration must be
deferred pending future insights into the neural
basis of NM conditioning.

The simulated PSTHs in Fig. 2 do not reflect
the temporal ead over CRs that would be required
of a neuron causally related to the behavior. For
example, a motoneuron fires several ms before the

TABLE I
Synaptic weights (V) as a function of IST

CR can be detecied at the periphery. It is trivially
easy to implement this requirement of CR-related
neurons by introducing a delay between the gener-
ation of neuronal spikes by the variable s and the
generation of CR topography.

INTERSTIMULUS INTERVAL FUNCTIONS
Simulated ISI functions appear in Table I. The
entries are synaptic weights resulting from 50
simulated reinforced trials (¢ = 0.15) with ISIs
ranging from 0.1 to 2s in forward-delay
‘paradigms and 0.3 to 2 s in trace paradigms. In
forward-delay paradigms, the CS terminated con-
currently with US onset. In trace paradigms, CS
duration was 250 ms for all ISIs, and therefore
Table I does not show entries for ISIs of this
duration or less. The US was assumed to be
30 ms in duration with 2 values of 0.5, 0.7, or 0.9.
Appropriately for the rabbit NM response, the
maximum weights under forward-delay training
were obtained with ISIs of 250 ms. The effect of
increasing the effectiveness of the US was to raise
and broaden the ISI functions obtained with
forward-delay training. Also appropriate for the
NM response, forward-delay training yielded
higher weights generally than did trace condi-
tioning. With ¢ = 0.04 and 7 = 0.6, parameters
illustrated in Fig, 2, weights after 50 trials in defay
conditioning at ISIs of 100, 250, and 2000 ms
were — (.02, 0.33, and 0.07, respectively.
TableI reveals deficiencies in the model’s
predictions for less-than-optimal ISIs, namely,

The table gives values of ¥ after 50 trials for various combinations of IST and A for forward-delay and trace conditioning with

¢ = 0.15. Vs for trace conditioning are in parentheses.

IS8T (ms)
100 150 200 250 300 350 400 500 700 1000 1500 2000
A=10.5 -0.07 023 0.31 0.33 0.31 0.29 0.28 (.25 0.21 0.17 0.13 0.10
(0.30)  (0.22) (0.15) (0.08) {0.01) (0.00) (0.00) (0.00)
A=07 -0.09 033 0.43 0.46 0.43 . 0.41 0.39 0.35 0.29 023 0.18 0.14
(042) (031) (0.21) (0.08) (00D  (0.00) (0.00)  (0.00)
2=09 =012 0642 0.55 0.59 0.56 0.53 0.5¢ 0.45 0.37 0.30 0.23 0.18
(0.54) (040) (0.27) (0.I0) (001 (0.00) (0.00) (D.00)




the negative weights obtained with ISIs of
100 ms. Although negligible when compared with
the positive weights obtained with near-optimal
1S1s, there is no experimental evidence to suggest
that less-than-optimal ISTs in forward-delay con-
ditioning results in inhibitory learning!’. The
negative weights are due to complex interactions
among the rise and fall of the variables x and X,
This issue is discussed more fully below. _
Although the present model does a reasonable
job of simulating IS] functions, in its present form
it cannot account for effects of intertrial interval
on the level of conditioning that is possible for a
given ISI. In rabbit NM conditioning, for exam-
ple, high levels of conditioned responding have
been obtained in a forward-delay paradigm with
ISIslongerthan 2 s withintertrial intervals of 24 h
or more®. Similar interactions between ISI and
intertrial interval have been reported in pigeon
autoshaping with trace conditioning®.

MULTIPLE-CS PHENOMENA

Barto and Sutton' showed that several multi-
ple-CS phenomena that have attracted the atten-
tion of animal learning theorists, e.g. blocking,
conditioned inhibition, and higher-order condi-
tioning, are produced by their model. We have
confirmed that these predictions are retained in
the present model. For example, Fig. 5 sum-
marizes a simulation of conditioned inhibition
training similar to that presented in the earlier

46
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Fig. 5. Synaptic weights (V; and ¥,) for CS; and CS; of a
simulated conditioned inhibition protocol as a function of
trials: 50 trials consisting of CS, paired with a 30-ms US in
a forward-delay arrangement, with an IST of 350 ms, were
intermixed in a random sequence with 50 trials consisting of
CS, and C8,, presented together for 350 ms, but without the
US; ¢=0.15 and A =0.7. Notice that ¥, becomes pro-
gressively more positive while ¥, becomes progressively
more negative.
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report (see ref. 1, p. 229): CS, was reinforced
with the US, and a compound consisting of CS,
and CS, was not reinforced. The two trial
types, designated CS + and CS —, respectively,
occurred equally often but in an unsystematic
sequence. Fig. 5 shows changes of synaptic
weights over the course of training. Notice that
the weight for CS,, the conditioned inhibitor,
became increasingly negative in value.

Although the present model provides a credibie
treatment of serial-compound conditioning, simu-
lation studies also indicate that there are a number
of subtle effects associated with the within-trial
timing of onsets and offsets of CSs. A com-
prehensive ireatment of these paradigms will be
the focus of a future report.

