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Abstract

In this dissertation, I investigate how we can exploit generic problem structure

to make reinforcement learning algorithms more efficient. Generic problem

structure means basic structure that exists in a wide range of problems (e.g.,

an action taken in the present does not influence the past), as opposed to

structure which is specific to a particular problem (e.g., heuristics or theorems

about which actions are superior in a particular game). My investigation is

broken down into three major contributions.

The first contribution is to demonstrate, empirical and theoretically, that

given some prior knowledge of the structure of the world, reinforcement learn-

ing methods which learn a world model can do a better job of exploiting that

knowledge, to learn from experience, compared to model-free methods which

learn a value function directly from experience. This validates the belief that

model-based reinforcement learning improves sample efficiency by synthesizing

imagined experience which generalizes beyond the data. While this belief is

widely held, model generalization is an insufficient explanation because learned

value functions also generalize. I address this gap with theoretical and empiri-

cal results illustrating how world model generalization is, in a sense, inherently

more powerful than value function generalization.

The second contribution is an algorithm that exploits knowledge of network

structure to improve credit assignment in networks of discrete stochastic neu-

rons, where each neuron is treated as a reinforcement learning agent. Training

neural networks with discrete stochastic units is challenging as backpropa-
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gation is not directly applicable, nor are the reparameterization tricks often

used in networks with continuous stochastic variables. I propose Hindsight

Network Credit Assignment (HNCA) for gradient estimation in networks of

discrete stochastic neurons. HNCA can be seen as a middle-ground between

backpropagation (which is intractable for nontrivial stochastic networks) and

REINFORCE (which tends to be high variance). HNCA produces unbiased

gradient estimates with provably lower variance than REINFORCE. The com-

putational cost of HNCA is on the same order as a forward pass through

the network, hence learning is not a significant bottleneck. Empirical results

demonstrate that HNCA significantly reduces variance in the gradient esti-

mates compared to REINFORCE, which in turn significantly improves perfor-

mance.

The third contribution is an approach to option discovery motivated by

the idea that, as a consequence of the spatiotemporal locality structure of the

world, optimal actions in temporally contiguous states will tend to be strongly

interdependent. Motivated by this idea, I propose an approach called Option

Iteration (OptIt) which distills a set of options from the results of a computa-

tionally expensive search procedure. Intuitively, OptIt aims to discover a set

of options such that for every trajectory segment of some length, at least one

option in the set is a good match to the improved policy which results from

running a search procedure in each state in the segment. This leads to options

that capture relationships among the best actions in temporally contiguous

states while allowing for uncertainty in which option is best in a given situa-

tion. The resulting set of options guides the search procedure resulting in a

process of iterative improvement where better options lead to better search,

which in turn facilitates the discovery of better options.

There is good reason to believe that prior knowledge of problem structure

is necessary to make meaningful learning possible. However, the last several
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decades of research have shown that encoding specific human expertise into

our systems tends to lose out in the long run compared to methods that scale

well with computation and data. Acknowledging both these points, it makes

sense to focus our efforts on developing methods which exploit structure that

is as generic as possible, allowing the agent to learn more specific world knowl-

edge from experience and computation. By virtue of being broadly applicable,

generic structure prunes the search space of solutions more and remains rele-

vant as more computation and data are applied to a problem. On the other

hand, although specific structure might improve performance early on, it can

quickly become irrelevant as it may be deduced by a combination of learn-

ing and generic structure. While it’s not always clear where the line should

be drawn between generic and specific, acknowledging that a trade-off exists

provides a useful guideline for which research directions are worth pursuing.
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Preface

Of the three main contributions in this thesis, two are based on published

conference papers and one is based on a preprint available on arxiv and under

review at the time of this writing. Chapter 3 is based on a paper (Young,

Ramesh, et al., 2023) presented at ICML 2023 in collaboration with Aditya

Ramesh, Louis Kirsch and Jürgen Schmidhuber. Chapter 5 is based on a

preprint (Young & Sutton, 2023) currently available on arxiv which was writ-

ten in collaboration with my supervisor, Richard Sutton. Chapter 4 is based

on a paper (Young, 2022) presented at AAAI 2022 on which I am the sole

author, though it undeniably benefited from discussion with my supervisor

and others outlined in the acknowledgements therein.
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The delivery of good [machine learning] is to do as much nothing as possible.

— Samuel Shem, The House of God (originally referring to medical care).
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Chapter 1

Generic Problem Structure in
Reinforcement Learning

Reinforcement learning (RL) refers to the problem faced by a goal-directed

agent interacting with an initially unknown environment. At a high level, an

agent is a system which takes in a stream of experience, processes it, and

refines its own behaviour in response with the aim of influencing its future

stream of experience to have some desirable properties. The challenges that

arise from this simple setup are vast and multifaceted. While deciding how to

act in a complex world is challenging in itself, an RL agent faces the additional

challenge that it doesn’t even know, a priori, the dynamics of the world it

occupies. An effective agent must explore to gather data, make effective use

of that data to learn enough about the world to serve its purposes, and choose

how to act based on that knowledge, all while making the best of limited

computational resources.

To make these challenges tractable, we as practitioners must carefully scope

the kinds of problems we aim to address. First and foremost, we assume there

is something to learn, some regularity of the experience stream that means the

future looks similar to the past, and an agent’s actions have consistent conse-

quences. We as practitioners must define the framework that makes learning

possible and allows us to compare and reason about different approaches, em-

pirically and/or analytically. It is also important to periodically question both

our foundational algorithms and our underlying assumptions, explicit or im-

plicit. Through such questioning, we can build an understanding of how our
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assumptions inform our algorithms and visa-versa and how we can push the

boundaries of each to strike a balance of generality and practicality.

The basic question guiding this dissertation is

Can reinforcement learning agents be designed to take advantage

of generic problem structure to achieve more efficient learning and

planning?

What constitutes “generic problem structure” is, of course, open-ended and

subjective. I use this phrase to emphasize that while I believe encoding some

knowledge of the underlying structure of the world into our agents will be

necessary to develop agents with broad capabilities1, I am more interested in

encoding structure that will be true for a wide range of tasks and environments

than task-specific structure. One algorithm I see as a canonical example of

exploiting generic problem structure in RL is temporal difference (TD) learn-

ing (Sutton, 1988). TD learning, and related methods like Q-learning (Watkins

et al., 1992), essentially exploit the fact that the future is independent of the

past given the present, and likewise, action taken in the present can influence

the future but not the past. When framed this way, this seems so obvious as

to be trivial. However, incorporating this basic structure into algorithms has

been a crucial step in the development of efficient RL agents. Overall, I believe

the most useful structure to hardcode into our agents is the most general. As

a consequence of this generality, such structure may also be easy to overlook

because as humans we take it for granted. Hence, when we seek to develop

and analyze algorithms it is worth taking the time to think carefully about our

assumptions, even—or perhaps especially—those that seem the most obvious.

The meaning of “efficient” in the above thesis question is also worth un-

packing. I use it to refer to both computational and sample efficiency. Better

sample efficiency in the context of RL roughly means an agent requires fewer

environment interactions to reach a given level of performance. If a problem

has some known structure, it’s natural to believe we can use it to improve

1Though oftentimes this structure may not be intentionally encoded into the agents but
rather as a consequence of design choices derived from human intuition, which is itself
motivated by some knowledge of the world.
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sample efficiency, as utilizing prior knowledge means we can reduce the space

of hypotheses we need to consider. Improving computational efficiency on the

other hand roughly means an agent requires less computation to reach a par-

ticular level of performance. Computational efficiency could be measured, for

example, in terms of wall-clock time on a particular system or the number of

primitive arithmetical operations.

There are often tradeoffs between sample efficiency and computational ef-

ficiency, however, they are also intimately related. For example, if an agent

can sample from a perfect model of the world, it can in principle use it to com-

pute an optimal policy without observing any real-world samples. However,

the process of querying the model may be computationally expensive, hence

applying techniques which reduce the number of samples required for learning

from environment interactions could also reduce the computational require-

ment to compute a strong policy even when a perfect model of the world is

available.

This thesis investigates a number of techniques which can be used to exploit

generic problem structure to improve sample and/or computational efficiency

when designing RL algorithms. In Chapter 4 and Chapter 5 this investigation

involves proposing novel algorithms. Chapter 3, on the other hand, focuses

on improving our understanding of how existing model-based RL algorithms

can make better use of underlying problem structure compared to model-free

approaches.

Next, I will outline the three major contributions of this dissertation with

a particular emphasis on how they relate to the central question of exploiting

generic problem structure in RL.

The Benefits of Model-Based Generalization (Chapter 3). Model-

Based RL is widely believed to have the potential to improve sample efficiency

by allowing an agent to synthesize large amounts of imagined experience using

a learned model of the environment. A common explanation is that a model

can generalize from real experience to synthesize plausible imagined experience

which can ultimately help an agent to learn a better policy from less real

experience. However, the approximate value function learned in conventional
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model-free RL algorithms can also generalize. Hence, a natural question is

what makes model generalization better than value generalization?

I contribute a simple theorem which motivates how learning a model can

allow an agent to capitalize on problem structure that is inherently unavailable

to conventional value-based learning even when analogous structure is encoded

into the model and value function classes. I also contribute illustrative exper-

iments suggesting that this difference is important empirically.

A motivating example of problem structure used in this chapter is factored

structure, where the environment states are assumed to consist of a number of

separate factors such that the dynamics of each factor are a function of only

a small number of other factors. However, the main theoretical results do not

assume a particular kind of problem structure, but instead aim to show that

model-based methods are inherently better able to exploit any structure that

is known.

Hindsight Network Credit Assignment (Chapter 4). Backpropaga-

tion is a ubiquitous method for training neural networks. Backpropagation

exploits the network structure to efficiently propagate gradient information

to determine how to update parameters to improve an objective. However,

backpropagation is not directly applicable to discrete stochastic neural net-

works, that is networks of units which select output values from a discrete set

of choices with probability determined by their inputs.

I introduce an algorithm called Hindsight Network Credit Assignment

(HNCA), a principled way to efficiently propagate gradient information in

such discrete stochastic neural networks. Despite the underlying stochastic-

ity of the network, HNCA provides unbiased gradient estimates. By taking

advantage of the known connectivity structure of the network, HNCA prov-

ably reduces variance compared to REINFORCE, which does not exploit the

network structure. This variance reduction leads to significantly better per-

formance in practice while maintaining per-sample computational efficiency

similar to that of backpropagation.

Option Iteration (Chapter 5). Discovering useful temporal abstrac-

tions, in the form of options, is widely thought to be key to applying RL and
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planning to increasingly complex domains. I Introduce a simple approach,

called Option Iteration (OptIt), to iteratively discover options by amortizing

the results of a computationally expensive planning procedure.

OptIt is motivated by the perspective that one possible benefit of options

is to allow an agent to represent dependencies in the joint distribution over op-

timal actions for temporally contiguous states. To give a motivating example,

an agent approaching an intersection while driving in an unfamiliar city may

be unsure whether it should turn left, turn right, or go straight. However, it

should almost always rule out the large space of different ways to run off the

road. Thus, we can narrow down the huge space of possible policies to a set

of three temporally extended options and be fairly sure that one of them is

optimal when restricted to a short time horizon into the future.

OptIt can be seen as a way to capture the idea that the world is structured

such that the optimal action at a given time is likely to be highly informative

about the optimal action for states in close temporal proximity.
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Chapter 2

Background

This thesis focuses on exploring the potential of exploiting generic problem

structure to improve the performance of reinforcement learning and planning

algorithms. To understand the individual contributions, some general back-

ground on reinforcement learning and other machine learning topics is re-

quired. Readers familiar with the individual topics should be able to skip the

corresponding sections and still understand the rest of the dissertation. Sec-

tions 2.3 and 2.4 present a somewhat nonstandard perspective on variational

inference and its potential for learning sample models for RL which may be

of independent interest even for a reader with a good understanding of those

topics.

Readers interested in my contribution to understanding the benefits of

model-based generalization in Chapter 3 should at least be familiar with Sec-

tions 2.1 and 2.2. Some of the experiments in that section also make use of

a latent-state model, to which Sections 2.3 and 2.4 are also relevant. How-

ever, a lack of familiarity with the latter sections should not greatly harm

understanding of the main ideas in the chapter.

Readers interested in my approach to assigning credit in discrete stochas-

tic neural networks in Chapter 4 would benefit from a basic understanding of

reinforcement learning, and in particular bandit problems as described in Sec-

tions 2.1. However, the main contribution is described in a fairly self-contained

manner. The later experiments apply to training a variational auto-encoder,

for which again it would be useful to understand the material in Sections 2.3

6



and 2.4.

My final contribution in Chapter 5 pertains to option discovery for planning

and assumes familiarity with Sections 2.1, 2.2, and 2.5.

2.1 Reinforcement Learning

Reinforcement learning (RL) refers to the problem faced by a goal-directed

agent interacting with an initially unknown environment. We formalize this

interaction as a Markov decision process (MDP). An MDPM is defined by a

tupleM = (S,A, p, µ, r̃). The agent begins in some state S0 ∈ S drawn from

the start-state distribution µ. At each time t ≥ 0 an agent observes a state

from the state space St ∈ S and based on this information selects an action

from the action space At ∈ A. Based on this action and the current state,

the environment then transitions to a new state St+1 ∈ S according to the

transition distribution p(s′|s, a) = P(St+1 = s′|St = s, At = a), and provides

a scalar reward drawn from the reward distribution Rt+1 ∼ r̃(St, At). As the

state-action conditional expectation of the reward distribution is usually the

most important, I will give it its own name and notation, the reward function

r(St, At) = E[Rt+1|St, At]. I will assume S and A both contain finitely many

elements for simplicity, but note that this can be relaxed.

The agent’s behaviour is specified by a policy π(a|s), which is a distribution

over a ∈ A for each s ∈ S. The agent’s goal is, roughly, to obtain as much

reward as possible in the long run. There are a few different ways this goal can

be formalized. In this thesis, I will focus mainly on the episodic setting where

there is a special terminal state ⊥ from which no more reward is possible. The

termination time T is the random time at which ⊥ is reached. Note that T may

be infinite for trajectories which never reach ⊥. The sum of rewards obtained

from some time t until T is called the return at time t Gt =
T∑

k=t+1

Rk. In this

case, the agent’s goal is to learn a policy π which maximizes the total expected

return G0. In cases where T is infinite, Gt may be ∞, −∞, or undefined.

We define the state-value function under a particular policy π as vπ(s) =

Eπ[Gt|St = s], that is the expected return from time t given the agent starts in
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state s and follows the policy π until termination. Note that some additional

assumptions are needed for the value function to exist in general. One sufficient

condition is that T is finite with probability one under every policy π. Another

possible condition is that all infinite trajectories correspond to Gt = −∞, in

which case vπ(s) will also be −∞ if π has a nonzero probability of generating

an infinite trajectory. In cases where it is defined, vπ(s) is known to be the

unique solution to the Bellman equation (Bellman, 1957)

vπ(s) =
∑
a

π(a|s) (r(s, a) + E[vπ(St+1)|St = s, At = a]) ,

where the value of the terminal state ⊥ is defined to be zero.

The optimal state-value function v⋆(s) = maxπ vπ(s) is defined as the max-

imum state value over all policies π. v⋆(s) is known to be the unique solution

to the Bellman optimality equation

v⋆(s) = max
a

(r(s, a) + E[v⋆(St+1)|St = s, At = a]) .

Similarly, the action-value function of a policy is defined as qπ(s, a) =

Eπ[Gt|St = s, At = a], the expected return if action a is selected in state s

and policy π is followed from that point forward. The optimal action-value

function q⋆(s, a) = maxπ qπ(s, a) is defined as the maximum action value over

all policies π. q⋆(s, a) is known to be the unique solution to the Bellman

optimality equation

q⋆(s, a) = r(s, a) + E[max
a′

q⋆(St+1, a
′)|St = s, At = a],

where the value of all actions in the terminal state ⊥ are defined to be zero.

Learning approximations to state and/or action-value functions is often

used as an intermediate step toward learning a good policy. Temporal differ-

ence (TD) learning (Sutton, 1988) is an approach to learning the state-value

function of a particular policy based on the Bellman equation. TD learning

uses an approximate state-value function v̂(·; θ), where θ represents some pa-

rameters of the function that we wish to tune to approximate vπ(s). Toward

this, TD learning updates θ according to the following update rule at each
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time step:

θ ← θ + α (Rt+1 + v̂(St+1; θ)− v̂(St; θ))∇θv̂(St; θ),

where α is a step size that must be chosen as a hyperparameter of the algo-

rithm, and actions are assumed to be sampled according to the policy we are

interested in evaluating. This can be seen as taking a gradient descent step to

move v̂(St; θ) towards the target Rt+1 + v̂(St+1; θ). Note that if

v̂(St; θ) =
∑
a

π(a|s) (r(s, a) + E[v̂(St+1; θ)|St = s, At = a])

for every state s, that is if v̂(St; θ) obeys the Bellman equation, the expected

update to θ is 0 for arbitrary St. TD learning can be seen as a gradient-descent-

based approach to approximately solving the Bellman equation for state values.

In this interpretation, the target Rt+1 + v̂(St+1; θ) is treated as fixed even

though it also depends on the parameter θ. This subtlety complicates the

analysis of the algorithm. Nonetheless, the interpretation is intuitively very

useful.

Another common approach is Q-learning (Watkins et al., 1992). Q-learning

is closely related to TD learning but is based on the Bellman optimality equa-

tion and learns an approximate optimal action-value function from observed

transitions. Note that if we know q⋆(s, a), then an optimal policy, that is

a policy that achieves the highest value possible in every state, is simply

π⋆(a|s) = argmax
a

q⋆(s, a). Hence, selecting actions according to an approxi-

mation to q⋆(s, a) can be a good way to obtain a strong policy. Q-learning uses

an approximate action-value function q̂(·, ·; θ) : S×A → R, where θ represents

some parameters of the function that we wish to tune to approximate q⋆(s, a).

Toward this, Q-learning updates θ according to the following update rule at

each time step:

θ ← θ + α
(
Rt+1 +max

a
q̂(St+1, a; θ)− q̂(St, At; θ)

)
∇θq̂(St, At; θ), (2.1)

where α is a step size that must be chosen as a hyperparameter of the algo-

rithm. Actions are generally selected stochastically in a manner that favours

those with high q̂(St, At; θ) to strike a balance between exploiting promising
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actions and exploring to improve the evaluation of others. Equation 2.1 can

be seen as taking a gradient descent step to move q̂(St, At; θ) toward the target

Rt+1 +maxa q̂(St+1, a; θ). Note that if

q̂(s, a; θ) = E[Rt+1 +max
a′

q̂(s, a′; θ)|St = s, At = a]

for every state s and action a, that is if q̂(s, a; θ) obeys the Bellman optimality

equation, the expected update to θ is 0 for arbitrary St, At. Q-learning can

be seen as a gradient-descent-based approach to approximately solving the

Bellman optimality equation for action values.

Algorithms like Q-learning are often combined with a technique called ex-

perience replay (ER; Lin, 1992). With ER, rather than performing the update

in Equation 2.1 using each (St, At, Rt+1, St+1) tuple at time t + 1, tuples are

stored in a large buffer. Random batches of tuples are then drawn from the

buffer for each learning update. Compared to updating only at the time a tran-

sition is experienced, this has the benefit of more rapidly propagating value

information throughout the state space. Mnih et al. (2015) applied Q-learning

with ER and neural-network function approximation in the Deep Q-networks

(DQN) algorithm. DQN demonstrated impressive performance in the Arcade

Learning Environment (Bellemare et al., 2013), a framework which allows AI

agents to play Atari 2600 games.

In practice, it is common to use a discounted variant of algorithms like TD

learning and Q-learning. In the case of Q-learning, for example, this means

using an update like the following:

θ ← θ + α
(
Rt+1 + γmax

a
q̂(St+1, a; θ)− q̂(St, At; θ)

)
∇θq̂(St, At; θ), (2.2)

where the discount factor γ is a hyperparameter between 0 and 1. When γ

is less than 1 this has the effect of discounting rewards proportionally to how

many time steps in the future they occur. In this case, q̂(St, At; θ) can be

seen as estimating the expectation of the expected discounted return Gt =
T∑

k=t+1

γk−t+1Rk under the optimal policy. This will lead to an agent that is

more willing to give up long-term value to gain immediate reward. Sometimes

γ is expressed as a property of the MDP, but I prefer to think of it as a
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hyperparameter of our algorithm. By setting γ lower we reduce the variance

in our updates that comes from a large sum of future values at the cost of

optimizing a biased estimate of the long-term return, even though long-term

return is what we ultimately care about.

Discounting also provides one approach to deal with continuing problems

in which there is no terminal state and the agent environment interaction

continues indefinitely, albeit not a particularly principled one (Naik et al.,

2019). In this case, without discounting, the returns could be infinite and our

value estimates would tend to diverge. In the continuing setting, discounting

can be seen as a way to optimize a biased estimate of the average reward per

time step. As the continuing setting is not a major focus of this thesis I will

not discuss this setting in detail but refer the interested reader to the work

of Wan et al. (2021) for some more sophisticated approaches and an overview

of prior work in the area. In Chapter 3, I will use some continuing problems

in my experiments, in which case I simply use discounting.

One relatively simple subset of RL problems is known as the multi-armed

bandit setting, or simply the bandit setting. The name comes from the term

one-armed bandit which is sometimes used to describe slot machines. The

bandit setting can be framed as an RL problem in which there is only one state

and termination always occurs after one step. In this setting, the transition

distribution, start-state distribution, and state space are all trivial, hence a

bandit problem is fully specified by just A and r̃. In the bandit setting,

the action-value function simplifies to just an estimate of the expected reward

associated with each action. Despite the apparent simplicity, the bandit setting

still raises many interesting questions. For example, if the reward distribution

r̃ is not deterministic there is a trade-off between choosing actions we have

limited information about and those that we are fairly confident have high

expected reward. The same may be true even for deterministic r̃ if the action

space is large but has some structure that allows the agent to generalize from

one action to another.

An intermediate setting between the bandit setting and the full RL problem

is called the contextual bandit setting. In this setting, there can be multiple
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states, but termination still occurs after one time step so the transition dis-

tribution is trivial. In this case, the agent must learn to select good actions

conditioned on the state, as different states can have different expected re-

wards associated with a given action. However, unlike the full RL setting,

feedback is always immediate and the agent need not worry about longer-term

consequences of its actions.

2.2 Planning and Model-based Reinforcement

Learning

Another class of approaches to the RL problem involves learning some ap-

proximation to p and r from the observed (St, At, Rt+1, St+1) tuples.
1 Having

done this, an algorithm can then use computation to try to work out a good

policy given the approximate learned p and r. Approaches which do this are

called model-based, in contrast to algorithms like Q-learning which are called

model-free. One common way to work out a good policy from a learned model

involves using the model to simulate imagined experience, which can then be

used in the update of a model-free algorithm.

In practice, a learned model can take many different forms. Given a partic-

ular (s, a) pair as input, a distribution model outputs some approximate rep-

resentation of p(s′|s, a) for every possible next state s′ simultaneously, which

tends to be intractable for sufficiently complex state spaces. An expectation

model would output the expected next-state E[St+1|St = s, At = a], which

must be used carefully to produce a valid algorithm (Kudashkina et al., 2021;

Wan et al., 2019). A sample model learns to stochastically output states s′

which approximate the distribution of p(s′|s, a). Sample models often require

relatively more sophisticated techniques, such as variational inference, to learn

effectively.

Categorizing models as sample, distribution, or expectation models is a

useful abstraction, however, note that it falls significantly short of expressing

1More generally we might approximate only some properties of p and r, such as expec-
tations, however the distinction between model-based and model-free can get blurry if we
try to push the definition too far.
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the full space of different types of models that exist. For example, autore-

gressive models, which I will discuss in Section 2.3 allow for evaluation of

p(s′|s, a) for arbitrary s′, like a distribution model, but do not represent the

full distribution in closed form.

Planning refers to the set of techniques used to process a model, learned or

given, to produce or improve a policy. When planning with a known model,

the entire challenge is computational, we already know everything we need

to compute the optimal policy, but we merely need to process it. The RL

problem also includes statistical challenges in that we start off with limited

knowledge of the environment and wish to gather and process limited data in

order to learn about it efficiently.

Going forward, it will be useful to distinguish between two main types

of planning which are often associated with model-based RL. The first type

is decision-time planning, where in each visited state, an agent uses some

computational procedure along with a model to work out which action to

select. In decision-time planning, the policy is implicitly given by the model

and (potentially stochastic) planning procedure. The other type of planning

is background planning, where an agent maintains a policy or value function

to select actions. In this case, planning is run in the background, using the

model to improve the policy or value function, rather than for direct action

selection. In practice, these two different kinds of planning are often blended

together. The distinction between decision-time and background planning

is better considered as a useful abstraction rather than a hard delineation

between two entirely different approaches.

Algorithms that use background planning with a learned model commonly

follow a pattern similar to Dyna (Sutton, 1990). In Dyna-Q, as described in

Chapter 8 of the textbook of Sutton et al. (2020), an agent interacts with

an environment in the usual way and, at each time step, performs Q-learning

updates based on the observed transition. At each time step, the agent also

uses the observed transition to update an approximate model of p and r.

Finally, the agent uses the model to generate n additional imagined transitions,

initialized from n previously visited states, and performs additional Q-learning
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updates treating these imagined transitions as if they are real. A large variety

of algorithms can be constructed based on minor variations of this approach.

Often times an algorithm will forgo updating q̂ based on real experience and

instead use only model-generated experience. Rather than updating the model

from only the most recently observed transition, it is common to store a buffer

of real transitions and update the model using random batches from the buffer.

Rather than using n random previously visited states and generating one-

step transitions, it is common to perform multi-step model rollouts where the

model-predicted next states are fed back into the model to predict the next

state and reward after that.

One simple class of decision-time planning algorithms is Monte-Carlo search

(MCS; Tesauro et al., 1996). Given the current state for which we’d like to

select an action, MCS estimates the value of each action by running multiple

simulations under some rollout policy. In the simplest version of MCS, each

simulation can be run until termination occurs. One can also combine MCS

with a learned approximate state-value function and truncate the simulations

after some number of steps, using the approximate state-value function to esti-

mate the expected return for the remainder of the episode. In either case, the

action selected at the end of the search is generally the one with the highest

average (estimated) return over all the simulations.

Monte-Carlo tree search (MCTS; Coulom, 2006; Kocsis et al., 2006) is

another prominent class of decision-time planning approaches. MCTS takes

the current state as the root and builds a tree of possible actions and resulting

next states and rewards. At a high level, MCTS works by repeatedly applying

a sequence of four steps, which I will collectively refer to as a simulation:

• Selection: the current tree is descended according to some tree policy

until it reaches a leaf node where the tree policy selects a previously

unexplored action. How best to select nodes in the tree is a difficult

question involving an exploration-exploitation trade-off. One common

approach is to use some variant of UCT (Kocsis et al., 2006), derived by

treating the problem of node selection as a bandit problem and applying

the low regret upper confidence bound (UCB) algorithm (Agrawal, 1995;
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Katehakis et al., 1995). Recently it is common to incorporate some (usu-

ally learned) policy prior, in which case variants of the predictor+UCB

(PUCB; Rosin, 2011) algorithm are often used. PUCB incorporates a

principled mechanism to direct UCB sampling toward actions that are a

priori expected to be good.

• Expansion: a previously unexplored action (and/or chance outcome in

stochastic domains) is expanded to produce a new node.

• Evaluation: the value of the new node is estimated by some means.

Historically, evaluating newly expanded nodes is often done by simulat-

ing a rollout until the end of an episode using some rollout policy.2 More

recently, it is more common to use a learned state-value function in this

step (Gelly et al., 2007), either instead of, or in addition to a rollout.

• Backup: the newly obtained node value is backed up the tree to modify

each ancestral action value. This backup propagates all the way up to

the action values in the root node. Usually, each node maintains a count

of the number of simulations that have passed through it, along with the

average evaluation outcome for those simulations.

Whenever time runs out to select an action, or some predetermined simulation

budget is expended, an action is selected based on the evaluation and/or simu-

lation count for each action at the root node. Each of the above steps requires

a number of additional design decisions to produce a concrete algorithm from

the general framework of MCTS.

It is possible to apply MCTS to stochastic domains by incorporating branches

corresponding to different chance outcomes in addition to different actions se-

lected by the agent. However, if the number of possible chance outcomes is

very large, the branching factor of the tree will blow up to the point where ag-

gregating statistics for individual nodes will not be useful, as it will be rare to

revisit the same node twice. As an extreme example, imagine running MCTS

using a model which simulates the random motion of the leaves on trees mov-

ing in the background. Each time we expand a chance node the leaves may

move slightly differently resulting in a new node expansion and evaluation,

2In which case, this step is often called “simulation” or “rollout” instead of evaluation.
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eliminating any possibility of performing a deeper search or estimating a sin-

gle, non-root, node value from multiple simulations. In this case, MCTS would

essentially reduce to MCS. The issue is that MCTS does not generalize over

states during the search. Alternative decision-time planning approaches which

do generalize, like TD search (Silver et al., 2012) or PG search (Anthony et al.,

2018), could help to address this.

Expert Iteration (Anthony et al., 2017) bootstraps the output of a search

procedure, such as MCTS, to learn a parameterized policy and value func-

tion. The learned policy and value function are used to improve future search.

This approach is used in AlphaZero (Silver et al., 2017) to obtain impressive

empirical results in the game of Go. Expert Iteration can be seen as involv-

ing elements of both decision-time and background planning as it plans both

for immediate action selection and to improve a policy and value function for

improved future action selections.

I find it interesting to think that most of the prominent empirical successes

of RL, even those that are generally considered model-free, can be seen as hav-

ing a significant planning component. ER, for instance, can be seen as a simple

model (Lin, 1992; van Hasselt et al., 2019) where experienced interactions are

directly stored, and later replayed, for use in a learning update. Likewise,

algorithms that employ multiple parallel actors (Mnih, Badia, et al., 2016) to

generate experience for shared learning are not applicable to the standard def-

inition of the RL problem where a single agent interacts with an environment.

However, if a single agent uses a learned or given model it can potentially run

multiple parallel simulations in its imagination.

2.3 Challenge of Learning Sample Models for

Model-Based Reinforcement Learning

Perhaps the most natural kind of world model to learn for model-based RL

is a sample model, which stochastically outputs states S ′ with distribution

approximating p(S ′|s, a). Such a model effectively provides a simulator of the

world, which enables us to generate imagined experience that can be used
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to train an RL agent in essentially the same way as real experience is used.

However, learning a sample model from data in a stochastic environment is

conceptually challenging.

First, let’s consider how a distribution model could be learned from data

so that we can discuss the comparative difficulty of learning a sample model.

Consider a dataset ofN transitions (si, ai, s
′
i) indexed by i ∈ {0, 1, .., N−1} and

a parameterized distribution model p̂(s′|s, a; θ), where θ is a set of learnable

parameters.3 For a distribution model, we assume p̂(s′|s, a; θ) has a simple

closed form with respect to s′, for example, if s′ is represented as a vector of

binary values, p̂(s′|s, a; θ) could be modelled as a vector of Bernoulli variables

with means output by a neural network which takes s, a as input. As long as

we can also differentiate p̂(s′|s, a; θ) with respect to θ, it is straightforward to

optimize the log-likelihood of the data under the model by stochastic gradient

descent in the following loss:

L = −
N−1∑
i=0

log(p̂(s′i|si, ai; θ)). (2.3)

We can optimize this loss by sampling individual transitions, or batches of

transitions. Given the transitions are drawn from the ground truth world

model and the (si, ai) pairs are assumed to come from some data distribution

D, this is equivalent to optimizing an unbiased empirical estimate of the ex-

pectation over the data distribution of the KL divergence between the true

model and our sample model:

ES,A∼D[KL(p(S
′|S,A), p̂(S ′|S,A))]

=

∫
s,a,s′

PD(S = s, A = a)(p(s′|s, a)(log(p(s′|s, a))− log(p̂(s′|s, a; θ)))dsdads′.

The data distribution D may, for example, be the stationary distribution of an

agent following a certain behaviour policy. KL divergence is always nonnega-

tive, and zero if and only if the two distributions match exactly. Furthermore,

one can bound the detriment in expected return suffered by following a policy

3Throughout this section I will use θ to represent an arbitrary set of all learnable pa-
rameters. When dealing with multiple parameterized functions each function might depend
only on a disjoint subset.
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optimized for a learned model in the true environment in terms of KL diver-

gence between the two distributions (see, for example, the work of Ross et al.

(2012)). Hence, KL divergence is a reasonable objective for model learning.

However, optimizing Equation 2.3 relies on evaluating p̂(s′i|si, ai; θ) for arbi-

trary transitions which is generally not possible for a sample model. Working

around this limitation is a key challenge of learning sample models, which has

been addressed with a wide variety of different techniques.

One interesting intermediate case is an autoregressive model. In this case,

we assume each state s consists of M features such that s = (s[0], ...s[M − 1]).

