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Abstract

Consider playing a game such as chess against an opponent. At the end of the game
we receive a reward, no reward, or a negative reward (penalty) depending on the final
outcome, win, draw, or loss. Assuminga fixed strategy is employed to play the game, we
want to learn to predict the expected reward starting from any board position. If we can
make perfect predictions, then we can improve our playing strategy by taking the moves
that lead to board positions having high expected rewards. This learning problem in
fact belongs to a very general problem; that is, learning an evaluation function of
states for absorbing Markov chains. There are two approaches to this general learning
problem. The indirect approach learns a model of the underlying Markov chain and
solves a system of linear equations, while the direct approach attempts to solve the
problem without learning a model. The former is often infeasible except for small
Markov chains. In the previous literature, many researchers have focused on a direct
approach; the TD(A) method. TD()) is incremental and efficient, and its convergence
has been proved (with some small flaw, however). In this paper, we significantly extend
the TD()) method, and present a general class of TD methods. We also fix some flaws
in some previous convergence proofs, and provide a convergence proof for this new class
of methods.



1 Introduction

A wide range of optimal control problems and sequential decision problems involve evaluating
the goodness of system states. For example, playing chess is a sequential decision problem.
At the end of each game, we receive a reward, no reward, or a negative reward (penalty)
depending on the final outcome of the game, win, draw, or loss. Assuming a fixed (but
possibly stochastic) strategy is now employed to play the game, if we can correctly predict
the expected reward starting from any board position, then we can improve our playing
strategy simply by taking the moves that lead to board positions having high expected
rewards. Consider another problem, robot control. A robot has a set of primitive actions
and a task to achieve. The robot has to learn to choose actions in order to accomplish
the task optimally. The robot will receive a reward when one of the goal states is reached.
and a penalty when the robot gets into an undesirable state such as collision. Once again,
assuming a fixed strategy is now employed to choose actions, if the robot can predict the
expected payoff starting from any system state, then it can improve its control strategy by
choosing actions that lead to states with high expected payoffs.

The above two learning problems, game playing and robot control, are in fact instances
of a general problem, learning an evaluation function of system states. In this paper, we only
consider the case where states are discrete and completely observable. In other words, we
consider problems that can be expressed as Markov chains. Formally, this general learning
problem can be formulated as follows: Consider a Markov chain which has multiple absorbing
states and non-absorbing states. Each absorbing state is associated with a scalar number
called terminal value or reinforcement signal. The objective of learning is to predict the
expected terminal value given that the system is now in any of the system states.

There are direct ways and indirect ways to learn the evaluation functions. An indirect
way first learns a model of the underlying Markov chain (including the transition matrix and
the terminal values), and then solves a system of linear equations (see Section 2). A direct
way, on the other hand, attempts to find the evaluation function directly without learning a
model. Indirect ways are often quite computationally expensive and thus infeasible except for
small Markov chains. In the previous literature regarding the direct approach, researchers
have mostly focused on the TD(A) method, a simple, incremental, and computationally
feasible, direct approach. The TD()A) method was first defined by Sutton [9], although
the fundamental idea behind TD(\) has been around in the literature for years (e.g., [7]).
Here X is a parameter between 0 and 1 defining a specific algorithm, and TD stands for
temporal difference due to that TD(A) constructs an evaluation function by minimizing the
discrepancy between the predictions for temporally successive states.

Sutton [9] proved the convergence of TD() = 0), and later Dayan [2] proved the conver-
gence of the method for general A\. However, both proofs are flawed, because Sutton and
Dayan made the same mistake in their proofs. See Section 5 for the mistake and our fix.
In (3], Dayan and Sejnowski prepare a “convergence with probability 1” proof for TD()).
In their proof, they use a projection technique to bound the variance of errors. However,
such a projection technique in general can destroy the convergence of TD(}). In this paper,
we provide a new proof which does not require the use of a projection technique. We also
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provide the conditions under which a projection technique can be used without destroying
[;the convergence property (Section 4.1).

As pointed out by Watkins [12] and Barto, et al [1], TD can be considered as a type
{ asynchronous dynamic programming. A successful application of the TD method is Q-
learning, first defined by Watkins [12]. Q-learning is a direct method for optimal control.
Its convergence was proved by Watkins. The convergence analyses of the TD(A) method
and Q-learning are all based on the use of look-up tables (or linear representations) to store
evaluation functions. In practice, non-linear function approximators have been employed to
solve some nontrivial learning problems. For example, Tesauro [10] developed a backgammon
playing program which learned to play as well as world-class human players. Lin [5] also had
a program which could learn to survive in a simulated environment filled with predators and
food. Both programs used artificial neural networks as function approximators.

In this paper, we extend TD(}). The results include (1) a general class of temporal
difference methods called TD(Cy), of which TD(A) is a special case and (2) a convergence

_proof, which we have tried to make as simple and self-contained as possible. One of the goals

of this paper is to correct some mathematical flaws of previous work, although the theoretical
results of the previous work are in general correct. In the first part of this paper, we introduce
the most general linear weight-update operator in a spirit of temporal differencing. As a first
result, we obtain the recursive expression of the prediction errors which is expected from using
TD(Ci). We also give a few instances of this new learning method, including TD(}). In
the second part, we provide conditions under which TD(Cyx) can be proved to converge with
probability one. Our proof is complete (and we hope, correct). In the third part, we provide
necessary and sufficient conditions for TD(Cy) to converge for any Markov chain. Finally,
we discuss T'D(Cyx) methods for predicting cumulative outcomes, and show its convergence.

