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Abstract The temporal-difference (TD) algorithm from re-
inforcement learning provides a simple method for incre-
mentally learning predictions of upcoming events. Applied
to classical conditioning, TD models suppose that animals
learn a real-time prediction of the unconditioned stimulus
(US) on the basis of all available conditioned stimuli (CSs).
In the TD model, similar to other error-correction models,
learning is driven by prediction errors—the difference be-
tween the change in US prediction and the actual US. With
the TD model, however, learning occurs continuously from
moment to moment and is not artificially constrained to
occur in trials. Accordingly, a key feature of any TD model
is the assumption about the representation of a CS on a
moment-to-moment basis. Here, we evaluate the perfor-
mance of the TD model with a heretofore unexplored range
of classical conditioning tasks. To do so, we consider three
stimulus representations that vary in their degree of temporal
generalization and evaluate how the representation influences
the performance of the TD model on these conditioning tasks.
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Classical conditioning is the process of learning to predict the
future. The temporal-difference (TD) algorithm is an

incremental method for learning predictions about impending
outcomes that has been used widely, under the label of rein-
forcement learning, in artificial intelligence and robotics for
real-time learning (Sutton & Barto, 1998). In this article, we
evaluate a computational model of classical conditioning based
on this TD algorithm. As applied to classical conditioning, the
TD model supposes that animals use the conditioned stimulus
(CS) to predict in real time the upcoming unconditioned stimuli
(US) (Sutton & Barto, 1990). The TD model of conditioning
has become the leading explanation for conditioning in neuro-
science, due to the correspondence between the phasic firing of
dopamine neurons and the reward-prediction error that drives
learning in the model (Schultz, Dayan, & Montague, 1997; for
reviews, see Ludvig, Bellemare, & Pearson, 2011; Maia, 2009;
Niv, 2009; Schultz, 2006).

The TD model can be viewed as an extension of the
Rescorla–Wagner (RW) learning model, with two additional
twists (Rescorla & Wagner, 1972). First, the TD model
makes real-time predictions at each moment in a trial, there-
by allowing the model to potentially deal with intratrial
effects, such as the effects of stimulus timing on learning
and the timing of responses within a trial. Second, the TD
algorithm uses a slightly different learning rule with impor-
tant implications. As will be detailed below, at each time
step, the TD algorithm compares the current prediction
about future US occurrences with the US predictions gener-
ated on the last time step. This temporal difference in US
prediction is compared with any actual US received; if the
latter two quantities differ, a prediction error is generated.
This prediction error is then used to alter the associative
strength of recent stimuli, using an error-correction scheme
similar to the RW model. This approach to real-time pre-
dictions has the advantage of bootstrapping by comparing
successive predictions. As a result, the TD model learns
whenever there is a change in prediction, and not only when
USs are received or omitted. This seemingly subtle differ-
ence makes empirical predictions beyond the scope of the
RW model. For example, the TD model naturally accounts
for second-order conditioning. When an already-established
CS occurs, there is an increase in the US prediction and,
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thus, a positive prediction error. This prediction error drives
learning to the new, preceding CS, producing second-order
conditioning (Sutton & Barto, 1990).

In the RW model and many other error-correction models,
the associative strength of a single CS trained by itself is a
recency-weighted average of the magnitude of all previous US
presentations, including trials with no US as the zero point of
the continuum (see Kehoe & White, 2002). The relative
timing of those previous USs, relative to the CS, does not play
a role. So long as the US occurs during the experimenter-
designated trial, the US is equivalently included into that
running average, which also serves as a prediction of the
upcoming US magnitude. In contrast, in TD models, time
infuses the prediction process. As was noted above, both the
predictions and prediction errors are computed on a moment-
by-moment basis. In addition, the predictions themselves can
have a longer time horizon, extending beyond the current trial.

In this article, we evaluate the TD model of conditioning
on a broader range of behavioral phenomena than have been
considered in earlier work on the TD model (e.g., Ludvig,
Sutton, & Kehoe, 2008; Ludvig, Sutton, Verbeek, & Kehoe,
2009; Moore & Choi, 1997; Schultz et al., 1997; Sutton &
Barto, 1990). In particular, we try to highlight those issues
that distinguish the TD model from the RW model (Rescorla
& Wagner, 1972). In most situations where the relative
timing does not matter, the TD model reduces to the RW
model. As outlined in the introduction to this special issue,
we focus on the phenomena of timing in conditioning
(Group 12) and how stimulus timing can influence funda-
mental learning phenomena, such as acquisition (Group 1),
blocking, and overshadowing (Group 7). To illustrate how
the TD model learns in these situations, we present simu-
lations with three stimulus representations, each of which
makes different assumptions about the temporal granularity
with which animals represent the world.

Model specification

In the TD model, the animal is assumed to combine a
representation of the available stimuli with a learned weight-
ing to create an estimate of upcoming USs. These estimated
US predictions (V) are generated through a linear combina-
tion of a vector (w) of modifiable weights (w(i)) at time step
t and a corresponding vector (x) for the elements of the
stimulus representation (x(i)):

Vt xð Þ ¼ wT
t x ¼

Xn

i¼1
wtðiÞxðiÞ: ð1Þ

This V is an estimate of the value in the context of
reinforcement learning theory (Sutton & Barto, 1998) and
is equivalent to the aggregate associative strength central to

many models of conditioning (Pearce &Hall, 1980; Rescorla
& Wagner, 1972). We will primarily use the term US predic-
tion to refer to this core variable in the model. In the learning
algorithm, each element of the stimulus representation (or
sensory input) has an associated weight that can be modified
on the basis of the accuracy of the US prediction. In the
simplest case, every stimulus has a single element that is on
(active) when that stimulus is present and off (inactive)
otherwise. The modifiable weight would then be directly
equivalent to the US prediction supported by that stimulus.
Below, we will discuss in detail some more sophisticated
stimulus representations.