Rather than approximating the full joint distribution of next-state features,

an autoregressive model learns approximate conditional distributions for each

state feature p̂(s′[i]|s′[0], ..., s′[i − 1], s, a; θ). Note that I have overloaded the

function p̂ here to refer to either the conditional distribution of features or

of full next states.4 The assumption is that the individual features have

a simple enough form that we can explicitly represent their distribution in

closed form (e.g., as probabilities for each of a finite set of values). We

can then sample a random S ′ by sampling from each conditional distribu-

tion sequentially. It is possible to represent arbitrary transition distribu-

tions in this autoregressive form.5 Furthermore, in this case we can evalu-

ate p̂(s′|s, a; θ) =
∏M−1

i=0 p̂(s′[i]|s′[0], ..., s′[i− 1], s, a; θ) for arbitrary transitions

(s, a, s′). Thus, with an autoregressive model, we can optimize the loss in

Equation 2.3.

Although autoregressive models are popular, for example in large language

models, they have some notable drawbacks. They require state features to be

sampled sequentially, limiting the potential for parallelism. They also require

a choice of closed-form distribution to model the individual features which may

be limiting, for example, if the individual features can take continuous values.

Finally, autoregressive models require a, potentially arbitrary, choice of the

order in which state features are sampled, which can be unnatural and may

4I will continue to use p̂ generically to represent learned probability distributions, the
meaning should be clear from the context and this saves a lot of notation.

5On the other hand, this is not possible with an approximation of the simpler form
p̂(s′[i]|s, a; θ) as there is no way to capture correlation between features.
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result in complicated conditional distributions that are difficult to model. For

example, consider the challenge of autoregressively modelling the distribution

of pixels in an image in arbitrary order.

One can even construct distributions where an autoregressive model faces

fundamental computational challenges in representing the conditional distribu-

tions while representing the joint distribution of features is easy. For example,

imagine a process which first selects a uniform random integer X and then

generates Y = f(X) using some function which is easy to compute but diffi-

cult to invert.6 Now imagine we want to model P(Y X) where Y X represents

the sequence of bits in the integers X and Y concatenated together. A bitwise

autoregressive model of P(Y X) would have to first sample a random output

Y , and then invert f to accurately model P(X|Y ). On the other hand, a more

general model that samples from the joint distribution as a whole would be

free to simulate sampling X followed by computing Y = f(X), which is easy.

See the work of Lin et al. (2020) for a more detailed discussion of some related

issues with autoregressive models.

2.4 Latent-Variable Models and Variational In-

ference

An alternative class of sample model, which can help to address the challenges

outlined in Section 2.3, is called latent-variable models. Latent-variable mod-

els will be the main type of learned sample model discussed in this thesis.

There is a good deal of diversity within the class of latent-variable models,

here I will discuss one of the simplest instantiations that could be used as a

sample model for RL. The basic idea is to factor the nontrivial part of the ran-

domness in our learned transition distribution into a separate noise variable Z,

generally referred to as the latent variable. We then introduce a latent-variable

dependent transition function p̂(s′|s, a, Z; θ).

Normally, p̂(s′|s, a, Z; θ) has a simple closed form as a function of s′. For

6More precisely, say f(X) can be computed in polynomial time but f−1(Y ) cannot.
While the existence of such functions technically remains an open question, much of modern
cryptography relies on assuming they exist.
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example, if s′ is a vector of binary values, p̂(s′|s, a, Z; θ) could be represented

by a neural network which takes s, a and Z as input, and outputs a vector of

values between 0 and 1 representing the mean of a Bernoulli distribution for

each element of s′. Note that this means the elements of a state S ′ sampled

from this model are independent given Z. The latent variable Z itself will also

be drawn from a simple closed form prior distribution p̂(Z|s, a; θ) conditioned

on the input s, a.7 For example, p̂(Z|s, a; θ) could also be represented as a

neural network which takes s, a as input and outputs the mean of each element

of Z, where each element of Z is once again a Bernoulli variable. I will use

vectors of independent Bernoulli variables as a running example in what follows

but other choices such as vectors of independent Gaussians are possible and

common.

Since p̂(s′|s, a, Z; θ) is parameterized by a generic neural network capable of

representing complex transformations p̂(s′|s, a; θ) =̇
∫
z
p̂(s′|s, a, z; θ)p̂(z|s, a; θ)

can capture complicated dependencies between elements of S ′ despite

p̂(s′|s, a, Z; θ) being a simple factored distribution. In order to draw a sam-

pled S ′ from this model, we sample Z ∼ p̂(Z|s, a; θ) first, then compute

p̂(s′|s, a, Z; θ), and finally sample S ′ ∼ p̂(S ′|s, a, Z; θ). The basic idea here

is quite natural, we wish to represent a complex distribution, so we take a uni-

versal function approximator like a neural network and use the neural network

to map an arbitrary, sufficiently rich, noise variable Z to a sample from the

distribution we wish to represent.

The next question is: how do we train a latent-variable model? We’d

like to optimize p̂(s′|s, a; θ) with respect to the loss in Equation 2.3, however

just evaluating log(p̂(s′|s, a; θ)), in this case, requires us to integrate over Z

which in the case where Z is a vector of Bernoulli variables means summing

over combinatorially many values. We want Z to be large enough to capture

fairly general dependencies among the elements of S ′, in which case explicit

integration will usually be intractable. This is where the idea of variational

7One could also use a distribution p̂(z; θ) which does not depend on x, or p̂(z) which is
fixed instead of learned. These choices may however limit the representational power of the
model as I will discuss shortly.
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inference comes in. Next, I will explain how I think about the idea behind

variational inference, and in particular, the way it is applied in variational

auto-encoders (VAEs; Kingma and Welling, 2014; Rezende et al., 2014). My

explanation is somewhat nonstandard, but I find it to be an intuitive way to

understand the underlying idea.

Computing p̂(s′|s, a; θ) requires an intractable integration over Z, but

computing p̂(s′|s, a, z; θ) given z is easy, it’s just a forward pass through

a neural network. If we imagine the ground truth transition distribution

was also generated by first sampling Z, and we could observe the Z as-

sociated with each transition, we could minimize an empirical estimate of

ES,A∼D [KL(p(S ′, Z|S,A), p̂(S ′|S,A, Z; θ)p̂(Z|S,A; θ))], over a dataset of tran-

sitions. This is equivalent to minimizing the following loss:

L =
N−1∑
i=0

(log(p(s′i, zi|si, ai))− log(p̂(s′i|si, ai, zi; θ)p̂(zi)))

=
N−1∑
i=0

(log(p(s′i, zi|si, ai))− log(p̂(s′i|si, ai, zi; θ))− log(p̂(zi|si, ai; θ)))

∝ −
N−1∑
i=0

(log(p̂(s′i|si, ai, zi; θ)) + log(p̂(zi|si, ai; θ))) ,

where zi is the observable latent variable associated with each transition. In

the final line, I’ve dropped a term which does not depend on θ. This is a

stronger requirement than only matching the distributions with respect to S ′.

If we manage to make KL(p(S ′, Z|s, a), p̂(S ′|s, a, Z; θ)p̂(Z|s, a; θ)) = 0 this

also guarantees KL(p(S ′|s, a), p̂(S ′|s, a; θ)) = 0 since if the joint distributions

over S ′, Z are the same then logically the marginal distribution over S ′ must

also be the same.

Unfortunately, there is no reason to believe the true transition distribu-

tion is actually generated by first sampling a latent variable Z, and even

if it was, this latent variable is certainly not observable as required by the

above objective. Variational inference works around this issue by augment-

ing the true transition distribution with an approximate posterior distribution
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q̂(z|s, a, s′; θ) which predicts the probability that the noise variable Z took a

particular value z given the observed transition. Often q̂(z|s, a, s′; θ) is pa-

rameterized as a neural network which outputs a distribution with the same

form as p̂(z|s, a; θ). If p̂(z|s, a; θ) is a vector of uniform Bernoulli variables,

q̂(z|s, a, s′; θ) could be parameterized as an equal length vector of Bernoulli

variables with means output by a neural network, which now takes s, a, and

s′ as input. We can now consider minimizing an empirical approximation to

ES,A[KL(q̂(Z|S,A, S ′; θ)p(S ′|S,A), p̂(S ′|S,A, Z; θ)p̂(Z|S,A; θ))], let’s start by

expanding as follows:

ES,A[KL(q̂(Z|S,A, S ′; θ)p(S ′|S,A), p̂(S ′|S,A, Z; θ)p̂(Z|S,A; θ))]

= ES,A,S′,Z [log(q̂(Z|S,A, S ′; θ)p(S ′|S,A))− (log(p̂(S ′|S,A, Z; θ)p̂(Z|S,A; θ))]

∝ ES,A,S′,Z [log(q̂(Z|S,A, S ′; θ))− log(p̂(S ′|S,A, Z; θ))− log(p̂(Z|S,A; θ))]
= ES,A,S′ [EZ∼q̂(Z|S,A,S′;θ)[log(q̂(Z|S,A, S ′; θ))− log(p̂(S ′|S,A, Z; θ))

− log(p̂(Z|S,A; θ))]]. (2.4)

Note that, in the second last line, I have dropped the term

ES,A,S′,Z [log(p(S
′|S,A))] which does not depend on θ and thus is not relevant

to its optimization. The final expression in Equation 2.4 is an expectation

over the distribution of observed transitions, of another expectation involving

functions we can evaluate in closed form. It’s starting to look like something

we can optimize, but I’ll defer the question of how precisely to do it until a

little later. First, let’s think about whether this is a reasonable thing to do.

Even though we are using a learned distribution q̂(z|s, a, s′; θ) instead of

some ground truth distribution over Z, we can still say that if we managed

to reduce KL(q̂(Z|s, a, S ′; θ)p(S ′|s, a), p̂(S ′|s, a, Z; θ)p̂(Z|s, a; θ)) to zero for all

s, a this will suffice to ensure thatKL(p(S ′|s, a), p̂(S ′|s, a; θ)) is zero as well. In

fact, we can make a stronger statement than this. In particular, KL divergence

is additive in the following sense:

KL(p(Y |X)p(X), q(Y |X)q(X)) = KL(p(X), q(X)) + Ex[KL(p(Y |X), q(Y |X)]

≥ KL(p(X), q(X)).
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In our situation, this gives

KL(q̂(Z|s, a, S ′; θ)p(S ′|s, a), p̂(S ′|s, a, Z; θ)p̂(Z|s, a; θ))

≥ KL(p(S ′|s, a), p̂(S ′|s, a; θ)).

Thus, by minimizing the left-hand side we are minimizing an upper bound on

the right-hand side. In other words, however low we can make the left-hand

side, we can guarantee the right-hand side is even lower. For this reason, the

(negation of the) inner expectation in Equation 2.4 is often called the evidence

lower bound (ELBO).

But why should we believe it’s even possible to achieve

KL(p̂(Z|s, a, s′; θ)p(S ′|s, a), p̂(S ′|s, a, Z; θ)p̂(Z|s, a; θ)) close to zero given

our restrictive choice of approximate posterior? A particular choice of

p̂(s′|s, a, z; θ) and p̂(z|s, a; θ) will correspond to a certain posterior over z

which we can work out using Bayes theorem:

p̂(z|s′, s, a; θ) = p̂(s′|s, a, z; θ) · p̂(z|s, a; θ)∫
z′
p̂(s′|s, a, z′; θ) · p̂(z′|s, a; θ)dz′

.

To push the KL divergence to zero we would require p̂(z|s′, s, a; θ) =

q̂(z|s′, s, a; θ) for all z. Unfortunately, this posterior need not have the fac-

tored form we imposed on q̂(z|s, a, s′; θ), i.e. there may be dependence among

the elements of z. The situation is improved by noting that there need not

be one unique p̂(s′|s, a, z; θ) which minimizesKL(p(S ′|s, a), p̂(S ′|s, a; θ)), there

may be many ways to map the noise variable Z to S ′ such that our sample

model captures the true distribution.

If there exists some mapping p̂(s′|s, a, z; θ) that captures p(s′|s, a) when we

marginalize out z while also leading to a factored posterior p(z|s′, s, a; θ), then

that solution will be preferred in terms of Equation 2.4. But do such solutions

even exist? In general, not necessarily, but for sufficiently expressive neural

networks, along with a sufficiently rich z, it will be possible to make the KL

divergence arbitrarily small. This is essentially analogous to saying there is a

universal approximation theorem for variational inference, which I will next

demonstrate there is, at least for the case of Bernoulli vectors.

If we consider the case where all relevant distributions are Bernoullis, then

S ′ can take finitely many possible values. In particular, if S ′ is a binary
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vector of length n, then S ′ can take N = 2n distinct values. Let’s index

these possible values as s′0, ..., s
′
N−1. For realistic data, it is likely that the

vast majority of these values will have near zero probability under the true

distribution p(S ′|s, a) so the effective N could be much smaller. Now consider

the extreme case where z is a vector of N independent Bernoulli variables. We

can then associate each possible value of s′ with an element of z by choosing

p̂(s′i|s, a, z; θ) =
i−1∏
j=0

1(z[j] = 0)1(z[i] = 1)

where 1 is the indicator function. In words, we deterministically map each

z to the s′i corresponding to the index of the first 1 in z.8 We can then set

p̂(z|s, a; θ) such that

p(s′i|s, a) =
i−1∏
j=0

p̂(z[j] = 0|s, a; θ)p̂(z[i] = 1|s, a; θ),

which ensures that p̂(s′i|s, a; θ) = p(s′i|s, a) for all i. Furthermore, the true

posterior will factor as

p̂(z|s′i, s, a; θ) =
i−1∏
j=0

1(z[j] = 0)1(z[i] = 1)
N−1∏
j=i+1

p̂(z[j]|s, a; θ),

and thus can be represented by a factored approximate posterior

q̂(z|s, a, s′i; θ). Intuitively, this just says that if we observe a particular yi

generated by the above process, we know that the first i − 1 elements of z

must have been zero, and the ith element must have been one, but we have no

information about the remaining elements of z beyond the prior. Note that

this construction requires the prior p̂(z|s, a; θ) to be parameterized and condi-

tioned on s, a. It’s an interesting question whether an analogous construction

is possible with a fixed prior p̂(z).

Now let’s consider the question of how we optimize Equation 2.4. We will

use stochastic samples of S,A, S ′ observed from the true unknown transition

8For simplicity I didn’t explicitly specify what happens if z is all zero. We can either
make the final element of z one deterministically so this doesn’t happen, or we actually only
need N − 1 elements of z and the all-zero vector will correspond to s′N−1.
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dynamics, however, we still need to deal with the inner expectation. Again, we

cannot simply sample Z ∼ q̂(Z|s, a, s′; θ) and optimize the inside of the expec-

tation with respect to the samples as the sampling distribution itself depends

on θ. However, as long as we can evaluate, sample from, and differentiate

q̂(Z|s, a, s′; θ), which we guarantee by design, we can use the following general

identity to obtain an unbiased gradient estimate:

∂

∂θ
EZ∼q(Z;θ)[f(Z; θ)] = EZ∼q(Z;θ)

[
∂ log(q(Z; θ))

∂θ
f(Z; θ) +

∂

∂θ
f(Z; θ)

]
. (2.5)

In our case, we would take q(z|θ) = q̂(z|s, a, s′; θ) and f(z; θ) =

log(q̂(z|s, a, s′; θ)− log(p̂(s′|s, a, z; θ))− log(p̂(z|s, a; θ)). We can then derive an

unbiased estimator of the gradient by sampling from q(Z; θ) and optimizing

the inside of the expectation for the specific sample. In many situations, how-

ever, it is possible to derive lower variance unbiased gradient estimates such as

the reparameterization trick (Kingma & Welling, 2014; Rezende et al., 2014).

HNCA, described in Chapter 4 is also an example of an unbiased variance

reduction technique applicable to variational inference. Biased gradient esti-

mators such as the straight-through estimator (Bengio et al., 2013) can also

be used and often perform well in practice.

I have described just one example of how variational inference could be

used to train a sample model for model-based RL. In another common setup,

rather than using the latent variable to parameterize only the noise, one can

learn a mapping p̂(z|s; θ) and then model the dynamics themselves in latent

space as p̂(z′|z, a; θ). An additional learned distribution p̂(s′|z′; θ) aims to

reconstruct the distribution of next states (see e.g., Watter et al. (2015), Ha

et al. (2018)). The overall transition distribution is then modelled as

p̂(s′|s, a) =
∫
z,z′

p̂(z|s; θ)p̂(z′|z, a; θ)p̂(s′|z′; θ)dzdz′. (2.6)

In this case, we are effectively trying to transform states s into a new space in

which the dynamics obey the factored structure imposed by p̂(z′|z, a; θ). This

approach has several benefits including being able to roll out the model for

multiple steps in latent space without explicitly predicting the environment

state in each step. This is essentially the approach of Dreamer (Hafner et al.,
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2020; Hafner et al., 2021), a variant of which will be applied in Chapter 3.

I will refer to this type of model as a latent-state model, and refer to the

associated latent variable z as the latent state.

In addition to potential computational benefits, latent-state models may

be beneficial in terms of stability since we can choose the latent state to be

relatively simple and bounded regardless of the form of the underlying envi-

ronment observations. Repeatedly applying a model to images of an Atari

game for example can quickly lead to compounding errors which produce pre-

dictions that look nothing like plausible images. However, if we instead iterate

the model in a restricted abstract latent space, such as the vector of categor-

ical variables used in Dreamer, it’s intuitively easier to imagine each element

of the latent space mapping to a plausible image. Formalizing this intuition

is beyond the scope of this thesis, but it’s interesting to think about. An in-

tuitively useful property for an imperfect learned model would be to converge

to some steady state, which is in turn assigned some reasonable default value

estimate, in the limit of repeated application rather than blowing up.

The application of variational inference to learn sample models for RL as

well as machine learning more generally is a rich and active area of research.

Nevertheless, the basic principles I have covered in this section apply quite

generally.

2.5 The Options Framework and Temporal

Abstraction

The planning algorithms discussed in the previous sections operate in the

space of individual actions. Each node produced by MCTS corresponds to

a single action, and Dyna-style approaches generally use a one-step model

and action-value function that estimates the expected return conditioned on

just one action. It’s not hard to imagine how this might be limiting if actions

correspond to very fine-grained choices like individual muscle twitches. In such

cases, an MCTS approach will likely exhaust its search budget before looking

far enough ahead to observe any meaningful changes to the state. Dyna-style
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planning will slowly back up value one step at a time, making it intractable to

back up information between meaningfully distinct events. As humans, it is

clear that we can plan over much larger time horizons, in terms of temporally

extended choices such as executing a left turn while driving or going to the

grocery store. Options provide a framework (Sutton et al., 1999) to augment

an RL agent with the capability for such temporally extended reasoning.

An option n consists of a 3-tuple (In, πn, βn). The option’s policy πn(a|s)

gives the probability of the agent selecting action a in state s while following

option n. The initiation set In ⊆ S is the set of states from which the option

can be initiated, in many cases this is simply set to S, such that the option

can be initiated from arbitrary states. The termination function, βn(s) gives

the probability of option n terminating after entering state s. Once defined,

options can be used essentially interchangeably with actions in planning.

We can define an option conditional transition distribution p(s′|s, n) =

Pπn,βn (ST̃ = s′|SI = s) giving the probability that option n terminates in s′

when initiated in s and following πn, where T̃ and I denotes the random time

at which option termination occurs, and the time at which the option is ini-

tiated respectively. Similarly, an option conditional reward function can be

defined as the expected cumulative reward from initiation to option termi-

nation r(s, n) = Eπn,βn

[∑T̃
k=t r(St, At)

∣∣∣SI = s
]
. Note that actions are also

options which terminate with probability one after just one step of execution.

I will sometimes use the phrase primitive action to emphasize I am talking

about a single-step action.

Options have at least two possible benefits. First, options facilitate more

rapid temporal propagation of value when learning or planning (Sutton et

al., 1999). This includes propagating information faster when background

planning, as well as allowing the agent to look farther into the future for

more informed decision-time planning. Second, options can facilitate explo-

ration (Machado et al., 2017; McGovern et al., 2001) by providing bridges

between distinct regions of state space that otherwise require very precise con-

trol to traverse.

While providing a set of prespecified options to an agent can be useful, it’s
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interesting to ask how an agent may build a set of useful options on its own.

This is the problem of option discovery and is a very active area of research. A

variety of methods have been proposed for option discovery, with a number of

different motivations behind them. Some approaches aim to directly optimize

options to facilitate good performance (Bacon et al., 2017; Veeriah et al.,

2021). Others aim to learn options which help navigate between disparate

regions of state space, for example by identifying bottleneck states (McGovern

et al., 2001; Stolle et al., 2002), exploiting graph-theoretic properties of the

transition dynamics (Machado et al., 2017), or encouraging options to contain

a lot of information about their state at termination (Eysenbach et al., 2019;

Gregor et al., 2016; Harutyunyan, Dabney, Borsa, et al., 2019).
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Chapter 3

The Benefits of Model-Based
Generalization in Reinforcement
Learning

Recall that the main focus of this thesis is on the potential to develop more

efficient reinforcement learning and planning algorithms by exploiting generic

problem structure. This chapter introduces the first major contribution of this

thesis and the first example of how algorithmic choices can impact an agent’s

ability to exploit generic problem structure. In particular, I demonstrate that

when some knowledge of the structure of the MDP is available, a model-free

approach like Q-learning is inherently less able to exploit the known structure

than a model-based approach. The experiments in this section focus partic-

ularly on environments with factored structure,1 which has the potential to

allow for significant model generalization. However, the main theoretical re-

sults are not specific to factored structure but instead show that a model-based

approach can better exploit known problem structure in general.

Model-based RL, which is described in more detail in Section 2.2, refers to

the class of RL algorithms which learn a model of the world as an intermediate

step to policy optimization. One important way such models can be used,

which will be the focus of this chapter, is to generate imagined experience for

training an agent’s policy (Jordan, 1988; Munro, 1987; Schmidhuber, 1990;

Sutton, 1990; Werbos, 1987). ER can be seen as a simple, nonparametric,

1Where the state consists of a set of state variables such that the distribution of each
variable at the next time step depends on only a subset of the variables in the current state.
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model (Lin, 1992; van Hasselt et al., 2019) where experienced interactions are

directly stored, and later replayed for learning.

ER already captures many of the benefits associated with a learned model

as compared to model-free incremental online algorithms (i.e., model-free algo-

rithms which perform a learning update using each transition only at the time

it is experienced). In particular, ER allows value to be rapidly propagated

from states to their predecessors along previously observed transitions, with-

out the need to actually revisit a particular transition for each step of value

propagation. Propagating value only at the time a transition is visited can

make model-free incremental online algorithms wasteful of data, particularly

in environments where the reward signal is sparse.

As Lin (1992) and van Hasselt et al. (2019) have discussed, it is often

not obvious why we’d expect experience generated by a learned model to

improve upon ER, as an ER buffer is essentially a perfect model of the world

insofar as the agent has observed it. This is especially true in the tabular

case, where a model does not generalize from the observed transitions. It

is also true for policy evaluation in the case where the value function and

model are linear (Parr et al., 2008; Sutton et al., 2008). In this case, learning

the least-squares linear model from the data, and then finding the TD(0)

solution (Sutton, 1988) in the resulting linear MDP is identical to finding the

TD(0) solution for the empirical MDP induced by the observed data. Hence,

if we expect to obtain a sample efficiency benefit by using data generated by

a learned model compared to ER, we should look beyond these cases.

One may argue that a parametric model that generalizes can generate a

large amount of imagined experience that does not appear explicitly in the

dataset. However, parametric value functions also generalize. Why should

model generalization be inherently better than value function generalization?

This question was already raised in the work of Lin (1992), which first in-

troduced ER for RL. Section 3.2 gives a partial answer as a theorem which

shows how learning a model as an intermediate step can narrow the space of

possible value functions more than learning a value function directly from the

data using the Bellman equation.
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After motivating the benefit of model-based generalization theoretically, I

will present an intuitive case where learning a parametric model is empirically

beneficial with neural network function approximation. Subsequently, I will

present extensive experiments, which highlight the sample efficiency benefits of

model-based learning for online RL in cases where the environment has some

underlying factored structure that can allow a learned model to generalize. I

will also analyze an interesting instance I came across during these experiments

where an agent using a learned model outperforms one using the perfect model

due to smoothed reward and transition dynamics.

3.1 Related Work

There is a large body of empirical research showing the potential of learned

models to improve sample efficiency (Asadi, 2015; Buckman et al., 2018; Curi

et al., 2020; Deisenroth et al., 2011; Hafner et al., 2021; Janner et al., 2019;

Kaiser et al., 2020). A relatively small body of work directly compares ER with

learned models. Van Seijen et al. (2015) show an exact functional equivalence

between a variant of replay with linear TD(0), and linear Dyna (Sutton, 1990).

Pan et al. (2018) provide an empirical study comparing ER with learned mod-

els under a variety of search control strategies, that is, different methods for

choosing which state-action pairs to update. Holland et al. (2018) empirically

compare ER with a parametric model in the ALE and highlight the benefits

of the model in particular when multi-step rollouts are used. Relative to these

works, here I focus on understanding how a learned model can provide a ben-

efit, and highlighting properties of environments where this benefit is most

prominent.

Van Hasselt et al. (2019) make a strong case that ER provides many of the

benefits of a learned model and argue that if a model is used only to generate

experience starting from observed states it is unlikely to provide additional

benefit. I investigate the comparison between ER and learned models further,

and argue that there is good reason to believe a learned model can improve

sample efficiency in environments with structure, such as factored dynamics.
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This is true even if the model is used only to augment training data with

rollouts starting from observed states.

Dong, Luo, et al. (2020) share my focus on highlighting situations where

model-based RL provides a significant benefit. While I focus on the gener-

alization benefits, they motivate the expressivity benefit of model-based RL

by showing there exist MDPs where the optimal policy is exponentially more

complex to represent than the dynamics.

The benefit of model smoothing, observed in some of the experiments in

this chapter, may shed light on some observations in the literature. Hafner et

al. (2021) suggest model smoothing as an explanation for why DreamerV2 can

achieve good performance on Montezuma’s Revenge without any sophisticated

exploration mechanism. Holland et al. (2018) observe that their learned model

sometimes outperforms the ground-truth model in Seaquest, though they do

not suggest a specific explanation.

The results presented in this chapter have implications for implicit model-

based algorithms (as defined in the survey paper of Moerland et al. (2020))

such as MuZero (Schrittwieser et al., 2020). In such algorithms, the model

is not trained to predict future observations, but only task-relevant aspects

of the future such as policy, value and reward. In light of Theorem 3.1, and

the example in Section 3.3, it is unclear whether such techniques fully ex-

ploit the benefits of model-based learning due to the limited training signal

used to constrain the model.2 Indeed, there is empirical evidence suggesting

that MuZero’s sample efficiency can be improved by using additional training

signals (Anand et al., 2022; Ye et al., 2021).

This chapter is loosely inspired by the literature on exploiting factored

structure in MDPs (Diuk et al., 2009; Osband et al., 2014; Sallans et al.,

2004; Strehl et al., 2007; Sun et al., 2019; Xu et al., 2020). As highlighted in

Section 3.2, Theorem 3.1 is closely related to Theorem 2 of Sun et al. (2019),

which shows that there exists a family of MDPs where a model-based approach

can be exponentially more efficient than any model-free approach. I focus on

2Though Gehring et al. (2021) suggest that the implicit model-based parameterization
itself may yield favourable gradient dynamics.
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factored structure to motivate the benefit of model generalization but do not

use algorithms explicitly designed to exploit this factored structure.

The benefit of model-based generalization can be seen as an example of

the benefit of semi-supervised learning (Chapelle et al., 2006) in general. As

another example of the latter, Ng et al. (2001) demonstrate that learning

a generative model to predict p(y, x) by naive Bayes and marginalizing to

produce a classifier tends to outperform directly predicting p(y|x) by logistic

regression in the limit of low data. Model-based RL is similar in that we solve

a larger problem, that is learning a world model, as an intermediate step to

the more specific objective of learning a good policy. Ng et al. (2001) also

find that logistic regression tends to outperform naive Bayes given sufficient

data, at least when the true model is not realizable by the function class.

Both Theorem 3.1 of the present chapter, and Theorem 2 of Sun et al. (2019)

consider the realizable case. A more nuanced theory could highlight the trade-

off between model-based and model-free learning when realizability fails or

optimization is imperfect. I discuss this further in Section 3.6.

In this chapter, I focus on the advantages of using models to generate

experience for policy improvement. Learned models can also be useful in

other ways, for example, decision time planning for immediate action selec-

tion (Byravan et al., 2022; Chua et al., 2018; Richalet et al., 1978), improv-

ing credit assignment (Buesing et al., 2019; Heess et al., 2015; Schmidhuber,

1990), exploration (Pathak et al., 2017; Schmidhuber, 1990, 1997), represen-

tation learning (Gregor et al., 2019; Hessel et al., 2021; Lin et al., 1992), and

in answering learned queries (Schmidhuber, 2015).

3.2 Theoretical Motivation for the Benefit of

Model-Based Generalization

Theoretical comparison of model-based and model-free methods is challenging

in that it is difficult to precisely define what makes an algorithm model-free.

Given a known model classM, Sun et al. (2019) define a model-free algorithm

as one which accesses the state s only through its set of possible optimal
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Figure 3.1: An illustration of the intuition behind Theorem 3.1. The hypoth-
esis class over models is shown on the left and the resulting hypothesis class
over optimal action-value functions is shown on the right. The diagram shows
the difference between the model-based and model-free approaches to prun-
ing optimal action-value functions based on observed data. The model-based
result can be a drastically smaller set, and never larger, than the model-free
result.

action-value functions {q∗m(s, a)}(m∈M,a∈A), where A is the action set and q∗m

represents the optimal action-value function for a particular MDP m. Any

states which have the same action values under all considered models are

deemed indistinguishable to a model-free algorithm. Under this definition,

they show there exist model classes where a model-based approach can be

exponentially more sample efficient than any model-free approach.

One key insight of Sun et al. (2019) may be summarized as follows: even

states which are indistinguishable in terms of their action values, for all MDPs

in the model class, may contain distinct information about the environment

dynamics. Perhaps counter-intuitively, this dynamics information which is

unavailable to model-free methods can contain information that is relevant to

predicting values.

Here, I present a simple theorem based on a setup similar to that of Sun

et al. (2019). Relative to their general result about model-free algorithms

as defined above, this result presents similar intuition in a simpler setting,

while being more targeted to motivate my subsequent empirical comparison of
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model-free learning with ER to using a learned model. In combination with

the subsequent empirical results, this theorem can help practitioners gain more

concrete intuition for how utilizing a learned parametric model can improve

generalization, and thus sample efficiency.

I state the theorem informally here, and formally with proof in Appendix A.1.

Figure 3.1 illustrates the key idea.

Theorem 3.1. Consider a class of deterministic, episodic, MDPs M with

fixed reward function, and transition function belonging to some known hy-

pothesis class. Let HQ be the associated class of optimal action-value functions

for MDPs inM. Now consider a dataset D of transitions. Let HB(D) be the

subclass of action-value functions in HQ which obey the Bellman optimality

equation for the transitions in D and let HM(D) be the subclass of optimal

action-value functions of MDPs inM which are consistent with D. Then the

following are true:

1. HM(D) ⊆ HB(D).

2. For any N ∈ N there exists some choices ofM and D such that |HB(D)|
|HM (D)| >

N .

3. For a tabular transition function class, that is one that includes every

possible mapping from state-action pairs to next states, HM(D)=HB(D).

Intuitively, Theorem 3.1 states that, if we want to narrow down the possible

optimal action-value functions from data, we can in general prune more (in

fact an arbitrarily large factor more in certain cases) if we narrow down the

possible models first than if we only demand that the value functions obey the

Bellman optimality equation with respect to the observed data. The latter

approach is closely analogous to running Q-learning to convergence on a fixed

dataset D.3 Part 3 of Theorem 3.1 states that the model-based approach offers

no benefit for a tabular model class, but rather only for models which have

some additional structure. In such cases, even if a model-based and model-free

approach begin with the same hypothesis class, the model-free approach can

3Note that the latter approach meets the definition of model-free suggested by Sun et al.
(2019) since if two states have the same action values in every MDP inM we can enforce
Bellman optimality without knowing which of them was visited.

35



fail to leverage this structure and ultimately lose value-relevant information

from the data in the process.

The proof of part 2 of Theorem 3.1 uses an example adapted from Sun

et al. (2019) and illustrated in Figure 3.2. The basic idea is to set up a

combination lock type problem where an a priori unknown sequence of actions

leads to a reward of 1 while all other action sequences lead to a reward of

0. The problem class is such that using information about the dynamics, it

is possible to work out the optimal policy from a single arbitrary trajectory.

Without using the dynamics information, a model-free agent using Bellman

consistency alone will only be able to prune a single possible value function

per trajectory unless the data contains the optimal sequence. In words, we can

construct a class of MDPs and an associated dataset such that the model-based

approach can uniquely determine the optimal action-value function while the

model-free approach is left with a class containing N elements for arbitrarily

large N .

While somewhat contrived, the example in Figure 3.2 has simple factored

structure. It isn’t hard to imagine how similar situations could arise in prac-

tice. For example, one could imagine learning the basic rules of chess from a

relatively small number of examples and from there working out a very strong

policy by imagining different strategies using these learned rules. Other ex-

amples of problems with such simple factored structure are explored in the

experimental portion of this chapter.

