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Abstract— As a contribution toward the goal of adaptable,
intelligent artificial limbs, this work introduces a continuous
actor-critic reinforcement learning method for optimizing the
control of multi-function myoelectric devices. Using a simulated
upper-arm robotic prosthesis, we demonstrate how it is possible
to derive successful limb controllers from myoelectric data
using only a sparse human-delivered training signal, without
requiring detailed knowledge about the task domain. This
reinforcement-based machine learning framework is well suited
for use by both patients and clinical staff, and may be easily
adapted to different application domains and the needs of
individual amputees. To our knowledge, this is the first my-
oelectric control approach that facilitates the online learning of
new amputee-specific motions based only on a one-dimensional
(scalar) feedback signal provided by the user of the prosthesis.

I. INTRODUCTION

Multi-function myoelectric prostheses are devices that
monitor electrical signals produced by muscle tissue in
limb-deficient patients and use these signals to control the
movement of a multiple-actuator robotic appendage [1].
Myoelectric control can be challenging for new amputees,
and the transition to a powered prosthesis often requires
repeated calibration of the artificial limb by patients and
physiotherapists. This difficulty is in part due to the complex
and variable nature of the electromyograph (EMG) signals
used for limb control, and in part due to the lack of flexibility
inherent in commercial control methods.

Work has been done to address these problems, using
enhancements to traditional control schemes and more ad-
vanced methods based on machine learning techniques. Spe-
cific research into machine learning techniques for myoelec-
tric control of upper limb prostheses has been an active area
since the 1970s [1]. Notable examples include the use of lin-
ear discriminant analysis [2], EMG-based low-dimensional
embeddings [3], artificial neural networks [4], and support
vector machines [5]. While the majority of this prior work
focused on offline supervised learning techniques, additional
research has demonstrated unsupervised techniques [6], and
semi-supervised techniques that are trained online (e.g., the
work of Nishikawa et al. using human feedback in learning to
classify a repertoire of prosthetic hand gestures [7]). Reviews
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Fig. 1. A schematic diagram of actor-critic reinforcement learning applied
to a two-joint robotic arm. At each time step, a state approximation x(s)
and a scalar user-provided reward signal r are given to the learning system.
Based on this, the system updates its weights and generates two continuous
joint velocity actions, ae and aw , that are given as input to the arm.

by Parker et al. [1], and Oskoei and Hu [8], provide in-depth
coverage of the current state of myoelectric control research.

One known limitation of most methods is that controllers
do not adapt over time to changes in the patient, the patient’s
intent, or the patient’s usage patterns [6]. Clinical and
technical intervention is typically required for an amputee
to improve or update the control policy of their prosthesis.
Even for existing adaptive methods (as summarized by
Sensinger et al. [6]), initializing a controller and making
amputee-specific changes requires detailed expert knowledge
regarding the physiology of an individual patient and the
hardware of the patient’s prosthesis. There are also cases
where an amputee has a desired movement goal (e.g., “zip up
my new backpack”) but even in the clinic it may be difficult
to frame their objective in terms of control parameters or
existing device gestures; it is currently impossible for most
amputees to improve their limb controllers independently,
outside the clinic.

The following questions therefore remain challenging
open problems for research: 1) how best to automatically
translate multiple, overlapping muscle signals into usable
control commands for a multi-function mechanical limb;
2) how to automatically tailor the control system to the
needs and specific physical conditions of individual patients,
without constant manual intervention, retraining, and periods
of frustration or reduced function for the patient; and, 3) how
to continuously improve control based on patient feedback.
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Fig. 2. Image of the AX-12 Smart Arm robot workspace and EMG setup.

With these questions in mind, we propose an adaptive
algorithmic approach to generalized myoelectric control that
pairs online human training of controllers with a statistical
machine learning algorithm called continuous actor-critic re-
inforcement learning (ACRL) [9], [10]. Reinforcement learn-
ing (RL) is an approach for solving optimal control problems
in which a control policy is learned through repeated trial
and error interactions between a learning system and its
environment [11]. In RL, a learning system aims to maximize
the expected sum of a scalar feedback signal, termed reward.
It does so even in cases where an a priori model of the
problem environment is not available. A schematic of this
approach, as applied to limb control, is shown in Figure 1.

