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Abstract

We introduce a new reinforcement-learning model for the role of the hippocam-
pus in classical conditioning, focusing on the differences between trace and de-
lay conditioning. In the model, all stimuli are represented both as unindividu-
ated wholes and as a series of temporal elements with varying delays. These two
stimulus representations interact, producing different patterns of learning in trace
and delay conditioning. The model proposes that hippocampal lesions eliminate
long-latency temporal elements, but preserve short-latency temporal elements. For
trace conditioning, with no contiguity between cue and reward, these long-latency
temporal elements are necessary for learning adaptively timed responses. For de-
lay conditioning, the continued presence of the cue supports conditioned respond-
ing, and the short-latency elements suppress responding early in the cue. In accord
with the empirical data, simulated hippocampal damage impairs trace condition-
ing, but not delay conditioning, at medium-length intervals. With longer intervals,
learning is impaired in both procedures, and, with shorter intervals, in neither. In
addition, the model makes novel predictions about the response topography with
extended cues or post-training lesions. These results demonstrate how temporal
contiguity, as in delay conditioning, changes the timing problem faced by animals,
rendering it both easier and less susceptible to disruption by hippocampal lesions.

The hippocampus is an important structure in many types of learning and memory, with prominent
involvement in spatial navigation, episodic and working memories, stimulus configuration, and con-
textual conditioning. One empirical phenomenon that has eluded many theories of the hippocampus
is the dependence of aversive trace conditioning on an intact hippocampus (but see Rodriguez &
Levy, 2001; Schmajuk & DiCarlo, 1992; Yamazaki & Tanaka, 2005). For example, trace eyeblink
conditioning disappears following hippocampal lesions (Solomon et al., 1986; Moyer, Jr. et al.,
1990), induces hippocampal neurogenesis (Gould et al., 1999), and produces unique activity pat-
terns in hippocampal neurons (McEchron & Disterhoft, 1997). In this paper, we present a new ab-
stract computational model of hippocampal function during trace conditioning. We build on a recent
extension of the temporal-difference (TD) model of conditioning (Ludvig, Sutton & Kehoe, 2008;
Sutton & Barto, 1990) to demonstrate how the details of stimulus representation can qualitatively
alter learning during trace and delay conditioning. By gently tweaking this stimulus representation
and reducing long-latency temporal elements, trace conditioning is severely impaired, whereas de-
lay conditioning is hardly affected. In the model, the hippocampus is responsible for maintaining
these long-latency elements, thus explaining the selective importance of this brain structure in trace
conditioning.

The difference between trace and delay conditioning is one of the most basic operational distinctions
in classical conditioning (e.g., Pavlov, 1927). Figure 1 is a schematic of the two training procedures.
In trace conditioning, a conditioned stimulus (CS) is followed some time later by a reward or uncon-
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Figure 1: Event timelines in trace and delay conditioning. Time flows from left-to-right in the di-
agram. A vertical bar represents a punctate (short) event, and the extended box is a continuously
available stimulus. In delay conditioning, the stimulus and reward overlap, whereas, in trace condi-
tioning, there is a stimulus-free gap between the two punctate events.

ditioned stimulus (US); the two stimuli are separated by a stimulus-free gap. In contrast, in delay
conditioning, the CS remains on until presentation of the US. Trace conditioning is learned more
slowly than delay conditioning, with poorer performance often observed even at asymptote.

In both eyeblink conditioning (Moyer, Jr. et al., 1990; Solomon et al., 1986; Tseng et al., 2004)
and fear conditioning (e.g., McEchron et al., 1998), hippocampal damage severely impairs the ac-
quisition of conditioned responding during trace conditioning, but not delay conditioning. These
selective hippocampal deficits with trace conditioning are modulated by the inter-stimulus interval
(ISI) between CS onset and US onset. With very short ISIs (~300 ms in eyeblink conditioning in
rabbits), there is little deficit in the acquisition of responding during trace conditioning (Moyer, Jr.
et al., 1990). Furthermore, with very long ISIs (>1000 ms), delay conditioning is also impaired
by hippocampal lesions (Beylin et al., 2001). These interactions between ISI and the hippocampal-
dependency of conditioning are the primary data that motivate the new model.