Theorem 3.1 provides useful intuition for how utilizing a learned paramet-

ric model can improve sample efficiency. However, there are important gaps

between the assumptions of the theory and the practice of using neural net-

work function approximation for value functions and models. With neural

network function approximation, we have no guarantee of realizability (that

the true model is actually in the class) though, with a sufficiently high capacity

neural network, this can perhaps be assumed. Theorem 3.1 also assumes the

model-based and model-free approaches have access to the same prior knowl-

edge of the problem class. This is not true in practice where prior knowledge

is encoded somewhat nebulously in the choice of neural network architecture.
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Figure 3.2: Illustration of the model class used as an example where selecting
a hypothesis based on model consistency is arbitrarily more selective than
Bellman consistency. The action space consists of 2 actions, left and right.
The states consist of 1 component which acts as a countdown to termination
along with M passcode components (with M = 2 in the figure) which act to
record the action sequence executed so far. The digits take values in {0, 1, 2}
with 1 indicating the left action, 2 indicating the right action and 0 padding
the future actions. When the countdown reaches 0 the correct passcode digits
will switch to 1 and the incorrect digits to 0. In the following step, the episode
will terminate. Note that termination always occurs at t = M + 2. A reward
of 1 will be given on termination if and only if all passcode digits are 1, and the
reward is otherwise 0. Different models in the class vary only in the initially
unknown passcode.

Theorem 3.1 says nothing about the performance of an arbitrary model or

value function parameterization on a single problem instance. For example,

in the limiting case where the true value function is known a priori, no learn-

ing is necessary and any value function learned by a model-based approach

may well be worse. Instead, Theorem 3.1 suggests that if we design a model

architecture with favourable generalization properties for a problem class of

interest, a model-based approach with this architecture will provide a sample

efficiency benefit which cannot be replicated simply by encoding analogous

generalization properties into a value function.

Theorem 3.1 also doesn’t directly say anything about the relative per-

37



formance we can expect when using a model-based approach compared to a

model-free approach. It tells us there exist datasets and model classes for

which the model-based approach can rule out more value functions, but how

does this affect the performance of an agent using this information to choose

actions? Moreover, what if rather than an arbitrary dataset, we allow the

agent to select actions in order to generate its own data to learn about the

environment? I shed light on both these questions in the following Theorem,

which is very closely related to Theorem 2 of Sun et al., 2019. Again, I state

the theorem informally here, and formally with proof in Appendix A.1.

Theorem 3.2. Consider a class of deterministic, episodic, MDPs M with

fixed reward function, and transition function belonging to some known hy-

pothesis class. Assume an agent is able to interact with the MDP in an online

fashion selecting actions at each time step. Let Dt be the dataset of all transi-

tions observed up to time t during this interaction. Let HB(Dt) be the subclass

of action-value functions in HQ which obey the Bellman optimality equation

for the transitions in Dt and let HM(Dt) be the subclass of optimal action-value

functions of MDPs inM which are consistent with Dt. For any δ ∈ (0, 1] and

N ∈ N, there existsM such that the following are true:

1. For any agent which selects actions at each time t based only on HB(Dt)

and the current state St, there is some MDP inM such that with prob-

ability at least 1 − δ the return for all episodes up to episode N will be

0.

2. There exists an agent which selects actions at each time t based on

HM(Dt) and St such that the return for all episodes after the first is

guaranteed to be 1, which is optimal.

Theorem 3.2 highlights that learning a model doesn’t only allow us to

narrow down the possible optimal action value functions faster; in addition,

forcing an agent to make decisions based only on the value information that

can be determined using Bellman consistency can mean it takes an arbitrary

factor more samples to achieve reasonable performance.

The remainder of this chapter focuses on demonstrating empirically how
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the intuition underlying these theorems is relevant to standard RL algorithms

with simple neural-network function approximation. In the next section, I will

highlight a simple and intuitive case where similar intuition leads a learned

model to have a clear empirical benefit despite the fact that I do not encode

any problem-specific structure into the model.

3.3 A Simple Case where Model-Based Gen-

eralization is Useful

There have been many examples of empirically successful model-based ap-

proaches recently (e.g. Hafner et al. (2021) and Schrittwieser et al. (2020)).

However, owing to the many design choices involved in such algorithms, it

can be hard to establish where the benefits are actually coming from. In this

section, I present an illustrative example where learning a parametric model

from data, and then learning an action-value function within that model, has a

clear advantage over learning an action-value function directly from the data.

This example will also explore another gap between Theorem 3.1 and model-

based RL practice. Namely, in practice, we don’t compute the exact value

function under the learned model. Instead, one common strategy is to train

a value function on model-generated rollouts initialized from states in the ER

buffer. The example presented here shows straightforwardly how, while even

single-step rollouts can be useful, using multi-step model rollouts can provide

an additional advantage. To keep this example simple and intuitive, I consider

an offline RL setting with hand-selected datasets with varying coverage of the

dynamics.

The environment in this section consists of a 3x3 grid world with a goal in

the top left corner and arbitrary walls (the location of which is fixed within

an episode). Reward is -1 at each step until the goal is reached, at which

point the episode terminates. Actions consist of standing still or moving in a

cardinal direction. Observations are flat binary vectors consisting of one-hot-

encodings of the agent’s position and the goal position (though goal position is

fixed here), and two binary vectors indicating, respectively, the presence and
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absence of walls in each cell.

EXIT EXIT EXIT EXIT

EXIT EXIT EXIT EXIT

EXIT

EXIT

Basic 
configurations

Evaluation 
configurations

Figure 3.3: Maze layouts included in the basic and evaluation sets. All datasets
include every transition in each of the basic configurations, but different sets
of transitions in the evaluation configurations.

For explanatory purposes, I break the data in the training datasets provided

to the agents into a basic set and an evaluation set. The basic set consists of

all possible transitions with wall layouts having a single wall within one of

the 8 non-goal cells. Every training dataset contains this entire basic set, in

addition to some limited data from the evaluation set. The evaluation set

consists of transitions with wall layouts of 2 walls in one of the configurations

illustrated in Figure 3.3. I consider training datasets with 4 different levels of

evaluation set data coverage:

• All-Evaluation: All possible transitions within the evaluation wall lay-

outs.

• Path-to-Goal: Only evaluation layout transitions which follow the path

to the goal.

• Single-Cell: Only the transitions starting from the cell furthest from

the goal (with respect to the only open path).

• No-Evaluation: No transitions from the evaluation set.

I compare model-based and model-free algorithms in this setting. Both

approaches use DQN for behaviour learning. The model-free approach trains
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Figure 3.4: Frequency (over 30 random seeds) of trained agents’ greedy policy
selecting the correct action in cells of the displayed maze with different eval-
uation set coverage during training. The length of the green arrows indicates
the frequency of greedy policies picking the corresponding action.

DQN with examples from the dataset. For the model-based approach, I use a

simple feedforward neural-network model and train DQN on model-generated

transitions. The model takes an observation as input and outputs a predicted

reward, Bernoulli termination probability and vector of Bernoulli probabilities

that each feature is active in the next state. This model is sufficient to rep-

resent the true dynamics since the environment has deterministic transitions.

I train the model on transitions from the dataset and train the action-value

function on model rollouts initialized from states in the dataset. I trained one

model-based agent with single-step rollouts and another with 10-step rollouts.

Each agent is trained for 1 million training steps with the total number of

(real or imagined) transitions used in each DQN update held fixed across all

agents. See Appendix A.5 for further details on the experiment setup.

Each agent is evaluated by checking the frequency out of 30 independent

runs with which the greedy action under the learned value function is optimal

in each cell of an evaluation layout. I say the agent has failed if there exists

any cell in which the majority of runs select the wrong greedy action. I next
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discuss how I expect each agent to perform with each level of evaluation set

coverage.

All-Evaluation: I expect that all agents will succeed in the case where

data is given for all transitions in the evaluation layouts. Here, a model-free

agent has access to all the data needed to back up value from the goal and

determine the value of each state-action pair, and a model-based agent has no

opportunity to generate useful novel transitions which do not already appear

in the dataset.

Path-to-Goal: I expect model-free DQN to fail in the Path-to-Goal case.

Consider the lower evaluation wall layout in Figure 3.3. For the bottom middle

cell, there is no data in the Path-to-Goal dataset for actions besides moving

right. For every basic-set layout, moving right is worse than moving up. I

predict the model-free agent will incorrectly generalize from the basic set to

conclude that the right action is also worse in this new configuration.

I expect both model-based agents to succeed with Path-to-Goal data. All

missing transitions are one step away from the available data, but require a

different action selection. I predict that the outcome of these missing actions

can be learned by generalization from the basic set. To determine the effect

of an action, it suffices to look at the agent’s current location and whether

there is a wall in the cell it is attempting to enter. I predict the agent will be

able to learn this basic structure from the training data, even in the absence

of specific data about the case where there are two walls. Note that this

hypothesis implies a nontrivial prediction about how this simple model will

generalize. Factored structure is not hard-coded in the model, thus it is also

plausible that the model predictions will be arbitrarily bad for the unobserved

evaluation transitions.

Single-cell: I expect the single-step model to fail when only transitions

from a single evaluation cell are included in the dataset. In this case, the model

rollouts have no chance to reconstruct anything not already available explicitly

in the dataset given all single-step transitions from the far cell are included

and this is likely to be insufficient for reasons already explained. However,

the 10-step model has the potential to succeed. If the model generalizes as
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expected, it can start in the far cell available in the dataset and roll out a

trajectory which discovers the full path to the goal.

No-Evaluation: Finally, all agents should fail in the case where there is

no evaluation data available at all. The models will have no opportunity to

provide the learned value function with example transitions from the evalua-

tion layout given model rollouts are initialized with states from the dataset.

Note that the situation may be different for an agent using a generative start-

state model to produce plausible states for the start of rollouts which need

not explicitly appear in the dataset.4 Using the model to plan for immediate

action selection at evaluation time, as in decision-time planning, would also

help here as the agent could directly plan a response for the previously unseen

state.

In Figure 3.4, we observe that all the above predictions are confirmed.

I reiterate that this is a nontrivial empirical result. It relies on the simple

model, a feedforward neural network, with no explicit bias toward factored

solutions, generalizing in a particular way to state-action pairs that do not

explicitly appear in the dataset. At least in this case, the model indeed seems

to generalize in a way that provides a significant advantage over ER alone.5

This experiment also straightforwardly illustrates how even a model with 1-

step rollouts can be helpful, by sampling counterfactual actions or, in the

case of stochastic environments, counterfactual chance outcomes. However,

multi-step rollouts can succeed in situations where there is insufficient data

for one-step rollouts to be helpful.

4This raises the question of how the start-state model should generalize. If trained to
maximize data likelihood, it could overfit and only generate states from the training set.

5I also verified that the model predictions are near perfect with respect to predicting the
agent position after each state-action pair across all transitions in the evaluation configura-
tions.
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3.4 Favourable Environments for Online Model-

Based Learning

I next describe three environments which exemplify properties that should

make online learning with a parametric model particularly useful. I aim for

the following environment characteristics:

1. Simple factored structure in the state space that I expect should be easy

to learn for a model with reasonable generalization properties.

2. Return which depends sharply on the policy, such that a randomly be-

having agent won’t have much of a learning signal for policy improve-

ment. This should make model-generated experience more useful, as

Bellman backups alone will tend to be mostly uninformative.

3. Occasional random transitions to rewarding states (or terminal states

when termination is desirable). This allows the model-based agent to

learn about the reward function even while behaving highly subopti-

mally.

The third characteristic does not contradict the second as an agent can oc-

casionally obtain some reward while behaving suboptimally but have difficulty

obtaining more. This characteristic may seem contrived, but I argue that it is

quite natural. For example, one can imagine an agent gathering edible plants

for a long time before working out how to grow their own. It is often much

harder to discover reward, without ever observing it, than to work out how to

reconstruct rewarding circumstances using general knowledge of the transition

dynamics. On a practical note, there is significant work on exploration with

sparse (or no) reward (Amin et al., 2021; Schmidhuber, 1991a, 1991b, 2010;

Thrun, 1992) which is orthogonal to my focus here. Hence, I mitigate the

issue by making it easier to learn the reward function. I ablate these sponta-

neous transitions to rewarding states in Appendix A.9 to test the impact of

this choice.

In addition to the above, the environments I investigate allow scaling of

problem complexity to test the limitations of different approaches. The envi-

ronments are also Markov, use binary features, and are largely deterministic,
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so simple models can work well, though I also investigate more sophisticated

latent-variable models. Next, I describe the environments (see Appendix A.2

for details).

ProcMaze (Figure 3.5, left): Procedurally generated grid world mazes.

The maze itself, along with the start state and goal state, is randomized in

each episode. Negative reward is given for each step until the goal is reached.

Complexity is scaled by increasing the grid size.

ButtonGrid (Figure 3.5, middle): A 5 by 5 grid with randomly placed

buttons. An agent can move around and, if it hits a button, will toggle it

on or off. If all buttons are on, a reward is given and button locations are

randomized. Random behaviour will tend to randomly perturb the buttons,

a precise policy is required to set them all to on. Complexity is scaled by

increasing the number of buttons.

PanFlute (Figure 3.5, right): A minimal example of an environment with

combinatorial complexity of optimal behaviour, but simple factored transition

structure. PanFlute consists of n pipes of cells where each pipe evolves inde-

pendently. Each action directly activates the cell at the bottom of one pipe,

after which the activation will propagate up the pipe, one step at a time, and

dissipate after reaching the end cell of the pipe. A reward is received if the cells

at the end of all pipes are simultaneously active, which can only be achieved

by choosing each of the n actions in a certain order, a probability of 1/nn

under random behaviour. Complexity is scaled by increasing the number of

pipes n.

I expect ER alone to be of limited utility in each of these environments as

each of them requires precise control to obtain significantly more reward than

random behaviour, especially as the problem complexity is scaled up in each

case. Since each environment includes random transitions to rewarding states,

an agent can easily learn that these states are good, but until it reaches the

rewarding state by its own actions, it won’t be able to learn much from the

states which precede rewarding states.

On the other hand, each environment has factored structure that a model-

based agent can learn, and subsequently use to imagine many novel, plausible,
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Figure 3.5: Left: Examples of states in the ProcMaze environment of size 4
with the agent shown in orange. Middle: An example state of the ButtonGrid
environment with 3 buttons. The agent is shown in orange and the buttons in
black (off) and white (on). Right: An instance of the PanFlute environment
with 5 pipes. The agent directly activates cells (a,b,c,d,e) through its actions
after which the activation propagates up the associated pipe, one step at a
time, and dissipates at the end.

states in its rollouts. In ProcMaze, an agent moving into a specific empty

space will have the same effect regardless of the rest of the maze layout, and

attempting to move into a wall will always block it. In ButtonGrid, the con-

nectivity of the grid is independent of the button layout, and stepping on a

button in a specific cell will have the same effect regardless of the layout of

the rest of the buttons. In PanFlute, each action always has the same effect,

and each pipe evolves according to dynamics which are unaffected by the other

pipes.

To better contextualize the results for environments with factored struc-

ture, I will also present results in an open grid world with a goal in one corner

which I refer to as OpenGrid. The agent location is simply represented by a

one-hot vector (effectively tabular) so there is really no structure to exploit

in OpenGrid. The learned model must essentially memorize every individual

transition to learn the dynamics. Further details of this unstructured environ-

ment are available in Appendix A.3.
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3.5 Beneficial Model-Based Generalization for

Online RL

I now empirically evaluate the performance of model-based and model-free

learning algorithms on the environments described in Section 3.4. I experiment

with variants of each environment with a range of complexities to test how

different approaches scale to more complex environments.

All tested approaches use DQN for behaviour learning but vary in the

source of training examples for DQN. The model-free approach draws transi-

tions randomly from an ER buffer for training. I test several types of learned

model. The first is the simple feedforward neural network model introduced

in Section 3.3. The second is a latent-variable model (Ha et al., 2018; Schmid-

huber, 1997; Watter et al., 2015) inspired by Dreamer (Hafner et al., 2020;

Hafner et al., 2021), but with two major differences to simplify the approach

and reduce confounding factors in my experiments. In particular, I use DQN

instead of actor-critic and, since the considered environments are Markov, I

forgo the recurrent network of Dreamer and model single-step stochastic tran-

sitions with no memory. I experiment with Gaussian-latent and categorical-

latent variables. See Appendix A.4 for further details of these models. Finally,

as a strong baseline, I include a perfect model, which uses the ground truth

environment dynamics but is otherwise the same as the simple-model agent.

As in Section 3.3, I control for the total number of updates, and the total

number of (real or imagined) transitions used in each update. In particular,

model-free DQN is updated on a batch of 320 transitions from the ER buffer

while all model-based approaches use 32 model rollouts of length 10, begin-

ning in a state from the ER buffer. In Appendix A.9, I perform an ablation

in which 1-step rollouts are used instead and find that longer rollouts are gen-

erally helpful. In each update, the model is trained using the same batch of

transitions which initialize the rollouts. All agents use a softmax behaviour

policy and are evaluated under the greedy policy. Action-value learning uses

Equation 2.2, with real or imagined transitions, using a discount factor of 0.9.

I experiment with 2 different data regimes to get a more complete picture
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of how each approach scales with available data. In the high-data regime, I use

one update per real environment step and train for a total of 1 million steps.

In the low-data regime, I use 10 updates per step and train for 100 thousand

steps. Note that the total number of updates is the same in each case.

Experiment Design: For each combination of agent, environment, and

data regime I performed an extensive grid search over the action-value-function

step size and softmax-exploration temperature. I judged these hyperparam-

eters to be the most likely to impact the relative performance of different

methods. This grid search was performed for an intermediately complex ver-

sion of each environment (size 4 ProcMaze, 4 button ButtonGrid, and 7 pipe

PanFlute) and the same hyperparameters were used for the other complexity

levels. I evaluated each hyperparameter setting based on mean final perfor-

mance of the greedy policy over 30 random seeds. I was able to run 30 seeds

efficiently in parallel on a single GPU using automatic batching in JAX (Brad-

bury et al., 2018). Other hyperparameters, including model step size, were

fixed to reasonable defaults (see Appendix A.6), not tuned for any specific

approach. In Appendix A.7, I report hyperparameter sensitivity results from

this grid search.

ProcMaze ButtonGrid PanFlute
High Data

Low Data
Final

Return/
Reward

Rate

Final
Return/
Reward

Rate

Grid Size Number of Buttons Number of Pipes

Experience Replay
Perfect Model
Simple Model
Categorical Latent
Gaussian Latent

Figure 3.6: Final performance of greedy policy for the three structured en-
vironments in two different data regimes. Error bars show 95% confidence
intervals.

Results: I present results for the three structured environments in Fig-

ure 3.6 (see Appendix A.8 for learning curves). As the results for PanFlute

differ substantially from the results for ButtonGrid and ProcMaze, I will dis-

48



cuss them separately. For ButtonGrid and ProcMaze in the high-data regime,

the simple model and categorical-latent model both significantly outperform

ER for sufficiently complex environment instances. The Gaussian-latent model

generally performs quite poorly, which corroborates the results of Hafner et al.

(2021) that categorical latents tend to work better in the discrete control set-

ting. Oddly, the simple model also performs much worse for 1 and 3 buttons in

ButtonGrid in the high-data regime. This may be because fewer buttons mean

fewer examples where a button occupies each particular cell, which makes it

harder for the simple model to learn the underlying dynamics.

In the low-data regime, the simple model outperforms ER to a greater

extent, while the performance of the categorical-latent model degrades signif-

icantly. This can perhaps be understood by noting that the hypothesis class

of the simple model is simpler (the latent-variable model can model correlated

features, while the simple model cannot) and thus is able to generalize well

from less data when the simple class is sufficient. Performance of the simple

model for 1 and 3 buttons improves when moving to the low-data regime.

Likely, this indicates underfitting in the high-data regime which is helped by

training more on each example. Overall, the results for the simple model and

categorical-latent model in the high-data regime, and the simple model in the

low-data regime, show a clear indication of the sample efficiency benefit that

can be obtained by using a learned model in these environments.

Results for PanFlute are qualitatively different. Most surprisingly, the

Gaussian-latent model and the simple model outperform the perfect model in

some of the harder problem instances. This is intuitively strange and seems

to indicate that model errors somehow improve performance.

Why do Some Learned Models Outperform the Perfect Model on

PanFlute? I hypothesize that the smoother reward and dynamics learned by

the model serve as a powerful exploration heuristic. The true reward function

is nonzero, and thus the agent receives a learning signal, only in the rare event

that every pipe-end is active. The model might instead learn a smoothed

reward function, proportional to the number of pipe-ends activated. The agent

could then learn incrementally to activate more pipe-ends, gradually improving
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toward the correct sequence.

To test this hypothesis, I looked at the models learned at 10,000 time steps,

in 9-pipe PanFlute (high data). I generated a large amount of random tra-

jectory data with a policy that selects actions in alphabetical order with 80%

probability and uniformly randomly otherwise to get a good mix of different

numbers of active pipe-ends. I bin this data by the number of active pipe-ends

and then look at the average model-predicted reward for each bin. Note that

the ground truth reward is zero for all except the 9 active pipe-end bin. To

test for favourable smoothing in the transition dynamics, I used the same data.

This time, I bin the data by the number of pipe-ends active at the next step

and look at the probability under the model that all pipe-ends are active at

the next time step.
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Figure 3.7: Model prediction of reward and probability that all pipe-ends are
active at the next time step as a function of the true number of current and
next pipe-ends active respectively on 9-pipe PanFlute. Error bars show 95%
confidence intervals.

The results, for both predicted reward and predicted probability that all

pipe-ends will be active at the next time step (“predicted probability of re-

warding next state” in the figure) are displayed in Figure 3.7. I observe that

the models indeed tend to learn smoother rewards than the ground truth in

a way that might provide a useful exploration heuristic. The Gaussian-latent
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Figure 3.8: In orange, the number of steps to reach near-optimal performance
(95% of maximum possible reward rate) on 9-pipe PanFlute when using a
frozen simple model trained for a variable number of steps. Numbered arrows
indicate the number of seeds out of 30 which failed to reach near-optimal
performance within 1 million steps. In green, the predicted reward for 6 active
pipe-ends, displayed as a surrogate for the amount of model smoothing. Error
bars show 95% confidence intervals.

model additionally learns smoothed transition dynamics, predicting all pipe-

ends will activate with appreciable probability when in reality only most will,

this may provide additional benefit in this problem.

As an additional test of the benefit of model errors, I used simple models

frozen at various points in training to train a value function from scratch for

1,000,000 time steps. I plot when near-optimal performance of the greedy

policy is first reached. The results, shown in Figure 3.8 clearly show that a

model trained for an intermediate amount of time is most useful for reaching

good performance quickly. I also plot the mean predicted reward for states with

6 active pipe-ends for each model as an indication of smoothing, as expected,

this decreases with more model training.

The smoothing effect highlighted in these results is interesting for two

reasons. First, it may lead model-based algorithms to perform better than

expected, acting as a confounding variable when interpreting results. Second,

it may be genuinely useful. One could even design algorithms which learn poli-

cies within relaxed versions of a model, as a way to drive exploration. However,

as there are surely other situations where model smoothing is harmful, this
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would need to be done with care.

Size of Grid

Average
Return Experience Replay

Perfect Model

Simple Model

Figure 3.9: Final performance of greedy policy for OpenGrid in low-data
regime. Error bars show 95% confidence intervals.

What Happens when There is no Structure for the Learned Model

to Exploit? We can compare the above, largely positive, results for the ben-

efit of model-based generalization with the results for OpenGrid shown in

Figure 3.9. In contrast to the more favourable environments, here we see that

the simple model becomes worse relative to ER as the environment complex-

ity increases. This is reasonable as OpenGrid is essentially tabular and thus

the model has no ability to extrapolate beyond the data. The best it can do

is memorize the transitions that are already in the ER buffer and the limita-

tions of finite model capacity and imperfect optimization prevent it from doing

so perfectly. See Appendix A.3 for further details and parameter sensitivity

curves for OpenGrid.

3.6 The Drawbacks of Model-Based Learning

One clear limitation of Theorem 3.1 is that we assume the model and value

function are effectively constructed using the same initial knowledge of the

world. When this is not the case, it is obvious that if a particular value-function

class is a better fit to a problem class of interest than a particular model class,

we may be better off using a model-free method with the superior function

class. However, I see this limitation as somewhat uninteresting since the point
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of the analysis is to highlight how a model-based method can allow us to make

inherently better use of problem structure to extract more information from

the data.6 More interesting is to consider in what sense a model-free method

might be preferred even when we assume parity of world knowledge.

If realizability does not hold, or if the optimization process of the world

model fails to find the best model, despite it existing in the function class,

then model-free learning may be preferred, even when the model and value

function share analogous function classes. In particular, by fitting the value

function directly, model-free learning can better use limited function approx-

imate resources given sufficient data. In the extreme case where one assumes

that we have enough data such that the empirical MDP is effectively a perfect

model, then it’s probably preferable to fit a value function to that MDP than

to the imperfect learned model. If we ultimately care about the accuracy of

our value function, then optimizing for value-function accuracy directly avoids

an extra step of unnecessary error propagation.

In practice, there will usually be a trade-off in choosing a model-based

method over a model-free method with ER. Learning a model can extract

more information from limited data. However, if the model or its optimization

process cannot perfectly fit the data, a value-based method will be preferable

when there is sufficient data that the empirical MDP becomes a better model

than the learned one. One could also employ hybrid methods where the value

function is trained using a mix of real and model-generated transitions to

get some of the benefits of both. Nevertheless, the results presented here give

good reason to believe that model-based methods are preferable given sufficient

computation and function approximation resources.

6Though there is a related question of whether it is somehow practically easier to encode
useful structure into a value function than a model, and if so what could be done to change
that?
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3.7 Discussion

This chapter introduced the first major contribution of this thesis, and the

first example of how our design decisions can influence a reinforcement agent’s

ability to take advantage of generic problem structure. In particular, I demon-

strated that model-based agents are in a sense inherently better able to take

advantage of known structure. Theorem 3.1 demonstrates that for a model

class with some known structure, we can generally narrow down the pos-

sible value functions more with a model-based approach than a model-free

approach. I also provided empirical evidence that the intuition behind this

theorem holds in practice when we use neural network function approximation

in domains with factored structure. In such cases, I have verified through

extensive experiments that a model-based method can maintain strong perfor-

mance as the complexity of the environment increases beyond the point where

an analogous model-free approach fails. As an aside I demonstrated how, by

smoothing the reward and/or transition dynamics, experience generated by a

learned model can provide a useful signal for exploration that can sometimes

lead to better performance than even a perfect model. Overall, I believe that

the work presented in this chapter can help to ground future work in model-

based RL in a better understanding of how learned models can improve sample

efficiency. An interesting direction for future work lies in better understanding

the inductive biases that allow simple neural network models to generalize in

a way that allows them to efficiently learn factored structure, and how more

sophisticated architectures could improve on this.
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Chapter 4

Hindsight Network Credit
Assignment: Efficient Credit
Assignment in Networks of
Discrete Stochastic Units

The central focus of this thesis is on demonstrating how we can design RL

agents which take advantage of generic problem structure. In the previous

chapter, I demonstrated how model-based RL algorithms can do an inherently

better job of exploiting known problem structure than model-free algorithms.

This chapter introduces the second major contribution of this thesis and the

second example of how known problem structure can be exploited to develop

better algorithms. Relative to the previous chapter which provides a fairly

general comparison of two broad classes of algorithms, the present chapter

provides a more specific example of how known problem structure can be ex-

ploited. In particular, I consider the challenging problem of training a network

of stochastic units, each of which can be considered an agent trying to optimize

a shared objective. I provide a novel algorithm which demonstrates how, by

using our knowledge of the network structure, we can achieve a drastic per-

formance improvement compared to a more general algorithm that does not

exploit this structure.

Using discrete stochastic units within neural networks is appealing for sev-

eral reasons, including representing multimodal distributions, modelling dis-

crete choices, providing regularization and facilitating exploration. However,
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training such units efficiently and accurately presents challenges, as backpropa-

gation is not directly applicable, nor are the reparameterization tricks (Kingma

& Welling, 2014; Rezende et al., 2014) that are typically used with continu-

ous stochastic units. Despite these challenges, discrete stochastic units have

played an important role in recent empirical successes in both text-to-image

generation (Ramesh et al., 2020) and model-based RL (Hafner et al., 2021).

Hence, techniques for efficiently training networks of discrete stochastic units

have the potential to be of significant practical interest.

In this chapter, I introduce an unbiased, and computationally efficient es-

timator for the gradients of stochastic units which provably reduces gradient

estimate variance compared to REINFORCE. This estimator works by as-

signing credit to each unit based on how much it impacts the outputs of its

immediate children. My approach is inspired by Hindsight Credit Assignment

(HCA; Harutyunyan, Dabney, Mesnard, et al., 2019) for RL, hence I call it

Hindsight Network Credit Assignment (HNCA).

In addition to the immediate application to stochastic neural networks,

I believe the insights presented in this chapter can help pave the way for

new ways of thinking about efficient credit assignment in stochastic compute

graphs, including perhaps the RL setting.

4.1 Related Work

As already mentioned, HNCA is inspired by HCA. In particular, HNCA was

initially motivated by the idea of assigning credit to possible actions based

on the estimated probability of each action conditioned on some information

about the future, instead of the single action that was actually selected. This

basic motivation is shared with HCA, however, the way this idea is instantiated

in HNCA is quite different.

More directly related to HNCA is the literature on estimating gradients

in networks of discrete stochastic units. Prior work has proposed a number

of techniques for producing either biased or unbiased estimates in such net-

works. Bengio et al. (2013) propose an unbiased REINFORCE (Williams,
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1992) style estimator, as well as a biased but low variance estimator which re-

places a random variable with its expectation during backpropagation. Tang

et al. (2013) propose an expectation-maximization procedure which maximizes

a variational lower bound on the loss. Mnih et al. (2014) propose several tech-

niques to reduce the variance of a REINFORCE style estimator, including

subtracting a learned baseline and normalizing by a moving average standard

deviation. Maddison et al. (2017) and Jang et al. (2017) each propose a biased

estimator based on a continuous relaxation of discrete outputs. Tucker et al.

(2017) use such a continuous relaxation to derive a control variate for a RE-

INFORCE style estimator, resulting in a variance-reduced unbiased gradient

estimator. Grathwohl et al. (2018) and Gu et al. (2018) also explore the use

of control variates with discrete random variables. Yin et al. (2019) provide

a variance-reduced unbiased estimator, called ARM, based on a particular

reparameterization and antithetic sampling. Dong, Mnih, et al. (2020) further

reduce the variance of ARM by marginalizing over the reparameterization step.

Perhaps the most closely related work is the local expectation gradients

(LEG) approach of Titsias et al. (2015). In fact, the gradient estimator used

in HNCA can be seen as an instance of the LEG estimator. However, the

generic expression for the LEG estimator makes it unclear when and how

it can be efficiently computed. This has led to suggestions in the literature

that LEG tends to be too computationally expensive to be practical (Mnih &

Rezende, 2016; Tucker et al., 2017).

This chapter extends the work of Titsias et al. (2015) in several ways.

First, while LEG may be computationally expensive in the general case, for

the common case of a network of Bernoulli units, with firing probability pa-

rameterized by a linear transformation of their inputs followed by a nonlinear

activation, HNCA uses an efficient message-passing procedure.1 In this case,

the resulting computational cost is similar to that of Backpropagation. This

efficiency allows us to straightforwardly apply HNCA to multi-layer Bernoulli

networks, while the analysis and experiments of Titsias et al. (2015) focus

1A similar procedure applies to units with softmax activation, though I do not explore
this empirically in this thesis.
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on single-layer (fully factorized) stochastic networks. I further demonstrate

that a simple baseline subtraction, similar to that employed by Mnih et al.

(2014), drastically improves performance when applying HNCA to multi-layer

networks. While Titsias et al. (2015) focus on the case where the agent has

access to the function being optimized, I also present HNCA in a contextual

bandit setting where an agent operates online, outputting an action at each

time step and observing a single sampled reward as a result. Interestingly, in

the contextual bandit setting, we can still compute local expectations for each

hidden unit without the need to resample the reward. Finally, I prove that

HNCA provides a variance reduction over REINFORCE.

In taking inspiration from RL to train networks of stochastic units, HNCA

is related to work on CoAgent Networks (Kostas et al., 2020; Thomas et al.,

2011) that formalizes framing stochastic networks as collectives of interacting

RL agents.

4.2 HNCA in a Contextual Bandit Setting

I first formulate HNCA in a contextual bandit setting. In this setting, an

agent interacts with an environment in a series of time steps.2 At each time

step, the environment provides an i.i.d. random context X ∈ X (for example

the pixels of an image). The agent then selects an action from a discrete set

A ∈ A (for example a guess of what class the image belongs to). Finally,

the environment responds with a real-valued reward R ∼ r̃(X,A), where r̃

is an unknown reward distribution (for example a reward of 1 for guessing

the correct class and 0 otherwise). The agent’s goal is to select actions which

result in as much reward as possible.