2 Notations and Basic Facts

Figure 1 shows the notations we use in this paper. The evaluation function is represented by
V = XTw, where X is the state representation and w is a set of weights. The objective here
is to obtain a set of weights w such that X7w approaches V*, the true evaluation function.
A straightforward state representation is that X = I. With this representation, the expected
terminal value from state 7 is simply w;. This representation can be easily implemented by
a lookup table, which has an entry for each state 2 to store w;.

The learning of the weight vector w is divided into epochs. At the start of each epoch,
t = 0 and the system’s initial state, s(0), is determined by a probability distribution, w.
The system’s next states will then be governed by the transition matrix, T. Each epoch
ends either when an absorbing state is reached or when some pre-defined time has expired.
After each epoch, our proposed learning algorithm will update w based on the information
contained in this epoch about the underlying Markov chain.

Note that {s(t)|t > 0} stands for a random walk through the underlying Markov chain.
A random walk is allowed to terminate before an absorbing state is reached. If a random
walk is absorbed at time t (i.e., 7 = s(t) € A). then we define s(t') = j forall ¢’ > t. If a
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{e:} column vector with component ¢,
I identity matrix

0 matrix with all entries 0’s

Drag(c) diagonal matrix whose diagonal is vector ¢
AT the transpose of A

o(A) the eigenvalues of A

p(A) the largest eigenvalue (in modulus) of A
<ab> a - b, the inner product of vectors a and b
N non-absorbing states or non-terminals

A absorbing states or terminals

T Transition matrix

(8

R probabilities of transition from non-absorbing to absorbing states

Q probabilities of transition between non-absorbing states

U; probability that the system starts at state 1 € A/

u u = {u;|[t € N}, the initial state distribution

X; column vector representing state 1 € A/

X matrix whose columns are X;, 1 € N/

z; expected terminal value from state j € A

z z={z]j € A}

t time

s(1) state at time ¢

w column vector representing a set of weights

Vi prediction of the expected terminal value starting from state ; € A/
Vi=XF-w

Vv V = {ViJi € N'} = XTw, the estimated evaluation function

| % the true evaluation function

d; number of times in state 7 € N before absorption during a walk on the Markov chain

d d={dili e N'}

B;; probability starting in state : € A that
the Markov chain is absorbed in state j € A4

B matrix whose elements are B;;

Figure 1: Notations.



1. p(@) < 1. in other words, ltm, Q" = O.
2.d={di} =uv+uQ+u@Q*+u@*+- - =ull - Q)"
3. B=R+QR+Q*R+Q*R+-- =(I-Q)'R

451. R=(I-Q)B

'T“-< I | O
N +Q+Q*+ - +QHR(|Q
6. V*=Bz=(I—-Q) 'Rz

Figure 2: Facts about absorbing Markov chains.

random walk ends at time ¢ without absorption (i.e., i = s(¢) € N), then s(t') is undefined
for all ¢/ > t.

Figure 2 gives a list of facts about absorbing Markov chains that will be used in this
paper. Note that by Fact 6, the true values V* can be directly computed if the transition
matrix (T') and the expected terminal values from absorbing states (z) are known or learned.
This direct computation, however, will be costly for large Markov chains. Moreover, in the
case that learning has to take place on-line, this costly computation will need to be repeated
every time when new information is available and the transition matrix gets adjusted, making
the direct approach prohibitively costly. ’

3 TD(Cy) : The Generalized TD Method

As mentioned before, the objective here is to obtain a weight vector w such that XTw — V*.
In this section, we develop a new generic learning method, TD(Cw). As will be seen, the
TD()) method can be easily put in our framework. In their pioneering work [9, 2], Sutton
and Dayan obtained a recursive expression of the prediction errors which is expected from
using TD()). However, their presentations are somewhat tangled. Here we present a clear
and simple way to obtain the equivalent, but more general, recursive error expression for
this very general learning method, TD(Cy)-

3.1 Weight-Update Operators

We consider an arbitrary Markov chain with a countable (only for the sake of simplicity)
state space. Recall in Section 2 that we use T' to denote the transition matrix of the Markov
chain, and use u to denote the initial state distribution. We first consider a very simple
operator, Aw, which uses a random walk (i.e., {s(t)|t > 0}) to update the weight vector w.
In fact, only the first two states (s(0) and s(1)) of the walk are utilized.




Definition 1

1 (1)

(X’,m“’ X0y @) X0y lf
Jo understand the meaning of this operator. let us consider the case that we use a lookup
table to store our current estimate of the evaluation function (i.e., X = I); one table entry
for each state. This Aw operator simply looks up the state values of the first two states
in the random walk (i.e., s(0) and s(1)), and then computes the difference. The following
lemma gives what this difference is expected to be. -

Lemma 1
a : L L
V(u,T) = E(Aw|u is the initial state distribution and T is the transition matriz)

= X Diag(u) (I — Q)(V* = V)

where T = (—é—,%) .