1 TD Model of Conditioning

Our full model of conditioning consists of three separate modules: the stimulus representation,
learning algorithm, and response rule. The explanation of hippocampal function relies mostly on
the details of the stimulus representation. To illustrate the implications of these representational
issues, we have chosen the temporal-difference (TD) learning algorithm from reinforcement learning
(Sutton & Barto, 1990, 1998) that has become the sine qua non for modeling reward learning in
dopamine neurons (e.g., Ludvig et al., 2008; Schultz, Dayan, & Montague, 1997), and a simple,
leaky-integrator response rule described below. We use these for simplicity and consistency with
prior work; other learning algorithms and response rules might also yield similar conclusions.

1.1 Stimulus Representation

In the model, stimuli are not coherent wholes, but are represented as a series of elements or internal
microstimuli. There are two types of elements in the stimulus representation: the first is the presence
microstimulus, which is exactly equivalent to the external stimulus (Sutton & Barto, 1990). This mi-
crostimulus is available whenever the corresponding stimulus is on (see Fig. 3). The second type
of elements are the temporal microstimuli or spectral traces, which are a series of successively later
and gradually broadening elements (see Grossberg & Schmajuk, 1989; Machado, 1997; Ludvig et
al., 2008). Below, we show how the interaction between these two types of representational ele-
ments produces different styles of learning in delay and trace conditioning, resulting in differential
sensitivity of these procedures to hippocampal manipulation.

The temporal microstimuli are created in the model through coarse coding of a decaying memory
trace triggered by stimulus onset. Figure 2 illustrates how this memory trace (left panel) is encoded
by a series of basis functions evenly spaced across the height of the trace (middle panel). Each basis
function effectively acts as a receptive field for trace height: As the memory trace fades, different
basis functions become more or less active, each with a particular temporal profile (right panel).
These activity profiles for the temporal microstimuli are then used to generate predictions of the US.
For the basis functions, we chose simple Gaussians:
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Figure 2: Creating Microstimuli. The memory traces for a stimulus (left) are coarsely coded by
a series of temporal basis functions (middle). The resultant time courses (right) of the temporal
microstimuli are used to predict future occurrence of the US. A single basis function (middle) and
approximately corresponding microstimulus (right) have been darkened. The inset in the right panel
shows the levels of several microstimuli at the time indicated by the dashed line.

Given these basis functions, the microstimulus levels x; (%) at time ¢ are determined by the corre-
sponding memory trace height:

l‘t(Z) = f(yta 7'/7n7 O-)yta (2)

where f is the basis function defined above and m is the number of temporal microstimuli per
stimulus. The trace level y; was set to 1 at stimulus onset and decreased exponentially, controlled
by a single decay parameter, which was allowed to vary to simulate the effects of hippocampal
lesions. Every stimulus, including the US, was represented by a single memory trace and resultant
microstimuli.

1.2 Hippocampal Damage

We propose that hippocampal damage results in the selective loss of the long-latency temporal ele-
ments of the stimulus representation. This idea is implemented in the model through a decrease in
the memory decay constant from .985 to .97, approximately doubling the decay rate of the memory
trace that determines the microstimuli. In effect, we assume that hippocampal damage results in a
memory trace that decays more quickly, or, equivalently, is more susceptible to interference. Figure
3 shows the effects of this parameter manipulation on the time course of the elements in the stimulus
representation. The presence microstimulus is not affected by this manipulation, but the temporal
microstimuli are compressed for both the CS and the US. Each microstimulus has a briefer time
course, and, as a group, they cover a shorter time span. Other means for eliminating or reducing
the long-latency temporal microstimuli are certainly possible and would likely be compatible with
our theory. For example, if one assumes that the stimulus representation contains multiple memory
traces with different time constants, each with a separate set of microstimuli, then eliminating the
slower memory traces would also remove the long-latency elements, and many of the results below
hold (simulations not shown). The key point is that hippocampal damage reduces the number and
magnitude of long-latency microstimuli.