I will consider an agent which consists of a network of stochastic com-

putational units. Let Φ be a random variable corresponding to the output

of a particular unit. For each unit, Φ is drawn from a parameterized policy

πΦ(ϕ|b) =̇P(Φ = ϕ| pa(Φ) = b) conditioned on pa(Φ) = b, its parents in the

2As it will not be necessary to distinguish multiple time steps in this chapter, I suppress
the time step in notation, for example writing the context as X instead of Xt. All random
variables are defined for a single arbitrary time step.
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network.3 Each unit’s policy is differentiably parameterized by a unique set of

parameters θΦ ∈ Rd. A unit’s parents pa(Φ) may include the output of other

units, as well as the context X. I focus on the case where Φ takes values from

a discrete set. I will use ch(Φ) to refer to the children of Φ, that is, the set

of outputs of all units for which Φ is an input.4 I assume the network has a

single output unit, which selects the action A sent to the environment.

The goal is to tune the network parameters to increase E[R]. Towards this,

I will construct an unbiased estimator of the gradient ∂ E[R]
∂θΦ

for the parameters

of each unit, and update the parameters according to the estimator.

Directly computing the gradient of the output probability with respect

to the parameters for a given input, as we might do with backpropaga-

tion for a deterministic network, is generally intractable for discrete stochas-

tic networks. Instead, we can define a local REINFORCE estimator,

ĜRE
Φ =̇ ∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
R. It is well known that ĜRE

Φ is an unbiased estima-

tor of ∂ E[R]
∂θΦ

(see Appendix B.1 for a proof). However, ĜRE
Φ tends to have high

variance.

One can think of the estimator ĜRE
Φ as treating each unit in the network as

a separate sub-agent running REINFORCE to optimize its own policy. While

they all optimize the same reward, the units have no awareness of their position

in the larger network. The only information each unit receives is its own input

and the reward. Based on this feedback alone they optimize their own policy

to favour outputs that tend to result in higher reward. The random decisions

of all the other units in the network are observed only as noise in the input

and reward signal.

HNCA Gradient Estimator: HNCA exploits the causal structure of

the network to assign credit to each unit’s output based on how it impacts the

output of its immediate children. Assume Φ is a nonoutput unit and define

mb(Φ) =̇{ch(Φ), pa(Φ), pa(ch(Φ)) \ Φ} as a notational shorthand. Note that

mb(Φ) is a Markov blanket (Pearl, 1988) for Φ, meaning that conditioned on

3Expectations and probabilities are taken with respect to all random variables in the
network, and the context.

4I may also apply ch(·) or pa(·) to sets, in which case it has the obvious meaning of the
union of the elementwise applications.
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mb(Φ), Φ is independent of all other variables in the network as well as the

reward R. Beginning from the expression for ĜRE
Φ , we can rewrite ∂ E[R]

∂θΦ
as

follows:

∂ E[R]
∂θΦ

(a)
= E

[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
R

]
(b)
= E

[
E
[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
R

∣∣∣∣mb(Φ), R

]]
(c)
= E

[
E
[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ

∣∣∣∣mb(Φ)

]
R

]
(d)
= E

[∑
ϕ

P(Φ = ϕ|mb(Φ))

πΦ(ϕ| pa(Φ))
∂πΦ(ϕ| pa(Φ))

∂θΦ
R

]
, (4.1)

where (a) follows from the unbiasedness of ĜRE, (b) applies the law of total

expectation, (c) pulls R out of the expectation and then uses the fact that

mb(Φ) forms a Markov blanket for Φ, thus we can drop the conditioning on R

without loosing anything, and (d) expands the inner expectation over Φ and

rewrites the log gradient. This idea of taking a local expectation conditioned

on a Markov blanket is similar to the LEG estimator proposed by Titsias

et al. (2015). However, it is not immediately obvious how to compute this

estimator efficiently. Titsias et al. (2015) provide a more explicit expression

and empirical results for a fully factorized variational distribution. Here, I

will go beyond this case to provide a computationally efficient way to compute

the inner expression for more general networks of stochastic units. To begin,

I apply Theorem 1 from Chapter 4 of the probabilistic reasoning textbook

of Pearl (1988), which implies that

P(Φ = ϕ|mb(Φ)) = ρΦ(ϕ)πΦ(ϕ| pa(Φ)). (4.2)

where ρΦ(ϕ) =

∏
C∈ch(Φ)

πC(C|pa(C)\Φ,Φ=ϕ)∑
ϕ′

πΦ(ϕ′|pa(Φ))
∏

C∈ch(Φ)

πC(C| pa(C)\Φ,Φ=ϕ′)
. Intuitively, ρΦ(ϕ) is the

relative counterfactual probability of the children of Φ taking the value they

did had Φ been fixed to ϕ. See Appendix B.2 for a full proof. Substituting

this result into the expression within the expectation in Equation 4.1, we get

that the following is an unbiased estimator of ∂ E[R]
∂θΦ

:

ĜHNCA
Φ =̇

∑
ϕ

ρΦ(ϕ)
∂πΦ(ϕ| pa(Φ))

∂θΦ
R, (4.3)
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which I call the HNCA estimator. Equation 4.3 applies only to Φ for which

ch(Φ) ̸= ∅, which excludes the output unit A. In the bandit experiments, I use

the REINFORCE estimator ĜRE
Φ (ϕ) for the output unit. Later, I will show

how to improve upon this if we have access to the reward function.

HNCA assigns credit to a particular output choice ϕ based on the relative

counterfactual probability of its children’s outputs had ϕ been chosen, inde-

pendent of the actual value of Φ. Intuitively, this reduces variance, because

each potential output choice of a given unit will get credit proportional to the

difference it makes further downstream. On the other hand, REINFORCE

credits whatever output happens to be selected, whether it makes a difference

or not. This intuition is formalized in the following theorem:

Theorem 4.1. V(ĜHNCA
Φ ) ≤ V(ĜRE

Φ ), where V(X⃗) stand for the elementwise

variance of random vector X⃗, and the inequality holds elementwise.

Theorem 4.1 follows from the law of total variance by the proof available

in Appendix B.3.

Efficient Implementation of HNCA: HNCA can be implemented as

a message-passing procedure. A forward pass propagates information from

parents to children to compute the network output. A backward pass passes

information from children to parents to compute the HNCA estimator. The

computational complexity of this procedure depends on how difficult it is to

compute the numerators of ρΦ(ϕ). We could naively recompute πC(C| pa(C)\

Φ,Φ = ϕ) from scratch for each possible ϕ. When C corresponds to a Bernoulli

unit, which computes its output probability as a linear function of its inputs

followed by sigmoid activation, this would require time O(| pa(C)|NΦ), where

NΦ is the number of possible values Φ can take (2 if Φ is also Bernoulli).

To do this for every parent of every unit in a Bernoulli network would thus

require O(2
∑

Φ | pa(Φ)|2). This is much greater than the cost of a forward

pass, which takes on the order of the total number of edges in the network, or

O(
∑

Φ | pa(Φ)|). This contrasts with backpropagation where the cost of the

backward pass is on the same order as the forward pass, an appealing property,

which implies that learning is not a bottleneck.
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Algorithm 1 HNCA (Bernoulli unit)

1: Receive x⃗ from parents
2: l = θ⃗ · x⃗+ b
3: p = σ(l)
4: ϕ ∼ Bernoulli(p)
5: Pass ϕ to children
6: Receive q⃗1, q⃗0, R from children
7: q1 =

∏
i q⃗1[I]; q0 =

∏
i q⃗0[i]

8: q̄ = pq1 + (1− p)qo
9: l⃗1 = l + θ⃗ ⊙ (1− x⃗); l⃗0 = l − θ⃗ ⊙ x⃗
10: p⃗1 = (1− ϕ)(1− σ(⃗l1)) + ϕσ(⃗l1); p⃗0 = (1− ϕ)(1− σ(⃗l0)) + ϕσ(⃗l0)
11: Pass p⃗1, p⃗0, R to parents

12: θ⃗ = θ⃗ + ασ′(l)x⃗
(

q1−q0
q̄

)
R

13: b = b+ ασ′(l)
(

q1−q0
q̄

)
R

Algorithm 1: The forward pass in lines 1-5 takes input from the parents and
uses it to compute the fire probability p and samples ϕ ∈ {0, 1}. The backward
pass receives two vectors of probabilities q⃗1 and q⃗0, each with one element for
each child. Each element represents q⃗0/1[i] = P (Ci|pa(Ci) \ Φ,Φ = 0/1) for
a given child Ci ∈ ch(Φ). Line 7 takes the product of child probabilities to
compute

∏
i πCi

(Ci| pa(Ci) \ Φ,Φ = 0/1). Line 8 computes the associated
normalizing factor. Lines 9 and 10 use the logit l to efficiently compute a
vector of probabilities p⃗1 and p⃗0. Each element corresponds to a counterfactual
probability of ϕ if a given parent’s value was fixed to 1 or 0. Here ⊙ represents
the elementwise product. Line 11 passes information to the unit’s children.
Lines 12 and 13 finally update the parameter using ĜHNCA

Φ with step-size
hyperparameter α.

Luckily, we can improve on this for cases where πC(C| pa(C) \ Φ,Φ = ϕ)

can be computed from πC(C| pa(C)) in less time than computing πC(C| pa(C))

from scratch. This is indeed the case for linear Bernoulli units, for which

the policy can be written πΦ(1|x⃗) = σ(lΦ(1|x⃗)) where lΦ(1|x⃗) = θ⃗ · x⃗ + b, x⃗

is the binary vector consisting of all parent outputs, b is a scalar bias, θ⃗ is

the parameter vector for the unit, and σ is the sigmoid function. Note that

πΦ(0|x⃗) is simply 1−πΦ(1|x⃗). Now, say we wish to compute the counterfactual

probability of Φ = 1 given x⃗[i] = 1, and we already have lΦ(1|x⃗) from the

forward pass. Regardless of the actual value of x⃗i we can use the following
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identity:

πΦ(1|x⃗ \ x⃗[i], x⃗[i] = 1) = σ(lΦ(1|x⃗) + θ⃗[i](1− x⃗[i])).

This requires only constant time, whereas computing πΦ(ϕ|x⃗) requires time

proportional to the length of x⃗. This simple idea is crucial for implementing

HNCA efficiently. In this case, we can compute the numerator terms for ev-

ery unit in a Bernoulli network in O(
∑

Φ | pa(Φ)|) time. This is now on the

same order as computing a forward pass through the network. Computing

ĜHNCA
Φ for a given Φ from these numerator terms requires multiplying a scalar

by a gradient vector with the same size as θΦ. For a Bernoulli unit, θΦ has

O(| pa(Φ)|) elements, so this operation adds another O(
∑

Φ | pa(Φ)|), main-

taining the same order of complexity.

Algorithm 1 shows an efficient implementation of HNCA for Bernoulli

units. Note that, for ease of illustration, the pseudocode is implemented for

a single unit and a single training example at a time. In practice, I use a

vectorized version which works with vectors of units that constitute a layer,

and with minibatches of training data.

In Section 4.2, I will apply HNCA to a model consisting of a number

of hidden layers of Bernoulli units followed by a softmax output layer. Ap-

pendix B.4 provides an implementation and discussion of HNCA for a softmax

output unit. Note that the output unit itself uses the REINFORCE estima-

tor in its update, as it has no children, which precludes the use of HNCA.

Nonetheless, the output unit still needs to provide information to its parents,

which do use HNCA. Using a softmax unit at the output, we can still maintain

the property that the time required for the backward pass is on the same order

as the time required for the forward pass. If, on the other hand, the entire

network consisted of softmax nodes with N choices each, the HNCA backward

pass would require a factor of N more computation than the forward pass, I

discuss this in Appendix B.4 as well.

Contextual Bandit Experiments: I evaluate HNCA against REIN-

FORCE in terms of gradient variance and performance on a contextual bandit
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Training Epochs

Accuracy

Log gradient 
variance

1 Hidden Layer 2 Hidden Layers

Training Epochs

3 Hidden Layers

HNCA

REINFORCE

0.9469+/-0.0008
0.9364+/-0.0005

0.8594+/-0.0009
0.8322+/-0.0009

-13.07+/-0.02

-6.02+/-0.01

0.8985+/-0.0002
0.8769+/-0.0007

0.8322+/-0.0002
0.791+/-0.001

-8.09+/-0.01

-5.182+/-0.009

0.882+/-0.001
0.84+/-0.02

0.779+/-0.006
0.72+/-0.01

-4.98+/-0.02

-7.59+/-0.01

Training Epochs

-7.85+/-0.01

-12.17+/-0.01

-6.894+/-0.006

-10.133+/-0.007

-6.39+/-0.01

-9.537+/-0.009

HNCA
with Baseline

REINFORCE
with Baseline

Training Epochs

Figure 4.1: Training stochastic networks on a contextual bandit version of
MNIST. Each line represents the average of 5 random seeds with error bars
showing 95% confidence interval. Final values (train accuracy for the left plots)
at the end of training are written beside each line. The left column shows the
online training accuracy (or equivalently the average reward) as a dotted line,
and the test accuracy as a solid line (though they essentially overlap). The
right column shows the natural logarithm of the mean gradient variance. Mean
gradient variance is computed as the mean of the per-parameter empirical
variance over examples in a training batch of 50. I find that, for each network
depth, HNCA drastically reduces gradient variance, resulting in significantly
improved performance on this task.

version of MNIST (LeCun et al., 2010), with the standard train-test split.

Following Dong, Mnih, et al. (2020), input pixels are dynamically binarized,

meaning that at each epoch they are randomly fixed to 0 or 1 with probability

proportional to their intensity. For each training example, the model outputs

a prediction and receives a reward of 1 if correct and 0 otherwise. I use a

fully connected, feedforward network with 1, 2 or 3 hidden layers, each with

200 Bernoulli units, followed by a softmax output layer. I train using ADAM

optimizer (Kingma & Ba, 2014) with the step-size fixed to 10−4 and batch size

of 50 for 100 epochs. Step-size and layer-size hyperparameters follow Dong,

Mnih, et al. (2020) for simplicity. I map the output of the Bernoulli units to

one or negative one, instead of one or zero, as I found this greatly improved

performance in preliminary experiments. I report results for HNCA and RE-

INFORCE, both with and without an exponential moving average baseline

subtracted from the reward. I use a discount rate of 0.99 for the moving
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average.

Figure 4.1 shows the results, in terms of performance and gradient vari-

ance, for gradient estimates generated by HNCA and REINFORCE. I find that

HNCA provides drastic improvement in terms of both gradient variance and

performance over REINFORCE. Note that performance degrades with num-

ber of layers for both estimators, reflecting the increasing challenge of credit

assignment. Subtracting a moving average baseline generally improves perfor-

mance of both algorithms, except for HNCA in the single hidden layer case.

The comparison between the two algorithms is qualitatively similar whether

or not a baseline is used.

In Appendix B.5, I demonstrate that HNCA can also be used to efficiently

train a stochastic layer as the final hidden layer of an otherwise deterministic

network, this could be useful, for example, for learning a binary representation.

4.3 Optimizing a Known Function

I introduced HNCA in a setting where the reward function was unknown,

and dependent only on the input context and the output of the network as a

whole. Here, I extend HNCA to optimize the expectation of a known function

f , which may have direct dependence on every unit. This new setting includes

the problem of optimizing a discrete hierarchical VAE, which I will explore in

my experiments, among other discrete optimization problems. I refer to this

extension as f -HNCA. This setting is similar to the setting explored by Titsias

et al. (2015), and f -HNCA differs from LEG mainly in its computationally effi-

cient message-passing implementation, which in turn facilitates its application

to multi-layer stochastic networks.

I assume the function f =
∑

i f
i is factored into a number of function

components f i, which I index by i for convenience. This factored structure

has two benefits, the first is computational. In particular, it will allow us to

compute counterfactual values for each component with respect to changes to

its input separately. The second is for variance reduction by realizing that we

only need to assign credit to function components that lie downstream of the
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unit being credited. A similar variance-reduction approach is also used by the

NVIL algorithm of Mnih et al. (2014).

Each function component f i is a deterministic function of a subset of the

outputs of units in the network, as well as possibly depending directly on

some parameters. Thus, f i = f i(p̃a(f i); θi), where θi is a set of real-valued

parameters which may overlap with the parameters θΦ for some subset of units

in the network, and p̃a(f i) is the set of nodes in the network which act as

input to f i. Formally, f i without arguments will refer to the random variable

corresponding to the output of the associated function. I use the notation p̃a,

distinct from pa, to make it clear that function components are not considered

nodes in the network. Likewise, I will use ãn to denote the ancestors of a

function component, which includes p̃a(f i) as well as all ancestors of p̃a(f i).

The goal in this setting is to estimate the gradient of E[f ] in order to

maximize it by gradient ascent. By linearity of expectation, we can define

unbiased estimators for ∂ E[f i]
∂θΦ

and sum over i to get an unbiased estimator of

the full gradient.

HNCA with a Known Function: I now discuss how to extend the

HNCA estimator to construct an estimator of ∂ E[f ]
∂θΦ

for a particular unit Φ

in this setting. We begin by considering the gradient for a single function

component ∂ E[f i]
∂θΦ

. First, note that we can break the gradient into indirect and

direct dependence on θΦ:

∂ E[f i]

∂θΦ
= E

[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
f i

]
+ E

[
∂f i

∂θΦ

]
. (4.4)

This uses the same identity mentioned in Section 2.4 in the context of esti-

mating gradients in a variational auto-encoder. The direct gradient ∂f i

∂θΦ
is zero

whenever θΦ∩θi = ∅. When it is nonzero, ∂f i

∂θΦ
, can be computed directly given

I assume access to f i. From this point on, I will focus on the left expectation.

The main added complexity in estimating E
[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
f i
]
, compared

to the contextual bandit case, arises if f i has a direct functional dependence on

Φ. In this case, we can no longer assume that f i is separated from Φ by mb(Φ).

Luckily, this is straightforward to patch. Let f i
Φ(ϕ) be the random variable

defined by taking the function f i(p̃a(f i); θi) and substituting the specific value
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ϕ instead of the random variable Φ into the arguments while keeping all other

p̃a(f i) equal to the associated random variables. By design, f i
Φ(ϕ) is inde-

pendent of Φ given mb(Φ), which allows us to define the following unbiased

estimator for E
[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
f i
]
(see Appendix B.6 for the full derivation):

Ĝf -HNCA,i
Φ (ϕ) =̇

∑
ϕ

ρΦ(ϕ)
∂πΦ(ϕ| pa(Φ))

∂θΦ
f i
Φ(ϕ), (4.5)

where ρΦ(ϕ) is as in Equation 4.2. As ρΦ(ϕ) is defined with respect to ch(Φ),

this estimator is only applicable if Φ has children (i.e. ch(Φ) ̸= ∅). In fact,

even if Φ has children, we can ignore them if they have no downstream connec-

tion5 to f i, as such children cannot influence f i. Thus, if ch(Φ) ∩ ãn(f i) = ∅,

I instead define Ĝf -HNCA,i
Φ (ϕ) =̇

∑
ϕ

∂πΦ(Φ| pa(Φ))
∂θΦ

f i
Φ(ϕ). In Appendix B.8, I ex-

tend Theorem 4.1 to apply to f -HNCA, showing that using Ĝf -HNCA,i
Φ results

in a variance-reduced estimator for E
[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
f i
]
compared to REIN-

FORCE. The full f -HNCA estimator is defined by summing up these com-

ponents and accounting for any direct functional dependence of f on network

parameters:

Ĝf -HNCA
Φ =̇

∑
ϕ

∂πΦ(ϕ| pa(Φ))
∂θΦ

(
ρΦ(ϕ)

∑
i:ch(Φ)∩ãn(f i )̸=∅

f i
Φ(ϕ) +

∑
i:ch(Φ)∩ãn(f i)=∅

f i
Φ(ϕ)

)
+
∑
i

∂f i

∂θΦ
.

(4.6)

If Φ ̸∈ ãn(f i) then ∂ E[f i]
∂θΦ

= E
[
∂f i

∂θΦ

]
as Φ cannot influence something with

no downstream connection. Hence, in the two leftmost sums over i in Equa-

tion 4.6, we implicitly only sum over i such that Φ ∈ ãn(f i).

In addition to the efficiency of computing counterfactual probabilities, for

f -HNCA, we have to consider the efficiency of computing counterfactual func-

tion components f i
Φ(ϕ) given f i. For function components with no direct

connection to a unit Φ, this is trivial as f i
Φ(ϕ) = f i. If f i is directly connected,

then implementing f -HNCA with efficiency similar to HNCA will require that

we are able to compute f i
Φ(ϕ) from f i in constant time. This is the case if f i

is a linear function followed by some activation. For example, functions of the

form f i = log(σ(θ⃗ · x⃗ + b)) which will appear in the ELBO function used in

5More generally, if only a subset of ch(Φ) lies in ãn(f i) we can replace ch(Φ) in ρΦ(ϕ)
with chi(Φ) = (ch(Φ) ∩ ãn(f i)), but, I will not use this in my experiments.
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my variational auto-encoder (VAE; Kingma and Welling, 2014; Rezende et al.,

2014) experiments. More algorithmic details can be found in Appendix B.7.

Figure 4.2: An illustration of the ELBO for a 3-layer discrete hierarchical VAE
broken down into function components for f -HNCA. X⃗ is the input to be en-
coded, each additional circle is the latent state from a layer of the encoder
network. Each rectangle is a set of function components which contribute to
the ELBO. The parameters of the encoder are trained to maximize the ELBO
by f -HNCA. Consider the f -HNCA estimator for Φ⃗1. The function compo-
nents H(q1), marked in purple are upstream of Φ⃗1, however, H(q1) depends

directly on θq1 and thus ∂H(q1)
∂θq1

is nonzero, so the entire contribution of H(q1)

to the gradient estimate Ĝf -HNCA
Φ will come from this gradient. The function

components marked in green have only direct connection with Φ⃗1, so they will
receive credit via Ĝf -HNCA,i

Φ (ϕ) =̇
∑

ϕ
∂πΦ(ϕ| pa(Φ))

∂θΦ
f i
Φ(ϕ). The function compo-

nents marked in orange have both direct connections and downstream connec-
tions mediated by Φ⃗2, so they will receive credit via Equation 4.5. Finally,
the variables marked in pink have only mediated connections to Φ⃗1 through
Φ⃗2, so f

i
Φ(ϕ) = f i, the estimator for these variables essentially reduces to the

original HNCA estimator defined in Equation 4.3.

Variational Auto-encoder Experiment: Here, I demonstrate how the

f -HNCA approach can be applied to the challenging task of training a discrete

hierarchical VAE. Consider a VAE consisting of a generative model (decoder)

p and an approximate posterior (encoder) q, each of which consist of L discrete

stochastic layers. Samples X⃗ are generated by p as

X⃗ ∼ p0(X⃗|Φ⃗1), Φ⃗1 ∼ p1(Φ⃗1|Φ⃗2), ..., Φ⃗L ∼ pL(Φ⃗L),

while q approximates the posterior P(Φ⃗L|X) as a distribution which can be

sampled as

qL(Φ⃗L|Φ⃗L−1), Φ⃗L−1 ∼ qL−1(Φ⃗L−1|Φ⃗L−2), ..., Φ⃗1 ∼ q1(Φ⃗1|X⃗),

68



where, each pi and qi represents a vector of Bernoulli distributions, each pa-

rameterized as a linear function of their input (except the prior pL(Φ⃗L) which

takes no input, and is simply a vector of Bernoulli variables with learned

means). Call the associated parameters θpi and θqi . We can train such a VAE

by maximizing a lower bound on the log-likelihood of the training data, that is

an evidence lower bound (ELBO) similar to the one discussed in Section 2.4.

In this case, we can write the ELBO as E[fE] where

fE =̇ log(p0(X⃗|Φ⃗1)) +
L−1∑
l=1

log(pl(Φ⃗l|Φ⃗l−1))

+ log(pL(Φ⃗L)) +H(q1(Φ1|X⃗)) +
L−1∑
l=1

H(ql+1(Φl+1|Φ⃗l)), (4.7)

where H is the entropy of the distribution, and the expectation is taken with

respect to the encoder q and random samples X⃗. Each Φ⃗i is sampled from

the associated encoder qi. Note that each term in Equation 4.7 is a sum

over elements in the associated output vector, we can view each element as a

particular function component f i. The resulting compute graph is illustrated

in Figure 4.2.

I compare f -HNCA with REINFORCE and several stronger methods for

optimizing an ELBO of a VAE trained to generate MNIST digits. I focus on

strong, unbiased, variance-reduction techniques from the literature that do not

require modifying the architecture or introduce significant additional hyperpa-

rameters. Since HNCA falls into this category, this allows for straightforward

comparison without the additional nuance of architectural and hyperparame-

ter choices. Specifically, I compare HNCA with REINFORCE leave one out

(REINFORCE LOO; Kool et al., 2019) and DisARM (Dong, Mnih, et al.,

2020). Note that in the multi-layer case, both DisARM and REINFORCE

LOO require sampling an additional partial forward pass beginning from each

layer, which gives them a quadratic scaling in compute cost with the number of

layers. By contrast, HNCA requires only a single forward pass and a backward

pass of similar complexity.

Initially, I found that f -HNCA outperformed the other tested methods in

the single-layer discrete VAE case, but fell short in the multi-layer case. How-
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ever, I found that a simple modification that subtracts a layer-specific scalar

baseline, similar to that used by Mnih et al. (2014), significantly improved the

performance of f -HNCA in the multi-layer case. Specifically, for each layer, I

maintain a scalar running average of the sum of those components of f with

mediated connections (those highlighted in pink and orange in Figure 2) and

subtract it from the leftmost sum over i in Equation 4.5 to produce a cen-

tred learning signal.6 I use a discount rate of 0.99 for the moving average.7

I refer to this variant as f -HNCA with baseline. I also tested subtracting a

moving average of all downstream function components in REINFORCE to

understand how much this change helps on its own. It’s not obvious how to

apply a running average baseline to the other tested methods, as they already

use alternative means to center the learning signal a naive moving average

baseline would have expectation zero.

As in Section 4.2, I use dynamic binarization and train using ADAM op-

timizer with step-size 10−4 and batch size 50. Following Dong, Mnih, et al.

(2020), the decoder and encoder each consist of a fully connected, stochastic

feedforward neural network with 1, 2 or 3 layers. Each hidden layer has 200

Bernoulli units. I train for 840 epochs, approximately equivalent to the 106

updates used by Dong, Mnih, et al. (2020). For consistency with prior work,

I use Bernoulli units with a zero-one output. For all methods, I train each

unit based on downstream function components, as opposed to using the full

function f . See Appendix B.9 for more implementation details.

Figure 4.3, shows the results in terms of ELBO and gradient variance, for

gradient estimates generated by f -HNCA and the other methods tested. As in

the contextual bandit case, I find that f -HNCA provides drastic improvement

over REINFORCE. f -HNCA also provides a significant improvement over all

other methods for the single-layer discrete VAE, but underperforms the other

strong methods in the multi-layer case. On the other hand, f -HNCA with

baseline significantly improves on the other tested methods in all cases. REIN-

6Using such a baseline for components without mediated connections would analytically
cancel.

7I used the first value I tried, I did not tune it.
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FORCE with baseline outperforms ordinary f -HNCA in the multi-layer cases.

Hence, this baseline subtraction is a fairly powerful variance-reduction tech-

nique for REINFORCE, with strong complementary benefits with f -HNCA. In

Appendix B.10, I additionally report multi-sample test-set ELBOs for the final

trained networks, which reflect the same performance ordering as the training

set ELBOs. In Appendix B.11, I perform an ablation experiment on f -HNCA

with baseline and find that the choice of whether to exclude children when

ch(Φ) ∩ ãn(f i) = ∅ has a significant performance impact, while the additional

impact of excluding upstream function components is fairly minimal.
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Figure 4.3: Training discrete VAEs to generate MNIST digits. Each line rep-
resents the average of 5 random seeds with error bars showing 95% confidence
interval. Final values at the end of training are written near each line in
matching colour. The left column shows the online training ELBO. The right
column shows the natural logarithm of the mean encoder gradient variance.
Mean gradient variance is computed as the mean over parameters and batches
of the per-parameter empirical variance over examples in a training batch of
50. f -HNCA outperforms all other tested methods in the single-layer case, but
underperforms in the multi-layer cases. f -HNCA with baseline outperforms
the other methods in the multi-layer case. f -HNCA with baseline is excluded
from the single-layer results as there are no mediated connections.
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4.4 Discussion

This chapter introduced the second major contribution of this thesis, HNCA,

which is also the second example of how our design decisions can influence a

reinforcement agent’s ability to take advantage of generic problem structure.

In particular, if we know that the reinforcement learning agents in question are

part of a network of discrete stochastic units, we can apply HNCA to provide a

significant improvement in credit assignment capability compared to the naive

approach.

HNCA is inspired by Hindsight Credit Assignment (Harutyunyan, Dabney,

Mesnard, et al., 2019), and can be seen as an instance of local expectation gra-

dients, extending the work of Titsias et al. (2015) by providing a computation-

ally efficient message passing algorithm and extension to multi-layer networks

of stochastic units. The computationally efficient approach of HNCA directly

addresses concerns in the literature that LEG is inherently computationally

expensive (Mnih & Rezende, 2016; Tucker et al., 2017). I proved that HNCA is

unbiased, and that it reduces variance compared to REINFORCE. Empirically,

I showed that HNCA outperforms strong methods for training a single-layer

Bernoulli VAE, and when subtracting a simple moving average baseline also

outperforms the same methods for the case of a multi-layer Hierarchical VAE.

It’s worth highlighting that efficient implementation of HNCA is predicated

on the ability to efficiently compute counterfactual probabilities or function

components when a single input is changed. This is not always possible, for

example, if f is the result of a multi-layer deterministic network. An example

of this situation is the nonlinear discrete VAE architecture explored by Dong,

Mnih, et al. (2020) and Yin et al. (2019) where the encoder and decoder are

nonlinear networks with a single stochastic Bernoulli layer at the outputs.

However, as I show in Appendix B.5, HNCA can be used to train a final

Bernoulli hidden layer at the end of a nonlinear network.

In addition to optimizing a known function of the output of a stochastic

network, I showed that HNCA can be applied to train the hidden layers of

a multi-layer discrete network in an online learning setting with an unknown
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reward function. REINFORCE LOO and DisARM, which rely on the ability

to evaluate the reward function multiple times for a single training example,

cannot.

Future work could explore combining HNCA with other methods for com-

plimentary benefits. One could also explore extending HNCA to propagate

credit multiple steps which would presumably allow further variance reduc-

tion but presents challenges, as the relationships between more distant nodes

in the network become increasingly complex.

HNCA provides insight into the challenges of credit assignment in discrete

stochastic compute graphs, which has the potential to have an impact on future

approaches.
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Chapter 5

Iterative Option Discovery for
Planning, by Planning

Recall, once again, that the central focus of this thesis is on demonstrating how

we can design RL agents which take advantage of generic problem structure. In

keeping with this theme, the previous chapter introduced HNCA as a specific

example of an approach which exploits generic problem structure to design a

more efficient algorithm. In the case of HNCA, the exploited structure was

the connectivity of a network of interacting units. This chapter introduces

another example, where in this case the exploited structure is the tendency

for optimal actions in temporally contiguous states to be interdependent. In

particular, I outline a perspective that an important benefit of learning a

set of options for planning is that options facilitate modelling dependency

between actions in temporally contiguous trajectory segments in a way that

a single policy does not. Based on this perspective, I propose an approach

to learning a set of options to maximize the likelihood of actions selected by

a computationally expensive planner over temporally contiguous trajectory

segments. I demonstrate that using options learned in this manner during

planning results in improved performance compared to using a single policy

trained analogously.

Consider the planning problem faced by a human approaching a four-way

intersection while driving in an unfamiliar city. Figuring out precisely the

correct action requires complex reasoning to incorporate knowledge of local

geography and the desired destination. However, despite this complexity, there
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is a relatively small set of short-term temporally extended behaviours which

might be useful. Namely, we might want to turn left, turn right, or go straight.

On the other hand, we can usually rule out the enormous space of behaviours

which would lead us to run off the road. This highlights the motivation for

Option Iteration (OptIt). The optimal policy may be a very complicated, and

thus difficult to learn, function of the current state. Nonetheless, there may be

a small set of potentially useful short-term behaviours which are comparatively

easy to learn and broadly applicable. Motivated by this example, OptIt aims

to discover a set of options such that in every state visited, at least one option

in the set is good over some future horizon.

OptIt learns options with an approach similar to Expert Iteration (Anthony

et al. (2017); ExIt), which is itself essentially a version of approximate policy

iteration. A closely related approach was used to obtain impressive results

in the game of Go by AlphaZero (Silver et al., 2017). Given some search

algorithm which takes a prior policy and uses some computation to generate

an improved policy, ExIt iteratively updates the prior policy to better match

the output of the search procedure. In doing so, ExIt amortizes the cost of

search by distilling the results into a relatively inexpensive neural network.

This results in a virtuous cycle in which each search results in an improved

policy, which improves the learned policy, which then improves future searches.

Intuitively, learning a set of policies such that at least one is good in each

state is likely easier since it allows the algorithm to hedge its bets. Without

learning the nuances of a previously unseen state s well enough to decide which

option is best, an algorithm may still be able to discover a set such that at

least one option included in the set is likely to be good when initiated in s.