Proof:
v(u,T)
= doul > Qi(XJw—XTw) + 3 Rij(z; — XTw)]X:
ieN JEN JEA
= Z u,[z Q,-,-X;-rw + Z Riiz;] X; — Z u,[z Qij + Z R;,-]X;TwX,-
iEEN JeN JEA €N JEN jEA
Using the obvious fact that
Y Qi+ > Rij=1,
JEN J€A

we obtain

v(u,T) = X Diag(u) [QXTw + Rz] — X Diag(u) XTw.

From Facts 4 and 6, we further obtain

v(u,T)
= X Diag(u) [(Q — )XTw + (I — Q)Bz|
= X Diag(u) [(Q -1V + (I - Q)V"]
= X Diag(u) (I — Q)(V* =V).
a

Now we define a more general operator, Aw, for weight update. This operator involves
only two states in the given random walk, s(t) and s(t + k).

Definition 2

if s(t)e A
Awtk = ( s(t)w))xs(t) ifs(t)ye N ands(t+k)=j€ A (2)
(,\s(H_k)u, XIyw) Xy o s(t) €N and s(t+k)eN

provided that k > 0 and that s(t) and s(t + k) are defined.

Qo
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Lemma 2

T (0. T) 2 B{Awy | u. T} = X DragluQ') (I — Q¥)(V* = V) (3)

Proof: Recall that s(i+ k) is undefined only when the random walk was terminated without
absorption before time ¢ + k. Let v be the probability distribution of the system being in a
non-absorbing state at time t. Then v = u@' Let M be the probability distribution of the
system being absorbed to a terminal state at or before time ? + k, provided that the system
s not absorbed at time¢. Then M = (/ + Q@+ Q* + -+ Q@ NR=(1-Q*)(I -Q)'R.

This proof (for Lemma 2) is similar to that for Lemma 1. We simply replace u and
p

_(1]0 X ) e [ 110 Y. . ]
T = (—R—*—v) used in that proof by v and T* = ( M OF ) in this proof:

Va(u,T)
= T ulY QL(XTw - XTw) + 3 Mij(z; — XTw)lX;
€N JEN JEA

X Diag(v) [Q*XTw + Mz — XTw]
— X Diag(v) [(Q* — NXTw+ (I — Q)Bz]
= X Diag(uQ’) (I -~ Q¥)(V" = V)
O
Finally we define the most general update operator, Aw(Cix), which involves every pair

of states in the given random walk.

Definition 3 N
Aw(Cy) = ZZ CirAwyi (4)

>0 k>1

where Cy is a (possibly negative) pre-defined number for every t 2 0 and every k > 1.

Theorem 1

E(Aw(Cu)|u, T) = X 3.3 Ci Diag(u@Q') (I — Q¥)(V* V) (5)

>0 k>1

Proof: This theorem directly follows Lemma. 2, because of the additiveness of mathematical
expectation. - O

Remark: Because of the condition in Definition 2, to use the Aw(Cy) operator,
we require that each random walk either ends in an absorbing state or has a
length greater than or equal to [ where Cy =0 for all ¢ + &k > 1.

3.2 The TD(C;;) Method and Its Error Dynamics
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Method: Let w, be the set of weights at epoch n. A new set of weights is obtained by the
{ollowing update procedure:

Wnii — Wy + Diag{o, ) Aw(Cy) - (6)

where Aw(Cx) is as defined in Definition 3. and oy, is a vector of learning rates used at
epoch n. ‘

Figure 3: The generalized TD method: TD(Cy).

Figure 3 gives the generalized temporal difference (TD) method, TD( Ci). This method
simply updates the weight vector w by the amount of Aw(Cy) multiplied by some learning
rates a,. We allow each state to have its own learning rate. We also allow the learning
rates to be different at each epoch. For instance, we may anneal learning rates over time to
obtain convergence of the weights. The method given in F igure 3 in fact defines a class of
learning algorithms; each possible set of Cy values defines a specific learning algorithm. Some
algorithms may have nice convergence properties, while the others may not. For example,
the examples given in Section 3.3 all have nice convergence properties.

Let e, be the error between the truth V* and the prediction V = X Tw, at epoch n. In
other words, e, = V* — V at epoch n. The following corollary describes the relationship
between the expected e,i; and the expected e,.

Corollary 1 Let e, be the prediction error at epoch n (i.c., e, = V*— XTw,). The TD(Cy)
method given in Figure 3 has the following dynamic of prediction errors:

E(ent1) = [I — X" Diag(an)X 3 3 Cu. Diag(uQ*) (I — Q%)) E(en) (7)

20 k>1

Proof: From Theorem 1, we obtain

E(€n+1)
= E(V" = XTw,y)
= E(V* — X" (w, + Diag(a,)Aw(Ci)))
= E(V" - XTw,) — X7 Diag(cn) E(Aw(Cy))
= E(V" - XTw,) — XT Diag(ax)X 3" 3" Cy Diag(uQ?) (I — QME(WV™ — XTw,)
t20 k>1

= [I - X" Diag(an)X 33" Cux Diag(uQ?) (I — Q%)) E(en)

>0 k>1

3.3 Instances of TD(Cy)

In this subsection, we show that TD()\) can be easily put in our framework, TD(Cy). In
addition to TD(X), we present a few more instances of TD(Ci). All of them have nice

b



convergence properties, as will be proved in Section 3.