RL methods, and particularly ACRL, have several advan-
tages that make them well-suited to a general prosthetic
learning task. First, ACRL methods are parameter based,
allowing incremental (linear) computation of variables and
weight vectors. Learning updates are therefore fast to com-
pute, with millisecond-scale updates possible even for very
large problems (e.g., those with millions of features). In ad-
dition, past samples of experience are not stored in memory.
As such, memory requirements remain constant throughout
learning. This facilitates learning over very long time frames
and when using embedded hardware with limited resources.
Second, through the use of temporally extended credit as-
signment, it is possible to learn quickly even when teaching
signals are sparse [11], [12]. Finally, when supplemented
with function approximation schemes (e.g., tile coding [11]),
ACRL methods scale well to continuous-space real-world
tasks, learning to predict and control a complex environment
using a stream of sensorimotor data [13]. RL also provides
an opportunity for intuitive human-computer interaction—
user feedback can take the form of a scalar, goal-directed
signal of approval or disapproval (e.g., the reinforcement-
based training system of Knox and Stone [14]).

Not surprisingly, RL techniques have found use in a
number of robotic and biomedical problem domains. Peters
and Schaal have demonstrated ACRL methods as applied to
learning complex movement systems and motor primitives
for humanoid robotics [10], [15], and Izawa et al. showed
how RL can be used in a reaching task to move a simulated
biological two-joint arm to a goal region using an explicit
reward signal (though with no human or EMG input) [16].
Tamei and Shibata demonstrated a policy-gradient RL system

Fig. 3. Top: electrode locations on an able-bodied subject’s arm, and limb
positions for reach (A), relax (B), and retract (C) activity types. Bottom:
the corresponding target joint angles 〈θe, θw〉 for the simulated appendage.

that used EMG data from an able-bodied subject to control
a robotic arm in a collaborative lifting task [17]. Of note
in the context of rehabilitation, Thomas et al. presented the
application of an actor-critic architecture to the functional
electrical stimulation control of a biological human arm [13].

Despite this promising body of research, the use of ACRL
algorithms specifically for the myoelectric control of pow-
ered prostheses has been largely unexplored. In addition,
most of the ACRL approaches above rely on predefined,
a priori reward signals based on expert knowledge and/or
the absolute spatial or kinematic error in the workspace. This
makes it impossible for an amputee to adapt a controller
online based on his or her current needs and goals. As a
contribution toward the goal of adaptable, intelligent artificial
limbs, this paper demonstrates the use of intuitive human
feedback and ACRL to enable the user-specific initialization
and optimization of multi-function myoelectric prostheses.

II. METHODS

A. Robotic Arm and EMG Data Acquisition

The AX-12 Smart Arm (Crustcrawler, Inc.) was chosen
as a cost-effective physical test platform to mimic the func-
tionality of commercial myoelectric prostheses such as the
Utah Arm 3 (http://www.utaharm.com/ua3.php). The Smart
Arm, as seen in Figure 2, includes five degrees of freedom:
hand open/close, wrist flexion/extension, wrist rotation, el-
bow flexion/extension, and shoulder rotation. The size of
the robotic arm is about half that of a human arm. For this
initial study, a Smart Arm simulator was used that shares
the dimensions and kinematic model of the physical device.
On each time step, angular velocity commands are sent to
the five joints (simulated servos) as integers in the range
[−1023, 1023]. Commands outside this range are cropped.
Possible feedback from the simulated arm includes the angle
(in radians) and angular velocity (in radians per second) of
each joint, and the Cartesian position of the end effector.