DISCUSSION

We have noted a number of differences
between the present model, which was designed
specifically for NM conditioning, and the original
S-B model.

In the original model (see ref. 1, p. 226), x is a
step function equal to 0 in the absence of the CS
or 11in its presence. Consequently, s is also a step
function, taking the value of ¥ at CS onset and
changing only during US onset or offset; ¥ can
change only at transition points because it is at
these times when the quantity s — 5 in Egn. 1
takes on non-zero values. In addition, changes of
¥ can only occur during periods of eligibility, i.e.
when X exceeds 0. Thus, for single-CS delay
conditioning, increases in V occur only at US
onset, and decreases in ¥ occur only at CS offset.
Asymptotic learning occurs when ¥ approaches
A because, at US onset, s — §in Eqgn. | is nearly
0, assuming that f equals 0 as in the the original
implementation. During extinction, and non-
reinforced trials generally, s — 5 is negative at CS
offset, and changes in V are therefore negative.

In the present model, instead of being a step
fonction, x increases monotonically as an
S-shaped function of time when the CS goes on
and decreases geometrically when the CS goes
off. These changes imply that computations
affecting ¥ occur in every time step leading up to
the US and for a period afterwards depending on
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the eligibility trace. When the CS is on, s—5§ is
positive throughout the rising portion of the x
function. Consequently, ¥ increases from
moment to moment within this interval, the con-
tribution of the 5 — 5 term increasing as eligibility
increases. After CS and US offset, s — 5 is nega-
tive in every time step until x decays to 0. This
results in a series of decrements in ¥, these decre-
ments growing progressively smaller as the eligi-
bility trace decays. In acquisition, asymptote is
achieved when the post-US decrements in V all
but equal the increment in ¥ occurring earlier in
the trial. To ensure extinction in the absence of the
US, the net change in ¥ for a CS with positive
value must be negative.

Because in the present model x increases gradu-
ally in the ISI and does not approach its asymp-
totic value until 250 ms after CS onset, it was
necessary to introduce a mechanism to prevent
asymptotic Vs in simple forward-delay paradigms
with ISIs between 70 and 250 ms from becoming
too large. Since x is less than 1 at US onset with
the shorter ISIs, the term s — s in Eqn. 1 at US
onset is greater than it would be with a CS of long
duration. This causes large net increments in V.
To mitigate this problem, we introduced a lag of
30 ms in the eligibility trace, %, with respect to x.
This lag compensates for the large increments of
¥ with ISIs less than 250 ms in two ways. First,
the lag causes fewer increments in ¥ during
pre-US time steps. Second, with the lag, eligibility

remains high during post-US time steps, causing

post-US decrements in ¥ that are larger than they
would be otherwise. Although lagging X made it
possible for the model to yield ISI functions with
a maximum at 250 ms, it contributed to the
inappropriate negative weights noted in Table I
for ISIs of 100 ms.

The present model is able to predict a fall-off of
Vs with ISIs greater than the 250-ms optimum by
assuming that the rate of decay of the eligibility
trace, x, varies inversely with CS duration. In
forward-delay paradigms, CS duration and ISI
are typically equal. During post-US time steps,
when s — 5 is negative, a slowly decaying X,
associated with a long ISI, leads to a greater
accumulation of decrements of 7 than in the case
of a more rapidly decaying x, associated with a

shorter ISI. In forward-delay paradigms with fong
ISIs, this device slows CR acquisition over trials
and causes a lower asymptotic ¥ than in the case
of shorter 1SIs. It also results in comparatively
faster extinction with long-duration CSs. How-
ever, in order to retain the ability to restrain V'
with less-than-optimal ISTs, we stipulated that the
rate of decay of x for CS durations (and hence
ISIs) less than 250 ms could not exceed that of a
250-ms C8S.

When applied to trace conditioning, the
assumption that the rate of decay of X varies
inversely with CS duration implies that, for a
sufficiently long constant trace interval (i.e. the
time between CS offset and the US), asymptotic
¥ is an increasing fuinction of CS duration. For
example, after 50 simulated trace conditioning
trials with a trace interval of 300 ms (4 = 0.9; US
duration = 30 ms; ¢ = 0.15), V' with a CS dura-
tion of 250 ms is (.08, whereas ¥ with a CS
duration of 1000 ms is 0.17. The lower ¥V with the
250-ms CS seems paradoxical because the nomi-
nal 187 of 5350 ms (250 plus 300) would normally
be expected to vield stronger conditioning than
would the 1000-ms CS with its nominal ISI of
1300 ms. There is no paradox under forward-
delay conditioning with these parameters, i.c.
when the duration of the trace interval equals
0 ms. The corresponding Vs for ISIs of 550 and
1300 ms are 0.43 and 0.25, respectively. We know
of no directly relevant NM conditioning data on
whether trace-CS duration affects conditioning in
the way predicied by the present model. The
situation is further complicated by stimulus cod- .
ing processes not encompassed in the model,
whereby stimuli are defined by the offset rather
than onset of some energy source. For example,
a tone that occupies most of the intertrial interval,
but which terminates 250 ms before the US, yieids
levels of NM conditioning (to tone offset) that
scarcely differ from those obtained by the more
usual procedure of having the tone off during
intertrial intervals and on for the 250 ms preced-
ing the US,

Another difficulty with the present model
regarding trace conditioning is that CS durations
of 50 ms can support NM conditioning at optimal
ISIs*. Because x does not begin to increase



before 70 ms after CS offset, no learning is possi-
bleto brief, pulse-like CSs. This problem might be
corrected by permitting x to increase for a period
beyond CS offset, as suggested above in connec-
tion with Fig. 3.