1.3 Learning and Responding

The model approaches conditioning as a reinforcement-learning prediction problem, wherein the
agent tries to predict the upcoming rewards or USs. The model learns through linear TD(\) (Ludvig
et al., 2008; Schultz et al., 1997; Sutton, 1988; Sutton & Barto, 1990, 1998). At each time step, the
US prediction (V) is determined by:

Vi(x) = [wix], = {Z wt(i)x(i)J ; 3)
i=1
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Figure 3: Hippocampal effects on the stimulus representation. The left panel presents the stimulus
representation in delay conditioning with the normal parameter settings, and the right panel presents
the altered stimulus representation following simulated hippocampal damage. In the hippocampal
representation, the temporal microstimuli for both CS (red, solid lines) and US (green, dashed lines)
are all briefer and shallower. The presence microstimuli (blue square wave and black spike) are not
affected by the hippocampal manipulation.

where x is a vector of the activation levels x(7) for the various microstimuli, w; is a corresponding
vector of adjustable weights w;(7) at time step ¢, and n is the total number of all microstimuli. The
US prediction is constrained to be non-negative, with negative values rectified to 0. As is standard
in TD models, this US prediction is compared to the reward received and the previous US prediction
to generate a TD error (d;):

0 =1 +YVa(xe) — Vi(xi—1), 4

where «y is a discount factor that determines the temporal horizon of the US prediction. This TD
error is then used to update the weight vector based on the following update rule:

Wil = Wi + adrey, )

where « is a step-size parameter and e, is a vector of eligibility trace levels (see Sutton & Barto,
1998), which together help determine the speed of learning. Each microstimulus has its own corre-
sponding eligibility trace which continuously decays, but accumulates whenever that microstimulus
is present:

€11 = YA€t + Xy, (6)
where + is the discount factor as above and ) is a decay parameter that determines the plasticity

window. These US predictions are translated into responses through a simple, thresholded leaky-
integrator response rule:

arr1 = vag + | Vig1(xe) o, (7N

where v is a decay constant, and 6 is a threshold on the value function V.

Our model is defined by Equations 1-7 and 7 additional parameters, which were fixed at the follow-
ing values for the simulations below: A =.95, a =.005, v =.97,n =50, 0 =.08, v =.93, § = .25. In
the simulated experiments, one time step was interpreted as 10 ms.
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Figure 4: Learning in the model for trace and delay conditioning with and without hippocampal
(HPC) damage. The three panels present training with different interstimulus intervals (ISI).

2 Results

We simulated 12 total conditions with the model: trace and delay conditioning, both with and with-
out hippocampal damage, for short (250 ms), medium (500 ms), and long (1000 ms) ISIs. Each
simulated experiment was run for 500 trials, with every 5th trial an unreinforced probe trial, during
which no US was presented. For delay conditioning, the CS lasted the same duration as the ISI and
terminated with US presentation. For trace conditioning, the CS was present for 5 time steps (50
ms). The US always lasted for a single time step, and an inter-trial interval of 5000 ms separated
all trials (onset to onset). Conditioned responding (CR magnitude) was measured as the maximum
height of the response curve on a given trial.

Figure 4 summarizes our results. The figure depicts how the CR magnitude changed across the 500
trials of acquisition training. In general, trace conditioning produced lower levels of responding
than delay conditioning, but this effect was most pronounced with the longest ISI. The effects of
simulated hippocampal damage varied with the ISI. With the shortest ISI (250 ms; left panel), there
was little effect on responding in either trace or delay conditioning. There was a small deficit early in
training with trace conditioning, but this difference disappeared quickly with further training. With
the longest ISI (1000 ms; right panel), there was a profound effect on responding in both trace and
delay conditioning, with trace conditioning completely eliminated. The intermediate ISI (500 ms;
middle panel) produced the most complex and interesting results. With this interval, there was only
a minor deficit in delay conditioning, but a substantial drop in trace conditioning, especially early in
training. This pattern of results roughly matches the empirical data, capturing the selective deficit in
trace conditioning caused by hippocampal lesions (Solomon et al., 1986) as well as the modulation
of this deficit by ISI (Beylin et al., 2001; Moyer, Jr. et al., 1990).
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Figure 5: Time course of US prediction and CR magnitude for both trace (red, dashed line) and
delay conditioning (blue, solid line) with a 500-ms ISL.