The US prediction based on available stimuli is then trans-
lated into the conditioned response (CR) through a simple
response generation mechanism. This explicit rendering of
model output into expected behavioral responding allows for
more directly testable predictions. There are many possible
response rules (e.g., Church & Kirkpatrick, 2001; Frey &
Sears, 1978; Moore et al., 1986), but, for our purposes, a
simple formalism will suffice. We assume that there is a
reflexive mapping from US prediction to CR in the form of
a thresholded leaky integrator. The US prediction (V) above
the threshold (θ) is integrated in real time with a small decay
constant (0 < ν < 1) to generate a response (a):

at ¼ uat$1 þ VtðxtÞ
! "

θ: ð2Þ

The truncated square brackets indicate that only the supra-
threshold portion of the US prediction is integrated into the
response, which is interpreted as the CR level (see Kehoe,
Ludvig, Dudeney, Neufeld, & Sutton, 2008; Ludvig et al.,
2009). This response measure can be readily mapped in a
monotonic fashion onto either continuous measures (e.g., lick
rate, suppression ratios, food cup approach time) or response
likelihood measures based on discrete responses. Thus, com-
parisons can be conducted across experiments on the basis of
ordinal relationships, rather than differing preparation-specific
levels (cf. Rescorla & Wagner, 1972).

All learning in the model takes place through changes in
these modifiable weights. These updates are accomplished
through the TD learning algorithm (Sutton, 1988; Sutton &
Barto, 1990, 1998). First, the TD or reward-prediction error
(δt) is calculated on every time step on the basis of the
difference between the sum of the US intensity (rt) and the
new US prediction from the current time step (Vt(xt)), ap-
propriately discounted, and the US prediction from the last
time step (Vt(xt-1)):

dt ¼ rt þ gVt xtð Þ $ Vt xt$1ð Þ; ð3aÞ

where g is the discount factor (between 0 and 1). A
positive prediction error is generated whenever the world
(US plus new predictions) exceeds expectations (the old
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US prediction), and a negative prediction error is generated
whenever the world falls short of expectations. Alternatively,
rearranging terms, the TD error can be expressed as the
difference between the US intensity and the change in US
prediction:

dt ¼ rt $ Vt xt$1ð Þ $ gVt xtð Þ½ ': ð3bÞ

This formulation emphasizes the similarity with the RW
rule, where a simple difference between the US intensity and a
prediction of that intensity drives learning. In this formulation,
a positive prediction error occurs when the US intensity
exceeds a temporal difference in US prediction, and a negative
prediction error occurs whenever the US intensity falls below
the temporal difference in US prediction. Note that if γ is 0,
the prediction error is identical to the RW prediction error,
making real-time RW a special case of TD learning.

This TD error is then used to update the modifiable
weights for each element of the stimulus representation on
the basis of the following update rule:

wtþ1 ¼ wt þ adtet ð4Þ

where α is a learning-rate parameter and et is a vector of
eligibility trace levels for each of the stimulus elements. These
eligibility traces determine how modifiable each particular
weight is at a given moment in time. Weights for recently
active stimulus elements will have high corresponding eligi-
bility traces, thereby allowing for larger changes. In the con-
text of classical conditioning, this feature of the model means
that faster conditioning will usually occur for elements prox-
imal to the US and slower conditioning for elements remote
from it. More generally, the eligibility traces effectively solve
the problem of temporal credit assignment: how to decide
among all antecedent events which was most responsible for
the current reward. These eligibility traces accumulate in the
presence of the appropriate stimulus element and decay con-
tinuously according to gl:

etþ1 ¼ glet þ xt ð5Þ

where γ is the discount factor, as above, and λ is a decay
parameter (between 0 and 1) that determines the plasticity
window. In the reinforcement learning literature, this learning
algorithm is known as TD (λ) with linear function approxi-
mation (Sutton & Barto, 1998). We now turn to the three
stimulus representations with different temporal profiles that
provide the features that are used by the TD learning algorithm
to generate the US prediction.

Presence representation

Perhaps the simplest stimulus representation has each
stimulus correspond to a single representational element.

Figure 1 depicts a schematic of this representation (right
column), along with other more complex representations
(see below). This presence representation corresponds
directly to the stimulus (top row in Fig. 1) and is on
when the stimulus is present and off when the stimulus
is not present. In Fig. 1, the representations are arranged
along a gradient of temporal generalization, and the
presence representation rests at one end, with complete
temporal generalization between all moments in a stimu-
lus. Although an obvious simplification, this approach, in
combination with an appropriate learning rule, can ac-
complish a surprisingly wide range of real-time learning
phenomena (Sutton & Barto, 1981, 1990). Sutton and
Barto (1990) demonstrated that the TD learning rule, in
conjunction with this stimulus representation, was suffi-
cient to reproduce the effects of interstimulus interval
(ISI) on the rate of acquisition, as well as blocking,
second-order conditioning, and some temporal primacy
effects (e.g., Egger & Miller, 1962; Kehoe, Schreurs, &
Graham, 1987). This presence representation suffers from
the obvious fault that there is complete generalization (or
a lack of temporal differentiation) across all time points
in a stimulus. Early parts of a stimulus are no different
than the later parts of the stimulus; thus, a graded or
timed US prediction across the stimulus is impossible.

Complete serial compound

At the opposite end from a single representational element
per stimulus is a separate representational element for every
moment in the stimulus (first column in Fig. 1). The moti-
vating idea is that extended stimuli are not coherent wholes
but, rather, temporally differentiated into a serial compound
of temporal elements. In a complete serial compound
(CSC), every time step in a stimulus is a unique element
(separate rows in Fig. 1). This CSC representation is used in
most of the TDmodels of dopamine function (e.g., Montague,
Dayan, & Sejnowski, 1996; Schultz, 2006; Schultz et al.,
1997) and is often taken as synonymous with the TD model
(e.g., Amundson & Miller, 2008; Church & Kirkpatrick,
2001; Desmond & Moore, 1988; Jennings & Kirkpatrick,
2006), although alternate proposals do exist (Daw, Courville,
& Touretzky, 2006; Ludvig et al., 2008; Suri & Schultz,
1999). Although clearly biologically unrealistic, in a behav-
ioral model, this CSC representation can serve as a useful
fiction that allows examination of different learning rules
unfettered by constraints from the stimulus representation
(Sutton & Barto, 1990). This stimulus representation occupies
the far pole along the temporal generalization gradient from
the presence representation (see Fig. 1). There is complete
temporal differentiation of every moment and no temporal
generalization whatsoever.
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Microstimulus representation

A third stimulus representation occupies an intermediate zone
of limited temporal generalization between complete temporal
generalization (presence) and no temporal generalization
(CSC). The middle column of Fig. 1 depicts what such a
representation looks like: Each successive row presents a
microstimulus (MS) that is wider and shorter and peaks later.