The EMG signals used in learning were recorded with
BL-AE-N pre-amplified surface electrodes and acquired via
a National Instruments PCI-6259 data acquisition card. After
acquisition the signals were post processed digitally using a
notch (60Hz) and high pass (10Hz cutoff) filter to reduce
power line and motion artifact noise respectively. Batch data



Fig. 4. Time varying amplitude profile for the four input EMG signals:
(A) wrist extensors, (B) wrist flexors, (C) triceps, and (D) biceps. Traces
stacked vertically to show temporal overlap; ∼ 10V between vertical ticks.

were sampled from four input electrodes and a reference
electrode that were affixed to the left arm of an able-bodied
human subject (Figure 3). Electrode locations were selected
for maximal EMG signal strength on each of the following
muscle groups: biceps (BI), triceps (TRI), wrist flexors (WF),
and wrist extensors (WE). The reference sensor was affixed
to the bony part of the wrist. The subject was directed to
perform a repeated reaching task: at ten second intervals they
were signalled to reach, relax, or retract their arm, strongly
flexing the BI/WE and TRI/WF muscle group pairings in an
alternating pattern. These three activity patterns are depicted
in Figure 3. EMG voltages were recorded every 0.5ms, along
with the target arm position. Two datasets—one for testing
and one for training—were collected from a single subject
on different days, each lasting approximately 5 minutes. An
example of this raw EMG data is shown in Fig. 4.

B. The Continuous Actor-Critic Algorithm

For this work, we consider the standard RL framework
described by Sutton and Barto [11], with a discrete-time
Markov Decision Process (MDP). This MDP contains an
infinite set S of states s ∈ <nS and actions a ∈ <, where
ns is the number of dimensions of S. We denote st, at and
rt as the state, action, and reward respectively at time t;
action at may affect the reward received on future time steps
(rt+i, i > 0), but not the current reward (rt).

In this paper, we focus on actor-critic algorithms, a sub-
class of policy gradient algorithms. Here the control policy
of a system, denoted π(a|s), is a function that defines the
probability with which the system will select action a in
state s. We assume that π is characterized by a vector of
parameters w ∈ <n, and that for any state-action pair,
π(a|s) is continuously differentiable in w. The goal of policy
gradient methods is to find a policy π that maximizes a long-
term reward objective, for this work defined as:

J(π) = lim
T→∞

Eπ

[
T−1∑
t=0

γtrt+1

]
,

with a discounting factor 0 ≤ γ < 1. Policy gradient methods
update the policy parameter vector w in the direction of the
gradient of the return J(π) according to ∆w ∝ ∇wJ(π),

Algorithm 1 Continuous Actor-Critic Algorithm
1: initialize: wµ,wσ,v, eµ, eσ, ev, s
2: repeat:
3: µ← wT

µx(s)
4: σ ← exp[wT

σ x(s) + log(σc)]
5: a← N (µ, σ2)
6: take action a, observe r, s′
7: δ ← r + γvTx(s′)− vTx(s)
8: ev ← λev + x(s)
9: v← v + αvδev

10: eµ ← λeµ + (a− µ)x(s)
11: wµ ← wµ + αwδeµ
12: eσ ← λeσ + [(a− µ)2/σ2 − 1]x(s)
13: wσ ← wσ + αwδeσ
14: s← s′

where ∆w is the change in w and ∇wJ(π) is the gradient
of J(π) w.r.t. to w [18]. This gradient can be estimated
from samples 〈st, at, st+1, rt+1〉 of interaction between the
learning system and its environment [19]. However, the
estimate of the gradient can have a high variance, thus
requiring a large numbers of samples to converge.

Actor-critic methods reduce this variance by using two
learning elements: a critic and an actor. The actor shapes the
policy π and selects actions. The critic predicts the expected
future differential reward while following π. In other words,
the critic represents the value function V π(s) of the current
policy π in the state s:

V π(s) = Eπ

[ ∞∑
t=0

γtrt+1|s0 = s

]
.

An estimate of V π(s) is then used as a baseline to compute
∆w. Though V π(s) is not known, it can be estimated using
temporal difference (TD) learning [11]. For more detail,
comprehensive descriptions of RL and AC methods are given
by Sutton and Barto [11], and Peters and Schaal [10].

Because S is continuous, a standard function approxima-
tion method known as tile coding is used to expand the state s
into a high-dimensional binary feature vector x(s). This
expansion discretizes the space, and allows generalization
and non-continuity in the learned policies [11]. Tile coding
defines a set of NT exhaustive partitions, or tilings, of the
input space s. Each tiling is a grid of resolution NR where
only one element of the partition, a tile, is active. Note that
the number of non-zero features in x(s) is always equal to
NT and does not depend on s.