The learned set of options can then be used to improve search by allowing

actions to be evaluated under a variety of different plausible behaviours rather

than a single learned policy.
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5.1 Related Work

The work presented in this chapter builds on the options framework of Sutton

et al. (1999). In particular, I focus on the problem of option discovery, where

rather than providing an agent with a set of prespecified options, we wish to

design algorithms that allow agents to build a set of useful options on their

own.

A variety of methods have been proposed for option discovery, with a num-

ber of different motivations behind them. Some approaches aim to directly

optimize options to facilitate good performance on a task or distribution of

tasks (Bacon et al., 2017; Frans et al., 2018; Veeriah et al., 2021). Others

aim to learn options which help navigate between disparate regions of state

space, for example by identifying bottleneck states (McGovern et al., 2001;

Stolle et al., 2002), exploiting graph-theoretic properties of the transition dy-

namics (Klissarov et al., 2023; Machado et al., 2017), or encouraging options

to contain a lot of information about their state at termination (Eysenbach

et al., 2019; Gregor et al., 2016; Harutyunyan, Dabney, Borsa, et al., 2019).

A large body of work considers learning hierarchical policies in which a high-

level policy, trained to maximize task performance, outputs subgoals that a

low-level policy is trained to achieve (Dayan et al., 1992; Hafner et al., 2022;

Vezhnevets et al., 2017).

Jinnai et al. (2019) and Wan et al. (2022) share my focus on discover-

ing options that facilitate planning, albeit using value iteration rather than

decision-time planning. Co-Reyes et al. (2018) jointly learn a latent condi-

tioned policy and trajectory level model such that the model predicts the

trajectory resulting from the policy when conditioned on a particular latent

state. The resulting latent state and model are then used in a decision-time

planning procedure, similar to the way the learned set of options is used in

OptIt.

There is also a body of work focusing on discovering sets of options which

fit a dataset of unsegmented expert demonstrations (Fox et al., 2017; Kipf

et al., 2019; Krishnan et al., 2017; Shankar et al., 2020; Zhu et al., 2022).
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OptIt can be seen as an instance of this where the demonstration data is

dynamically generated by a search procedure and the discovered options are

used to improve the search.

This chapter focuses on option discovery in a single-task setting, while

much of the literature focuses on the multi-task setting. The distinction is not

always clear-cut but to give some examples: Frans et al. (2018), Veeriah et al.

(2021), and Wan et al. (2022) all expressly focus on finding options which are

useful across a distribution of related tasks as opposed to one specific task.

In a sense, the multi-task setting is more natural for option discovery as one

can imagine learning a set of options which capture temporal regularities in

the optimal policy shared across the tasks. For a single task, finding a single

globally optimal policy is sufficient, which makes it less obvious why we’d want

to learn a set of behaviours. In Section 5.2, I motivate the benefit of options

in a single, complex, task by the desire to quantify uncertainty in the joint

distribution over actions. One can think of this as being loosely related to the

multitask setting. Effectively, the assumption of multiple ground truth tasks,

each with a distinct optimal policy, is replaced with a distribution over optimal

policies induced by uncertainty, despite there being only a single ground truth

task.

OptIt computes an improved policy and value function estimate based on

Monte-Carlo evaluation under a set of possible options. This is an instance of

Generalized Policy Improvement, introduced by Barreto et al. (2017).

As already discussed, OptIt is inspired by the ExIt (Anthony et al., 2017)

and the closely related approach used in AlphaZero (Silver et al., 2017). Re-

cently, Zahavy et al. (2023) have demonstrated that optimizing a diverse set

of players, encoded as different latent-state inputs to a single network, using

a quality-diversity objective can significantly improve the performance and

robustness of AlphaZero.
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5.2 Options as a Way to Represent the Joint

Distribution Over Future Optimal Actions

While temporal abstraction is widely regarded as key to scaling RL algorithms

to increasingly complex problems, empirical results are mixed. Likewise, it is

not always clear how or why learning a set of options should lead to improve-

ment over simply learning a single strong policy, especially in a single-task

setting. For example, Bacon et al. (2017) found that without additional reg-

ularization, learned options tend to collapse down to single-step primitive ac-

tions. For this reason, before we suggest new techniques for option discovery,

it is useful to articulate how specifically we believe learning a set of options

could be helpful in a sufficiently complex single-task setting. Here, I expand

on the intuition presented in the chapter introduction to articulate a view that

options can allow us to capture information about the joint distribution over

optimal actions in a way that learning a single strong policy does not. My

reasoning is reminiscent of the case for learning joint predictions over labels

presented by Osband et al. (2021), as well as related to posterior sampling for

RL (Osband et al., 2013; Strens, 2000).

To begin, define the entropy-regularized optimal policy

π∗
β(a|s) =

exp(q∗(s, a)/β)∑
a′ exp(q

∗(s, a′)/β))
, (5.1)

where q∗(s, a) is the unknown optimal action-value function of the true MDP

and the entropy-regularization factor β is a hyperparameter. Imagine we have

observed a dataset D of samples from π∗
β in various states. Given this data,

along with some prior over regularized optimal policies, we can in principle

use Bayes theorem to determine a posterior over regularized optimal policies

P(π∗
β = π|D).1 Now, imagine would like to provide a planner with an ap-

proximation to the distribution of regularized optimal-policy actions to guide

its search for a good action in this state. Say we have the choice between

specifying this approximation as a single policy, or as a mixture distribution

1Note that while there may be many unregularized optimal policies sharing the same
action-values, using a regularized version as in Equation 5.1 makes the solution unique for
a given MDP.
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over N different policies. The single policy assigns some probability π(a|s),

and thus given a sequence of K states s⃗ = (s0, s1, ....sK−1) it will assign a joint

probability to action sequence a⃗ = (a0, a1, ....aK−1) as follows

p̂(⃗a|s⃗) =
K−1∏
k=0

π(ak|sk). (5.2)

On the other hand, given an approximate posterior consisting of a mixture of

N policies πn(a|s) for n ∈ {0, ..., N − 1} weighted by some ρ(n), we get the

following joint probability over actions for s⃗

p̂(⃗a|s⃗) =
N−1∑
n=0

ρ(n)
K−1∏
k=0

πn(ak|sk). (5.3)

It’s clear that Equation 5.3 includes Equation 5.2 as a special case where

ρ(n) = 1(n = 0) and π0 = π. Furthermore, as Equation 5.3 allows nontrivial

dependency between regularized optimal-policy actions in different states, it

can in general be a significantly better representation of the true posterior

predictive distribution

P(A⃗ = a⃗|S⃗ = s⃗, D) =

∫
π∗
β

P(π∗
β = π|D)

K−1∏
k=0

π(ak|sk)dπ∗
β.

Where A⃗ is a random vector containing actions selected by the entropy regu-

larized optimal policy in the states contained in S⃗. To give a simple example,

consider a tabular environment, called Compass, in which an agent starts each

episode in a random location on a 2-dimensional, square, grid of cells with K

cells in total. In each cell, the agent has the choice to move up, down, left or

right. Termination occurs upon reaching one of the 4 edges of the grid, with

a large positive reward on one edge and a large negative reward on the other

three. The positive reward is a priori equally likely to lie on any edge. In

addition, assume there is a minor negative reward for each time step such that

remaining on the grid indefinitely is suboptimal. Thus, the optimal policy will

always go in the same direction for every state in a particular grid instance.

In addition, assume the state includes an integer m ∈ {0, ...,M − 1} which in-

dicates the identity of the grid. For a given m, the positive reward will always
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be on the same side, but it is a priori unknown which indices correspond to

which side. The states of this environment can be represented by s = (k,m)

where k indexes all the cells within the grid and m is the index of the grid.

Now assume, based on some combination of prior knowledge and data, the

posterior over optimal policies2 captures the fact that for a fixed, unobserved,

grid the correct behaviour is either to always go left, right, up or down with

equal probability. Now, consider approximating the posterior predictive distri-

bution for the vector set of states s⃗ such that s⃗[k] = (k, m̃) for all k grid cells

and a single previously unobserved grid index m̃. In particular, consider the

minimal cross-entropy approximation using either a single policy as in Equa-

tion 5.2 or a mixture of policies as in Equation 5.3. With a single policy, we

aim to minimize

EA⃗∼P(A⃗|S⃗=s⃗,D)

[
− log

(
K−1∏
k=0

π(Ak|(k, m̃))

)]
=

K−1∑
k=0

EAk∼P(Ak|Sk=(k,m̃),D) [− log(π(Ak|(k, m̃)))] .

Where A⃗ = (A0, ..., AK−1) is a random sequence of actions drawn from the

true posterior predictive distribution. Since the marginal likelihood P(Ak|Sk =

(k, m̃), D) is 0.25 for each action, the best we can do is to set π(Ak|(k, m̃)) =

0.25 uniformly. This yields a total cross-entropy of K log(4). On the other

hand, using a mixture of four policies we can exactly represent the predictive

posterior over s⃗. In particular, we can set ρ(0) = ρ(1) = ρ(2) = ρ(3) = 0.25,

and π0(a|(k, m̃))) = 1(a = left), π1(a|(k, m̃))) = 1(a = right), π2(a|(k, m̃))) =

1(a = up), π3(a|(k, m̃))) = 1(a = down) for all k. Since this exactly matches

the true predictive posterior it gives the best possible cross-entropy of log(4),

K times lower than what is achievable from fitting a single policy, and equal

to the true entropy. In turn, this corresponds to a 4d times higher probability

of the action sequence that takes the agent directly to the edge with a positive

reward, where d ≤
√
K is the distance from the agent’s current location to the

edge with positive reward. Roughly speaking, a planner using this mixture

policy to generate rollouts will need to consider exponentially fewer trajecto-

2I consider unregularized optimal policies in this case.
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ries on average to find the optimal sequence compared to one using the best-fit

single policy.

Compass also illustrates the potential benefit of searching for a set of op-

tions such that at least one in the set is good only for some short horizon into

the future in each state. The same four option policies suffice to represent the

posterior predictive distribution over all s = (k, m̃) for any fixed m̃. On the

other hand, representing the predictive posterior jointly for all possible k and

m would require 4M policies, as we’d have to represent every joint configura-

tion of optimal action for each index m. Furthermore, assuming we are using

the set of options for planning locally over a particular time horizon, we need

not accurately represent the predictive posterior globally, but only locally for

the states likely to be encountered during planning.

I postulate that the kind of local structure that exists in Compass, with

strong dependency among the optimal actions for temporally contiguous states,

is likely to be present in many problems of interest. In particular, due to spa-

tial locality, temporally contiguous states will tend to involve interaction with

a highly overlapping set of subsystems in the world and thus any information

we gain about these subsystems will be likely to provide information about the

optimal behaviour in many such states. Note, however, that such local depen-

dency need not hold a priori. One can easily construct posterior distributions

such that the optimal action in one state is uninformative about the optimal

action in the states that follow temporally while providing information about

the optimal action in faraway states. Thus, such local structure represents a

nontrivial assumption about the kinds of problems we are interested in.

5.3 Option Iteration

Rather than learning a single strong policy, OptIt aims to learn a set of policies

such that, in every state we encounter, at least one policy in the set is good for

some horizon into the future. To learn such a set, I adopt an approach similar

to ExIt by optimizing for agreement between the learned set of option policies

and the results of a relatively computationally expensive search. In particular,
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OptIt maintains a set of N option policies for n ∈ {0, ..., N − 1}, I denote the

probability of sampling action a in state s with option n as πn(a|s; θ).3

For each contiguous trajectory segment of K steps, we aim to have a

weighted mixture of the option policies in our learned set which is a close match

to the results of a search procedure jointly for all K steps. More precisely, con-

sider a given trajectory segment s0, s1, ..., sK−1 along with π̃(·|sk) representing

the search policy, that is, the improved policy returned by running a search

procedure in sk. OptIt will optimize the following loss for randomly sampled

segments of K trajectory steps from a replay buffer

L = EAk∼π̃(Ak|sk)

[
− log

(
N−1∑
n=0

ρ(n|s0; θ)
K−1∏
k=0

πn(Ak|sk; θ)

)]
, (5.4)

where ρ(n|s0; θ) is a learned policy over options conditioned on only the first

state in the sequence. Using a weighting conditional on only s0 reflects the

fact that, when planning, we must select an option conditional on only s0. If

instead ρ was conditioned on the whole trajectory segment, we may end up

with one of two different options being best depending on random transitions

following s0. This is undesirable given we wish to use the options for planning

from the current state and thus want some option to be good in expectation

conditional on the current state, rather than only conditional on some random

future states. Equation 5.4 is exactly the cross-entropy between the search

policy for each state in the sequence and the joint distribution over actions

induced by the weighted mixture of option policies.

Note that Ak is sampled independently from the action actually executed

in the environment. In practice, I stochastically sample Ak ∼ π̃(Ak|sk) in each

update rather than optimizing the expectation in Equation 5.4 directly as the

computational complexity of the latter grows as |A|k and is thus intractable

for moderately large k.

Even if ρ is uniform over options, Equation 5.4 reduces to the expected

LogSumExp over the log-likelihood of the search action sequence under each

option. LogSumExp acts as a smoothed maximization, putting more emphasis

3Throughout I use θ generically to represent the complete set of learnable parameters
defining an agent, though in general only a subset will be used by each function.
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on higher-value elements. Thus, relative to simply optimizing the average log-

likelihood over options, Equation 5.4 will tend to favour making options that

are already a good match better. The emphasis on good options will be even

stronger if ρ is well learned. This motivates the intuition that OptIt aims to

learn a set of options such that, for every state we encounter, at least one is

good for some horizon into the future.

There are two key differences between OptIt and ExIt. First, ExIt opti-

mizes a single policy rather than a set. Second, ExIt optimizes independently

in each state rather than for trajectory segments. The analogue to Equa-

tion 5.4 for ExIt is

L = EA∼π̃(A|s) [− log(π(A|s; θ))] .

Note the importance of optimizing over trajectory segments in OptIt. When

optimizing for single-step agreement, using a set of options is unlikely to be

beneficial as the weighted mixture itself would collapse into a single policy.

Option Iteration with Monte Carlo Search: OptIt could be integrated

with any planning algorithm that uses search to compute an improved policy in

each visited state, including Monte-Carlo tree search (MCTS; Coulom, 2006;

Kocsis et al., 2006). However, Monte-Carlo search (MCS; Tesauro et al., 1996)

provides a particularly appealing use case as the addition of learned options

could help to mitigate some of its inherent weaknesses. Unlike MCTS, MCS

does not perform policy improvement in non-root nodes during the search,

each action is only evaluated under a specific rollout policy. On the other

hand, MCS offers certain advantages relative to MCTS. In particular, MCS is

straightforward to parallelize and also straightforward to apply to stochastic

environments.

Performing MCS with a strong learned set of options can help mitigate the

drawbacks and allow us to capitalize on the benefits inherent in its simplicity.

By searching in a joint space of actions and options rather than just prim-

itive actions, we can evaluate each action under various possible behaviours

rather than a single learned rollout policy. Unless one policy in the set is best

everywhere, finding the best action under the best policy in a set for each
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Algorithm 2 MCS with Options

Input: θ, σ̄, s
for a in A do
for n in 0 : N − 1 do
M = simulation budget/(|A|N)
Q̂n(a, s)← 0
for j in 0 :M − 1 (in Parallel) do
Sample s1 ∼ p(·|s, a)
Simulate πn(·|·; θ) for K − 1 steps from s1
Get simulated trajectory (s0, a0, r1, ..., sK)

G←
K−1∑
k=0

γkrk+1 + γKv(sK ; θ)

Q̂n(a, s) += G/M
end for

end for
end for
p̃(a, n) ∝ exp(Q̂n(a, s)/(σ̄β))
π̃(a|s)←

∑
n

p̃(a, n)

ã← argmax
a

max
n

Q̂n(a, s)

ṽ ← max
a,n

Q̂n(a, s)

return ã, ṽ, π̃

encountered state will give us better actions overall than selecting the best

action under any single policy from the set. If the set of learned options is

sufficiently rich to capture the plausible future behaviours then it may not be

necessary to explicitly build a tree over future trajectories. I will apply OptIt

on top of MCS in my experiments in this thesis leaving its application to other

search algorithms for future work.

I run MCS in the joint space of options and initial actions. Effectively, this

approach searches for the best combination of initial action and subsequent

behaviour from the set of available learned options. MCS with any finite set

of options and actions effectively reduces the search problem to a finite-armed

bandit setting. We could thus choose any finite-armed bandit algorithm to se-

lect options and actions during search. To avoid complex interactions between

the bandit algorithm and policy-learning procedure, which could confound my

main focus, I make a simple choice. Namely, I fix the total number of simu-
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lations used in each state and allocate this simulation budget evenly amongst

the joint space of options and initial actions. For example, if we allocate 1000

total simulations with 5 options and 4 actions, then for each option n and

action a we would perform 1000/(4 · 5) = 50 simulations where initial action a

is selected and the policy of option n is followed thereafter for the remainder

of the rollout length. Applying OptIt with more sophisticated choices of ban-

dit algorithm such as PUCB (Rosin, 2011) or Sequential Halving (Danihelka

et al., 2021; Karnin et al., 2013) is an interesting direction for future work.

While we run MCS in the joint space of options and actions, we ultimately

use the search results only to select an action to execute and provide an im-

proved policy over actions alone as a target for option learning. To do this, I

first compute a joint distribution over options and actions based on the entropy

regularized average return resulting from the simulations:

p̃(a, n) ∝ exp(Q̂n(a, s)/(σ̄β)),

where Q̂n(a, s) is the averageK step bootstrapped return for simulations where

the initial action is a and option n is followed thereafter, β is an entropy

regularization hyperparameter, and σ̄2 is an exponentially weighted average of

the variance of returns for recent rollouts used to reduce sensitivity to β across

problems. I next compute the search policy over actions by marginalizing out

the options π̃(a|s) =
∑

n p̃(a, n), the action ã returned by the search to actually

execute in the environment is ã = argmax
a

max
n

Q̂n(a, s). I also maintain a value

estimate, which is used only in computing bootstrapped returns during search,

the target for which is simply ṽ = max
a,n

Q̂n(a, s).

Pseudocode for my implementation of MCS with options is displayed in

Algorithm 2. Since I consider episodic environments, I define v(⊥; θ) = 0 for

the terminal state.

After searching in each state, the resulting π̃ and ṽ are stored in a replay

buffer along with the current state s. The option policies and the policy

over option ρ are trained using Equation 5.4 on randomly sampled batches of

contiguous length K trajectory segments.4 The approximate value function is

4I sample start states randomly and truncate segments at terminal or timeout states. I
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trained to minimize squared error relative to ṽ.

5.4 Does Option Iteration Learn Useful Op-

tions for Monte-Carlo Search?

Here, I evaluate the ability of OptIt to discover useful options from the results

of search. In all my experiments in this chapter, I use simple feed-forward

neural networks for function approximation, with binary observations as input.

Option policies as well as the policy over options ρ are implemented using a

network with a single shared trunk with only the output layer differing, hence

the difference in parameter count due to using multiple options versus a single

policy is very minor. The value function is approximated using a separate feed-

forward network of equal size. I begin with a simple domain as a pedagogical

illustration before moving on to a more challenging and plausible planning

problem.

Windowed 
Average
Return

Time Steps

Option Iteration (4 options)

Expert Iteration (Single Policy)

Return v.s. Time Step for Size 15 Compass  

Figure 5.1: Windowed average return over training time for Monte-Carlo
search with options learned via OptIt compared to Mote-Carlo Search with
just primitive actions using a rollout policy learned via ExIt in 15× 15 Com-
pass. Here, and in all other figures in this chapter, I report undiscounted
return up to either termination or timeout. Error bars show 95% confidence
interval over 5 random seeds.

An Illustrative Domain Highlighting the Benefit of Option Itera-

tion: I first illustrate the benefit of OptIt in a variant of the Compass domain,

as described in Section 5.2. The domain used here differs slightly from that

also divide the loss by the trajectory segment length, only counting truncated steps in case
of truncation.
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Figure 5.2: The left four plots with green arrows show the highest probability
action selected by each of the 4 options learned by OptIt after 100,000 steps
in the 15× 15 Compass environment. The rightmost plot with orange arrows
shows the action selected by the single policy learned with ExIt. In all cases,
the length of the arrow indicates the probability of the action with probability
1 corresponding to the arrow touching the edge of the grid cell. The options
learned by OptIt each tend to select a certain direction to reach a particular
edge of the grid as quickly as possible. The single policy learned by ExIt
generally just takes the shortest path to any edge of the grid.

described in Section 5.2 in that the indexm identifying the grid is not provided

to the agent. Instead, there is simply a reward of 1 on one edge and a reward

of −1 on the other edges at random. Which edge the positive reward is located

on is not observable and can be determined by the agent only by performing

rollouts under the model. This is essentially analogous to the case where M

is so large that it is unlikely that the agent will ever see the same grid twice.

There is also a reward of −1/(grid width) at each time step to incentivize the

agent not to avoid termination indefinitely, note that even with this penalty

it is still always better to move to the edge with the positive reward.

This situation is somewhat contrived in that information about which edge

the reward is on is available to the world model, but not observable. However,

it serves as an empirical verification of the arguments for OptIt laid out in

Section 5.2. I present this as a surrogate for the more plausible situation

where the optimal policy is a function of the agent’s observations, but in

a nuanced way that has not been well learned, due to either limited policy

training or policy network capacity, but which can nonetheless be determined

by simulation using the world model. Subsequent sections will evaluate OptIt

in environments without such contrived partial observability.

I set the width of the grid to 15. The timeout period for an episode was set

to 20 such that there was enough time to reach the positive reward from any
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initialization position under the optimal policy. After the time-out period, a

new episode begins regardless of whether the terminal state has been reached.5

The rollout length for options and length K of trajectory segments used in the

OptIt loss are likewise set to 20 such that it is possible to reach any edge of the

grid in one rollout. In this experiment, I use a relatively low simulation budget

of 50 rollouts. I test an agent using 4 options learned with OptIt against an

agent operating in the space of primitive actions with a rollout policy learned

from search results using ExIt. Other hyperparameter settings are available

in Appendix C.5.

The resulting learning curves are displayed in Figure 5.1. OptIt is able

to quickly learn approximations to the four directional options that allow the

search to rapidly locate the positive reward on any of the 4 edges and from

that point forward achieves strong performance. On the other hand, the single

rollout policy learned using ExIt tends to just move toward whatever edge is

closest (presumably to escape the negative reward per time-step as quickly as

possible) which is much less useful for search. Visualizations of the learned

options and policy are provided in Figure 5.2.

Agent

Goal

Figure 5.3: Example of a state in the 7x7 ProcMaze environment. Note that
the maze layout is randomized in each episode, making the state space much
larger than that of a particular maze.

5Note that timeouts are not applied during search rollouts.
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Evaluating Option Iteration in a Challenging Planning Domain: I

now empirically evaluate OptIt on a conceptually simple environment designed

to present a significant planning challenge. Specifically, I use a variant of the

ProcMaze environment already introduced in Chapter 3, which I will refer to

as ElectricProcMaze for reasons I will explain shortly.

Unlike the Compass environment, ElectricProcMaze is fully observable.

There no information a priori hidden from the policy network that affects

the correct behaviour which would require the use of options to represent the

joint distribution of optimal actions. However, this environment is challenging

enough that learning could benefit from representing a distribution of possible

behaviours before the single optimal policy is well learned.

In ElectricProcMaze, instead of remaining in place upon transitioning into

a wall, the agent is allowed to move into the wall cell but with a large nega-

tive reward (analogous to an electric shock in animal experiments) set to be

equal to one more than the largest possible number of steps required to reach

the goal across all possible maze configurations. In addition, compared to

the ProcMaze version used in Chapter 3, the no-op action was removed and

random teleportation to the goal was replaced with a timeout after a fixed

number of steps.

I use ElectricProcMaze rather than ProcMaze as the latter has the prop-

erty that the greedy policy with respect to the action-value function of the

uniform random policy is optimal while ElectricProcMaze does not. Laidlaw

et al. (2023) demonstrated that this characteristic is surprisingly common,

particularly in environments where standard deep RL algorithms perform well.

However, it is undesirable for this chapter, where the main focus is on policy

learning for search. See Appendix C.1 for further details on this point.

I present experiments in 7x7 mazes, an example of which is displayed in

Figure 5.3. I found in preliminary experiments that smaller mazes were easily

solved by MCS in the space of primitive actions and hence presented little

potential to benefit from options. I also use a timeout of 120 steps after which

the episode is ended to avoid the agent getting stuck indefinitely on a single

challenging maze.
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I evaluate OptIt with MCS using 5 learned options against ExIt with a

single learned policy. ExIt is implemented using the exact same code as OptIt,

simply reducing the number of options to 1.6 In order to establish a strong

performance baseline for ExIt on this environment I sweep the step-size and

entropy-regularization parameters and select the one with the best average

return in the final 100,000 of 500,000 training steps, see Appendix C.5 for

details. I then use the same hyperparameters for OptIt. Each is given the

same simulation budget per step, which for OptIt is distributed evenly over all

option-action combinations and for ExIt is distributed over only actions. In

each case, the approximate value function is used to estimate the value of the

final state in length 5 rollouts during MCS. As an additional baseline, I also

tested training 5 options by optimizing the mean cross-entropy over options,

that is

L = EAk∼π̃(Ak|sk)

[
− 1

N

N−1∑
n=0

log

(
K−1∏
k=0

πn(Ak|sk; θ)

)]
.

Windowed 
Average
Return

Time Steps

Option Iteration (5 options)

Expert Iteration (single policy)

Return v.s. Time Steps for Size 7 ElectricProcMaze  

Mean Cross Entropy (5 options)

Figure 5.4: Windowed average return over training time for OptIt and base-
lines on size 7 ElectricProcMaze. Error bars show 95% confidence interval over
5 random seeds. The y-axis is thresholded at −40 to omit the rapid period of
initial improvement. Running MCS in the space of options learned with OptIt
provides a significant benefit compared to using primitive actions evaluated
under the single learned rollout policy.

The results are displayed in Figure 5.4. Planning with options discovered by

6This means that ExIt is also trained on sequences and uses samples from the search
policy rather than directly minimizing cross-entropy. I also tried implementing ExIt with
independent samples and exact cross-entropy but surprisingly found this to be significantly
worse, hence I report results with the same setting as OptIt for simplicity. I include an
ablation study to better understand these choices in Appendix C.2.
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OptIt shows a clear benefit over using a single learned rollout policy. We also

see that using the OptIt loss significantly outperforms the mean-cross entropy

baseline. The latter performs just slightly better than ExIt, suggesting that the

specialization induced by maximizing the joint likelihood of action sequences

results in a more useful set of options.

Evaluating Option Iteration in a Challenging Domain with Hier-

archical Structure: The ElectricProcMaze results demonstrate that using

options learned by OptIt in MCS can significantly accelerate learning in a chal-

lenging planning domain compared to using a single policy learned by ExIt.

This is despite the fact that randomized mazes have no obvious hierarchical

structure. We may expect to see more significant benefits in domains where

there is some underlying hierarchical structure in the environment. In this

section, I introduce another conceptually simple environment, built on top of

ElectricProcMaze, to investigate this.

I call the hierarchical environment introduced here HierarchicalElectricProc-

Maze. This environment consists of a base environment (in this case Elec-

tricProcMaze) and a controller environment. The basic idea is to create a

simplified abstraction of an agent interacting with a low-level controller such

that executing a single action in the base environment via the controller re-

quires a sequence of coherent actions in the controller environment. A more

complex example would be a robot learning to play chess when it is required

to physically manipulate the pieces to take action in the game.

The controller environment consists of an 8 × 8 grid with buttons placed

in the centre of each edge. Each button corresponds to a particular action in

the base environment. The action space consists of moving in the 4 cardinal

directions. Each primitive action moves the agent one cell in the controller

environment. Upon reaching a button in the controller environment the se-

lected action to execute in the base environment is changed to the action

associated with the button. On every eighth time step in the controller envi-

ronment, the currently selected base-environment action is executed and the

base environment is advanced by one time step. At this time, the selected

base-environment action is reset to no-op. Executing no-op will cause the
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agent not to move in the base environment, hence to select an action besides

no-op in the next base-environment step, the agent must once again move to

a button within 8 time steps. The environment is fully observable with the

observation space consisting of the base-environment observations, together

with one-hot vectors indicating the agent’s position in the controller environ-

ment, the currently selected base-environment action, and the remaining time

steps until the next base-environment action is executed. Rewards are simply

the rewards from the base environment and fixed to zero except on time steps

when the base environment is advanced.

I use size 5 ElectricProcMaze as the base environment, reduced from size

7 to compensate for the added difficulty of having to control the environment

indirectly. Most of the hyperparameters are maintained from the ElectricProc-

Maze experiment. I changed the option rollout length from 5 to 8 to match the

size of the controller-environment grid, corresponding to one base-environment

action per rollout. I also increased the capacity of the network as the original

network worked poorly for both OptIt and ExIt in preliminary experiments

indicating significant underparameterization.

For HierarchicalElectricProcMaze, I also reduced the entropy regulariza-

tion factor β from 0.1 to 0.01 for Option Iteration which I found was necessary

to obtain a performance benefit compared to ExIt. In light of this change, to

facilitate a fair comparison, and a more complete picture of the behaviour of

each approach, I performed a sweep over β values in powers of 10 and display

the performance of each algorithm for the best β. The results of the sweep are

available in Figure 5.5 in Appendix C.5. The results of this sweep reveal that

OptIt achieves optimal performance at an order of magnitude lower level of

entropy regularization than ExIt and remains more robust to further reduction

in the regularization. One plausible interpretation of this result is that since

OptIt is effectively learning a distribution of possible behaviours rather than

fitting a single policy, it is able to maintain adequate behavioural diversity

while fitting to a sharper search policy. This may in turn allow it to benefit

from extracting more information from the search results without suffering as

much from overfitting.
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Windowed 
Average
Return

Time Steps

Option Iteration (5 options, β=0.01)

Expert Iteration (single policy, β=0.1)

Return v.s. Time Steps for HeirarchicalElectricProcMaze  

Figure 5.5: Windowed average return over training time for OptIt and base-
lines on HierarchicalElectricProcMaze with size 8 controller and size 5 base
environment. Each algorithm is presented for its best β value from a sweep in
powers of 10. Error bars show 95% confidence interval over 5 random seeds.
The y-axis is thresholded at −40 to omit the rapid period of initial improve-
ment. Running MCS in the space of options learned with OptIt provides a
large benefit compared to using primitive actions evaluated under the single
learned rollout policy.

The results are displayed in Figure 5.5. Planning with options discovered

by OptIt shows a large benefit over using a single learned rollout policy.

Unlike the options learned for the Compass environment, I did not observe

the options learned for HierarchicalElectricProcMaze to be particularly inter-

pretable. Nevertheless, I did find the learned options to display significant

behavioural diversity in an analysis which I present in Appendix C.3.

5.5 Discussion

This chapter introduced the third major contribution of this thesis, OptIt,

which is also the third example of how our design decisions can influence a

reinforcement agent’s ability to take advantage of generic problem structure.

In the case of OptIt, the exploited structure is the idea that optimal actions in

temporally contiguous states tend to be highly interdependent. This in turn

was postulated to be a consequence of spatial locality, whereby temporally

contiguous states will tend to involve interaction with a highly overlapping set

of subsystems in the world. Thus any information we gain about these sub-

systems will be likely to provide information about the optimal behaviour in
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many such states. OptIt is a simple approach to discovering a set of options,

which represent a richer distribution over trajectories for search than can be

represented by a single policy, by amortizing the results of a computationally

expensive search algorithm. The discovered options can then be used to im-

prove future search, resulting in a virtuous cycle where better options lead

to improved search, which in turn enables the discovery of better options. I

demonstrated empirically that the options learned by OptIt provide a signif-

icant benefit over a single policy learned with ExIt when planning with MCS

in challenging planning domains.
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Chapter 6

Closing

In this dissertation, I presented three major contributions in the form of three

examples of how generic problem structure can be exploited in RL. Generic

problem structure here refers, open-endedly, to structure we expect to exist in a

wide range of problems (e.g., action taken in the present does not influence the

past), as opposed to structure which is highly specific to the problem at hand

(e.g., heuristics or theorems about which moves are superior in a particular

game). In Chapter 3, I demonstrated how model-based RL algorithms can

make inherently better use of known problem structure compared to analogous

model-free algorithms. In Chapter 4, I proposed the HNCA algorithm which

exploits knowledge of the network structure to provide lower variance gradient

estimates in networks of stochastic units. In Chapter 5, I proposed an approach

to option discovery based on the intuitive idea that, as a consequence of spatial

locality, the optimal actions for temporally contiguous states will tend to be

highly interdependent.

In terms of the central question of this thesis

Can reinforcement learning agents be designed to take advantage

of generic problem structure to achieve more efficient learning and

planning?