The MS temporal stimulus representation is determined
through two components: an exponentially decaying mem-
ory trace and a coarse-coding of that memory trace. The
memory trace (y) is initiated to 1 at stimulus onset and
decays as a simple exponential:

ytþ1 ¼ dyt; ð6Þ

where d is a decay parameter (0 < d < 1). Importantly, there
is a memory trace and corresponding set of microstimuli for
every stimulus, including the US. This memory trace is
coarse coded through a set of basis function across the
height of the trace (see Ludvig et al., 2008; Ludvig et al.,
2009). For these basis functions, we used nonnormalized
Gaussians:

f ðy;μ;σÞ ¼ 1ffiffiffiffiffi
2p

p exp $ y$ μð Þ2

2σ2

 !

; ð7Þ

where y is the exponentially decaying memory trace as
above, exp is the exponential function, and μ is the mean

and σ the width of the basis function. These basis functions
can be thought of as equally spaced receptive fields that are
triggered when the memory trace decays to the appropriate
height for that receptive field. The strength x of each MS i at
each time point t is determined by the proximity of the
current height of the memory trace (yt) to the center of the
corresponding basis function multiplied by the trace height
at that time point:

xtðiÞ ¼ f ðyt; i m;σ= Þyt; ð8Þ

where m is the total number of microstimuli for each stim-
ulus. Because the basis functions are spaced linearly but the
memory trace decays exponentially, the resultant temporal
extent (width) of the microstimuli varies, with later micro-
stimuli lasting longer than earlier microstimuli (see the
middle column of Fig. 1), even with a constant width of
the basis function.

The resulting microstimuli bear a resemblance to the
spectral traces of Grossberg and Schmajuk (1989; also
Brown, Bullock, & Grossberg, 1999; Buhusi & Schmajuk,
1999), as well as the behavioral states of Machado (1997).
We do not claim that the exact quantitative form of these
microstimuli is critical to the performance of the TD model
below, but rather, we are examining how the general idea of
a series of broadening microstimuli with increasing tempo-
ral delays interacts with the TD learning rule. Our claim will
be that introducing a form of limited temporal generalization

Fig. 1 The three stimulus
representations (in columns)
used with the TD model. Each
row represents one element of
the stimulus representation. The
three representations vary along
a temporal generalization
gradient, with no generalization
between nearby time points in
the complete serial compound
(left column) and complete
generalization between nearby
time points in the presence
representation (right column).
The microstimulus
representation occupies a
middle ground. The degree of
temporal generalization
determines the temporal
granularity with which US
predictions are learned
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into the stimulus representation and using the TD learning
rule creates a model that captures a broader space of condi-
tioning phenomena.

To be clear, here is a fully worked example of what the
TD model learns in simple CS–US acquisition. In this
example, the CS–US interval is 25 time steps, and we
assume a CSC representation and one-step eligibility traces
(λ 0 0). First, imagine the time point at which the US occurs
(time step 25). On the first trial, the weight for time step 25
is updated toward the US intensity, but nothing else
changes. On the second trial, the weight for time step 24
also gets updated, because there is now a temporal differ-
ence in the US prediction between time step 24 and time
step 25. The weight for time step 24 is moved toward the
discounted weight for time step 25 (bootstrapping). The
weight for time step 25 gets updated as before after the US
is received. On the third trial, the weight for time step 23
would also get updated, because there is now a temporal
difference between the US predictions at time steps 23 and
24. . . . Eventually, across trials, the prediction errors (and
thus, US predictions) percolate back one step at a time to the
earliest time steps in the CS. This process continues toward
an asymptote, where the US prediction at time step 25
matches the US intensity and the predictions for earlier time
steps match the appropriately discounted US intensity. If we
take the US intensity to be 1, because of the discounting, the
asymptotic prediction for time step 24 is γ, which is equal to
0 (the US intensity at that time step) + 1 × γ (the discounted
US intensity from the next step). Following the same logic,
the asymptotic predictions for earlier time points in the
stimulus are γ2, γ3, γ4, . . . and so on, forming an exponen-
tial US prediction curve (see also Eq. 9). Introducing mul-
tistep eligibility traces (λ > 0) maintains these asymptotic
predictions but allows for the prediction errors to percolate
back through the CS faster than one step per trial.

For the simulations below, we chose a single set of
parameters to illustrate the qualitative properties of the
model, rather than attempting to maximize goodness of fit
to any single data set or subset of findings. By using a fixed
set of parameters, we tested the ability of the model to
reproduce the ordinal relationships for a broad range of
phenomena, thus ascertaining the scope of the model in a
consistent manner (cf. Rescorla & Wagner, 1972, p. 77).
The full set of parameters is listed in the Appendix.

Simulation results

Acquisition set

For this first set of results, we simulated the acquisition of a
CR with the TD model, explicitly comparing the three
stimulus representations described previously (see item

#1.1 listed in the introduction to this issue). We focus here
on the timing of the response during acquisition (#12.4) and
the effect of ISI on the speed and asymptote of learning
(#12.1).

Figure 2 depicts the time course of the US prediction
during a single trial at different points during acquisition for
the three representations. In these simulations, the US oc-
curred 25 times steps after the CS on all trials. For the CSC
representation, the TDmodel gradually learns a US prediction
curve that increases exponentially in strength through the
stimulus interval until reaching a maximum of 1 at exactly
the time the US occurred (time step 25). This exponential
increase is due to the discounting in the TD learning rule
(see Eq. 3). That is, at each time point, the learning algorithm
updates the previous US prediction toward the US received
plus the current discounted US prediction.