These differences in sensitivity to simulated hippocampal damage arose despite similar model per-
formance during normal trace and delay conditioning. Figure 5 shows the time course of the US
prediction (left panel) and CR magnitude (right panel) after trace and delay conditioning on a probe
trial with a 500-ms ISI. In both instances, the US prediction grew throughout the trial as the usual
time of the US became imminent. Note the sharp drop off in US prediction for delay conditioning
exactly as the CS terminates. This change reflects the disappearance of the presence microstimulus,
which supports much of the responding in delay conditioning (see Fig. 6). In both procedures, even
after the usual time of the US (and CS termination in the case of delay conditioning), there was still
some residual US prediction. These US predictions were caused by the long-latency microstimuli,
which did not disappear exactly at CS offset, and were ordinarily (on non-probe trials) countered by
negative weights on the US microstimuli. The CR magnitude tracked the US prediction curve quite
closely, peaking around the time the US would have occurred for both trace and delay conditioning.
There was little difference in either curve between trace and delay conditioning, yet altering the
stimulus representation (see Fig. 3) had a more pronounced effect on trace conditioning.

An examination of the weight distribution for trace and delay conditioning explains why hippocam-
pal damage had a more pronounced effect on trace than delay conditioning. Figure 6 depicts some
representative microstimuli (left column) as well as their corresponding weights (right columns) fol-
lowing trace or delay conditioning with or without simulated hippocampal damage. For clarity in
the figure, we have grouped the weights into four categories: positive (+), large positive (+++), nega-
tive (-), and large negative (--). The left column also depicts how the model poses the computational
problem faced by an animal during conditioning; the goal is to sum together weighted versions of the
available microstimuli to produce the ideal US prediction curve in the bottom row. In normal delay
conditioning, the model placed a high positive weight on the presence microstimulus, but balanced
that with large negative weights on the early CS microstimuli, producing a prediction topography
that roughly matched the ideal prediction (see Fig. 5, left panel). In normal trace conditioning, the
model only placed a small positive weight on the presence microstimulus, but supplemented that
with large positive weights on both the early and late CS microstimuli, also producing a prediction
topography that roughly matched the ideal prediction.
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Figure 6: Schematic of the weights (right columns) on various microstimuli following trace and
delay conditioning. The left column illustrates four representative microstimuli: the presence mi-
crostimulus, an early CS microstimulus, a late CS microstimulus, and a US microstimulus. The
ideal prediction is the expectation of the sum of future discounted rewards.



Following hippocampal lesions, the late CS microstimuli were no longer available (N/A), and the
system could only use the other microstimuli to generate the best possible prediction profile. In
delay conditioning, the loss of these long-latency microstimuli had a small effect, notable only with
the longest ISI (1000 ms) with these parameter settings. With trace conditioning, the loss of the
long-latency microstimuli was catastrophic, as these microstimuli were usually the major basis for
the prediction of the upcoming US. As a result, trace conditioning became much more difficult (or
impossible in the case of the 1000-ms ISI), even though delay conditioning was less affected.

The most notable (and defining) difference between trace and delay conditioning is that the CS and
US overlap in delay conditioning, but not trace conditioning. In our model, this overlap is necessary,
but not sufficient, for the the unique interaction between the presence microstimulus and temporal
microstimuli in delay conditioning. For example, if the CS were extended to stay on beyond the
time of US occurrence, this contiguity would be maintained, but negative weights on the early CS
microstimuli would not suffice to suppress responding throughout this extended CS. In this case, the
best solution to predicting the US for the model might be to put high weights on the long-latency
temporal microstimuli (as in trace conditioning; see Fig 6), which would not persist as long as the
now extended presence microstimulus. Indeed, with a CS that was three times as long as the ISI, we
found that the US prediction, CR magnitude, and underlying weights were completely indistinguish-
able from trace conditioning (simulations not shown). Thus, the model predicts that this extended
delay conditioning should be equally sensitive to hippocampal damage as trace conditioning for
the same ISIs. This empirical prediction is a fundamental test of the representational assumptions
underlying the model.