I believe the above three examples show that the answer is undoubtedly yes,

but the question itself remains fertile ground for future work. Many of the

fundamental advances in RL and machine learning more broadly can be seen

as coming up with clever ways to exploit generic structure to improve sam-
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ple efficiency and/or computational efficiency. Backpropagation exploits the

fact that computational units are organized in a network with particular con-

nectivity, and TD learning exploits the fact that the future is independent of

the past given the present. However, despite this ubiquity, new approaches

are often not framed in terms of what kind of structure they aim to exploit.

This relates to the distinction between problem-focused and solution-focused

research.

Problem-focused research looks first and foremost at the nature of the

problem at hand, considers its structure, and then aims to tailor a solution

method to the particular problem. Solution-focused research first decides on a

particular class of solution methods and looks for problems where the method

can be applied or asks how the methods can be improved. Of course, in

practice, this distinction is not clear-cut. For example, neural networks are

a particular solution method, but once one commits to using them one can

see the question of how to train them as a problem to be solved, for example

by backpropagation. Solution methods tend to give rise to their own unique

problems.

Both problem-focused and solution-focused research can have significant

value, improving established methods and looking for new places they can add

value is certainly valid. However, it’s important to realise that the problem

and its underlying structure always comes before the solution. Every existing

solution method was designed with a particular problem in mind. When faced

with a new problem it’s of course valid to consider the library of existing tools

and think carefully about whether the problem is similar enough that they

can be applied. However, when a problem is truly new one inevitably needs

to fall back on considering the problem, and its underlying structure, directly

to design a good solution.

I have often found problem-focused thinking to be a good base of operation

to return to when challenges arise. It’s easy to get focused on a particular

solution method and lose sight of the problem we are ultimately trying to

solve. Many times I have spent significant effort trying to make an algorithm

work better only to realize that my underlying assumptions were just a little
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bit off and upon carefully considering the problem at hand I should be doing

things a little bit differently.

6.1 Future Directions

Aside from the general sense in which exploiting problem structure can be a

valuable guide for choosing research directions, each specific contribution out-

lined in this thesis raises many interesting questions which could be addressed

in future work.

Chapter 3 offers a strong foundation for understanding the benefits of

model-based learning, but there remain many unanswered questions and sig-

nificant work to be done to make the insights more actionable. For example

• Theorem 3.1 only directly addresses the case of deterministic transition

dynamics, it is interesting to ask whether similarly simple insights can

be made for the case of stochastic dynamics.

• Theorem 3.1 suggests that model-based methods should be preferred to

model-free methods if the approaches begin with the same world knowl-

edge. However, in practice, world knowledge is encoded somewhat neb-

ulously, for example, in the choice of neural-network architecture. It

would be interesting to look more closely at what kind of biases are

implied by using a particular neural-network architecture in a model-

based or model-free approach. One plausible reason for the empirical

challenge of getting model-based learning methods working compared

to model-free methods is that the inductive bias over MDPs implied by

naively applying a neural network to learn a world model is less reason-

able than when a similar network is applied to learn a value function.

For example, feeding a neural network’s output back into its input as

is done with multi-step model rollouts will tend to result in instability,

unless something is done to address it. In principle, a value function

which generalizes pathologically could also lead to extreme results for

examples that differ from those on which it is directly trained. However,

this seems not to be a major problem for neural-network-based value
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functions in practice. It would be interesting to better understand how

the underlying inductive biases differ, towards improving them for the

model-based approach.

• Theorem 3.1 also applies only to the realizable case where the true model

is contained in the function class. It would be interesting to consider how

a more nuanced analysis could be applied to the case where realizability

does not hold. Such analysis should reveal a trade-off between model-

based and model-free learning where the model-based approach becomes

relatively better in the limit of more function approximation resources

and relatively worse in the limit of more data.

• Along the same lines, it is interesting to consider how using some of the

approaches for learning implicit models—which focus on modelling only

task-relevant aspects of the future such as policy, value and reward—

can help when realizability does not hold. I suspect an intermediate

paradigm may ultimately be a better solution than either only learning

task-relevant features, or attempting to model the full dynamics. One

could for example attempt to model as much of the dynamics as possible

given limited function approximation resources, but failing that fall back

on first modelling things which are already known to be task-relevant.

This could give rise to something like an exploration-exploitation trade-

off for model learning.

Chapter 4 proposes a concrete approach with clearly established benefits

for gradient estimation in networks of stochastic neurons. My original motiva-

tion for working on it however was partially related to the credit assignment

problem in RL (see the survey of Pignatelli et al. (2023) for an overview of rel-

evant work on this problem). To see the connection, one can imagine replacing

the network of agents with some kind of factored world model and using an

approach like HNCA to propagate credit for the agent’s actions through the

world model. I believe the key insights of HNCA could help develop methods

to address the Credit Assignment Problem more generally. One key challenge

which could be addressed as a step toward this would be extending HNCA to

somehow propagate credit multiple steps through a network rather than just
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a single step.

Chapter 5 provides a proof of concept for the approach of discovering op-

tions by amortizing the results of a computationally expensive search over

multi-step trajectory segments. There are many possible directions to extend

and improve this basic idea. For example

• Rather than fixing the horizon of the learned options one could learn

termination functions for each option based by maximizing the likelihood

of trajectories under the distribution induced by the combination of the

option policies, policy over options and termination functions. In this

case, the termination functions would aim to learn the optimal place to

split the trajectory into segments such that in each segment the search

policy was closely matched to a particular option. I discuss how this

could be done in detail in Appendix C.4, building on the approach of Fox

et al. (2017).

• One could explore applying OptIt in combination with more sophisti-

cated search algorithms than MCS, such as MCTS.

• Rather than using a discrete set of options, one could specify options with

an arbitrary latent variable. This would likely require more sophisticated

techniques, like variational inference.

• OptIt inherently relies on the reward signal to allow the search proce-

dure to identify good actions. This is limiting in domains with very

sparse rewards, in which we might instead want to discover options that

are useful for exploration even before the agent has managed to locate

any reward. One simple way to address this would be to run OptIt in

combination with an intrinsic reward signal.

• I encourage option diversity in OptIt only implicitly by maximizing tra-

jectory likelihood under the ρ weighted mixture of option policies. It

may be beneficial to explicitly encourage diversity, for example using a

quality-diversity approach similar to that of Zahavy et al. (2023).

• On the more theoretical side, it would be interesting to analyze the

convergence behaviour of OptIt. I motivated OptIt by arguing that

a set of options can be a better representation of the true predictive
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posterior over optimal actions than a single policy. However, the targets

used to train OptIt were not samples from the optimal policy, which

would not be practical to obtain, but rather samples from an improved

policy derived from a search procedure using the current set of options.

It would be interesting to consider how one could analytically investigate

the convergence behaviour in this more realistic setting.

• Finally, OptIt evaluates options by explicitly rolling them out under

the true world model. Ideally, we’d like to learn an option model to

predict the mean reward and distribution of states that would result

from executing each option, without actually having to simulate it. This

would allow an increase in effective search depth for a given amount of

computational effort at the cost of introducing model errors. In this

case, one would still need a method for learning useful options, and

I believe OptIt or something like it could be a reasonable approach.

However, the addition of learned option models would raise interesting

challenges. If options are iteratively improved as in OptIt, the option

models would have to fit nonstationary targets. To address this, it may

be desirable to jointly fit the options and models to each other such that

the options are explicitly encouraged to remain predictable and not to

deviate too quickly from the current model predictions. Furthermore,

we would like to learn dynamics models for each option in the set while

selecting actions according to yet another policy induced by the search

procedure. This would mean dealing with the challenges of off-policy

learning. However, the challenge may be mitigated somewhat if the

option policies are themselves trained to match the search results as

in OptIt. Overall, joint learning of options and the associated option

models is an important, but challenging, area for future work.
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6.2 Closing Thoughts: Where does Knowledge

Come From?

The focus of this dissertation was on how incorporating basic knowledge of

problem structure can improve RL systems. Incorporating some prior knowl-

edge into our algorithms is necessary for progress. Without any prior knowl-

edge, we have no real basis for making predictions in situations that differ in

any way from those we have already seen as we can’t know a priori the cor-

rect way to generalize from our observations. This is the essential idea behind

various no free lunch theorems, such as those of Wolpert et al. (1997). Agents

acting in the real world will never see the same situation twice, particularly if

you incorporate history, hence this would leave us in a hopeless position.

While I believe including some basic knowledge is necessary to build sys-

tems which learn in any meaningful sense, at first glance, this almost seems

like a chicken-and-egg problem. To learn anything meaningful, first, we have

to already know something about how one situation is likely to generalise to

another. So where do humans get the prior knowledge to incorporate into our

learning systems? On a basic level, one could say that some of it is learned

from life experience and some of it is hard-coded at birth as a result of evo-

lution. But human learning and evolution can both be seen as algorithms for

improving from experience. In the case of evolution, the improvement comes

from the experience of many generations that came before us. In the presence

of an infinite space of non-repeating situations, improving from experience

is only possible given some prior knowledge about how one situation should

generalize to another.

I think the resolution to this question is simply to realize that evolution

itself does not begin with zero knowledge because it operates on a substrate

derived from the universe for which it optimizes. In a sense, one could say

that the initial seed of knowledge about the universe which facilitates learning

about it comes from the universe itself. As an illustrative example, brains

exist in three-dimensional space. This simple fact might bias them towards

reasoning about three-dimensional space, which in turn is a useful bias for
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reasoning about, and surviving in the world. Likewise, brains operate based

on the same laws of physics which govern the rest of the world around them.

These laws tend to be continuous and smooth in the sense that small changes

to initial conditions result in small changes in short-term outcomes. This

could bias them towards modelling smooth dynamics which again is likely to

be useful in our universe.

As practitioners of machine learning, we aim to instill a minimal amount

of our knowledge—derived from learning, evolution, and the inherent priors of

being part of the universe—into machines to allow them to learn for themselves

from their own experience of the world. Theorists distil knowledge by thinking

deeply to formulate tractable problems which approximate some properties of

the universe, and then try to solve them. Empiricists rely on intuition to guide

their search through a large search space of possible solutions toward those

which their universe-derived brain deems plausible to succeed. It’s not clear

how much prior knowledge we need to instil to enable meaningful learning on

a reasonable time scale. Including the most basic priors can already make the

difference between an impossible problem and merely a painfully slow process.

Adding the right knowledge on top of this may result in significant additional

improvements but it’s too early to say what the right amount is for a practical

generally intelligent system.

Taking neural networks as an example, the specific prior knowledge encoded

depends a lot on the particular architecture. However, all neural networks are

biased towards smoothly interpolating between nearby inputs. Given sufficient

data, they can also develop arbitrarily sharp distinctions between inputs as ap-

propriate but they tend towards smoothness by default. Probably the reason

for the ubiquitous success of neural networks is not that they generalize par-

ticularly well, but that they generalize in the simplest way which still provides

useful biases for realistic problems. Beyond that, they provide a convenient

generic function approximation and by and large get out of the way and let

the data speak for itself in a reasonably computationally efficient manner.

Overall, while we need to incorporate some structure into our agents, we do

not necessarily need to incorporate a lot of structure, and decades of machine
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learning research so far seem to reinforce the bitter lesson (Sutton, 2019) that

less is usually better in the long run. With that in mind, the driving force

behind the work that went into this dissertation was the search for the sim-

plest aspects of problem structure which could provide a significant edge to a

learning agent.
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Sutton, R. S., Szepesvári, C., Geramifard, A., & Bowling, M. P. (2008).
Dyna-style planning with linear function approximation and prioritized
sweeping. Proceedings of the Conference on Uncertainty in Artificial In-
telligence, 528–536.

Tang, C., & Salakhutdinov, R. R. (2013). Learning stochastic feedforward
neural networks. Advances in Neural Information Processing Systems,
26, 530–538.

Tesauro, G., & Galperin, G. (1996). On-line policy improvement using monte-
carlo search. Advances in Neural Information Processing Systems, 9,
1068–1074.

Thomas, P. S., & Barto, A. G. (2011). Conjugate markov decision processes.
Proceedings of the International Conference on Machine Learning, 137–
144.

Thrun, S. (1992). Efficient exploration in reinforcement learning (technical
report CMU-CS-92-102). Carnegie-Mellon University.

111



Titsias, M. K., & Lázaro-Gredilla, M. (2015). Local expectation gradients for
black box variational inference. Advances in Neural Information Pro-
cessing Systems, 28, 2638–2646.

Tucker, G., Mnih, A., Maddison, C. J., Lawson, J., & Sohl-Dickstein, J. (2017).
REBAR: Low-variance, unbiased gradient estimates for discrete latent
variable models. Advances in Neural Information Processing Systems,
30, 2624–2633.

van Hasselt, H. P., Hessel, M., & Aslanides, J. (2019). When to use paramet-
ric models in reinforcement learning? Advances in Neural Information
Processing Systems, 32, 14322–14333.

van Seijen, H., & Sutton, R. S. (2015). A deeper look at planning as learning
from replay. Proceedings of the International Conference on Machine
Learning, 2314–2322.

Veeriah, V., Zahavy, T., Hessel, M., Xu, Z., Oh, J., Kemaev, I., van Hasselt,
H. P., Silver, D., & Singh, S. (2021). Discovery of options via meta-
learned subgoals. Advances in Neural Information Processing Systems,
34, 29861–29873.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Sil-
ver, D., & Kavukcuoglu, K. (2017). Feudal networks for hierarchical
reinforcement learning. Proceedings of the International Conference on
Machine Learning, 3540–3549.

Wan, Y., Abbas, Z., White, A., White, M., & Sutton, R. S. (2019). Plan-
ning with expectation models. Proceedings of the International Joint
Conference on Artificial Intelligence, 3649–3655.

Wan, Y., Naik, A., & Sutton, R. S. (2021). Learning and planning in average-
reward markov decision processes. Proceedings of the International
Conference on Machine Learning, 10653–1066.

Wan, Y., & Sutton, R. S. (2022). Toward discovering options that achieve
faster planning. arXiv preprint 2205.12515.

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8, 279–292.
Watter, M., Springenberg, J., Boedecker, J., & Riedmiller, M. (2015). Embed

to control: A locally linear latent dynamics model for control from raw
images. Advances in Neural Information Processing Systems, 28, 2746–
2754.

Werbos, P. J. (1987). Building and understanding adaptive systems: A sta-
tistical/numerical approach to factory automation and brain research.
IEEE Transactions on Systems, Man, and Cybernetics, 17, 7–20.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8 (3-4), 229–256.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for opti-
mization. IEEE Transactions on Evolutionary Computation, 1 (1), 67–
82.

Xu, Z., & Tewari, A. (2020). Reinforcement learning in factored MDPs: Oracle-
efficient algorithms and tighter regret bounds for the non-episodic set-

112



ting. Advances in Neural Information Processing Systems, 33, 18226–
18236.

Ye, W., Liu, S., Kurutach, T., Abbeel, P., & Gao, Y. (2021). Mastering Atari
games with limited data. Advances in Neural Information Processing
Systems, 34, 25476–25488.

Yin, M., & Zhou, M. (2019). Arm: Augment-reinforce-merge gradient for
stochastic binary networks. Proceedings of the International Conference
on Learning Representations.

Young, K. (2022). Hindsight network credit assignment: Efficient credit assign-
ment in networks of discrete stochastic units. Proceedings of the AAAI
Conference on Artificial Intelligence, 8919–8926.

Young, K., Ramesh, A., Kirsch, L., & Schmidhuber, J. (2023). The benefits
of model-based generalization in reinforcement learning. Proceedings of
the International Conference on Machine Learning, 40254–40276.

Young, K., & Sutton, R. S. (2023). Iterative option discovery for planning, by
planning. arXiv preprint 2310.01569.

Zahavy, T., Veeriah, V., Hou, S., Waugh, K., Lai, M., Leurent, E., Tomasev,
N., Schut, L., Hassabis, D., & Singh, S. (2023). Diversifying ai: Towards
creative chess with alphazero. arXiv preprint 2308.09175.

Zhu, Y., Stone, P., & Zhu, Y. (2022). Bottom-up skill discovery from un-
segmented demonstrations for long-horizon robot manipulation. IEEE
Robotics and Automation Letters, 7 (2), 4126–4133.

113



Appendix A

Appendices for the Benefits of
Model-Based Generalization

A.1 Theorems Motivating the Benefit of Model

Generalization

Here, I present and prove simple theorems motivating the benefit of learning a

parametric model over learning a value function directly from ER. Intuitively

speaking, the first theorem states that, when narrowing down the set of pos-

sible value functions based on observed data, we can rule out more if we first

rule out models directly, and demand the value function be consistent with

the reduced model class, than if we only demand the value function obeys the

Bellman optimality equation with respect to observed transitions.

I state the theorems within the formalism of finite MDPs. That is MDPs

with finite state space S and action space A. Recall from Section 2.1 that,

in general the transition distribution p maps state-actions pairs to probability

distributions over possible next states. However, here, I consider deterministic

MDPs, meaning each state-action pair maps to a distribution with probability

one on a particular next state s′ and zero for all other next states. In this case,

it will be convenient to write p : S ×A → S as a mapping from state-action

pairs to the only possible next state.

I focus here on deterministic MDPs, but similar results likely hold for

general MDPs, albeit significantly complicated by the fact that in the general

case, models and value functions can only be ruled out with high probability
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based on observed data, as opposed to with certainty.

3|00

2|10 2|20

1|221|211|121|11

0|010|000|110|10

R=1

Figure A.1: Illustration of the model class used as an example where selecting
a hypothesis based on model consistency is arbitrarily more selective than
Bellman consistency. The action space consists of 2 actions, left and right.
The states consist of 1 component which acts as a countdown to termination
along with M passcode components (with M = 2 in the figure) which act to
record the action sequence executed so far. The digits take values in {0, 1, 2}
with 1 indicating the left action, 2 indicating the right action and 0 padding
the future actions. When the countdown reaches 0 the correct passcode digits
will switch to 1 and the incorrect digits to 0. In the following step, the episode
will terminate. Note that termination always occurs at t = M + 2. A reward
of 1 will be given on termination if and only if all passcode digits are 1, and the
reward is otherwise 0. Different models in the class vary only in the initially
unknown passcode.

Theorem 3.1. Consider a class of episodic MDPs, M, with fixed reward

function r : S ×A → R , and deterministic transition function belonging to a

hypothesis class H ⊆ {p : S ×A → S}. Assume, for all p ∈ H, all policies

lead to eventual termination.

Define the class of optimal action-value functions associated with H:

HQ = {q : s, a→ R |∃p ∈ H : ∀s, a q(s, a) = r(s, a) + max
a′

q(p(s, a), a′)∧

q(⊥, a) = 0}. (A.1)
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Consider a dataset D = {(sn, an, s′n)|n ∈ {0, 1, .., N}} of transitions such

that p(sn, an) = s′n for some p ∈ H. Now, define two different notions of

hypothesis classes over action-value functions which are consistent with D:

HB(D) = {q ∈ HQ|∀n q(sn, an) = r(sn, an) + max
a′

q(s′n, a
′)}

HM(D) = {q ∈ HQ|∃p ∈ H : (∀n p(sn, an) = s′n)

∧ (∀s, a q(s, a) = r(s, a) + max
a′

q(p(s, a), a′))}

Where B stands for Bellman consistency and M stands for model consistency.

In words, these are the hypothesis classes consisting of value functions which

obey the Bellman optimality equation with respect to the observed transitions,

and the hypothesis class consists of true optimal value functions for transition

dynamics which are consistent with the observed transitions respectively. Then

the following are true:

1. HM(D) ⊆ HB(D).

2. For any N ∈ N there exists some choices ofM and D such that |HB(D)|
|HM (D)| >

N .

3. For a tabular transition function class, that is one that includes every

possible mapping from state-action pairs to next states, HM(D)=HB(D).

Proof. I begin by proving part 1. Towards this, assume q ∈ HM(D). Then

by definition, we have the following:

∃p ∈ H : (∀n p(sn, an) = s′n) ∧ (∀s, a q(s, a) = r(s, a) + max
a′

q(p(s, a), a′))

=⇒ ∃p ∈ H : (∀n p(sn, an) = s′n) ∧ (∀n q(sn, an) = r(sn, an) + max
a′

q(p(sn, an), a
′))

=⇒ ∀n q(sn, an) = r(sn, an) + max
a′

q(s′n, a
′)

=⇒ q ∈ HB(D),

which proves part 1.

To prove part 2, it suffices to construct a specific M and D for which
|HM (D)|
|HB(D)| > N . Towards this, consider the model class illustrated in Figure A.1

with dynamics described in the caption. Now consider a dataset D consisting

of a single episodic trajectory which terminates with the incorrect passcode,

and thus 0 reward. As a concrete example, consider the following possible
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sequence of transitions which may be observed for the problem instance in

Figure 3.2:

(s0 = 3|00, a0 = 1, s′0 = 2|10)

(s1 = 2|10, a1 = 2, s′1 = 1|12)

(s2 = 1|12, a2 = 1, s′2 = 0|00)

(s3 = 0|00, a3 = 2, s′3 = ⊥)

Note that the transition (s2 = 1|12, a2 = 1, s′2 = 0|00) indicates that both of

the previous actions were incorrect. This transition can only ever be observed

within the model class for the MDP for which the true passcode is 21. Thus

observing this transition alone narrows HM(D) down to a singleton containing

only the transition function associated with the passcode 21. More generally,

for any M and any instance of the model class illustrated in Figure 2 with

passcode of length M , it is true that for a dataset D consisting of any single

episodic trajectory, the transition at time t = M is sufficient to uniquely

specify the passcode and thus narrow HM(D) down to a single element.

Next, consider HB(D) in the case where D consists of a single episodic

trajectory which terminates with the incorrect passcode, and thus 0 reward.

We can easily show that the optimal action-value function q̂ for every MDP in

the problem class except the one with passcode matching the final transition

(12 in the above example) remains in HB(D). To see this, consider the optimal

action-value function q̂ for some arbitrary passcode different from the one that

was entered in the trajectory contained in D. By assumption, we have that

q̂ ∈ HQ, hence to show that q̂ ∈ HB(D) we just need to show that q̂(sn, an) =

r(sn, an) + max
a′

q(s′n, a
′) for each n indexing the elements of D. Since, by

assumption, D does not contain the single rewarding transition, r(sn, an) = 0

for all n. Moreover, since q̂ is assumed to be the value function for a passcode

distinct from the one that was entered, we can let ñ be the first integer such

that añ differs from the passcode associated with q̂, that is the first integer

such that añ ̸∈ argmax
a′

q̂(s′n, a
′). For n < ñ we have q̂(sn, an) = max

a′
q(s′n, a

′) =
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1 since the actions up to that point are optimal. For n ≥ ñ, q̂(sn, an) =

max
a′

q(s′n, a
′) = 0 since after the first suboptimal action, all paths lead to zero

reward. Thus indeed q̂ ∈ HB(D) for all q̂ associated with passcodes besides

the one that was selected for the trajectory in D. This is a set of size 2M − 1,

hence recalling that |HM(D)| = 1, |HB(D)| = 2M − 1 = (2M − 1)|HM(D)|.

Selecting passcode length M ≥ log(N+1)
log (2)

satisfies the requirement of part 2,

thus part 2 is proven.

Finally, I prove part 3. Since we already know from part 1 that q ∈

HM(D) =⇒ q ∈ HB(D) in the general case, it suffices to show that, with

the additional restriction of a tabular class H of transition matrices, we have

q ∈ HB(D) =⇒ q ∈ HM(D). Recall that by a tabular H we mean one which

includes every possible mapping from state-action pairs to next states. Thus,

in this case, we are free to choose p(s, a) to be an independently selected s′

for every (s, a) pair, and know that the resulting p ∈ H. Assume q ∈ HB(D),

then by definition we know q ∈ HQ, meaning

∃p ∈ H : ∀s, a q(s, a) = r(s, a) + max
a′

q(p(s, a), a′), (A.2)

and, by the definition of q ∈ HB(D), we know

∀n q(sn, an) = r(sn, an) + max
a′

q(s′n, a
′). (A.3)

Now, given tabular H we can set, for all n, p(sn, an) = s′n, which we know

from Equation A.3 gives us:

q(sn, an) = r(sn, an) + max
a′

q(p(sn, an), a
′).

Now for s, a where ∄n : (s, a) = (sn, an), given Equation A.2, we know that

for some choice of p(s, a) it holds that:

q(s, a) = r(s, a) + max
a′

q(p(s, a), a′).

Thus, given the choice of tabular H, we can choose p to simultaneously satisfy

p(sn, an) = s′n for all n and the Bellman optimality equation for all (s, a), and
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indeed:

q ∈ HB(D)

=⇒ ∃p ∈ H : (∀n p(sn, an) = s′n) ∧ (∀s, a q(s, a) = r(s, a) + max
a′

q(p(s, a), a′))

=⇒ q ∈ HM(D),

which completes the proof of part 3.

Practical learning algorithms like stochastic gradient descent applied with

neural network function approximation don’t work by directly ruling out hy-

potheses based on the data. Rather than considering models within an explic-

itly defined class, a neural network would have some inductive bias towards

particular models and away from others depending on the architecture and hy-

perparameters. Nonetheless, the idea behind Theorem 3.1 helps to give insight

into why we should expect learning a parametric model to provide a sample

efficiency benefit.

Intuitively, we can think of the process of performing many updates to a

sufficiently high-capacity neural network, with data from a dataset, as incre-

mentally constraining the possible functions represented by the network. The

specific function converged to will depend on the initialization and random

batches selected for updates. Theorem 3.1 suggests that learning a model as

an intermediate step can impose more constraints on the possible value func-

tions. This in turn should increase the chance of converging to a value function

that generalizes well from limited data.

I next provide the proof of Theorem 3.2. This theorem highlights that

learning a model doesn’t only allow us to narrow down the possible optimal

action-value functions faster; in addition, forcing an agent to make decisions

based only on the value information that can be determined using Bellman

consistency can mean it takes an arbitrary factor more samples to achieve

reasonable performance.

Theorem 3.2. Consider a class of episodic MDPs, M, with fixed reward

function r : S ×A → R , and deterministic transition function belonging to a
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hypothesis class H ⊆ {p : S ×A → S}. Assume, for all p ∈ H, all policies

lead to eventual termination.

Define the class of optimal action-value functions associated with H:

HQ = {q : s, a→ R |∃p ∈ H : ∀s, a q(s, a) = r(s, a) + max
a′

q(p(s, a), a′)}.

Assume an agent is able to interact with the MDP in an online fashion

selecting actions at each time step. Let Dt = {(sn, an, s′n)|n ∈ {0, 1, .., t}} be

the dataset of all transitions observed up to time t during this interaction.

Next, define two different notions of hypothesis classes over action-value

functions which are consistent with Dt:

HB(Dt) = {q ∈ HQ|∀n q(sn, an) = r(sn, an) + max
a′

q(s′n, a
′)}

HM(Dt) = {q ∈ HQ|∃p ∈ H : (∀n p(sn, an) = s′n)∧

(∀s, a q(s, a) = r(s, a) + max
a′

q(p(s, a), a′))}

Where B stands for Bellman consistency and M stands for model consistency.

For any δ ∈ (0, 1] and N ∈ N, there existsM such that the following are true:

1. For any agent which selects actions at each time t based only on HB(Dt)

and the current state St, there is some MDP inM such that with prob-

ability at least 1 − δ the return for all episodes up to episode N will be

0.

2. There exists an agent which selects actions at each time t based on

HM(Dt) and St such that the return for all episodes after the first is

guaranteed to be 1, which is optimal.

Proof. The proof of both part 1 and part 2 once again uses the MDP class

illustrated in Figure 3.2. Note that at the beginning of the agent-environment

interaction Dt = ∅ and HB(Dt) = HM(Dt) = HQ. HQ has one element for

each passcode and thus |HQ| = 2M .

To prove part 2, simply note that after a single episode of experience,

with any action sequence, the transition at time t = M suffices to uniquely

determine the passcode. Thus after a single episode of experience |HM(Dt)| =

1. Likewise, by observing the singleton value function in HM(Dt) after one
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episode an agent can uniquely determine the passcode associated with the

environment instance and guarantee the optimal return of 1 by following the

associated policy from that point forward.

To prove part part 1, begin by noting that except when the agent exe-

cutes the action sequence associated with the passcode, |HB(Dt)| is reduced

by at most 1 for each additional episode of experience. Specifically, if the

agent executes an action sequence corresponding to a passcode that hasn’t

been previously tired, the optimal action-value function associated with that

passcode will be removed from the set. Note that the resulting change will

be identical for all MDPs inM except the one for which the action sequence

matched the passcode. Thus, until the correct passcode has been tried, the

information contained in HB(Dt) is the same as a list of passcodes which have

not yet been tried. As soon as the correct passcode is tried once, HB(Dt) will

be reduced to a single item corresponding to the correct passcode.

Whatever (potentially stochastic) strategy the model-free agent employs

for action selection induces a distribution over sequences of passcodes to at-

tempt assuming all attempts up to that point were failures. Regardless of the

strategy employed, there will be some passcode such that after N episodes the

probability of having ever sampled it will be no more than N
2M

. This is a sim-

ple consequence of the fact that otherwise, the expected number of passcodes

tried after N episodes would have to be more than N , but it is only possible

to attempt one passcode per episode.

Choose any passcode with a probability of being sampled by the agent

in the first N episodes of at most N
2M

and consider the MDP for which that

passcode is correct. Clearly, in the event that it is not sampled the return

for the first N episodes will be 0. Hence with probability at least 1− N
2M

the

return for the first N episodes will be zero. Now, simple choose the passcode

length M ≥ log(N/δ)
log(2)

to get the desired result.
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A.2 Further Environment Details

The environments I investigate are all Markov and use flat binary observation

vectors to represent the environment state. To allow the model-based agent to

learn about the reward or termination function, the environments include oc-

casional random transitions to rewarding or terminal states. The probability

of these transitions is chosen to result in much lower return than is achievable

with optimal performance in each environment. Except for these rare random

transitions to rewarding or terminal states, all environments are determinis-

tic, so simple models can be expected to work well, though I also investigate

more sophisticated latent-variable models. Here, I will describe each of the

environments in some detail.

The first environment, ProcMaze, is illustrated in Figure 3.5(left). Proc-

Maze is an episodic environment. ProcMaze consists of procedurally generated

grid world mazes, where an agent has to navigate from a start state to a goal

state. The maze itself, along with the start state and goal state are random-

ized at the start of each episode. A reward of -1 is given for each step until

the goal is reached, at which point the episode terminates. Also, the agent is

rarely randomly teleported to the goal (probability 0.1/T where T is the time

required to complete the worst-case problem instance for the grid size under

the optimal policy) such that it can obtain knowledge of the reward function

even with a poor behaviour policy. Difficulty could be scaled by increasing

the grid size. The observations consist of a flat binary vector including: one

hot vectors for the goal location and agent location, a vector which is one if

and only if a cell contains a wall, and a vector which is one if and only if a

cell does not contain a wall. The action space includes attempting to move

in each cardinal direction, and no-op. An attempted move will fail if it would

lead the agent into a wall or the edge of the grid. In each episode, a new maze

is generated using randomized depth-first search, which produces reasonable

mazes and guarantees the goal is reachable.

The second environment, ButtonGrid, is illustrated in Figure 3.5(middle).

ButtonGrid is a continuing environment, with no termination. ButtonGrid
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consists of a grid world with a set of randomly placed buttons. An agent

(orange in the figure) can move around on the grid and if it hits a button it

will toggle it either on (black in the figure) or off (white in the figure). Reward

is given whenever all the buttons are set to on, at which point the button

locations are randomized, but the number of buttons is held fixed, and all

buttons are set to off. Occasionally all the buttons will spontaneously switch

to on (probability 0.1/(grid size)2), meaning the agent can receive examples

of the reward function even while behaving suboptimally. Importantly, it does

not suffice to touch each button once to solve this environment, as they are

toggled on and off by repeated contact, an agent must also carefully avoid

hitting them again after the first time they are pressed. Difficulty can be

scaled by increasing the number of buttons on the grid, as well as the grid

size, but I focus on the former. The observations consist of a flat binary vector

including: one hot vectors for the agent location, a vector which is one if

and only if a cell contains a button which is turned on, and a vector which

is one if and only if a cell contains a button which is turned off. The action

space includes attempting to move in each cardinal direction, and no-op. An

attempted move will fail only if it would lead the agent into the edge of the

grid.

The third environment, PanFlute is illustrated in Figure 3.5(right). Pan-

Flute is a continuing environment with no termination. PanFlute is intended

as a minimal instantiation of an environment with combinatorial complexity

in terms of optimal behaviour, but a simple factored transition structure. The

observations consist of a binary value for each square in the figure. An agent

has n actions available to it, (a,b,c,d,e) in the figure. Each action will activate

the associated cell at the bottom of a specific pipe. The pipe associated with

the last action (alphabetically) has a length of one cell, every other pipe is

one cell longer than its (alphabetical) successor. If a cell is activated at a

given time step, it will deactivate and activate the cell above it in the same

pipe at the next time step. A reward of 1 is received if the cells at the end of

each pipe are simultaneously active, otherwise, the reward is always zero. An

active pipe-end will always deactivate at the next step regardless of whether
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reward is obtained. Occasionally, the cells at the end of all pipes will activate

spontaneously (probability 1/n2), thus allowing the agent to observe a reward-

ing situation without having to create it through its own actions. Otherwise,

due to the arrangement of pipe lengths, the only way for the agent to obtain

reward is to choose each of the n actions in sequence. The difficulty of the en-

vironment can be scaled by changing the number of actions n. The probability

of a random sequence of n actions reaching the rewarding state (aside from

spontaneous activation) is 1/nn. Observations consist of a flat binary vector

which includes the active/inactive state of each cell in each pipe.