With a CSC representation, each time point has a separate
weight, and therefore, the TD model perfectly produces an
exponentially increasing US prediction curve at asymptote
(Fig. 2a). For the other two representations, the representa-
tions at different time steps are not independent, so the
updates for one time step directly alter the US prediction
at other time steps through generalization. Given this inter-
dependence, the TD learning mechanism produces an as-
ymptotic US prediction curve that best approximates the
exponentially increasing curve observed with the CSC,
using the available representational elements. With the
presence representation (Fig. 2b), there is only a single
weight per stimulus that can be learned. As a result, the
algorithm gradually converges on a weight that is slightly
below the halfway point between the US intensity (1)
and the discounted US prediction at the onset of the
stimulus (γt 0 .9725≈ .47, where t is the number of time
steps in the stimulus). The US prediction is nearly con-
stant throughout the stimulus, modulo a barely visible
decrease due to nonreinforcement during the stimulus
interval. This asymptotic weight is a product of the small
negative prediction errors at each time step when the US
does not arrive and the large positive prediction error at
US delivery. With a near-constant US prediction, the TD
model with the presence representation cannot recreate
many features of response timing (see also Fig. 4b).

Finally, as is shown in Fig. 2c, the TD algorithm with the
MS representation also converges at asymptote to a weighted
sum of the different MSs that approximates the exponentially
increasing US prediction curve. Even with only six MSs per
stimulus, a reasonable approximation is found after 200 trials.
An important feature of the MS representation is brought to
the fore here. The US also acts as a stimulus with its own
attendant MSs. These MSs gain strong negative weights (be-
cause the US is not followed by another US) and, thus,
counteract any residual prediction about the US that would
be produced by the CS MSs during the post-US period.
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Figure 3 shows how changing the ISI influences the
acquisition of responding in the TD model with the three
stimulus representations (#12.1). Empirically, the shortest

and longest ISIs are often learned more slowly and to a
lower asymptote (e.g., Smith, Coleman, & Gormezano,
1969). In this simulation, there were six ISIs (0, 5, 10, 25,
50, and 100 time steps). The top panel (Fig. 3a) depicts the
full learning curves for each representation and the four
longer ISIs, and the bottom panel displays the maximum
level of responding in the TD model on the final trial of
acquisition for each ISI (trial 200). With the CSC represen-
tation, the ISI has limited effect. Once the ISI gets long
enough, the CSC version of the TD model always converges
to the same point. That similarity is because the US predic-
tion curve is learned at the same speed and with the same
shape independently of ISI (see also Fig. 4).

With the presence representation, there is a substantial
decrease in asymptotic CR level with longer ISIs and a small
decrease at short ISIs—similar to what has been shown
previously (e.g., Fig. 18 in Sutton & Barto, 1990). The
decrease with longer ISIs occurs because there is only a
single weight with the presence representation. That weight
is adjusted on every trial by the many negative prediction
errors early in the CS and the single positive prediction error
at US onset. With longer ISIs, there are more time points
(early in the stimulus) with small negative prediction errors.
With only a single weight to be learned and no temporal
differentiation, the presence representation thereby results in
lower US prediction (and less responding) with longer ISIs.
With very short ISIs, in contrast, the high learned US prediction
does not quite have enough time to accumulate through the
response generation mechanism (Eq. 2), producing a small dip
with short ISIs (which is even more pronounced for the MS
representation). There is an interesting interaction between
learning rate and asymptotic response levels with the presence
representation. Although the longer ISIs produce lower rates of
asymptotic conditioning, they are actually learned about more
quickly because the eligibility trace, which helps determine the
learning rate, accumulates to a higher level with longer stimuli
(see right panel of Fig. 3b). In sum, with the presence repre-
sentation, longer stimuli are learned about more quickly, but to
a lower asymptote.

With the MS representation, a similar inverted-U pattern
emerges. The longest ISI is now both learned about most
slowly and to a lower asymptote. The slower learning

�Fig. 2 Time course of US prediction over the course of acquisition for
the TD model with three different stimulus representations. a With the
complete serial compound (CSC), the US prediction increases expo-
nentially through the interval, peaking at the time of the US. At
asymptote (trial 200), the US prediction peaks at the US intensity (1
in these simulations). b With the presence representation, the US
prediction converges to an almost constant level. This constant level
is determined by the US intensity and the length of the CS–US interval.
c With the microstimulus representation, at asymptote, the TD model
approximates the exponential decaying time course depicted with the
CSC through a linear combination of the different microstimuli
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emerges because the late MSs are shorter than the early MSs
(see Fig. 1) and, therefore, produce lower eligibility traces.
The lower asymptote emerges because the MSs are inexact
and also extend beyond the point of the US. The degree of
inexactness grows with ISI. As a result, the maximal US
prediction does not get as close to 1 with longer ISIs, and a
lower asymptotic response is generated. In this simulation
with 200 trials, it is primarily the low learning rate due to
low eligibility that limits the CR level with long ISIs, but a
similar qualitative effect emerges even with more trials (or a
larger learning rate; not shown). Finally, as with the pres-
ence representation, the shortest ISI produces less respond-
ing because of the accumulation component of the response
generation mechanism.

Timing set

For our second set of simulations, we consider in greater
detail the issue of response timing during conditioning (cf.
Items #12.4, #12.5, #12.6, and #12.9 as listed in the Intro-
duction to this special issue). In these simulations, there
were four different ISIs: 10, 25, 50, and 100 time steps.
Simulations were run for 500 trials, and every 5th trial was a
probe trial. On those probe trials, the US was not presented,

and the CS remained on for twice the duration of the ISI to
evaluate response timing unfettered by the termination of
the CS (analogous to the peak procedure from operant
conditioning; Roberts, 1981; for examples of a similar pro-
cedure with eyeblink conditioning, see Kehoe et al., 2008;
Kehoe, Olsen, Ludvig, & Sutton, 2009).