The original 8-B model is closely related to the
Rescorla—Wagner (R-W) model's. The present
model bears a [ess obvious relation to the R-W
model and differs in at least two important ways.
First, unlike the R-W model, the asymptotic value
of V for single-CS forward-delay training can
never match the value of A, the principal parame-
ter specifying US effectiveness. The two variables
cannot be equal because of the post-US decre-
ments in ¥ that drain off some of the increments
cumulated during earlier time steps. For example,
with an ISI of 250 ms and the parameters
described in the preceding paragraph, ¥ after 50
simulated trials in the present model is (.59,
roughly 2/3 the value of 4. The same ratio holds
for other 4 values at this ISI. With longer 1S81s the
ratio declines further. With an ISI of 500 ms, for
example, asymptotic V is roughly 0.5 A, -

The present model also differs from the R-W
model by rot predicting extinction of negative V
over a series of simulated CS-alone trials. The
prediction of such extinction of conditioned inhi-
bition has been a major sticking point in the R-W
model because it has been repeatedly demon-
strated that conditioned inhibitors do not lose
their effectiveness by being presented without the
US (see e.g. ref. 12). The present model does not
predict ‘extinction of conditioned inhibition’
because the element’s output, s, cannot be less
than 0. Therefore, from Egn. 1, net increments in
V in the absence of the US (or some other
excitatory input} are not possible. The model can
therefore be viewed as an advance on the R-W
model because it nevertheless describes sub-
stantiated features of conditioned inhibition such
as the acquisition of negative ¥ shown in Fig. 5.

In sum, the present model departs from the
~ original S$-B model in a number of non-trivial
ways. Not only was it necessary to impose special
assumptions about the rise and decay of eligibility
traces so as to yield reasonably appropriate IS1
functions, it was also necessary to restructure the
input of the US to the adaptive element. Instead
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of being constant over trials, the effective US in
the present model is the difference between 4, a
constant, and the largest positive starting V
among CSs present on that trial. This rule was
imposed so that post-US computations, which
generally produce decrements of V, do not com-
pletely cancel the increments in 7 that generaily
precede US offset. Departures such as this from
the original S-B model increase the computational
burden to be born by a single neuron.

The S-B model is, in principle, consistent with
any number of neuronal schemas of sensory-
motor integration and learning-schemas ranging
in complexity from single classic neurons with
many input channels and a single output channel,
as int the original S-B model, to those composed
of multi-layered networks of heterogeneous com-
putational elements that perform specialized
functions. The basic computations of the S-B
model occur at the level of synapses of single
neurons, neurons presumably lying at the
confluence of the sensory-motor pathways medi-
ating the target behavior. The fact that such
strategically placed neurons with CR-related
activity have been observed in brain regions
thought to be essential for NM conditioning lends
credence to a single-neuron schema, e.g. cerebel-
lar Purkinje cells of hemispheric lobule VI (ref. 4)
and pontine reticular formation®.

As noted above, however, single neurons with
firing patterns related to NM conditioned
responding have been reported for several brain
regions. Moreover, CR-related firing patterns are
not homogeneous. Although most CR-related fir-
ing patterns are positively correlated with the
behavioral CR (see Fig. 4A), other types of
CR-related activity has also been reported (see
e.g. Fig. 4B). The fact that CR-related neurons
exist in many brain regions and produce a variety
of CR-related firing patterns introduces com-
plexities that seem inconsistent with a single-
netron schema, and indeed this may well prove to
be the case. Nevertheless, there is at present no
compelling evidence that more than one type of
neuron and firing pattern are essenticd for learning
and performing the NM CR. The evident diversity
of CR-related firing patterns and wide anatomical
distribution of CR-related neurons might be
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attributed to their role in any number of functions
that, although important and interesting in their
own right, are not directly related to the long-term
modification of connection weights. These
functions include stimulus coding, response shap-
ing, and conditioning of concomitant responses,
to mention but a few. CR-related neuronal activity
might also be associated with various compensa-
tory mechanisms not primarily related to learning.

In light of the encouraging preliminary success '

of the present model in capturing detailed features
of the NM conditioning, it seems premature to
reject the single-neuron representation of the S-B
model i favor of one of greater complexity.
Whether the S-B model can be applied with equal
success to other varieties of behavioral condition-
ing is an open question. Also unresolved is
whether the structure of the model and the par-
ticular constraints imposed by NM conditioning
truly have implications for understanding physio-
logical mechanisms of learning and memory. We
believe this to be a distinct possibility,
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