3.3.1 TD(}A)

TD(A) [9] (Section 1) is a special case of TD((y) when the following learning parameters

are used:

e Diag(an) = al where « is a constant. In other words, a global learning rate « is used

at any time and for all weight updates.
o Cie = (1 = X)X for all t, where —1 < A < 1. ! There are two special cases:

~ A=0: Forallt,Cyxy =1fork=1,and Cy =0 for k > 1.
— A=1: Forall ¢, Cix =1 for k = oc, and Cy = 0 for finite k.

One good thing about TD(A) is that there is a very efficient way to implement this learning
method (for example, [6]). The time complexity of weight updating at each epoch is merely
O(n) where n is the length of the random walk.

Note that Cy as defined above is non-zero for all ¢ and some k, except when A = 0.
Recalling the remark following Theorem 1, to apply TD()), except TD(0), requires each
random walk to be absorbed without premature termination.

Replacing the above learning parameters in Corollary 1, we obtain:

E(en+1)
= [I- QXTXE:kZ(l — M)A Diag(u@*) (I — Q)] E(en)
= [I- aXTXDiag(Z u@*)(1 - )\)(Z A1 Z )\k'le)] E(en)
>0 k>1 k>1

[ — aX" X Diag(u(I - Q)™)(1 = A((1 = V)™ = Q(L — AQ)™) E(en)
[ — aXT X Diag(u(I - Q)™)(I - Q)(1 — AQ)™] E(ea)

This error dynamic is exactly the same as the one derived by Dayan [2].

3.3.2 TD(\p)

TD(A,u) is a special case of TD(Cyx) when a global constant learning rate « is used and

C _ )‘k'__”k_/\A-l_::l+uk+l lf A # ’u
FTL R (B )M ifA=p

where 0 < A <1 and 0 < g < 1. Like TD(X), there is a very simple and efficient implemen-
tation for TD(A,u); its time complexity is also O(n) where n is the length of the random
walk. Note that TD(A,u) is equivalent to TD(u,A), and that TD(A,x) reduces to TD())
when ¢ =0 and 0 < A < 1. The error dynamic of TD(A,u) is:

E(ent1) = [I = aXT X Diag(u(I = Q)™)(1 = @)(1 = AQ) ™ (1 — p@)™"] E(en).
"The original TD()) as defined by Sutton does not allow negative A. In Section 5, we prove its convergence
for any A € (—1.1].
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3.3.3 TD(C:)

A special case of TD(Cy) is when Cye = Cx > 0 for all ¢ and k, and Yi>1 Cr = 1. We call
this special case TD(Cy). When a global constant learning rate « is used, the error dynamic

1s:
E(ens1) = [I -~ aX" X Diag(w(l - Q)™)Y Cul(l — Q)] Elen). (8)

k>1

Note that TD(A) is a special case of TD(C%) when 0 < A < 1.

3.3.4 An Unbiased Learning Method

We now present a simple unbiased learning method, by which we mean the expected predic-
tion error is 0 at any time from the beginning of learning: E(V* — XTw,) =0 for all n > 0.
To obtain unbiasness, we need:

N . .
h=;uQ‘>0 (9)

for some number N. Here A is a vector whose elements indicate the expected number of
times each of the non-absorbing states will be visited during the time interval [0, N]. The
condition A > 0 means that there exits a number N which is large enough so that every °
state has non-zero probability of being visited in the time interval [0, N]. Note that & > 0 is

obviously satisfied when u > 0.

Now we consider the characteristic polynomial of the transition matrix Q:
p(A) =det(A\ — Q) = ap A" + an i A" 4o+ a3 A+ ao

where n is the number of non-absorbing states. Since p(Q) < 1, p(1) # 0. Also p(Q) =0 by
Caley-Hamilton Theorem.

Proposition 1 When

X=1,
N
Diag(an) = (Diag(d>_u@*))™",and
t=0
Cov = ar/p(1) f1<k<nandt<N
*=1 0 otherwise,

we obtain
E(V* — XTw,) =0 foralln >0

Proof: Using
p(l):Zakzp(l)ZCtk-l-ao and
k=1

k=0

n

p(Q)=0=3 a:Q* = p(1) 3 Cu@* + aol,
k=1

k=0

10



we obtain

Diag(an)XTXZ > Cu Diag(u@Q*) (I — Q)

>0 k>1

N
= Diag(an)Diag(d_u@) ZCtk (I1-Q9
t=0

=(iam~2a@k
k=1

ag
= (1- I+ —1
O =iy
= .

By Corollary 1, E(e,) = 0. O

While interesting, this unbiased method may not be very practical. First, it requires to
know the characteristic polynomial of ) (i.e., ax) beforehand. Second, although the expected
prediction error is 0 from the beginning of learning, the second moment of the prediction
error (i.e., square of the error) may be large, making this unbiased method take a long time
to converge.

4 Convergence with Probability One

In this section, we give a sufficient condition for TD(Cy) to converge with probability one.

Without loss of generality and for the sake of simplicity, below we mostly consider the case
where X = 1. When X =1,V = w.

Lemma 3 In any finite Markov chain, there erist numbers b > 0 and 0 < ¢ < 1 such that
the probability that the system is still not absorbed after n steps is

prob(n) < b-c".