Figure 4 illustrates the CR time course for the different
stimulus representations and ISIs. As can be seen in the top
row, with a CSC representation (left column), the TD model
displays a CR time course that is sharply peaked at the exact
time of US presentation, even in the absence of the US. In
line with those results, the bottom row (Fig. 4b) shows how
the peak time is perfectly aligned with the US presentation
from the very first CR that is emitted by the model. This
precision is due to the perfect timing inherent in the stimulus
representation and is incongruent with empirical data, which
generally show a less precise timing curve (e.g., Kehoe,
Olsen, et al., 2009; Smith, 1968). In addition, the time
courses are exactly the same for the different ISIs, only
translated along the time axis. There is no change in the
width or spread of the response curve with longer ISIs, again
in contrast to the empirical data (Kehoe, Olsen, et al., 2009;
Smith, 1968). Note again how the maximum response levels
are the same for all the ISIs (cf. Fig. 3).
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Fig. 3 a Conditioned response
(CR) level after 200 trials as a
function of interstimulus
interval (ISI) for the three
different representations. The
complete serial compound
(CSC) representation produces
a higher asymptote with longer
ISIs, whereas the other two
representations produce more of
an inverted-U-shaped curve, in
better correspondence with the
empirical data. b Learning
curves as a function of ISI for
the different representations.
The learning curves as a whole
show a similar pattern to the
asymptotic levels, with the key
exception that the presence
representation produces an in-
teraction between learning rate
and asymptotic levels. MS 0
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With the MS representation (middle column in Fig. 4),
model performance is greatly improved. The response curve
gradually increases to a maximum around the usual time of
US presentation and gradually decreases afterward for all
four ISIs. The response curves are wider for the longer ISIs
(although not quite proportionally), approximating one as-
pect of scalar timing, despite a deterministic representation.
The times of the simulated CR peaks (bottom row) are also
reasonably well aligned with actual CRs from their first
appearance (see Drew, Zupan, Cooke, Couvillon, & Balsam,
2005; Kehoe et al., 2008). In contrast to the CSC represen-
tation, the simulated peaks occur early during the initial
portion of acquisition but drift later as learning progresses.
This effect is most pronounced for the longest ISI—in line
with the empirical data for eyeblink conditioning (Kehoe et
al., 2008; Vogel, Brandon, & Wagner, 2003). At asymptote,
the CR peaks occur slightly (1 or 2 time steps) later than the
usual time of US presentation, due to a combination of the
estimation error inherent in the coarse stimulus representa-
tion and the slight lag induced by the leaky integration of the
real-time US prediction (Eq. 2).

Finally, the TD model with the presence representation
does very poorly at response timing, as might be expected

given that no temporal differentiation in the US prediction
curve is possible. The simulated CRs peak too late for the
short ISIs (10 and 25 time steps), too early for the medium
ISI (50 time steps), and there is no response curve at all for
the longest ISI (100 time steps). The late peaks for the short
ISI reflect the continued accumulation of the US prediction
by the response generation mechanism (Eq. 2) well past the
usual time of the US as the CS continues to be present. The
disappearance of a response for the longest ISI is due to the
addition of probe trials in this simulation (cf. Fig. 3). With
only a single representational element, the probe trials are
particularly detrimental to learning with the presence repre-
sentation. Not only is no US present on the probe trials, but
also the CS (and thus, the presence element) is extended.
This protracted period of unreinforced CS presentation oper-
ates as a doubly long extinction trial, driving down the weight
for the lone representational element and reducing the overall
US prediction below the threshold for the response generation
mechanism. Indeed, making the probe trials longer would
drive down the US prediction even further, potentially elimi-
nating responding for the shorter ISIs as well. The other
representations do not suffer from this shortcoming, because
the decline in the weights of elements during the extended

Fig. 4 Timing of the conditioned response (CR) on probe trials
with different interstimulus intervals (ISIs). a Time course of
responding on a single probe trial. For all three stimulus represen-
tations, the response peaks near the time of usual US presentation.
The key difference is the sharpness in these response peaks; there
is too much temporal specificity for the complete serial compound

(CSC) representation and too little for the presence representation.
b Peak times over the course of learning. Over time, the peak
response time changes very little for the CSC and presence repre-
sentations. For the microstimulus representation, the peak times
tend to initially occur a little too early but gradually shift later as
learning progresses
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portion of the CS generalizes only weakly, if at all, to earlier
portions of the CS.

Cue competition set

For this third set of simulations, we examined how the TD
model deals with a pair of basic cue competition effects. As
listed in the introduction to this special issue, these effects
include blocking (#7.2) and overshadowing (#7.5), with a
focus on how stimulus timing plays a role in modulating
these effects (#12.7; #7.11). Figure 5 depicts simulated
responding in the model following three variations of a
blocking experiment in which one stimulus (CSA) was
given initial reinforced training at a fixed ISI and then a
second stimulus (CSB) was added, using the same ISI, a
shorter ISI, or a longer ISI. Thus, in the resulting compound,
the onset of the added, blocked stimulus (CSB) occurred at
the same time, later, or earlier than the blocking stimulus
(CSA) (cf. Jennings & Kirkpatrick, 2006; Kehoe, Schreurs,
& Amodei, 1981; Kehoe et al., 1987). In the simulations,
CSA was first trained individually for 200 trials, and then
CSA and CSB were trained in compound for a further 200
trials. Following this training, probe trials were run with
CSA alone, CSB alone, or the compound of the two stimuli.

The top panel of Fig. 5 (Fig. 5a) shows responding on the
probe trials when both CSs had identical ISIs (50 time
steps). With all three representations, and in accord with
the empirical data (e.g., Cole & McNally, 2007; Jennings &
Kirkpatrick, 2006; Kehoe et al., 1981), there is complete
blocking of responding to CSB but high levels of respond-
ing to both CSA and the CSA + CSB compound stimulus.
With the CSC representation, the blocking occurs because
the US is perfectly predicted by the pretrained CSA after the
first phase of training; thus, there is no prediction error and
no learning to the added CSB. With the presence and MS
representations, the US is not perfectly predicted by CSA
after the first phase (cf. Fig. 2). As a result, when the US
occurs, there is still a positive prediction error, which causes
an increase in the weights of eligible CS elements. The
increment in the weights induced by this prediction error,
however, is perfectly cancelled out by the ongoing, small
negative prediction errors during the compound stimulus on
the next trial. No net increase in weights occurs to either
stimulus, resulting in blocking to the newly introduced CSB
(see the section on acquisition above).