The continuous actor-critic algorithm used in this paper
is described in Algorithm 1. In it, the actor selects a new
action a from a normal distribution N (µ, σ2) with mean µ =
wT
µx(s) and standard deviation σ = exp[wT

σ x(s) + log(σc)]
(lines 1–3). wµ and wσ are parameter vectors for the mean
and standard deviation of the actor, and σc is the starting
value for σ. After the system executes action a and observes
the new state s′ and reward r (line 6), the critic computes a
temporal difference error δ from r, vTx(s), and vTx(s′)—
the current estimates of V π(s) and V π(s′) respectively
(line 7); v is the critic’s parameter vector. A core problem



in RL is credit assignment—i.e., how to assign reward or
punishment to past decisions that may have contributed to the
current situation. Eligibility traces are a standard mechanism
in RL to help to fill the gap between the decisions and their
consequences. We use accumulating traces, as per Sutton and
Barto [11]. In the critic, the trace ev of the feature vector
x(s) is updated (line 8) and then used to update the critic
parameters v (line 9); λ is the trace decay rate. The actor
maintains traces eµ and eσ , updated in line 10 and 12; these
are used to update the parameters wµ and wσ respectively
for the mean and variance of its policy (line 11 and 13). αv

and αw are scalar step-size (learning rate) parameters.
In cases where more than one action (a1t , a

2
t , ...) is re-

quired, one set of actor parameter vectors (wµ,wσ, eµ, eσ)
is maintained for each action (e.g., Tamei and Shibata [17]).

III. EXPERIMENTS

Two experiments were conducted: learning a control pol-
icy using a fixed goal-based reward (Sec. III-A), and learning
a control policy from a human-delivered reward signal (Sec.
III-B). In both experiments, the goal of the learned control
policy was to output joint velocity commands that caused
the simulated arm to successfully track a temporal sequence
of desired joint angles—in this case, the set of reaching,
retracted, and relaxed activities described in Sec. II-A.

The learning system’s action space consisted of two con-
tinuous angular velocity values, one for the wrist joint motor
(aw) and one for the elbow joint motor (ae). Actions were
computed on each timestep as shown in Algorithm 1. A
continuous state space consisting of s = 〈θw, θe, s̄1, s̄2〉
was used, where θw and θe indicate the current wrist and
elbow joint angles, and s̄1 and s̄2 are two differential EMG
signals (defined as follows). As per standard practice, each
raw EMG signal sE was rectified and averaged as s̄ =
(1−τ)s̄+τ |sE |, with a time constant τ = 0.05. Differentials
were then computed for each pair of opposing muscle groups:
s̄1 = s̄BI − s̄TRI and s̄2 = s̄WF − s̄WE . While not
essential to finding a successful policy, this reduction in
problem dimensionality decreased memory and processing
requirements, and allowed for faster policy convergence.
All components in s were normalized to the range [0, 1]
according to their minimum and maximum possible values.

This state space was used to construct the state approxima-
tion vector x(s) used in learning. To capture different levels
of generalization, x(s) was a concatenation of NT = 25
incrementally offset tilings of s, each at four different reso-
lution levels NR = [5, 8, 12, 20], along with a single active
baseline unit. This resulted in a single binary feature vector
consisting of 4,636,426 features. Exactly m = 101 features
in x(s) were active at any given time, one for each tiling and
one for the baseline feature. The learning parameters were set
as follows: αv = 0.1/m,αw = 0.01/m, γ = 0.99, λ = 0.3,
and σc = 1023. Weight vectors ev, eµ, eσ,v,wµ,wσ were
initialized to 0, and σ was bounded by σ ≥ 1.

The ACRL system was trained online, with repeated cycles
being made through the training EMG data described in
Sec. II-A. Learning updates and action choice occurred after

every 5ms of recorded data. Total training time was held
constant, after which point learning was halted and the
learned control policy was applied to the testing EMG data
set. Performance was measured on both training and testing
data in terms of the learning system’s ability to achieve the
desired target angles.