Proof: Let p, be the probability of not reaching an absorbing state in n steps. Clearly,
pn = (uQ") - ¢, where e = (1, 1,--,1). Hence, py < [4@"l|1, llellzee = [luQ@" 1z, < Q"] <
k(p(@) + €)™, where k is some constant and ¢ is an arbitrarily small positive number. Since
p(@) < 1, the above lemma follows. O

Corollary 2 The prediction errors of the TD(Cy) method can be ezpressed recursively as
follows:

ent1 = V7 ~ wny1 = (I — Diag(an)An)en + Diag(an)Bn (10)
where A, is a random matriz, B, is a random vector. Moreover
E(B,)=0 (11)
and
E(A.) = A=Y 3 Cu Diag(u@®) (I — Q¥) (12)

120 k>1
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Proof: Suppose the random walk at epoch n consists of N steps before absorption. Then

Aw(Cu) = Y 3 Cu(wa(s(t+k)) = wa(s(t))ay + 3. D Culz — wals(t))) Lge)

t<N t+k<N t<N t+k>N

where wn(2) is the ith element of the weight vector w,, I; is a vector whose elements are 0
except for the ¢th element which is 1, and z is the terminal value received at the end of this
random walk. Clearly, the above can be re-written as

Aw(Cy) = Mw, + zv
where mairix M and vector v are composed entirely of +C;;. Thus we obtain

ent1 = V= wny
= V* — (w, + Diag(an)(Mw, + zv))
= (I + Diag(an)M)(V* — w,) — Diag(an)(MV"* + zv)
= (I — Diag(an)An)en + Diag(an)B,

where
A, = —-M
B, = —(MV*+ zv)

An argument similar to the above also holds when the random walk terminates without
absorption. Note that E(A,) = A is basically the main results of Corollary 1, which also
states that E(en+1) = (I — Diag(an)A)E(en). To prove that E(B,) = 0, let e, = 0, then we
have that E(eq+1) = 0 and that E(eny1) = Diag(an)E(B,). Thus, E(B,) = 0 for any n. O
Remark: A, is a random matrix, and B, is a random vector. Obviously; A, is not indepen-

dent of B,. (A, B:) and (A;, B;), however, are independent for all ¢ # j, since we assume
random walks are taken independently.

Proposition 2 If
> > ICul = O(N) (13)

t<N k>1

where N is any constant, then ||A,|| and ||B,|| have ezponential tails. In other words, for
any number r > 0, there exist numbers by >0, b > 0,0< ¢; <1, and 0 < ¢; < 1 such that

prob(||An|l > r) < b (14)
and
prob(|| Ba|| > r) < bac] (15)
for any number r > 0 and some numbers by, by, ¢, and c; are some positive constants
depending on Q. Consequently,
E(||Aall*) < o0 (16)

and

E(||Ball?) < oo. (17)

12
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Proof: Suppose the random walk at epoch n conmsists of N steps before absorption. In
the proof for Corollary 2, we have shown that A, = =M and B, = —(MV* + zv), where
matrix M and vector v are composed entirely of =Cy for ¢ < N. Moreover, each different
Cu appears at most two times in M and at most one time in ». Also note that for any
arbitrary 2-D matrix H, |H|| £ .2, |H:,|. Therefore if the random walk takes N steps

before absorption, then
£23 3" 1Cul 2 |I4all

t<N k21

In other words, prob(]|A.|| > s(/V)) is not greater than the probability that the Markov
system is not in an absorbing state after V steps, which we denote by prob(N):

prob(|| Anll > s{N)} < prob(N).
From Lemma 3, we thus have
prob(|| Al > s(N)) < b-cN

for some numbers b > 0 and 0 < ¢ < 1. From ( 4) and the assumption ( 13), Inequality ( 14)
is obvious. Similarly we can prove Inequality ( 15) by further noting that both V* and z are
finite. From ( 14), ( 15), and simple calculus, it is easy to show ( 17) and ( 17).

g

Remark: The condition ¥;cny Zk>1/Cuk| = O(N) is obviously satisfied if, for example,
Cy = Cy for all t and 3451 |Ck| is bounded. TD(A), TD(A,u), and TD(Cy) all satisfy this

condition.

Let us define a few new operators, which will be used in the rest of the paper.
Definition 4 (P-inner product)

<T,Y>4 <Az,y>

ll=Il%

Here = and y are vectors, A is a matriz, and <-,-> is the usual inner product operator.

e e

<Z, >4

Definition 5 (P-adjoint operator)
<z,Apy>p £ <Az,y>p
where = and y are (complez) vectors, and A and P are matrices. It is easy to see that
=P 1ATP.

Definition 6 (P-positive definite) We call operator A P-positive definite (or A >p 0) if
<Az,z>p > 0. Obviously, A>p 0 ff PA is positive definite in the usual sense.

Later we will use the following equivalence:
PA+ATP >0 A+ Ap > 0. A (18)

Also we will use below the following norm operator:
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Definition 7 (Norm)

N
lAllp = Mazyzp=1 ||Azllp

It is clear that
|Al% = piAAS) = p(AP* AT P). (19)

To further simplify our discussion. but without loss of generality, we will consider below
only the case where we use X =/ and a global learning rate which is annealed over time:

Diag(an) = 27
n

where where « is some positive constant and n is the number of epochs attempted so far.
The theorems and proofs to be presented below can be easily extended to deal with the cases
where different weights can be updated with different learning rates and/or X is an arbitrary

non-singular matrix.
Theorem 2 Consider the following stochastic difference equation:

An)en + LBTI. (20)

n+1 n+1

€ntl — (1 -
Asn — 00, €, — 0 almost sure (with probability 1), if the following conditions hold:

a 1s positive,

(A;, B;) and (AJ,B) are independent for all ¢ # j,

E(By) =

B(AL) < oo

E(]|Br|?) < o0, and

E(A,;) = A is an anti-stable matriz (i.e., 0(A) C {z : Re(2) > 0}).