If, instead, the added CSB starts later than the pretrained
CSA (see Fig. 5b), the simulated results change somewhat,
but only for the TD model with the presence representation.
In these simulations, during the second phase, CSB was
trained with an ISI of 25 time steps, and CSA was still
trained with an ISI of 50 time steps. As a result, the CSB
started 25 time steps after CSA and lasted half as long. In
this case, there is still full blocking of CSB with the CSC
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Fig. 5 Blocking in the TD model with different stimulus repre-
sentations. CSA is the pretrained “blocking” stimulus, and CSB is
the “blocked” stimulus introduced in the later phase. a When the
timing of the two stimuli is identical in both phases, blocking is
perfect with all three stimulus representations, and there is no
conditioned response (CR) to CSB alone. b When the blocked
CSB starts later, there is still full blocking with the CSC and MS
representations. For the presence representation, the later, shorter
stimulus can serve as a better predictor of the US and, thus, steals
some of the associative strength from the earlier stimulus. c When
the blocked CSB starts earlier, all three representations show an
attenuation of blocking of the CSB, but there is an additional
decrease in response to the CSA for the PR and MS representa-
tions. CSC 0 complete serial compound; PR 0 presence; MS 0
microstimulus
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and MS representations, but not with the presence represen-
tation. With the latter representation, there is some respond-
ing to the blocked CSB and a sharp decrease in responding
to CSA, as compared with the condition with matched ISIs
(Fig. 5a). This responding to CSB occurs because CSB is a
shorter stimulus that is more proximal to the US. As a result,
there is the same positive prediction error on US receipt but
fewer negative prediction errors during the course of the
compound stimulus. Over time, CSB gradually “steals” the
associative strength of the earlier CSA.

Empirically, when the onset of the added CSB occurs
later than the onset of the pretrained CSA (as in Fig. 5b),
acquisition of responding to the added CSB is largely
blocked in eyeblink, fear, and appetitive conditioning
(Amundson & Miller, 2008, Experiment 1; Jennings &
Kirkpatrick, 2006, Experiment 2), as predicted by the TD
model with the CSC or MS representations. When mea-
sured, responding to the pretrained CSA has shown mixed
results. In rabbit eyeblink conditioning, responding to CSA
has remained high (Kehoe et al., 1981), consistent with the
representations that presume limited temporal generalization
(MS and CSC). In appetitive conditioning in rats, however,
CSA has suffered some loss of responding (Jennings &
Kirkpatrick, 2006, Experiment 2), more consistent with a
greater degree of temporal generalization (presence).

Finally, Fig. 5c depicts the results of simulations when
the onset of the added CSB precedes the pretrained CSA
during compound training. In this simulation, the CSA was
always trained with an ISI of 25 time steps, and the CSB
was trained with an ISI of 50 time steps. In this case,
blocking was attenuated in the model with all three stimulus
representations. For the TD model, this attenuation derives
from second-order conditioning (#11.2): CSB, with its ear-
lier onset, comes to predict the onset of the blocking stim-
ulus CSA. In TD learning, the change in the US prediction
at the onset of CSA (see Eq. 3) produces a prediction error
that changes the weights for the preceding CSB. For the
presence and MS representations, this second-order condi-
tioning has an additional consequence. Because the ele-
ments of the stimulus representation for the added CSB
overlap with those of CSA, the response to CSA diminishes
(significantly more so for the presence representation).

In the empirical data, when the onset of the added CSB
occurred earlier than the pretrained CSA, responding to the
added CSB showed little evidence of blocking (Amundson
& Miller, 2008, Experiment 2; Cole & McNally, 2007;
Jennings & Kirkpatrick, 2006, Experiment 2; Kehoe et al.,
1987). Independently of stimulus representation, the TD
model correctly predicts attenuated blocking of responding
to CSB in this situation (Fig. 5c), but not an outright absence
of blocking. Responding to the pretrained CSA, in contrast,
showed progressive declines after CSB was added in eye-
blink and fear conditioning (Cole & McNally, 2007; Kehoe et

al., 1987), consistent with the presence representation, but not
in appetitive conditioning (Jennings & Kirkpatrick, 2006),
more consistent with the CSC and MS representations.

In these simulations of blocking, the presence represen-
tation is the most easily distinguishable from the other two
representations, which presuppose less-than-complete tem-
poral generalization. Most notably, with a presence repre-
sentation, the TD model predicts that responding will
strongly diminish to the pretrained stimulus (CSA) when
the onset of the added stimulus (CSB) occurs either later or
earlier than CSA. In contrast, the CSC and MS predict that
responding to the pretrained CSAwill remain at a high level.

We further consider one additional variation on blocking,
where the ISI for the blocking stimulus CSA changes be-
tween the elemental and compound conditioning phases of
the blocking experiment (e.g., Exp. 4 in Amundson &
Miller, 2008; Schreurs & Westbrook, 1982). Empirically,
in these situations, blocking is attenuated with the change
in ISI. Once again, in these simulations, the blocking CSA
was first paired with the US for 200 trials, but with an ISI of
100 time steps. Compound training also proceeded for 200
trials, and both stimuli had an ISI of 25 time steps during
this phase.

Figure 6 shows the responding of the TD model to the
different CSs on unreinforced probe trials presented at the
end of training in this modified blocking procedure. With
both the CSC and MS representations, but not with the
presence representation, blocking is attenuated, and the
blocked CSB elicits responding when presented alone, as
in the empirical data. For these two representations, during
compound conditioning, the US occurs earlier than
expected, producing a large positive prediction error and
driving learning to the blocked CSB. A surprising result
emerges when the time course of responding is examined
on these different probe trials (Fig. 6b). For the CSB alone
and the compound stimulus (CSA + CSB), responding
peaks around the time when the US would have occurred
with the short ISI from the second phase. For the CSA
alone, however, there is a secondary peak that corresponds
to when the US would have occurred with the long ISI from
the first phase. This secondary peak is restricted to the CSA-
alone trials because the later temporal elements from CSB
pick up negative weights to counteract the positive US
prediction from CSA, effectively acting as a conditioned
inhibitor in the latter portion of the compound trial. To our
knowledge, this model prediction has not yet been tested
empirically.