The particular mechanism that we chose for simulating the loss of the long-latency microstimuli
(increasing the decay rate of the memory trace) also leads to a testable model prediction. If one
were to pre-train an animal with trace conditioning and then perform hippocampal lesions, there
should be some loss of responding, but, more importantly, those CRs that do occur should appear
earlier in the interval because the temporal microstimuli now follow a shorter time course (see Fig.
3). There is some evidence for additional short-latency CRs during trace conditioning in lesioned
animals (e.g., Port et al., 1986; Solomon et al., 1986), but, to our knowledge, this precise model
prediction has not been rigorously evaluated.

3 Discussion and Conclusion

We evaluated a novel computational model for the role of the hippocampus in trace conditioning,
based on a reinforcement-learning framework. We extended the microstimulus TD model presented
by Ludvig et al. (2008) by suggesting a role for the hippocampus in maintaining long-latency el-
ements of the temporal stimulus representation. The current model also introduced an additional
element to the stimulus representation (the presence microstimulus) and a simple response rule for
translating prediction into actions; we showed how these subtle innovations yield interesting inter-
actions when comparing trace and delay conditioning. In addition, we adduced a pair of testable
model predictions about the effects of extended stimuli and post-training lesions.

There are several existing theories for the role of the hippocampus in trace conditioning, including
the modulation of timing (Solomon et al., 1986), establishment of contiguity (e.g., Wallenstein et
al., 1998), and overcoming of task difficulty (Beylin et al., 2001). Our new model provides a com-
putational mechanism that links these three proposed explanations. In our model, for similar ISTs,
delay conditioning requires learning to suppress responding early in the CS, whereas trace condi-
tioning requires learning to create responding later in the trial, near the time of the US (see Fig. 6).
As a result, for the same ISI, delay conditioning requires changing weights associated with earlier
microstimuli than trace conditioning, though in opposite directions. These early microstimuli reach
higher activation levels (see Fig. 2), producing higher eligibility traces, and are therefore learned
about more quickly. This differential speed of learning for short-latency temporal microstimuli cor-
responds with much behavioural data that shorter ISIs tend to improve both the speed and asymptote
of learning in eyeblink conditioning (e.g., Schneiderman & Gormerzano, 1964). Thus, the contigu-
ity between the CS and US in delay conditioning alters the timing problem that the animal faces,
effectively making the time interval to be learned shorter, and rendering the task easier for most ISIs.

In future work, it will be important to characterize the exact mathematical properties that constrain
the temporal microstimuli. Our simple Gaussian basis function approach suffices for the datasets



examined here (cf. Ludvig et al., 2008), but other related mathematical functions are certainly
possible. For example, replacing the temporal microstimuli in our model with the spectral traces
of Grossberg & Schmajuk (1989) produces results that are similar to ours, but using sequences of
Gamma-shaped functions tends to fail, with longer intervals learned too slowly relative to shorter
intervals. One important characteristic of the microstimulus series seems to be that the heights of
individual elements should not decay too quickly. Another key challenge for future modeling is
reconciling this abstract account of hippocampal function in trace conditioning with approaches that
consider greater physiological detail (e.g., Rodriguez & Levy, 2001; Yamazaki & Tanaka, 2005).

The current model also contributes to our understanding of the TD models of dopamine (e.g., Schultz
et al., 1997) and classical conditioning (Sutton & Barto, 1990). These models have often given short
shrift to issues of stimulus representation, focusing more closely on the properties of the learning
algorithm (but see Ludvig et al., 2008). Here, we reveal how the interaction of various stimulus
representations in conjunction with the TD learning rule produces a viable model of some of the
differences between trace and delay conditioning.
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