S Srds fo o~

Proof: Since all eigenvalues of A have positive real parts, by Lyapunov’s Theorem [13],
there exist a positive definite matrix G > 0 and some positive number g such that

GA+ ATG > glI.

Using the operators defined above, we obtain

A+ Az > gl
for some § > 0. Let us define past to be the hlstory before Epoch (n + 1); that is, past =
(A1, B1, Az, Ba,- -+, An, Byr). Also let ¢ ,and A, = A+ An, where E(A ) = 0. Then
E(|lens1/IG | past) (21)

= E(<(I—-¢€An)en, (I —cAn)en>c +2 <(] €An)en, €Bn>c +€° < Bn, B.>¢ | past)
—9

(

= E(]I( —€An)en + eBy||4 | past)
(< ~
E( e? < Anen, B, >c +€2E(||Bal|%)

(1—‘A)enlla)+ e E(|| Anenlld) —
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11— eAll% = p((1 — eA)I - eA)g) = p(I — e(A+ AG) + €’ AAG) <1 —eg + 2| AllL
For sufficiently small ¢, we have:
1] = €Allg < (1~ ¢§') - (22)

where 0 < § < g. Note also that if E(||A.]|*) < oc and E(||B.||*) < oc. then there
exists a positive number k such that E(||A,]|3) < k < oo and E(]|B.||%) < k < . Also,
| < Anens Ba> I < /(1 Aneall%)\/(1Bali3) < Flleali. From these facts, ( 22), and ( 22), we

obtain:

E(llen+1lI | past) (23)
< (1-eg)lleallt + e Rllenl% + 267 kllenlls + €%
; i ;
< ] - —— €En 5 |fn YRR Y
< (1= Pl + il +
where ¢ and k are some positive numbers. To get ( 24) we have assumed that € = s

sufficiently small, which is true when n is large enough. Now let us consider two possible
cases. In the first case: ||e,||%3 > 1. In this case, ||ex]lc < [lex]|%, and

n+l—3o0 s k k

2 < 9 -
E(|lentalle | past) < ( S )llenlle + n+ 1) llentille + (nt1)? G-

In the second case: 0 < ||le,||4 < 1. In this case, ||eq]le < 1, and
+1 k k
E(llens1ll% | past) < (2 e — G,
(lensaly | post) < (9P lenll + s + g = O

In any case,

E(llentliz IPast) < maz(Cy, Cr)
(n+1- g}) Zk

It is clear that for sufficiently large n, (n +1 — §)* + I:: < (n 41— )2 for some 7,

0<vy<4g- So E(Henullé | past) < (1 — 35)%llenllz + G35y, and of course, E(|lensalld) <
(1 -5 E(lleall%) + (n+1)2 Since [Tnso(l = 737)* — 0 and .50 2%2- < oo, we conclude
that E(]lex]|%) — 0 as n — oo.

To prove convergence with probability 1, we use standard supermartingale (8] idea. Since
llexll: = 0, E(llentalls | past) < |leal|d + (—ni—ﬁ)—g Let us intoduce a new variable:

So=llealle+ 3 ey s

Then E(Sn41 | past) < S,, where S, > 0. 5, — S with probability 1, for some S. But
Sn = |lenll4 + L., where L, approaches some number L as n approaches infinitv. Therefore,
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len+1ll% also approaches some (random) x with probability 1. But since we have already
proved that E(]les[l%) — 0, £ = 0 almost sure. o

From Corollary 2, Proposition 2. and Theorem 2, we obtain the following theorem:

Theorem 3 With the following learning parameters:
X =1
> 2 ICul = O(N).
<N k21

and a
Diag(an) = —1,
n

the TD(Cy) method depicted in Figure 3 guarantees that the prediction error e, converges
to 0 with probability 1 (as the number of epochs n — oo), provided that the learning rate

is positive and that )
A=3 3 Cu Diag(uQ') (I - Q%)
>0 k>1

is an anti-stable matriz.

Theorem 3 can be made more general. We still have the “convergence with probability
1" property even when ¥,y Zi>1 [Cuk| = O(N 4) where d > 1 is finite. More generally, in
the case that X is any arbitrary non-singular matrix and

. 1
Diag(an) = ;L-Diag(a)
where a is a vector of learning rates, we also have “convergence with probability 1” provided
that the following A is anti-stable:
A = XTDiag(@)X 3.3 Cu Diag(u@*) (I — Q).

10 k>1

4.1 Projection

Suppose V;* is bounded between a and b for all . One may want to use a projection operator
to force V; to have values between a and b each time after the TD operator is applied.

Corollary 3 Ifent1 = Fu((I — ;57An)en+ ;57 Bn) and F,, is a contraction to 0 in the sense
of | - llg, then e, — O with probability 1.