A second cue competition scenario that we simulated is
overshadowing (#7.5)—often observed when two stimuli
are conditioned in compound. In the overshadowing simu-
lations below, the overshadowed CSB always had an ISI of
25 time steps. We included four overshadowing conditions
in these simulations, where the overshadowing CSA had
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ISIs of 25 time steps (same), 50 time steps (long), or 100
time steps (longer) or was omitted altogether (none). Train-
ing proceeded for 200 trials, and 3 probe trials were includ-
ed at the end of training: CSA alone, CSB alone, and a
compound stimulus (CSA + CSB together).

Figure 7 plots responding in the TD model with different
representations on these overshadowing simulations. When
the timing of the two CSs are equated, there is a significant
decrement in the level of maximal responding to each indi-
vidual CS, as compared with the compound CS (Fig. 7a) or
as compared with an individual CS trained alone (the none
condition in Fig. 7b). When the timing of the overshadow-
ing CSA is varied, so that the CSA now starts 25 time steps
before the onset of CSB but still coterminates with CSB at
US onset, there is a near-equivalent amount of overshadow-
ing of CSB, independent of the stimulus representation in
the model (left panel in Fig. 7b; see Jennings, Bonardi, &
Kirkpatrick, 2007). If the overshadowing CSA is made even
longer, we see a divergence in predicted degree of respond-
ing to the overshadowed CSB. With the CSC representation,
the overshadowing is exactly equivalent no matter the
length of the CSA. This equivalence arises because there
is always the same number of representational elements
from CSA that overlap and, thus, compete with the repre-
sentational elements from CSB. With the presence and MS
representations, a longer CSA produces less overshadowing.
In these cases, the representational elements from CSA that

overlap with CSB are so broad that they support a lower
level of conditioning by themselves and are thus less able to
compete with CSB. The empirical data from appetitive
conditioning show little change in overshadowing due to
the duration of the CSA, but only a limited range of relative
durations (2:1 and 3:1; Jennings et al., 2007). Thus, it
remains somewhat of an open empirical question as to
whether very long CSA durations would lead to reduced
overshadowing, as predicted by both the MS and presence
representations with the TD model.

The different representations also produce different pre-
dicted time courses of responding to the overshadowing and
overshadowed stimuli. Figure 7c shows the CR time course
during the probe trials after overshadowing with asynchro-
nous stimuli (the long condition in Fig. 7b). For the CSB
alone and the compound stimulus, the response curves are
quite similar with the different representations (modulo the
quirks in the shape of the timing function highlighted in
Fig. 4), with a gradually increasing response that peaks
around the time of the US. With the presence and MS
representations, there is a small kink upward in responding
when the second stimulus (CSB) turns on during the com-
pound trials (compare Fig. 2 in Jennings et al., 2007),
because the CSB provides a stronger prediction about the
upcoming US. For the CSA-alone trials, however, the CR
time courses are different for each of the representations. The
CSC representation predicts a two-peaked response, the MS
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representation predicts a slight leftward shift in the time of
maximal responding relative to the US time, and the presence
representation predicts flat growth until CS termination. The
empirical data seem to rule out the time course predicted by a
CSC representation but are not clear in distinguishing the
latter two possibilities (Jennings et al., 2007).

This overshadowing simulation also captures part of the
information effect in compound conditioning (#7.11; Egger
& Miller, 1962); with a fully informative and earlier CSA
present, responding to CSB is sharply reduced (Fig. 6b). In
addition, making CSA less informative by inserting CSA-
alone trials during training reduces the degree to which
responding to CSB is reduced (simulation not shown, but
see Sutton & Barto, 1990).

Discussion

In this article, we have evaluated the TD model of classical
conditioning on a range of conditioning tasks. We have
examined how different temporal stimulus representations
modulate the TD model’s predictions, with a particular
focus on those findings where stimulus timing or response
timing are important. Across most tasks, the microstimulus
representation provided a better correspondence with the
empirical data than did the other two representations con-
sidered. With only a fixed set of parameters, this version of
the TD model successfully simulated the following phenom-
ena from the focus list for this special issue: 1.1, 7.2, 7.5,
7.11, 12.1, 12.4, 12.5, 12.6, 12.7, and 12.9.

Fig. 7 Overshadowing with the
TD model. a Regular
overshadowing. When both
CSs start and end at the same
time, there is a reduced
conditioned response (CR)
level to both individual stimuli
with all three stimulus
representations. b
Overshadowing with
asynchronous stimuli. When
the CSA is twice the duration of
the CSB (long), there is
comparable overshadowing to
the synchronous (same)
condition. When the CSA is
four times the duration of the
CSB (longer), overshadowing
is sharply reduced for the
presence and MS
representations, but not for the
CSC. c Time course of
responding during
asynchronous overshadowing.
Both the MS and CSC
representations predict a
leftward shift in the time course
of responding to the
overshadowing CSA, as
opposed to CSB, and the time
of US presentation. CSC 0
complete serial compound; PR 0
presence; MS 0 microstimulus
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A valuable feature of the TD model is that the learning
algorithm has a normative grounding. There is a well-
defined function that characterizes what the TD learning
algorithm converges toward or what can be thought of as
the goal of the computation. Equation 9 expresses more
precisely how the TD model aims to generate predictions
that are based on the return, which is the summed expect-
ations of impending USs over time, and not just the US at
the end of a trial (Sutton & Barto, 1998). The impending
USs are discounted by their relative imminence; predicted
USs are weighted so that imminent USs contribute more
strongly to the prediction than do temporally distant USs in
an exponentially discounted fashion (see Sutton & Barto,
1990). More formally, this target prediction of the future
USs is the return (Rt):

Rt ¼
X1

k¼1
gk$1rtþk ; ð9Þ

where rt is the US intensity at time step t and γ is the
discount factor (between 0 and 1), as in Eq. 3. The return
from time step t (Rt) is thus the target for the US prediction
using the features available at that time (Vt(xt)). In the TD
model, this target prediction is what the animal is trying to
learn about the world, and the TD learning algorithm is the
proposed mechanism for how the animal does so. The ani-
mal’s goal is thereby construed as making real-time US
predictions that are as close as possible to the time course
of the target prediction above.