A.3 Experiments in an Environment Without

Structured Transitions

Chapter 3 primarily focuses on highlighting environments in which model-

based learning is expected to be beneficial. Nevertheless, it is worthwhile

to contrast this with what happens in environments which do not have such

favourable characteristics. To that end, I ran an additional experiment on an

environment without factored structure, which I will present in more detail

here.

The environment for this experiment, which I refer to as OpenGrid, was

simply an open grid with a goal in the bottom right corner and a reward

of −1 for every step until the goal is reached at which point termination

occurs. The agent starts in a random location in each episode. As in my other

experiments, this environment includes occasional spontaneous transitions to

the goal (probability 0.1/(grid size)). The agent location is simply represented

by a one-hot vector (effectively tabular) so there is no real structure to exploit.

The learned model must essentially memorize every individual transition to

learn the dynamics.

The experimental design was the same as in Section 4. I tuned the action-

value-function step-size and softmax-exploration temperature from the same

set of values on a grid size of size 12 and then used the best hyperparameters

for each agent on the other grid sizes. In this experiment, I focused on the
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low-data regime where the simple model tended to have the biggest advantage

over ER in the previous experiments.

Log (Base 2) of Step-Size Log (Base 2) of Temperature

Experience Replay

Perfect Model

Simple Model

Grid Size

Final
Return

Return v.s. Grid Size Grid Size 12 Hyperparameter Sensitivity

Figure A.2: Left: Final performance of greedy policy v.s grid size for Open-
Grid in the low data regimes, that is 100 thousand interactions with 10 updates
per step. Right: Softmax temperature and step-size sensitivity curves for each
approach resulting from the grid search on size 12 OpenGrid. In these plots,
the other hyperparameter is fixed to its best value from the grid search while
varying the temperature or step size.

The results are shown in Figure A.2, with performance v.s. grid size on

the left and hyperparameter sensitivity curves from the initial tuning on the

right. In contrast to my other experiments, here we see that the simple model

becomes worse relative to ER as the environment complexity increases. This

is reasonable as the model has no ability to extrapolate beyond the data. The

best it can do is memorize what is already in the ER buffer and the limitations

of finite model capacity and imperfect optimization prevent it from doing so

perfectly. This result helps to contextualize my main results for environments

with factored structure by showing how the performance of the model-based

approach suffers in a simple environment without such structure.

A.4 Model Details

The latent-variable model consists of the following components:

• Representation Model: Zt ∼ p̂(Zt|St; θ)

• State Reconstructor: Ŝt ∼ p̂(Ŝt|Zt; θ)

• Transition Predictor: Ẑt ∼ p̂(Ẑt|Zt−1, At−1; θ)

• Reward Predictor: R̂t ∼ p̂(R̂t|Zt−1, At−1; θ)

• Termination Predictor: γ̂t ∼ p̂(γ̂t|Zt−1, At−1; θ).
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All components are implemented as neural networks with θ representing the

combined parameter vector. St is the state from the environment at time t,

At is the action, Rt is the reward, γt is the continuation probability.1 Zt is the

latent state constructed by the model from the observation from which tran-

sitions, rewards, and terminations are all predicted. The associated versions

of each variable with hats are predictions made by the model. The action-

value functions associated with the latent-variable models are always trained

to predict action values directly from Zt as opposed to first reconstructing the

observation.

For training the model, I use a loss very similar to that employed by Hafner

et al. (2021):

Lt(θ) = − log(p̂(St|Zt; θ))− log(p̂(Rt|Zt−1, At−1; θ))− log(p̂(γt|Zt−1, At−1; θ))

+KL(p̂(Zt|St; θ)|p̂(Zt|Zt−1, At−1; θ)),

where Zt ∼ p̂(Zt|St; θ). I also employ KL-balancing, as described by Hafner

et al. (2021), with α = 0.8. I experiment with both Gaussian-latent and

categorical-latent variables for Zt. For the categorical case, I use the straight-

through estimator to propagate gradients through the discrete latent variables

where necessary. In all cases, I train the model on randomly sampled transi-

tions from a replay buffer. Note that it is not necessary to train on sequences

in this case, as the lack of recurrence means that the loss at each time step

can be independently evaluated. The state reconstructor p̂(Ŝt|Zt; θ) uses a

sigmoid activation to output the means of a vector of Bernoulli distributions

since all tested environments use binary state representations. The reward

predictor p̂(R̂t|Zt−1, At−1; θ) uses a linear activation and outputs the mean of

a univariate Gaussian, in which case the above loss is effectively mean-squared

error. The termination predictor p̂(γ̂t|Zt−1, At−1; θ) uses a sigmoid activation

to output a single Bernoulli termination probability.

For the simple model, the reward and termination predictors are the same

except that they take raw state representations as input instead of latent

1Two out of three of the environments in the main experiment are continuing, thus
termination will never occur and this prediction could be omitted, however, γt = 1 should
be learned easily and thus it should make little difference whether it is included or not.
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variables. Likewise the transition predictor p̂(Ŝt|St−1, At−1; θ) works directly

with the state representation provided as input to the model, and is trained

with a negative log-likelihood loss relative to the true states.

A.5 Illustrative Experiment Details

Here I give some additional detail on the setup of the illustrative experiment in

Section 3.3. For the most part, I used the same hyperparameters as my main

experiments, as detailed in Appendix A.6. The only exception is that for this

simple experiment I did not tune any hyperparameters, but rather fixed the

Q-learning step size to 2e−4 and softmax-exploration temperature to 0.1. The

softmax-exploration temperature only applies to the model in this case, since

the model-free agent was trained on fixed data and thus never selects actions

during learning.

I trained all agents for 1,000,000 training steps, to ensure convergence,

which was excessive given the small fixed dataset used for training. To control

for the total number of value function updates, and the total number of (real

or imagined) transitions used in each update, I made the following choices: for

model-free DQN and the 1-step model-based agent the value function is up-

dated on batches of 320 transitions, from the dataset or the learned model; the

10-step model-based agent uses a batch of 32 sequences of length 10 generated

by the model to equate the number of transitions per update. The models are

always trained on 32 transitions from the dataset in each update.
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A.6 Hyperparameters

Shared Hyperparameters Value
Number of Hidden Layers 3
Number of Hidden Units 200
Hidden Activation ELU
Optimizer AdamW
Adam β1 0.9
Adam β2 0.99
Adam ϵ 1e-5
Adam weight decay 1e-6
Q-learning Step-Size Tuned (See Appendix A.7)
Discount Factor 0.9
Batch Size 32 for model-based, 320 for model-free
Exploration Strategy Softmax
Softmax Temperature Tuned (See Appendix A.7)
Target Network Update Frequency 100
Buffer Size 100,000
Training Start Time 1000
Model Hyperparameters
Model Learning Step-Size 2e-4
Rollout Length 10
Categorical-Latent Hyperparameters
Number of Features 32
Width of Features 32
KL Balancing 0.8
KL Loss Scale 1.0
Gaussian Latent Hyperparameters
Number of Features 32
KL Balancing 0.8
KL Loss Scale 1.0
Minimum std 0.1
std activation 2 · σ(x/2)

Table A.1: Table of hyperparameters used in experiments in Section 3.5.

A.7 Hyperparameter Tuning and Sensitivity

Experiments

Here, I present hyperparameter sensitivity plots for step-size and softmax ex-

ploration temperature which resulted from the initial grid search to select hy-

perparameters for the main experiments in Section 3.5. The initial grid search

tried the set {0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2} for the softmax tem-

perature and the set {1.25e − 05, 2.50e − 05, 5.00e − 05, 1.00e − 04, 2.00e −
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04, 4.00e− 04, 8.00e− 04, 1.60e− 03, 3.20e− 03} for the step-size. This range

was extended in some cases where there was a significant positive trend at

the boundary of the range for either parameter, this only affected results for

ER and the Gaussian-latent model and the impact was negligible compared

to using the best parameters in the initial range. In each case, the mean

performance of 30 random seeds was used to evaluate each hyperparameter

setting in terms of final performances of the greedy policy. The hyperparam-

eters with the best final performance were selected in each case for use in the

main experiments. Sensitivity curves for step size and temperature are shown

in Figure A.3 and Figure A.4 respectively.

ProcMaze ButtonGrid PanFlute

High Data

Low Data

Final
Return/
Reward

Rate

Final
Return/
Reward

Rate

Log (Base 2) of Step-Size

Experience Replay
Perfect Model
Simple Model
Categorical Latent
Gaussian Latent

Log (Base 2) of Step-Size Log (Base 2) of Step-Size

Figure A.3: Step-size sensitivity curves for each approach resulting from the
grid-search on an intermediate level of difficulty for each environment (size 4
ProcMaze, 4 button ButtonGrid, 7 pipe PanFlute). In these plots, the softmax
temperature is fixed to its best value from the grid-search while varying step
size. The search was extended in a few cases when there was a significant
positive trend at the boundary of the initial search grid.
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High Data

Low Data

Final
Return/
Reward

Rate

Final
Return/
Reward

Rate

Log (Base 2) of Temperature

Experience Replay
Perfect Model
Simple Model
Categorical Latent
Gaussian Latent

Log (Base 2) of Temperature Log (Base 2) of Temperature

Figure A.4: Softmax temperature sensitivity curves for each approach resulting
from the grid-search on an intermediate level of difficulty for each environment
(size 4 ProcMaze, 4 button ButtonGrid, 7 pipe PanFlute). In these plots,
the step size is fixed to its best value from the grid search while varying
softmax temperature. The search was extended in a few cases when there was
a significant positive trend at the boundary of the search grid.
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A.8 Learning Curves

High Data

Low Data

ButtonGrid
1 Button 2 Buttons

PanFlute
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ButtonGrid
1 Button 2 Buttons

PanFlute

3 Buttons 4 Buttons 5 Buttons 6 Buttons 7 Buttons 8 Buttons
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Grid Size 3 Grid Size 4 Grid Size 5
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Gaussian Latent

Figure A.5: Full learning curves for experiments in Section 3.5. The perfor-
mance of the greedy policy is plotted every 5000 updates and smoothed with
a moving average over the last 10 values.

A.9 Ablation Experiments

In this section, I present some additional ablation studies to better understand

the impact of some of my experimental design decisions made in the main

paper. Figure A.6 highlights the impact of removing spontaneous transitions

to rewarding states in each of the environments. Figure A.7 compares the
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performance of the simple model with 1-step and 10-step model rollouts, where

the total number of simulated transitions used in each batch used for DQN

updates is controlled.

ProcMaze ButtonGrid PanFlute

High Data

Low Data

Final
Return/
Reward

Rate

Final
Return/
Reward

Rate

Grid Size Number of Buttons Number of Pipes

Experience Replay
Simple Model

Figure A.6: Comparing the performance of ER and the simple model in vari-
ants of each environment class with spontaneous rewards disabled to the orig-
inal environment. Dotted lines show the curve with spontaneous rewards dis-
abled. The effect of this is highly variable, but is generally detrimental to the
model-based approach. Perhaps surprisingly, ER appears to perform better
without the random transitions to rewarding states in ButtonGrid, perhaps
due to elimination of the resulting noise from the learning signal. The impact
was largest in PanFlute, where the absence of spontaneous rewards negatively
affected both model-free and model-based approaches, but in the high-data
regime led model-free to outperform model-based.
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Figure A.7: Comparing simple model performance with 1-step and 10-step roll-
outs, with perfect model included for reference. Dotted line is 1-step rollouts,
solid line is 10-step. In ProcMaze and PanFlute, 10-step rollouts consistently
perform much better. However, in ButtonGrid 1-step rollouts perform better
for lower button counts in the high data regime, while 10-step rollouts gener-
ally perform better in the low data regime.
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Appendix B

Appendices for Hindsight
Network Credit Assignment

B.1 The Local REINFORCE Estimator is Un-

biased

Here, I show that the local REINFORCE estimator ĜRE
Φ = ∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
R

is an unbiased estimator of the gradient of the expected reward with respect

to θΦ.

E[ĜRE
Φ ] = E

[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
R

]
(a)
=
∑
b

P(pa(Φ) = b)
∑
ϕ

πΦ(ϕ|b)
∂ log(πΦ(ϕ|b))

∂θΦ
E [R|pa(Φ) = b,Φ = ϕ]

(b)
=
∑
b

P(pa(Φ) = b)
∑
ϕ

∂πΦ(ϕ|b)
∂θΦ

E [R|pa(Φ) = b,Φ = ϕ]

(c)
=

∂

∂θΦ

∑
b

P(pa(Φ) = b)
∑
ϕ

πΦ(ϕ|b)E [R|pa(Φ) = b,Φ = ϕ]

=
∂ E[R]
∂θΦ

,

where (a) expands the expectation over pa(Φ) and Φ, (b) rewrites the log

gradient, and (c) follows from the fact that the probability of the parents of

Φ, P(pa(Φ) = b)), does not depend on the parameters θΦ controlling Φ itself,

nor does the expected reward conditioned on Φ and pa(Φ).
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B.2 Derivation of Conditional Probability of

Output Conditioned on a Markov Blanket

Here, I prove Equation 4.2, that is

P(Φ = ϕ|mb(Φ)) =

πΦ(ϕ| pa(Φ))
∏

C∈ch(Φ)

πC(C| pa(C) \ Φ,Φ = ϕ)∑
ϕ′ πΦ(ϕ′| pa(Φ))

∏
C∈ch(Φ)

πC(C| pa(C) \ Φ,Φ = ϕ′)
,

which is used in deriving the HNCA gradient estimator. In doing so, I will

use Theorem 1 from Section 4 of Pearl (1988), restated here in my notation

for convenience:

Theorem B.1 (Theorem 1 (Pearl, 1988)). Let X be a random variable in a

Bayesian network. Let ¬X represent the set of all random variables in the

network besides X. Then:

P(X = x|¬X) = αP(X = x| pa(X))
∏

C∈ch(X)

P(C| pa(C) \X,X = x),

where α is a normalizing factor which does not depend on x.

Using this theorem, we can compute P(Φ = ϕ|mb(Φ)) as follows:

P(Φ = ϕ|mb(Φ))
(a)
= P(Φ = ϕ|¬Φ)
(b)
= αP(Φ = ϕ| pa(Φ))

∏
C∈ch(Φ)

P(C| pa(C) \ Φ,Φ = ϕ)

(c)
=

P(Φ = ϕ| pa(Φ))
∏

C∈ch(Φ)

P(C| pa(C) \ Φ,Φ = ϕ)∑
ϕ′

P(Φ = ϕ′| pa(Φ))
∏

C∈ch(Φ)

P(C| pa(C) \ Φ,Φ = ϕ′)

(d)
=

πΦ(ϕ| pa(Φ))
∏

C∈ch(Φ)

πC(C| pa(C) \ Φ,Φ = ϕ)∑
ϕ′ πΦ(ϕ′| pa(Φ))

∏
C∈ch(Φ)

πC(C| pa(C) \ Φ,Φ = ϕ′)
,

where (a) follows from the fact that mb(Φ) = {ch(Φ), pa(Φ), pa(ch(Φ))\Φ} is a

minimal Markov blanket for Φ and hence Φ is independent of all other variables

in the network given mb(Φ), (b) follows from Theorem B.1, (c) simply makes

the normalizing factor α explicit and (d) uses the fact that P(Φ = ϕ| pa(Φ)) =

πΦ(ϕ| pa(Φ)).
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B.3 The HNCAGradient Estimator has Lower

Variance than REINFORCE

Here, I provide the proof of Theorem 4.1.

Theorem 4.1. Recall that

ĜRE
Φ =̇

∂ log(πΦ(Φ| pa(Φ)))
∂θΦ

R

and

ĜHNCA
Φ =

∑
ϕ

∏
C∈ch(Φ)

πC(C| pa(C) \ Φ,Φ = ϕ)∑
ϕ′
πΦ(ϕ′| pa(Φ))

∏
C∈ch(Φ)

πC(C| pa(C) \ Φ,Φ = ϕ′)

∂πΦ(ϕ| pa(Φ))
∂θΦ

R,

then V(ĜHNCA
Φ ) ≤ V(ĜRE

Φ ), where V(X⃗) stand for the elementwise variance of

random vector X⃗, and the inequality holds elementwise.

Proof. The proof follows from applying the law of total variance elementwise.

From the derivation in Section 4.2 we know that

ĜHNCA
Φ = E

[
ĜRE

Φ

∣∣∣mb(Φ), R
]
.

Now apply the law of total variance to rewrite the variance of the REINFORCE

estimator as follows:

V(ĜRE
Φ ) = E

[
V
(
ĜRE

Φ

∣∣∣mb(Φ), R
)]

+ V
(
E
[
ĜRE

Φ

∣∣∣mb(Φ), R
])

≥ V
(
E
[
ĜRE

Φ

∣∣∣mb(Φ), R
])

= V(ĜHNCA(Φ)).

B.4 HNCA for Softmax Output layer of Con-

textual Bandit Experiments

For Φ = A, corresponding to the softmax output layer, computing a counter-

factual probability πΦ(Φ| pa(Φ) \ B,B = b), will require O(NA) time (where

NA is the number of possible actions), instead of constant time. This can
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be seen by noting that we can easily compute the counterfactual logit corre-

sponding to each action in constant time, but to compute the probability of

any given action we must compute counterfactual logits for all actions. Hence,

to compute counterfactual probabilities for each parent of the output unit will

require O(NNA| pa(A)|), where again N is the number of possible outputs for

each parent, assumed the same across parents. Note that this is again N = 2

times the complexity of the forward pass if all the parents are Bernoulli units.

Again, this can be reduced to N − 1 = 1 by reusing the value computed in the

forward pass.

Algorithm 3 provides an efficient pseudocode implementation for the soft-

max output unit used in my contextual bandit experiments. Note that the

output unit itself uses the REINFORCE estimator in its update, as it has no

children, which precludes the use of HNCA. Nonetheless, the output unit still

needs to provide information to its parents, which do use HNCA.

If the entire network consisted of softmax units, each with N output

choices, we can see from the above discussion that computing all counter-

factual probabilities for each parent would require O(N2
∑

Φ | pa(Φ)|). On

the other hand, the forward pass in this case only requires O(N
∑

Φ | pa(Φ)|).

Hence, HNCA would add a factor of N overhead in this case compared to the

forward pass. However, it’s worth noting that applying the biased straight-

through estimator in the softmax case, as is done for example by Hafner et al.

(2021), in principle suffers the same N overhead for the backward pass. This

is because while the forward pass simply needs to pass a single output for each

node, the backward pass operates as if a size N vector of probabilities had

been passed, which blows up the input size by a factor of N .
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HNCA (Softmax output unit)

1: Receive x⃗ from parents
2: l⃗ = Θx⃗+ b⃗
3: p⃗ = exp l⃗∑

i exp l⃗[i]

4: Output ϕ ∼ p⃗
5: Receive R from environment
6: for all i do
7: L1[i] = l⃗ +Θ[i]⊙ (1− x⃗)
8: L0[i] = l⃗ −Θ[i]⊙ x⃗
9: end for
10: p⃗1 =

expL1[ϕ]∑
i expL1[i]

11: p⃗0 =
expL0[ϕ]∑
i expL0[i]

12: Pass p⃗1, p⃗0, R to parents
13: for all i do
14: Θ[i] = Θ[i] + αx⃗(1(ϕ = i)− p⃗[i])R
15: b[i] = b[i] + α(1(ϕ = i)− p⃗[i])R
16: end for

Algorithm 3: Efficient implementation of HNCA message passing for a softmax
output unit in a contextual bandit setting. Lines 1-4 implement the forward
pass, in this case producing an integer ϕ corresponding to the possible actions.
Lines 6-11 compute counterfactual probabilities of the given output class con-
ditional on fixing the value of each parent. Note that Θ[i] refers to the ith row
of the matrix Θ. In this case, computing these counterfactual probabilities
requires computation on the order of the number of parents, times the num-
ber of possible actions. Line 12 passes the necessary information back to the
parents. Lines 13-16 update the parameters according to ĜRE

Φ .

B.5 HNCA to Train a Final Bernoulli Hidden

Layer in a Nonlinear Network

Here, I provide a simple demonstration of using HNCA to train a Bernoulli

layer as the last hidden layer of a nonlinear network. The task is the same

contextual bandit version of MNIST outlined in Section 4.2. The architecture

consists of two convolutional layers with 16 channels each, followed by ReLU

activation which then feeds into a layer of 200 Bernoulli units, and finally a

softmax output. To compute the HNCA estimator in this case I again use

Equation 4.3, but now the gradients ∂πΦ(ϕ|X)
∂θΦ

are computed by backprop and
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Training Epochs

Accuracy Log gradient
variance

HNCA

REINFORCE

0.990+/-0.001

0.86+/-0.01

-9.16+/-0.08

-1.49+/-0.06

Training Epochs

Figure B.1: Training stochastic networks on a contextual bandit version of
MNIST with two deterministic convolutional layer forming the input to a sin-
gle Bernoulli hidden layer. Each line represents the average of 20 random seeds
with error bars showing 95% confidence interval. Final values at the end of
training (train accuracy for the left plot) are written near each line in match-
ing colour. The top row shows the online training accuracy (or equivalently
the average reward) as a dotted line, and the test accuracy as a solid line.
The bottom row shows the natural logarithm of the mean gradient variance.
Mean gradient variance is computed as the mean of the per-parameter em-
pirical variance over examples in a training batch of 50. HNCA significantly
outperforms REINFORCE in this setting.

summed over units when parameters are shared between them. More precisely,

define qj0, q
j
1 and q̄

j as in Algorithm 1 but with an additional index j indicating

the specific unit in the Bernoulli layer. The HNCA estimator can then be

efficiently implemented in an automatic differentiation framework by defining

the following loss:

L = −R
∑
j

SG

(
qj1 − q

j
0

q̄j

)
πΦj(ϕ|X),

where in this case πΦj(ϕ|X) is the policy of unit j, and has a differentiable,

nonlinear dependence on the context with arbitrary parameter sharing be-

tween units. SG stands for stop gradient, indicating that gradients are not

propagated through
qj1−qj0
q̄j

. Computing the gradient of this loss function gives

us the HNCA gradient estimator for this case, that is ĜHNCA = ∂L
∂θ
. The

softmax output unit still implements Algorithm 3.

I again compare against REINFORCE. As in Section 4.2 I map the output

of the Bernoulli units to −1 or 1. The results are shown in Figure B.1 where

we see that HNCA again provides a significant benefit over REINFORCE in

this setting.
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B.6 Derivation of f-HNCA Estimator

In this section, I elaborate on how to derive the f -HNCA gradient estimator

Ĝf -HNCA,i
Φ (ϕ). Recall that I defined f i

Φ(ϕ) as the random variable defined by

taking the function f i(p̃a(f i); θi) and substituting the specific value ϕ instead

of the random variable Φ into the arguments while keeping all other p̃a(f i)

equal to the associated random variables. With this definition, we can express

E
[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
f i
]
as follows:

E
[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
f i

]
(a)
= E

[
E
[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
f i

∣∣∣∣mb(Φ), p̃a(f i) \ Φ
]]

(b)
= E

[
E

[∑
ϕ

1(Φ = ϕ)
∂ log(πΦ(ϕ| pa(Φ)))

∂θΦ
f i
Φ(ϕ)

∣∣∣∣∣mb(Φ), p̃a(f i) \ Φ

]]
(c)
= E

[∑
ϕ

E
[
1(Φ = ϕ)

∣∣mb(Φ), p̃a(f i) \ Φ
] ∂ log(πΦ(ϕ| pa(Φ)))

∂θΦ
f i
Φ(ϕ)

]
(d)
= E

[∑
ϕ

E [1(Φ = ϕ)|mb(Φ)]
∂ log(πΦ(ϕ| pa(Φ)))

∂θΦ
f i
Φ(ϕ)

]

= E

[∑
ϕ

P(Φ = ϕ|mb(Φ))
∂ log(πΦ(ϕ| pa(Φ)))

∂θΦ
f i
Φ(ϕ)

]
, (B.1)

where (a) applies the law of total expectation, (b) follows because the indi-

cator function is zero except where the summand equals the expression from

the previous line, (c) moves deterministic quantities out of the inner expec-

tation, and (d) exploits the fact that Φ is independent of p̃a(f i) \ Φ given

mb(Φ). From here, as in Section 4.2, we substitute Equation 4.2 into the

expression within the expectation to get the following unbiased estimator for

E
[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
f i
]
:

Ĝf -HNCA,i
Φ (ϕ) =̇

∑
ϕ

ρΦ(ϕ)
∂πΦ(ϕ| pa(Φ))

∂θΦ
f i
Φ(ϕ),

where ρΦ(ϕ) =

∏
C∈ch(Φ)

πC(C| pa(C)\Φ,Φ=ϕ)∑
ϕ′

πΦ(ϕ′| pa(Φ))
∏

C∈ch(Φ)

πC(C| pa(C)\Φ,Φ=ϕ′)
. In the case where ch(Φ)∩

ãn(f i) = ∅ it’s not necessary to propagate credit from the children, ch(Φ),
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as they cannot influence the reward. In this case, I instead use a simpler

estimator derived as follows:

E
[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
f i

]
(a)
= E

[
E
[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
f i

∣∣∣∣pa(Φ), p̃a(f i) \ Φ
]]

(b)
= E

[
E

[∑
ϕ

1(Φ = ϕ)
∂ log(πΦ(ϕ| pa(Φ)))

∂θΦ
f i
Φ(ϕ)

∣∣∣∣∣pa(Φ), p̃a(f i) \ Φ

]]
(c)
= E

[∑
ϕ

E [1(Φ = ϕ)|pa(Φ)] ∂ log(πΦ(ϕ| pa(Φ)))
∂θΦ

f i
Φ(ϕ)

]

= E

[∑
ϕ

πΦ(ϕ| pa(Φ))
∂ log(πΦ(ϕ| pa(Φ)))

∂θΦ
f i
Φ(ϕ)

]

= E

[∑
ϕ

∂πΦ(ϕ| pa(Φ))
∂θΦ

f i
Φ(ϕ)

]
, (B.2)

where (a) applies the law of total expectation, (b) follows because the indicator

function is zero except where the summand equals the expression from the

previous line, (c) exploits the fact that Φ is independent of p̃a(f i) \ Φ given

pa(Φ) due to the assumption ch(Φ) ∩ ãn(f i) = ∅. The final expression within

the expectation gives us the unbiased estimator

Ĝf -HNCA,i
Φ (ϕ) =̇

∑
ϕ

∂πΦ(ϕ| pa(Φ))
∂θΦ

f i
Φ(ϕ).

In my experiments, I only distinguish the cases where ch(Φ)∩ ãn(f i) = ∅ and

ch(Φ) ∩ ãn(f i) ̸= ∅. However, as alluded to in Section 4.3, if only a subset

of ch(Φ) lies in ãn(f i) we can replace ch(Φ) in ρΦ(ϕ) with chi(Φ) = (ch(Φ) ∩

ãn(f i)). To see that this is the case, it suffices to note that if a particular child

C has no downstream connections to a particular function component f i, then
∂ E[f i]
∂θΦ

must be the same in a new network with the connection from Φ to C

severed as in the original network.
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B.7 Efficient Implementation of f-HNCA

f -HNCA algorithm for Linear Function Components

1: Receive x⃗ from parents
2: l = θ⃗ · x⃗+ b
3: f = η(l)

4: l⃗1 = l + θ⃗ ⊙ (1− x⃗)
5: l⃗0 = l − θ⃗ ⊙ x⃗
6: f⃗1 = η(⃗l1)

7: f⃗0 = η(⃗l0)

8: Pass f⃗1, f⃗0, f to parents

Algorithm 4: Efficient implementation of f -HNCA for a function component
which consists of a linear function of its inputs followed by an arbitrary acti-
vation η. Inputs are assumed to be Bernoulli. The forward pass in lines 1-3
takes input from the parents and uses it to compute the function component
R. Lines 4-7 use the logit l to efficiently compute a vector of counterfactual
function components f⃗1 and f⃗0 where each element corresponds to a coun-
terfactual function component obtained if all else was the same but a given
parent’s value was fixed to 1 or 0. Here ⊙ represents the elementwise product.
Line 8 passes the necessary information to the unit’s children.

In addition to the efficiency of computing counterfactual probabilities, for

f -HNCA, we have to consider the efficiency of computing counterfactual func-

tion components f i
Φ(ϕ). For function components with no direct connection

to a unit Φ, this is trivial as f i
Φ(ϕ) = f i. If f i is directly connected, then

implementing f -HNCA with efficiency similar to HNCA will require that we

are able to compute f i
Φ(ϕ) from f i in constant time. This is the case, for

example, if f i is a linear function followed by some activation. For example

functions of the form f i = log(σ(θ⃗ · x⃗+b)) which appear in the ELBO function

used in my VAE experiments. Algorithm 4 presents pseudocode for efficiently

computing counterfactual values for such function components, and passing

them to connected units.

If only a subset of ch(Φ) lies in ãn(f i) we could use chi(Φ) = (ch(Φ) ∩

ãn(f i)), or any superset, in place of ch(Φ) in ρΦ(ϕ). In this case, we would

also have to consider the complexity of computing the HNCA estimator for
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each such chi(Φ). In the worst case chi(Φ) may be different for each i, meaning

that ρΦ(ϕ) may have to be separately computed for each i, requiring a product

of up to | ch(Φ)| numbers for each function component f i. I leave open the

question of how efficiently this can be done in general. For now, I focus on the

case where either chi(Φ) = ∅ or chi(Φ) = ch(ϕ). Focusing on this case allows

us to rewrite the f -HNCA gradient estimator as follows:

Ĝf -HNCA
Φ =

∑
ϕ

∂πΦ(ϕ| pa(Φ))
∂θΦ

(
ρΦ(ϕ)

( ∑
i:chi(Φ)̸=∅,Φ∈p̃a(f i)

f i
Φ(ϕ)

+
∑

i:chi(Φ)̸=∅,Φ̸∈p̃a(f i)

f i

)
+

∑
i:chi(Φ)=∅,Φ∈p̃a(f i)

f i
Φ(ϕ)

)
+
∑
i

∂f i

∂θΦ
,

where ρΦ(ϕ) =

∏
C∈ch(Φ)

πC(C| pa(C)\Φ,Φ=ϕ)∑
ϕ′

πΦ(ϕ′| pa(Φ))
∏

C∈ch(Φ)

πC(C| pa(C)\Φ,Φ=ϕ′)
. Notice that we do not

need to compute a different value of ρΦ(ϕ) for each f i, as we treat the de-

pendence on children as either all or none. The three sums over function

components from first to last handle: function components with both medi-

ated and direct connection to Φ, function components with only mediated

connections to Φ, and function components with only direct connections to Φ.

Furthermore, if during the backward pass there are function components

which we know have no direct connection to units further upstream, we can

accumulate these in a sum and credit upstream units with the sum rather than

separately computing the sum in each unit. This is analogous to accumulating

the future return in RL.

Algorithm 5 presents pseudocode for an efficient implementation of f -

HNCA for a Bernoulli unit within a feedforward architecture where each func-

tion component is credited as being either downstream of every unit in the

following layer or none.
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B.8 The f-HNCAGradient Estimator has Lower

Variance than REINFORCE

Here, I verify that the components of the f -HNCA estimator with Ĝf -HNCA,i
Φ (ϕ)

have lower variance than the associated components of the analogous REIN-

FORCE estimator. This is formalized in the following theorem:

Theorem B.2. Let

Ĝf-HNCA,i
Φ (ϕ) =̇

{∑
ϕ ρΦ(ϕ)

∂πΦ(ϕ|pa(Φ))
∂θΦ

f i
Φ(ϕ) if ch(Φ) ∩ ãn(f i) ̸= ∅∑

ϕ
∂πΦ(ϕ| pa(Φ))

∂θΦ
f i
Φ(ϕ) if ch(Φ) ∩ ãn(f i) = ∅

where ρΦ(ϕ) =
∏

C∈ch(Φ) πC(C| pa(C)\Φ,Φ=ϕ)∑
ϕ′ πΦ(ϕ′| pa(Φ))

∏
C∈ch(Φ) πC(C|pa(C)\Φ,Φ=ϕ′)

. Let

ĜRE,i
Φ =

∂ log(πΦ(Φ| pa(Φ)))
∂θΦ

f i,

that is, the obvious generalization of REINFORCE to a specific function com-

ponent. Then

V(Ĝf-HNCA,i
Φ ) ≤ V(ĜRE,i

Φ ).

Proof. We will separately consider the case where ch(Φ) ∩ ãn(f i) ̸= ∅ and

ch(Φ)∩ãn(f i) = ∅. First, when ch(Φ)∩ãn(f i) ̸= ∅ we know from Equation B.1

that can write Ĝf -HNCA,i
Φ as follows:

Ĝf -HNCA,i
Φ = E

[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
f i

∣∣∣∣mb(Φ), f i
Φ(ϕ)

]
= E

[
ĜRE,i

Φ

∣∣∣mb(Φ), p̃a(f i) \ Φ
]
.