Suppose that G is a diagonal matrix. Consider the following “saturation” mapping:
F(alabl)v(al161)1"'v(ﬂ-n,bn)(y17 Y2,°° -, yn) = (217 22,777, 3n)

where )
a; ify; <a;

z; b iy 2 b
yi ifa; <y < by

16



H z € [a,b1] x [ag, bg) x - - X [an, bn), | F(y) — z|l¢ < ||y — z|lg- In our problem, if X7 DiagX
1s diagonal and if we know that o < V; < 3, then we can, after each iteration, project V; onto
[a, B]. But in general, this kind of projection can prevent TD methods from convergence.

Consider the simplest case. ¢,.; = Sat(([ — %HA)G{L where

1 ifzr>1
Satlz)=< z if-1<z<1 |.

-1 ifz < -1.

We construct a matrix A such that all eigenvalues of A have positive real parts, and
A1, 1T = (—a,—fB), where @ > 0, > 0, and a # B. Then it is clear that if ey = (1,1),
e, does not converge to 0. (Notice that without the saturation mapping, e, — 0.) Below

we present an example of such a matrix A: A = ( 025 :f . Indeed, tr(A) =1 > 0, and

det(A) =2 > 0.

5 Convergence of TD()), TD(A, 1), and TD(Cy)

Roughly speaking, so far we have obtained the following main result: TD(Cy) converges
with probability 1 if

1.
A=XTX3" S Cu Diag(uQ") (I — Q%) (24)
120 k>1
is anti-stable, and
2.
2 2. [Cul = O(N). (25)

t<N k>1

However, given a problem (i.e., a transition matrix () and an initial state distribution u),
not every instance of TD(Cy:) can yield an anti-stable A. In this section, we will show that
for TD(A), TD(A, ), and TD(Cy) (Section 3.3), no matter what @ and u are, A is always
anti-stable, provided that X is non-singular and every non-absorbing state is reachable (i.e.,
u(l — Q) ! > 0).

In this section, we will consider that Cyx = Ci for all ¢. In such a case, Condition ( 25)
is obviously satisfied if 3_; |Ckx| < co. Moreover, ( 24) reduces to

A= XTX Diag(u(l — Q)™)Y Ci(I — Q). (26)

E>1

Let us formulate the general mathematical problem we will consider as follows: What
are the (desirably, necessary and sufficient) conditions on Cy such that for any u, any Q,
and any positive definite matriz P = XT X, the mairiz A is anti-stable? Sutton and Dayan
have studied the case of TD(A), and attempted to prove the convergence of TD()). However,
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there is a flaw in their proofs. The flaw concerns a lemma used by both of them. The lemma,
which was cited from [11] and given on Page 27 of [9], is as follows: If S is a real, symmetric,
and strictly diagonally dominant matriz with positive diagonal entries, then S is positive
definite. This lemma is correct, but their interpretation of “strictly diagonally dominant”
was unfortunately wrong. Matrix S is strictly diagonally dominant if [S.;| > 3=, |Si ;|
for all . They thought the above strict inequality was only needed for at least one 7. A

1 0 0
counter-example is that S=] 0 1 —1 |. However, if the above strict inequality holds
0 -1 1

for at least one ¢ and S is irreducible, then S is also positive definite [11]. But, the §
matrix of concern in the proofs is not necessarily irreducible, for example, in the case where
a non-absorbing state ¢ is not reachable from any other states but u; > 0.

5.1 Background in Linear Algebra
Definition 8 Mairiz A is robust anti-stable (RAS) if for any mairiz P > 0,
~g(PA)Cz€C: Re(z) >0.
Matriz A is strongly robust aﬁti-stable (SRAS) if for any matriz P > 0 and positive diagonal
matriz D, :
o(DPA) Cz€ C: Re(z) > 0.
Let us introduce two notations. Ker(M) is the kernel of matrix M:
Ker(M) £ {z|Mz = 0}.
M+* is an orthogonal compliment of M.

Theorem 4 Matriz A is RAS iff

1. R=A+A">0, and

2.
Ker(R) Ker(R')
A= ( An Az (27)
\ An Az

where Ay; = 0 and Ker(As) = {0}.

Proof: Necessary condition. Suppose A is RAS. First we prove that R = A+ A > 0.
Suppose that, in contrary, for some real non-zero vector z, < (A + A%)z,z > < 0 and

<z,z> = 1. Then, also < Az.z > < 0. One can choose an orthogonal basis {e; =

A . . .
T,€1,€2, - en} = U. Here U is an unitary matrix with columns, eo,- -, ez. Then

A=UAU" and A(0,0) < 0.

—
(04]



if P = UDiag(d;)U~, then P > 0if d; > 0, and tr(PA) = tr(Diag(d;)A) = ¥, d: A(i, 7).
Since /1(1,1) < 0, tr(PA) < 0. if dyg > d;,---,d,. We got a contradiction with a RAS
property; that is, ¢r(PA) should be positive. If ker(A4 + A*) = {0} (i.e., A + A > 0), then
( 27) obviously holds. Suppose that Aer(A+ A7) = z # {0} and

wd

>

A= f/ ,4.]1 A12 .
( Az Az

Since z = Ker(A+ A™), A + A}, =0, An + A}, = 0, and Az, + A3, = 0. Suppose that
Ay # 0. Since Ay is skew symmetric, i.e., Aj; = —AjJ;, there exists a unitary matrix U
such that _

0 1 I'
A=al -1 0 I U
C -
where a > 0.