Although not a causal explanation (this lies in the mecha-
nism described in Eqs. 1–8), such a teleological interpretation
can be very helpful in understanding the functioning of the
proximal learning mechanism. For example, let us return to
the question of why the US prediction takes a given time
course with the MS representation (Fig. 2c). In this case, a
teleological interpretation is that the TD learning algorithm is
trying to best approximate the target US prediction, which is
an exponentially weighted average of future USs. This target
US prediction is exactly recreated by the US prediction curve
for the complete serial compound (Fig. 2a), which can ap-
proach the target curve without constraints. In contrast, the TD
model withMSs will find the best linear weighting of the MSs
that approximates this target curve.

A notable feature of the MS TD model is that good
timing results emerge with only a small handful of deter-
ministic representational elements per stimulus (e.g., Fig. 4).
The MS TD model exhibits proportional timing (peaks at
the right time), a graded response curve, an increase in the
width of the response curve with ISI (although subpropor-
tional), well-aligned peak times from early in conditioning,
and inhibition of delay. Because the TD learning algorithm
finds the best linear combination of representation elements
to approximate the target US prediction curve, there is no
need to fully cover the space with basis functions that each

have unique maximal response times. This sparse coverage
approach differs from most other timing models in the
spectral timing family (e.g., Grossberg & Schmajuk, 1989;
Machado, 1997; but see Buhusi & Schmajuk, 1999),
improves upon earlier versions of the MS TD model that
used many more MSs per stimulus (Ludvig et al., 2008;
Ludvig et al., 2009), and stills one of the main criticisms of
this class of models, that they suffer from the “infinitude of
the possible” (Gallistel & King, 2009). In addition, as fur-
ther support for such an approach to learning and timing, a
spectrum of MS-like traces have recently been found during
temporally structured tasks in the basal ganglia (Jin, Fujii, &
Graybiel, 2009) and hippocampus (MacDonald, Lepage,
Eden, & Eichenbaum, 2011).

The presence representation, however, did produce a better
correspondence with some aspects of the data from asynchro-
nous blocking (Fig. 5). For example, the decrease in responding
to the blocking CSA when preceded by the blocked CSB is
predicted only by the presence representation (Fig. 5c). In
previous work, we have examined a hybrid representation that
uses both an MS spectrum and a presence bit to model some
differences between trace and delay conditioning (Kehoe,
Olsen, Ludvig, & Sutton, 2009b; Ludvig et al., 2008). Such a
hybrid representation can have the advantages of both constit-
uent representations, but the interaction between the represen-
tations quickly gets complicated even in simple situations,
perhaps limiting its explanatory value (see Ludvig et al., 2009).

In these simulations, we have necessarily focused on
those findings that both have not been shown before for
the TD model and particularly distinguish the TD model
from the RW model. Many other results, however, have
been previously demonstrated for the TD model or follow
trivially from the RW model. For example, Sutton and Barto
(1990) demonstrated second-order conditioning (#11.2; see
their Fig. 23), extinction (#2.1 and #9.1), and conditioned
inhibition (#5.1) in the TD model. In addition, by constrain-
ing the US prediction to be nonnegative, they also simulated
the failure of conditioned inhibition to extinguish (#5.3; see
their Fig. 19; see also Ludvig et al., 2008; Ludvig et al.,
2009). Their simulations used a presence representation, but
those results hold equally well for the other two representa-
tions considered here. Other phenomena follow straightfor-
wardly from the similarity of the TD learning rule to the RW
learning rule when questions of timing are removed (see
Ludvig et al., 2011, for some discussion of this point):
Overexpectation (#7.8), unblocking by increasing the US
(#7.3), and superconditioning (#7.9) are all predicted by
any TD model.

Other extensions to the TD model have been proposed
that expand the reach of the model to other conditioning
phenomena that we have not considered here. For example,
Ludvig and Koop (2008) proposed a scheme for learning a
predictive representation with a TD model that allows for
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generalization (#3.1) between situations on the basis of their
anticipated future outcomes. With this representation, they
showed how a TD model could exhibit sensory precondi-
tioning (#11.1 and #11.4), mediated conditioning (#11.5),
and acquired equivalence (e.g., Honey & Hall, 1989). Pan,
Schmidt, Wickens, and Hyland (2008) proposed a different
extension to the TD model, which supposed separate excit-
atory and inhibitory weights that decayed at different rates.
They showed that this formulation produced both spontane-
ous recovery (#10.6) and rapid reacquisition (#9.2).

No model is perfect, and the TD model is no exception.
Several of the major classes of phenomena under consider-
ation in this special issue lie beyond the explanatory power
of current TD models, including most of the phenomena
grouped under discrimination (Group 4), preexposure
(Group 8), and recovery (Group 10). Future research will
hopefully provide new angles for integrating these results
with the TD model. These extensions will require new
formalisms that may attach additional components to the
TD model, such as memory- or model-based learning (Daw,
Niv, & Dayan, 2005; Ludvig, Mirian, Sutton, & Kehoe,
2012; Sutton, 1990), step-size adaptation (Pearce & Hall,
1980; Sutton, 1992), or additional configural representation-
al elements (Pearce, 1987, 1994). These new developments
will likely feature prominently in the next generation of
computational models of animal learning.

Appendix

Simulation details

The following parameters were used in all simulations:

Learning Rule:

Discount factor (γ) 0 .97
Eligibility trace decay rate (λ) 0 .95
Step size (α) 0 .05

Response Model:

Response threshold (θ) 0 .25
Response decay (ν) 0 .9

Stimulus Representations:

Memory decay constant (d) 0 .985
Number of microstimuli (m) 0 6
Width of microstimuli (σ) 0 .08
Salience of presence element (x) 0 .2

Other:

US was always magnitude 1 and lasted a single time step.
Trial duration was always 300 time steps.

Author’s Note Preparation of this manuscript was supported by
Alberta Innovates–Technology Futures and the National Science and
Engineering Research Council of Canada.
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