To improve the speed of policy convergence, the training
task was divided into three sub-tasks of increasing difficulty.
Initially, parameter vectors for the wrist and elbow joints
were each trained in isolation for 100k time steps; the
learning system was able to move one of the joints, while
the other joint was actuated through the range of desired
motions. This was followed by a period of combined two-
joint training where the learning system was free actuate both
joints. As described by Sanger, breaking down a task into
regions of solvability in this way can decrease the total time
needed to learn more complex composite behaviours [20].
We found this staged approach decreased policy convergence
time, and also made the interactive training process easier
for human users. Learning and simulation occurred on a
MacBook Pro 2.53 GHz Intel Core 2 Duo laptop.

A. Learning from Goal-Based Reward Signals

In the first experiment, reward was given based on a pre-
determined structure independent of human feedback. This
examined the ability of the system to learn the target concept
when provided with only a simple “success or failure” goal-
based training signal. A positive reward of rt = 1.0 was
delivered when θw and θe were both within 0.1 radians of
their target angles. A reward of rt = −0.5 was delivered
in all other cases, in essence penalizing the learning system
when the arm’s posture differed from the target posture. Each
goal-based experiment lasted 750k time steps.

B. Learning from Sparse Human Reward Signals

In the second experiment, reward was given based on a
sparse human feedback signal rh. This examined the ability
of the system to learn an arbitrary user-specified behaviour
in response to the input EMG signals. In this experiment, a
human user was shown a 3D model of the target position
of the arm, superimposed on the current (true) position of
the arm. Throughout training, the user was given the option
to provide—using key presses—a positive (rh = 0.5) or
negative (rh = −0.5) reward to the system in response to
its behaviour. In the absence of human-delivered reward, the
system was provided with a static reward of rh = 0. To pro-
vide a consistent training signal across millisecond timescale
updates, and bridge the gap between human response speeds
(seconds) and learning update time scales (ms), the reward
signal on each timestep following a human delivered reward
was equal to a decayed trace of the previous step’s reward:
rt+1 = 0.01rt + rh, until the trace fell below a small
threshold value; a suitable rate of decay was determined
experimentally. Without this extension, we observed that δ
remained high, preventing µ and σ values from converging to
an accurate policy. Each experiment lasted 300k time steps,
and required less than 10min of user interaction.
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Fig. 5. Control accuracy on training data (top) and testing data (bottom)
after 750k time steps of training for elbow (A) and wrist (B) joint angles.
Control policy was learned from a staged task with a goal-based reward
signal. Shown are the actual joint angles (red/blue), the mean target angle
for each joint (dark grey), and the width of the target region (light grey).

IV. RESULTS

The first experiment examined the effectiveness of a policy
learned from a staged task with an explicit, goal-based
reward signal. Figure 5, top, shows joint control accuracy
on the training dataset from a single able-bodied subject
after 750k time steps of training, while Figure 5, bottom,
shows the control accuracy of this learned policy on the
independent testing dataset. Shown are the actual joint angles
(red/blue), the mean target angle for each joint (dark grey),
and the width of the target region where positive reward
was delivered (light grey). In both testing and training cases,
the joint angles remained within the target regions for the
majority of the evaluation period.

The second experiment extended this approach to a policy
learned from a staged task with an online human-defined
reward signal. Figure 6, top, shows joint control accuracy
on the training dataset after 300k time steps of training by
a human user, while Figure 6, bottom, shows the control
accuracy of this learned policy on the independent testing
dataset. For both datasets, the learned policy tracked the
angular targets for the majority of the evaluation period; we
observed that additional human training further decreased the
variability present for the reaching and retracted regimes, and
sharpened the transitions between set points.

Figure 7 shows how the computed µ and σ values varied
as learning progressed (shown here comparing starting and
ending µ and σ values for one run of a staged task with online
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Fig. 6. Control accuracy on training data (top) and testing data (bottom)
after 300k time steps of training for elbow (A) and wrist (B) joint angles.
Policy was learned from a staged task with an online human-defined reward
signal. Shown are the actual joint angles (red/blue), the mean target angle
for each joint (dark grey), and the width of the target region (light grey).

human training). While initially random, learned µ values
took on a final pattern with alternating periods of increased
velocity followed by periods of stability. The ACRL system
learned to create periods of increased velocity that moved the
arm from one stable position to the next (e.g., from relaxed
to retracted). This is visible as regular positive or negative
velocity spikes in Figure 7, top right.