Now apply the law of total variance to rewrite the variance of the REINFORCE

estimator as follows:

V(ĜRE,i
Φ ) = E

[
V
(
ĜRE,i

Φ

∣∣∣mb(Φ), p̃a(f i) \ Φ
)]

+ V
(
E
[
ĜRE,i

Φ

∣∣∣mb(Φ), p̃a(f i) \ Φ
])

≥ V
(
E
[
ĜRE,i

Φ

∣∣∣mb(Φ), p̃a(f i) \ Φ
])

= V(Ĝf -HNCA(Φ)).

For the case where chi(Φ) = ∅, we know from Equation B.2 that

Ĝf -HNCA,i
Φ = E

[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
f i

∣∣∣∣pa(Φ), p̃a(f i) \ Φ
]

= E
[
ĜRE,i

Φ

∣∣∣pa(Φ), p̃a(f i) \ Φ
]
.
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Now, again, apply the law of total variance to rewrite the variance in the

REINFORCE estimator:

V(ĜRE,i
Φ ) = E

[
V
(
ĜRE,i

Φ

∣∣∣pa(Φ), p̃a(f i) \ Φ
)]

+ V
(
E
[
ĜRE,i

Φ

∣∣∣pa(Φ), p̃a(f i) \ Φ
])

≥ V
(
E
[
ĜRE,i

Φ

∣∣∣pa(Φ), p̃a(f i) \ Φ
])

= V(Ĝf -HNCA,i(Φ)).

B.9 Further Details of Discrete VAE Experi-

ments

Here, I provide some additional detail on the methods used in my discrete

VAE experiments.

I compare f -HNCA with REINFORCE and two stronger, unbiased, base-

lines for optimizing an ELBO of a VAE trained to generate MNIST digits. The

other baselines are DisARM (Dong, Mnih, et al., 2020), and REINFORCE

leave one out (REINFORCE LOO; Kool et al. (2019)).

REINFORCE LOO, based on the version used by Dong, Mnih, et al. (2020),

samples two partial forward passes starting at each layer to compute its base-

line. In other words, we first run a single forward pass to generate one sample

form each Φ⃗i = ϕ⃗i(1). All the function components that lie downstream of Φ⃗i

are summed up to produce one sample of the forward function components

f̃i(1). This serves as the first of 2 samples used to construct the REINFORCE

LOO gradient estimator in each layer. Then, in each layer, i we also draw a

second sample Φ⃗i = ϕ⃗i(2) conditioned on ϕ⃗i−1(1) (or X⃗ for i = 1) all Φ⃗j for

j > i are then resampled sequentially and the new sampled values used as

input to the forward function components. This produces, for each layer, an-

other sample of the forward function components which we’ll call f̃i(2). This

results in the following gradient estimator:

ĜRLOO(Φ) =
1

2

(
∂ log(πΦ(ϕ(1)| pa(Φ)))

∂θΦ
(f̃(1)− f̃(2))+

∂ log(πΦ(ϕ(2)| pa(Φ)))
∂θΦ

(f̃(2)− f̃(1))

)
,

(B.3)
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where I have suppressed the specific layer and written the estimator for a

specific unit Φ in the vector Φ⃗i. Note that the computational cost of this pro-

cedure is quadratic in the number of layers, as we need to resample a partial

forward pass to generate f̃i(2) for each layer i. DisARM has a similar compu-

tational requirement, requiring forward resampling to generate an antithetic

sample in each layer.

I also experimented with another version of REINFORCE LOO that avoided

this quadratic scaling of computational cost with number of layers. This sec-

ond version of REINFORCE LOO used 2 independent forward passes for each

input to construct a baseline, I call this REINFORCE LOO IS, for independent

sample. Since REINFORCE LOO IS doesn’t require sampling partial forward

passes for each layer, it avoids a quadratic scaling of compute time with num-

ber of network layers which occurs for both DisARM and REINFORCE LOO.

More precisely, rather than resampling in each layer, REINFORCE LOO IS

simply generates 2 full forward passes, using the downstream function compo-

nents of the first sample in each layer i to define f̃i(1) and πΦ(ϕ(1)| pa(Φ))) and

the downstream components of the second to define f̃i(2) and πΦ(ϕ(2)| pa(Φ))).

The form of the resulting estimator is otherwise the same as Equation B.3.

The drawback is that the baselines used for REINFORCE LOO IS will be less

correlated, since unlike REINFORCE LOO its baseline uses a different sam-

ple for nodes upstream of the layer for which the baseline is being computed.

Empirically, I found this version to perform just slightly worse than the first

version, hence I chose to omit the results to avoid clutter.

In f -HNCA with baseline, for each layer, the baseline consists of a scalar

moving average of the sum of those components of f with mediated connec-

tions (those highlighted in pink and orange in Figure 4.2). This baseline is

subtracted from the leftmost sum over i in Equation 4.6 to produce a centred

learning signal. I use a discount rate 0.99 for the moving average. For REIN-

FORCE with baseline I use a similar moving average baseline, but in this case

constructed as the sum of all downstream function components.

As in my contextual bandit experiments, I use dynamic binarization. Fol-

lowing Dong, Mnih, et al. (2020), the decoder and encoder each consist of
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a fully connected, stochastic feedforward neural network with 1, 2 or 3 lay-

ers, each hidden layer has 200 Bernoulli units. As in Section 4.2, I train using

ADAM optimizer with a step size 10−4 and batch size of 50. Training proceeds

for 840 epochs, approximately equivalent to the 106 updates used by Dong,

Mnih, et al. (2020). For consistency with prior work, I use Bernoulli units with

a zero-one output. Unlike Dong, Mnih, et al. (2020) I use ADAM to train the

parameters of the prior as well, rather than using SGD.

For all methods, each unit is trained based only on downstream function

components as opposed to using the full function f . Also, for all methods,

direct gradients (i.e. the right expectation in Equation 4.4) are trained with

only a single sample per training example. In practice, it may be natural to

use multiple samples in methods like REINFORCE LOO given that multiple

samples are drawn to construct the estimator of the left expectation anyway.

This choice was made to reduce confounding, given I am mainly interested in

how well different methods estimate the left expectation.

B.10 Multisample Test-set Bounds

In this section, I report 100 sample ELBOs on the MNIST test set for networks

trained with each of the algorithms evaluated in the experiments of Section 4.3.

Multi-sample bounds, as introduced by Burda et al. (2015) provide a tighter

bound on the data likelihood under the generative model. Note that these

results simply compute a multi-sample bound using the final trained encoder

and decoder and, unlike Burda et al. (2015), still use the single-sample ELBO

as a training objective. These results are presented in Table B.1. These results

show the same trend as the training ELBOs in Figure 4.3.
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1 Layer 2 Layer 3 Layer
HNCA -107.5±0.1 -103.7±0.1 -102.1±0.2
HNCA with Baseline NA -97.3±0.1 -94.6±0.2
DisARM -108.2±0.2 -99.27±0.06 -96.7±0.1
REINFORCE LOO -108.3±0.1 -99.5±0.1 -96.9±0.1
REINFORCE -120.1±0.2 -115.1±0.1 -114.7±0.1
REINFORCE with Baseline -110.6±0.1 -102.8±0.2 -100.2±0.1

Table B.1: 100 sample test-set likelihood bounds for networks trained with
each of the algorithms evaluated in Section 4.3. Each cell provides the mean
and 95% confidence interval from 5 random seeds. The best result for each
Layer count is written in bold.

B.11 HNCA Ablation Results

In this section, I assess the impact of avoiding propagating credit through

children in f -HNCA when a particular function component has only direct

connections (those highlighted in green in Figure 4.2). In particular, instead

of using

Ĝf -HNCA,i
Φ (ϕ) =̇

{∑
ϕ ρΦ(ϕ)

∂πΦ(Φ|pa(Φ))
∂θΦ

f i
Φ(ϕ) if ch(Φ) ∩ ãn(f i) ̸= ∅∑

ϕ
∂πΦ(Φ| pa(Φ))

∂θΦ
f i
Φ(ϕ) if ch(Φ) ∩ ãn(f i) = ∅

, (B.4)

I simply use

Ĝf -HNCA,i
Φ (ϕ) =̇

{∑
ϕ ρΦ(ϕ)

∂πΦ(Φ|pa(Φ))
∂θΦ

f i
Φ(ϕ) if ch(Φ) ̸= ∅∑

ϕ
∂πΦ(Φ| pa(Φ))

∂θΦ
f i
Φ(ϕ) if ch(Φ) = ∅

, (B.5)

multiplying by ρΦ(ϕ) as long as the unit has children, even if no children have

downstream connections to the function component, that is even if ch(Φ) ∩

ãn(f i) = ∅. In this case, I also include these function components in the sub-

tracted baseline. I additionally investigate the impact of including redundant

upstream function components in the HNCA gradient estimator. The results

for the hierarchical VAE task are shown in Figure B.2. Propagating credit

through all children resulted in significantly worse performance for f -HNCA

. The additional impact of including upstream function components is mini-

mal. Presumably, the subtracted baseline is able to mitigate the majority of

increased variance resulting from including these function components.
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f -HNCA algorithm for Bernoulli unit

1: Receive x⃗ from parents
2: l = θ⃗ · x⃗+ b
3: p = σ(l)
4: ϕ ∼ Bernoulli(p)
5: Pass ϕ to children
6: Receive q⃗1, q⃗0 from child units
7: Receive f⃗d

0 , f⃗
d
1 from child function components with only direct connections

8: Receive f⃗ c
0 , f⃗

c
1 from child function components which are also connected

through children
9: Receive G, sum of downstream non-child function components
10: f c

0 =
∑

i f⃗
c
0 [I]; f c

1 =
∑

i f⃗
c
1 [i]; fd

0 =
∑

i f⃗
d
0 [i]; fd

1 =
∑

i f⃗
d
1 [i]

11: q1 =
∏

i q⃗1[i]; q0 =
∏

i q⃗0[i]
12: q̄ = pq1 + (1− p)qo
13: l⃗1 = l + θ⃗ ⊙ (1− x⃗); l⃗0 = l − θ⃗ ⊙ x⃗
14: p⃗1 = (1− ϕ)(1− σ(⃗l1)) + ϕσ(⃗l1); p⃗0 = (1− ϕ)(1− σ(⃗l0)) + ϕσ(⃗l0)
15: Pass p⃗1, p⃗0 to parents

16: θ⃗ = θ⃗ + ασ′(l)x⃗
(

q1fc
1−q0fc

0

q̄
+ q1−q0

q̄
G+ fd

1 − fd
0

)
17: b = b+ ασ′(l)

(
q1fc

1−q0fc
0

q̄
+ q1−q0

q̄
G+ fd

1 − fd
0

)
Algorithm 5: Efficient implementation of f -HNCA for a Bernoulli unit, where
function components are credited through all children, or none. I omit any
direct dependence of function components on network parameters for con-
ciseness. Lines 1-5 implement the forward pass, which takes input from the
parents, computes the fire probability p and samples ϕ ∈ {0, 1}. In the back-
ward pass, the unit receives two vectors q⃗1 and q⃗0, each with one element for
each child unit of the current unit, as in Algorithm 1. The unit also receives
vectors f⃗d

1 and f⃗d
0 containing counterfactual function components from func-

tion components with only direct connections. Likewise, f⃗ c
1 and f⃗ c

0 contain
counterfactual function components from child function components with di-
rect connections as well as additional connections mediated through children.
Finally, G contains the cumulative sum of all function components which are
downstream of the current unit but not directly connected. Line 10 sums up
the counterfactual function components. Line 11 takes the product of all child
unit probabilities to compute

∏
C∈ch(Φ) πC(C| pa(C) \ Φ,Φ = 0/1). Line 12

computes the associated normalizing factor. Lines 13 and 14 use the already
computed logit l to efficiently compute a vector of probabilities p⃗1 and p⃗0 where
each element corresponds to a counterfactual probability of ϕ if all else was
the same but a given parent’s value was fixed to 1 or 0. Here ⊙ represents the
elementwise product. Line 15 passes the necessary information to the unit’s
children. Lines 16 and 17 finally update the parameter using Ĝf -HNCA

Φ with
learning-rate hyperparameter α.
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Training Epochs
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-103.3+/-0.1

3.60+/-0.03
 3.29+/-0.07

HNCA (no baseline)

HNCA with Baseline

0.2+/-0.1
0.2+/-0.3

0.1+/-0.1
0.0+/-0.3

3 Layers

HNCA with Baseline
(no child pruning)
HNCA with Baseline
(full reward)

-105.0+/-0.2
-105.2+/-0.2 -111.9+/-0.1

-100.5+/-0.2-101.9+/-0.2
-102.6+/-0.2

-2.52+/-0.03
-2.30+/-0.02

Figure B.2: Training stochastic VAEs to generate MNIST digits with f -HNCA
with different aspects ablated. I omit the single-layer VAE as the ablations are
not meaningful in this case. No child pruning refers to unnecessarily multiply-
ing by ρΦ(ϕ) even when no children have downstream connections to a function
component, that is Equation B.5. Full reward, does the same as no child prun-
ing, in addition to unnecessarily including upstream function components in
the estimator. For full reward, these additional function components are also
included in the moving average baseline. Each line represents the average of
5 random seeds with error bars showing 95% confidence interval. Final val-
ues at the end of training are written near each line in matching colour. The
top row shows the online training ELBO. The bottom row shows the natural
logarithm of the mean gradient variance. Mean gradient variance is computed
as the mean over parameters and batches of the per-parameter empirical vari-
ance over examples in a training batch of 50. It appears that unnecessarily
including children has a significant negative impact on f -HNCA with baseline,
while the impact of including upstream function components is negligible.
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Appendix C

Appendices for Option Iteration

C.1 Motivation for Introducing ElectricProc-

Maze

Agent

Goal

Figure C.1: A simple ElectricProcMaze instance showing the greedy policy
(green arrows) and associated action values under the uniform random policy.
The values printed on each cell are the action values associated with moving
into that cell from any other cell which works in this case since the reward is
determined by the cell being entered regardless of the origin. The action values
were computed by explicitly solving the Bellman equation with a uniform
random behaviour policy. The reward for entering a wall cell is −7 in this case
which is one less than the return achievable by following an optimal policy
from the furthest cell to the goal. Hence the optimal policy will never enter a
wall cell, but the greedy policy with respect to the action values of the uniform
random policy does.

ElectricProcMaze is a variant of ProcMaze where instead of remaining in
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place upon transitioning into a wall, the agent is allowed to move into the wall

cell but with a large negative reward (analogous to an electric shock in animal

experiments) set to be equal to one more than the largest possible number of

steps required to reach the goal across all possible maze configurations.

My motivation for using ElectricProcMaze rather than ProcMaze stems

from observations I made in preliminary experiments on ProcMaze. In partic-

ular, I observed that using a random rollout policy (and thus relying on only

value function learning to guide the search) was almost as effective as learning

a single rollout policy in this case. This can be explained by noticing that

due to there being only one path to the goal, ProcMaze has the characteristic

that the greedy policy with respect to the action-value function of the random

policy is optimal. Laidlaw et al. (2023) have demonstrated that this charac-

teristic is surprisingly common, particularly in environments where standard

deep RL algorithms perform well. This does not necessarily mean that policy

learning cannot be beneficial, as the number of samples required to evaluate

the random policy to sufficient accuracy to reliably identify the greedy action

may be much larger than the number of samples required under an improved

policy. It does however mean that policy learning is relegated to a more mi-

nor role than in the general case where it is necessary for convergence to the

optimal policy when bootstrapping from multistep rollouts, regardless of the

number of simulations used. This is undesirable when we are interested in

investigating the benefits of learning multiple options in order to improve the

quality of rollouts.

ElectricProcMaze breaks the condition that the greedy policy with respect

to the action-value function of the random policy is optimal. The best action

under the uniform random policy will often follow a shorter path to the goal

which passes through walls, as doing otherwise will often mean hitting more

walls in expectation over a random walk. This is demonstrated on a simple

problem instance in Figure C.1. On the other hand, an optimal policy will

always avoid walls by design since I set the penalty to be large enough that it

is never better to move through a wall than to follow the open path.
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C.2 Expert Iteration Loss Ablation

Windowed 
Average
Return

Time Steps

OptIt (5 options, BS 250)
ExIt (OptIt loss)

Return v.s. Time Steps for Size 7 ElectricProcMaze  

ExIt (Noisy loss, BS 1250)

ExIt (Noisy loss, BS 250)

ExIt (Simple Loss, BS 250)
ExIt (Simple Loss, BS 1250)

OptIt (5 options, BS 50)

Figure C.2: Windowed average return over training time for various loss func-
tion choices for ExIt and OptIt on size 7 ElectricProcMaze. OptIt loss refers
to the same loss used to train OptIt which uses samples from the search policy
and trains on length 5 sequences. Noisy Loss still uses samples from the search
policy but trains on independent samples. Simple Loss trains on the full cross
entropy with the search policy on independent samples. BS refers to the batch
size used in the gradient update. Error bars show 95% confidence interval over
5 random seeds. The y-axis is thresholded at −40 to omit the rapid period of
initial improvement.

In this section, I explore the impact of the choice to optimize the single

policy learned by ExIt using the same loss function as OptIt. In particular,

this means I optimize ExIt on sequences rather than independent samples,

though the latter would be more natural when learning a single policy. It

also means I fit the learned policy to samples from the search policy in each

update rather than directly minimizing cross-entropy loss. This was necessary

for tractability when optimizing over joint cross-entropy for a set of options

over a sequence, but not when optimizing a single policy. Note that these

choices should not impact the expectation of the loss but do change the noise

in the updates. To better understand the impact of these decisions, I present

an ablation study evaluating ExIt trained with alternative loss functions. The

results are displayed in Figure C.2.

The first variant of ExIt I test directly minimizes cross-entropy on indepen-

dent samples. Surprisingly, I found that this version was significantly worse

than simply using the OptIt loss, to better understand why, I also tried a
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version that trains on individual samples instead of sequences but still fits

to sampled actions from the search policy rather than directly minimizing the

cross-entropy with the search policy in each update. This version recovers sim-

ilar performance, indicating that the benefit was likely due to sampling the

search policy actions as opposed to training on sequences. For each loss, I test

ExIt using a batch size of 250 and a batch size of 1250, the latter matches the

total number of samples1 per update to that of the sequence-trained variant

with batch size 250 and option rollouts of length 5. I found that the smaller

batch size learned faster in all cases. For completeness, I also tested OptIt with

5 options and a batch size of 50 (thus a total of 250 samples per batch when

accounting for sequence length), this also learned faster than the original set-

ting of OptIt suggesting that the original batch size was simply suboptimally

large for both OptIt and ExIt.

The fact that fitting to samples from the search policy, rather than the

expectation, improves performance is curious and may be of independent in-

terest. Further exploration of this may be fruitful, but is beyond the scope

of the present work. Throughout, I report results for ExIt and OptIt trained

with the same loss, since using the sampled cross-entropy appears significantly

beneficial and optimizing on sequences not detrimental for ExIt.

C.3 Investigating the Learned Options for Hi-

erarchicalElectricProcMaze

Compared to the learned options for the Compass environment presented in

Figure 5.2, I did not find the options learned for HierarchicalElectricProcMaze

to facilitate easy interpretation. Nevertheless, here, I make an effort to high-

light some of the features of the learned options that may contribute to their

improved search performance compared to using a single policy. I focus on the

options learned at 500,000 training steps, in the middle of training before the

performance has plateaued.

I first plot the behaviour of each of the 5 options across 5 random base-

1Modulo truncation due to episode ends.
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environment states while varying the controller environment state across the

entire grid. The results are displayed in Figure C.3. The option in the far

right column shows a strong tendency to move left, but apart from that, as

already mentioned, the learned options are not very interpretable. Inspection

reveals the policies do display a fair amount of diversity across options.

States

Options

Figure C.3: The 5 options learned by OptIt displayed for each state in the
controller-environment grid across 5 different base-environment states in Hi-
erarchicalElectricProcMaze. The direction of each arrow shows the highest
probability action in that cell, while the length of the arrow indicates the prob-
ability of that action with probability 1 corresponding to the arrow touching
the edge of the grid cell. Button locations are highlighted with bold squares.
Results are displayed for a single random seed corresponding to Seed 1 in Fig-
ure C.4.

In order to gauge the degree of behavioural diversity among the learned
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options, I randomly initialize 1000 random environment states each in a ran-

dom maze with the agent in the center of the controller environment. I then

perform 1000 length 20 rollouts of each option in each of these random states

and note the first button reached (Up, Down, Left or Right). I simply discard

rollouts in which no button is reached within 20 steps. A visualization com-

paring the distribution of buttons reached by different options, as well as the

single learned policy of ExIt is show in Figure C.4.

State Averaged Maximum Button 
Selection Frequency Over OptIt 
Options
State Averaged Button Frequency 
Probability For ExIt Policy

State Averaged Button Frequency 
Probability for Individual OptIt 
Options

Button Button Button

Frequency

Frequency

Seed 1 Seed 2

Seed 3 Seed 4 Seed 5

Figure C.4: A visual comparison of the selection frequencies for each of the 4
buttons in the HierarchicalElectricProcMaze controller environment. The val-
ues were obtained by initializing the environment in 1000 random positions,
each in a random maze with the agent in the center of the controller environ-
ment. The green X shows the maximum over options of the frequency with
which each button was reached, averaged over states. The orange X similarly
shows the frequency with which each button was reached by the single learned
policy of ExIt. The coloured dots show the state-averaged button selection
frequency for individual OptIt options. Each of 5 random seeds used for train-
ing are displayed separately.

Note that in most cases (with the exception of Seed 2), we observe the

emergence of at least one option that sharply favours the selection of a par-

ticular button. However, unlike in the comparatively simple Compass envi-

ronment, we do not observe an option specializing to each button across all

states. On the other hand, the selection frequencies for the single ExIt policy

are generally close to uniform as may be expected. Furthermore, looking at

the state-averaged maximum button selection frequency over options (green
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X) we see that when fixing the state there appears to be significantly more

specialization among options than when we average over states. Note that, the

green X is necessarily higher than all of the coloured dots simply because the

expectation of a maximum is always greater than or equal to the maximum of

an expectation.

More quantitatively, I looked at an empirical estimate of the mutual in-

formation2 between the option selected and the first button reached using the

same setup outlined previously. The overall mutual information, without con-

ditioning on state, was 0.19 ± 0.04 compared to the total button selection

entropy of 1.31 ± 0.02. Hence, without conditioning on the state, the option

selected is a poor predictor of the button reached. However, if we instead look

at the mean state conditional mutual information we get 0.36±0.04 compared

to the mean state conditional button entropy of 0.87± 0.03. Hence, within a

particular state, the selected option accounts for a little under half the entropy

in the distribution of selected buttons.

Overall, while the learned options do not seem to facilitate straightforward

interpretability in this case, they do present significant diversity and appear to

be strongly associated with the button selected when conditioning on a partic-

ular starting state. This is likely a factor in the improved performance observed

for 5-option OptIt compared to ExIt in HierarchicalElectricProcMaze.

2To compute this I perform 1000 rollouts for each state-option combination for 1000
states, throwing out all rollouts which did not hit a button within 20 steps. Within the
remaining rollouts, I found the overall frequency fi with which each button was reached as
well as fi|n, the frequency of each button within those rollouts in which a particular op-

tion was used. I estimated the button entropy Ĥ(i) ≈
∑

i fi log(fi) and option conditional

button entropy Ĥ(i|n) ≈
∑

i fi|n log(fi|n). Finally I estimated the mutual information as

Ĥ(i)− 1
N

∑
n Ĥ(i|n). I estimated the mean state conditional entropy and mutual informa-

tion similarly except that the frequencies were computed separately for each state, and I
computed a final average over the results across all 1000 sampled states.
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C.4 Jointly Learning Termination, Option Poli-

cies, and the Policy Over Options

In this work, I focus on the case where options are executed and learned for

a fixed horizon. However, one could straightforwardly extend this method to

the case where termination conditions are learned. Here, I outline an efficient

algorithm for this. The approach presented here is functionally equivalent to

the algorithm of Fox et al. (2017). However, they propose an explicit forward-

backward algorithm which is rather involved. Here, I note that one can achieve

the same thing by simply using the forward recursion relationship discussed

by Fox et al. (2017) to compute the quantity we need to optimize and then

computing the associated gradient using any automatic differentiation frame-

work. I outline this approach explicitly since it may be useful to anyone trying

to implement a similar idea.

For the purposes of this section, I assume we have a dataset of length K

trajectories τ = s0, a0, ...., sK which I assume are generated by using a search

procedure to select actions at each step. We wish to maximize the log probabil-

ity of the data under the distribution induced by a learned policy over options,

option policies and a termination function. More precisely, I model the trajec-

tories as generated by first using the policy over options ρ(n|s0; θ) to choose

an initial option, then selecting an action from πn(·|sk; θ) for each step until

the option terminates. At each step k ≥ 1, the current option is terminated

with probability given by the option termination function ψ(sk; θ). If option

termination does occur at step k, then a new option is sampled from ρ(n|sk; θ)

actions are selected for j ≥ k from πn(·|sj; θ) until the next termination or the

end of the trajectory. We seek to optimize the probability P(s0, a0, ...., sK ; θ) of

trajectories in the dataset being generated by this process. Towards this goal,

we begin with a recursion relation for ϕk(n; θ) =̇P(s0, a0, ...., sk, nk = n; θ) out-

lined by Fox et al. (2017), where nt denotes the option whose policy is used to
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select the action at time t. The recursion relation is as follows:

ϕ0(n; θ) = p0(s0)ρ(n|s0; θ)

ϕk+1(n; θ) =

(∑
n′

ϕk(n
′; θ)πn′(ak|sk; θ)p(sk+1|sk, ak; θ)ψn′(sk+1; θ)ρ(n|sk+1; θ)

)
+ ϕk(n; θ)πn(ak|sk; θ)p(sk+1|sk, ak)(1− ψn(sk+1; θ)).

Intuitively, the first term of the second equation accounts for the probability

that some option terminated at time k + 1 and option n was selected from ρ

thereafter. The second term accounts for the probability that option n was

already being executed at time k and did not terminate at k + 1. Now note

that we can factor out the transition probabilities, which are not under the

agent’s control, such that ϕk(n; θ) = ϕ̃k(n; θ)p0(s0)
∏k−1

t=0 p(st+1|st, at) with

ϕ̃0(n; θ) = ρ(n|s0; θ)

ϕ̃k+1(n; θ) =

(∑
n′

ϕ̃k(n
′; θ)πn′(ak|sk; θ)ψn′(sk+1; θ)

)
ρ(n|sk+1; θ)

+ ϕ̃k(n; θ)πn(ak|sk; θ)(1− ψn(sk+1; θ)).

(C.2)

We can then find the probability P(s0, a0, ...., sK ; θ) by simply marginalizing

out the final option

P(s0, a0, ...., sK ; θ) =
∑
n

ϕK(n; θ)

= p0(s0)
K−1∏
t=0

p(st+1|st, at)
∑
n

ϕ̃K(n; θ).

Taking the log of both sides we get

log(P(s0, a0, ...., sK ; θ)) = log

(
p0(s0)

K−1∏
t=0

p(st+1|st, at)

)
+ log

(∑
n

ϕ̃K(n; θ)

)
Note that the left term is independent of θ hence we get

∂

∂θ
log(P(s0, a0, ...., sK ; θ)) =

∂

∂θ
log

(∑
n

ϕ̃K(n; θ)

)
.

Having computed
∑

n ϕ̃K(n; θ) via the forward recursion in Equation C.2, we

can simply backpropagate to compute its gradient using any standard auto-

matic differentiation framework.3 The computation required for each step of

3In practice, one may want to implement the recursion in Equation C.2 in log-space,
using a numerically stable implementation of LogSumExp to compute log(ϕ̃k+1(n; θ)) at
each step.
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the forward recursion is dominated by a sum over N options, which can be

computed once and shared across Equation C.2 for all n, and it’s unrolled for

K steps hence the total complexity is on the order of O(KN), the order of the

backward pass is the same. Note that the order of complexity is the same as

computing the likelihood under a set of options and associated option policy

even without termination conditions, so including termination conditions is no

harder in that regard. However, without termination, we can parallelize over

time steps which is no longer possible with termination conditions as we have

to compute Equation C.2 sequentially.

The learned termination conditions, in combination with the learned option

policies, could be utilized for planning in various ways. One simple approach

would be to incorporate option termination into the rollouts. The MCS plan-

ner would select the initial option and action for each rollout, but at each

subsequent step the option termination function would be queried and the

current option terminated with probability ψn′(sk+1; θ). When termination

occurs in a rollout a new option would be selected according to ρ as normal.

This would allow for greater flexibility, as the learned options wouldn’t nec-

essarily need to be useful for the entirety of an arbitrary rollout horizon but

could be switched mid-rollout based on the environment observations. For ex-

ample, in HierarchicalElectricProcMaze it might be desirable to terminate the

current option upon reaching one of the buttons in the controller environment.

C.5 Hyperparameters

Table C.1 shows the hyperparameters used in the Compass and ElectricProc-

Maze experiments. For ElectricProcMaze, the step-size parameter α and

entropy-regularization factor β were tuned for the ExIt baseline from α ∈

{0.0000625, 0.000125, 0.00025, 0.0005, 0.001} and β ∈ {0.01, 0.1, 1.0}. I fix the

option step-size (policy step-size for ExIt) to α and set the value step-size to

2α. I evaluate each hyperparameter combination over 5 random seeds and

choose the one with the best average return over the last 100,000 of 500,000

time steps. I display sensitivity curves resulting from this grid search in Fig-
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Step-Size Sensitivity

Average Return 
over Final 
100,000 Steps

Entropy Regularization Sensitivity

Average Return 
over Final 
100,000 Steps

Log Base 2 of Step-Size Log Base 10 of Entropy Regularization Factor

Figure C.5: Sensitivity curves for ExIt resulting from grid sweep over step
size α and entropy-regularization factor β in size 7 ElectricProcMaze. In each
plot, the other hyperparameter is fixed to its best value from the grid search
while varying the hyperparameter of interest. Error bars show 95% confidence
interval over 5 random seeds.

ure C.5. Other hyperparameters were fixed to reasonable defaults.

For Compass, I mainly kept the same values from ElectricProcMaze with

a few deliberate exceptions. I drastically reduced the simulation budget such

there would be insufficient rollouts under a random policy to be likely to sample

the optimal action sequence. I increased the option rollout length such that

it was possible for rollouts to reach any edge of the grid from any starting

location. I reduced the number of options to 4 to emphasize that 4 options

were sufficient in this case. I also reduced β to 0.01 to facilitate convergence

to near-optimal performance and cleaner learned options. At β = 0.1, OptIt

still performed significantly better than ExIt with a final average return of

around 0.9, and the learned options still showed a tendency to prefer one of

the 4 cardinal directions each but became significantly more chaotic.

For HierarchicalElecticProcMaze, I also used most of the same hyperpa-

rameters from ElectricProcMaze. I increase the option rollout length to 8 to

match the width of the control grid. I also doubled the number of hidden

units as I found in preliminary experiments that this significantly improved

the performance of ExIt indicating that the 400 hidden unit network was

significantly underparameterized for the more challenging problem. Finally,

I found it was necessary to reduce the entropy regularization to observe a

performance benefit for OptIt. To facilitate a fair comparison, and a more
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Entropy-Regularization Sensitivity for HierarchicalElectricProcMaze

Average Return 
over Final 
100,000 Steps

Log Base 10 of Entropy Regularization Factor

Option Iteration (5 options)

Expert Iteration (single policy)

Figure C.6: Sensitivity curve for ExIt and OptIt resulting from grid
sweep entropy-regularization factor β in HierarchicalElectricProcMaze. OptIt
achieves optimal performance at a lower entropy regularization and remains
robust when lowering the regularization further. Error bars show 95% confi-
dence interval over 5 random seeds.

complete picture of the behaviour of each approach, I performed a sweep over

β ∈ {0.001, 0.01, 0.1, 1.0}. The results of the sweep are displayed in Figure C.6.

Hyperparameter ElectricProcMaze HierarchicalElectricProcMaze Compass
Number of Hidden Layers 3 — —
Number of Hidden Units 400 800 400

Hidden Activation ELU — —
Optimizer AdamW — —
Adam β1 0.9 — —
Adam β2 0.99 — —
Adam ϵ 1e-5 — —

Adam Weight Decay 1e-6 — —
Option Step-Size 1.25e-4 (Tuned for ExIt) — —

Value Function Step-Size 2.5e-4 (Twice Above) — —
Running Average Variance Decay 0.99 — —

Discount Factor 0.99 — —
Batch Size 250 — —

Number of Parallel Workers 16 — —
Gradient Updates per Environment Step 16 — —

Entropy-Regularization Factor (β) 0.1(Tuned for ExIt) 0.1 (ExIt)/0.01 (OptIt) 0.01
Simulation Budget 1000 — 50

Option Rollout Length (K) 5 8 20
Number of Options 5 — 4

Buffer Size 100,000 — —
Training Start Time 100 — —

Table C.1: Table of hyperparameters used in Compass and ElectricProcMaze
experiments. Dashes denote that the same value is used as ElectricProcMaze.
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