Similar stabilization was observed for the learned σ values
(Figure 7, bottom). From the initial starting value of σc =
1023, the magnitude of σ decreased over time in response
to a decreasing TD-error δ (i.e., the learning system’s pre-
dictions about its long-term reward became closer to the
reward actually received.) As evident in Figure 7, bottom,
σ continued to decrease with learning; by the end of the
training period, σ had decreased to very small values for the
relaxed position (σ < 1), and to larger values for reaching
and retracted activity (σ < 200 and σ < 400, respectively).
With further human training, the σ values for these targets
continued to shrink, leading to more precise action choice
and less jitter in arm movement.

As mentioned in Section III, the use of two differential
EMG signals (s̄1, s̄2) in place of the four raw EMG signals
allowed faster learning and significantly reduced memory
and processing requirements. However, structuring of the
signal domain in this way was not required for successful
learning. Learning systems using the four base EMG signals
also demonstrated the ability to track target joint angles.
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Fig. 7. Results comparing starting and ending µ (top, blue) and σ (bottom,
red) values for a staged task with online human training. Top: While initially
random, after learning µ values take on a final pattern of alternating periods
of increased velocity followed by periods of stability. Bottom: σ values
decrease over the course of learning.

V. DISCUSSION

One advantage of the ACRL-based human training ap-
proach presented in this work is that it does not assume
(or require) intensive manual shaping of the input signal
space or problem domain. Even without knowing the exact
set of motions or motor commands that need to be performed
by a robotic appendage, or how the values from any given
set of EMG sensors relate to a desired motion, controllers
can be trained to execute specialized movements using only
a series of positive and negative rewards indicating user
approval or disapproval. This approach is therefore well
suited to complex patient-specific control cases such as non-
physiologically mapped EMG control and targeted muscle
reinnervation (TMR, where amputees have had some of their
nerves attached to muscle tissue in alternate locations to
facilitate prosthesis control [21]). Control objectives may be
specified in terms of incremental, amputee-centric goals.

As shown by the pose tracking results in Figures 5 and
6, our ACRL framework was able to develop an accurate
velocity control policy for responding to a heterogeneous
input space made up of normalized EMG and joint angle sig-
nals. It learned this policy using only a single scalar reward
signal indicating the success or failure of its action choices.
Training using a scalar reinforcement signal of approval or
disapproval from a human user—as done in this study—has
been shown in other domains to allow users to optimize a
system in a natural, accessible way, even in conditions where
the exact mechanics of the system are unknown [14]. This
can be viewed as an advantage for amputees, as it suggests
the ability to customize a prosthesis to personal use patterns
without the need to specify a collection of device-specific
mechanical targets or clinically designed calibration tasks.

The impact of user decisions on policy tuning can be
observed in the Figure 6. Systematic offsets (i.e., a consistent
shift up or down for a given activity type) were largely due
to human choices during training—with human-delivered re-
ward, the user must decide based on visual cues and personal

preference how well they feel the arm is performing. Their
reward allotment (and thus the learned control policy) reflects
these decisions. This further reduces the need for biological
and mechanical domain knowledge when optimizing a new
device, and also minimizes the computational background
required of clinical staff. Such an approach is in contrast to
the majority of prior related work, in which state spaces are
typically crafted to match each particular application domain,
and feedback (or training) signals are continuous functions of
physical—e.g., spatial or kinematic—error in the workspace.

The learning system’s ability to flexibly adapt to an
arbitrary input space is also derived from the way information
is interpreted by the system through function approximation.
As described in Section II-B, tile coding function approxima-
tion is used to expand the set of joint angle and EMG input
signals into a high-dimensional binary representation. This
representation allows the system to generalize and form com-
plex, non-continuous policies. From the system’s perspective,
the input state of the system appears in a subjective fashion—
i.e., there is nothing that indicates how a bit in x(s) relates
to any particular input signal or combination of signals. This
gives further potential for “out of the box” application by end
users in an online setting, allowing rapid adaptation for use
with new patients, prosthesis models, and even amputation
types without significant changes to the control framework.

ACRL selects actions based on normal distributions with
policy parameters µ and σ (shown over the course of learning
in Figure 7). One of the significant advantages to using a
continuous action space of this form is that policy exploration
is handled in an automatic fashion by the changing σ
term [15]. This provides an effective mechanism to detect
environmental change and adjust the control policy if the
user’s intent shifts over time. If the trainer stops providing
reward for a behaviour, or provides vastly different reward
from the learning system’s previous experience, the weights
for σ will begin to increase in response to the rising TD-error
δ; this will promote more exploration of the policy space,
and a corresponding shift in µ. In a rehabilitation context,
this suggests that an ACRL system will be able to detect
and adapt to the slight mechanical and biological changes
that occur during day to day use of a prosthesis, without the
need for intensive recalibration and clinical retraining.

However, as in other training environments, it is important
that reward and feedback be applied consistently to an ACRL
framework. If the increase in δ is due to prolonged human
inconsistency, the subsequent increase in σ may degrade a
stable (good) policy. While it is possible to freeze learning
after periods of training (a clear delineation between training
and use periods), a much better approach would be to develop
methods capable of maintaining a consistent reward signal
during periods of reduced human interaction. As described
by Knox and Stone, distributing sparse human reward to
a learning framework is a challenging problem [14]; a
principled approach is the subject of ongoing investigation.
While outside the scope of the present work, we expect
that a detailed comparison of different reward distribution
approaches will yield ways to improve the learning process.



As a first demonstration, this work explored pose tracking
via joint velocity modulation. However, the reward-based
problem formulation suggests that it can be applied to any
type of position, velocity, or force tracking problem with
little or no change to the learning architecture. One imme-
diate example is the tracking of continuous arm movement,
where reward is delivered when the speed and direction of
the artificial limb matches the intent of the human user.

Recent work by DiGiovanna et al. demonstrated a co-
adaption process that occurs between users and RL algo-
rithms as they work together toward a common goal [22].
The impact of this online co-adaptation on the present
approach is an interesting area for future investigation. We
expect that learned control policies will improve as users
become more skilled and refine their own EMG signals to
provide more consistent input signals to the learning system.

The present study assessed the suitability of ACRL tech-
niques for myoelectirc control in the context of a simulated
robotic environment. Based on our preliminary experiments
with the physical robotic platform, we expect this work to
transfer well to real-world use. We are currently studying
the effectiveness of human-trained controllers on both the
simulated arm and the physical robotic platform using online
EMG data, and examining the ability of ACRL to robustly
deal with inter-individual differences. Future work will also
explore the use of state spaces with additional EMG and
force sensors, EMG features (e.g., frequency information or
signal zero crossings [6]), and robot feedback signals (e.g.,
motor velocity, temperature, and/or current draw) to allow
greater controller flexibility and precision.

VI. CONCLUSIONS

This work represents an important incremental step toward
the objective of adaptable, intelligent myoelectric prostheses.
It introduces the use of human-trained ACRL for myoelectric
limb control, contributing a flexible, online learning frame-
work that may be easily adapted to different application
domains and the needs of individual amputees. The result is
an intuitive reinforcement-based controller training approach
that is well suited for use by amputees and clinical staff.

Specifically, we demonstrated that a human user could
train a virtual robotic appendage and associated ACRL
framework to interpret complex, overlapping EMG signals
using only a sparse reward signal indicating the approval
or disapproval of the human trainer. The system was able
to learn a two-joint velocity control task, and demonstrated
the ability to change over time according to continued user
input, without the need to integrate detailed task and domain
knowledge into the learning framework.

To our knowledge, this is the first myoelectric control
approach that enables the online learning of new amputee-
specific motions based only on a single, scalar reward signal
provided by the user of the prosthesis. In the long term, we
expect these methods to improve quality of life for amputees
by giving them greater control and autonomy over their
powered prostheses, and by increasing their engagement and
self-sufficiency when adapting to new prosthetic devices.
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