Let us consider the following positive definite matrix

2DVi iTC"‘ .
PZU(—CT*j 1 >U
0 1
where lambda>>1andT=(_1 0).Then
PA:aU((/\I+(?C)T}:)U*

So aa((AM + CC*)T) C o(PA). But (M + CC*)T)g = (A + CCHT*(M + CC*)(AI +
CC*)™' = —(AI+ CC*)T, where @ = (A\I + CC*)™! > 0. So all eigenvalues of (AI + CC*)T
are pure imaginary ones, which contradicts to the assumption that A is RAS. So we have
proved that A;; = 0. If ker(Az) # {0}, then Ker(A) # {0}, which also contradicts to the
RAS property.

Sufficient condition. We will use the following generalization of Lyapunov Theorem:

If for some positive definite R, RA+ AR = Q > 0 and the pair (A, Q) is observable, then

all eigenvalues of A have a positive real part. Let us consider some positive definite P. Then
P Y PA)+(A"P)P'=A+ A",
Ker(A+ A") =2

and !
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where Ker(As; ) = 0. We have to prove that the pair (PA, A + A") is observable. Indeed,

z ozt
P = D Q@
: Qf B
D>0,B>0.and D—-QB'QT > 0.

—- D'Q\fOi“\_ QA21'
PA_(QTIB/)(Aﬂ!{“}_(BAzll'»

Since Ker(Az) = {0} and B > 0, Ker{BAs) = {0}. We just refer to a well-known resuit
(see, for instance, [4]); that is, (A, H) is observable iff (A1, A21) is observable, where

[ ST 8]

Ker(H) Ker(H)*
P = Au : A12 [{CT(H)
A21 A22 : I{CT‘(H)'L

1 2
01

T
1 2 12\ _(22\a
(0 1)+(0 1) _(2 2)"320’

Ker(L) = {(a,—a)T | @ € R},

Example:[1] The matrix A = ( ) is robust anti-stable (RAS). Indeed,

and
Ker(L)y* = {(8,8)" | B € R}
Then in the basis e; = (1/v/2,—1/v/2)T and e, = (1/v/2,1/+/2)7, matrix A has the following

representation:
€1 €2

A= 0 . €1
-1 . (5]
e; € Ker(A+ A*) and e; € Ker(A+ AT)*. So A is RAS. We will see the same example

later in connection with a different question.

Remark: If A is RAS, then obviously A is nonsingular. Moreover, A™! is also RAS. Indeed
for positive definite

o(PA™') C {z € C: Re(z) >0} iff o((PA™)™") C {z € C : Re(z) > 0}.

But o((PA™1)™!) = o(AP™Y) = o(P'A), and o(P~'A) C {z € C : Re(z) > 0} since
P-1> 0. By an analogous argument. if A is RAS, then A* is also RAS. But sum of the two
RAS matrices is not necessary RAS. Indeed, consider a RAS matrix A such that A + A" is

singular. A and A™ are RAS, but A + A" is not.
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Proposition 3 Consider an absorbing matrzzQ (z e, Qiy 2 0., <1, and p(@Q) < 1).
For an arbitrary non-negative rowu = (uy, Uz, -, us -+ +), we deﬁne d= (dl,dz, oy dys o) =

u(l —Q)7!, d; > 0. Then B 2 Diag‘l(d)QTDiag(d) is also semi-stochastic (i.e., B;, > 0
and 3_, B;; <'1).

Proof:

i d,‘ - U;
= T il = <
Zj:BJ di ;Q}- d.’l di — ]‘
since u, > 0. We used here that d(/ — Q) =u iff d; =¥, Q,:d; = u; for all 4. O

Corollary 4
1Qlp < 1.

Proof: According to ( 19), ,
' IQllo = ((QDQ7 D).

@ and D7*QTD are semi-stochastic. So product QD 'QTD is also semi-stochastic. The

latter implies that p(QD'QTD) < 1. m]

Corollary 5
DI-Q)+(I-QHD > o.

Proof: According to ( 18), it is equivalent to show that
(I—Q)+(I~QT)5 >p 0.

Since Qo= 1@0ll £ 1, (I -Q)+ (I - Q); — (@ +®@p) =2p 0. Also we know that
matrix B = %(Q + QD) is semi-stochastic. Moreover, both @ and @}, are semi-stochastic.

Suppose that I — 2(Q + Qp) is singular. Then by the famous Perron-Frobenius Theorem,
for non-negative matrices, there exists nonzero non-negative vector r = (z1,z3, -+, i, -)
such that :z:[%(Q + @Qp)] = z. Assume that z,,z5,--+,z, > 0, and T,41,---,2, = 0. For Q
(and similarly for @p), ;=1 nQ(i,5) =1 when 1 < i< r7,and Q(,7) =0 when 1 <i < 7
and j > 7. But this contradicts p(Q) < 1. O

Corollary 6
DI -QM)+(I-(@"")D > 0

where

D = Diag(d), d>0,

and

d=u(I-Q) ', u>0.

Proof: According to Corollary 5, it is enough to show that d = @(7 ~Q™)~! for some @ > 0.
We use here that Q" is also absorbing. Or it is equivalent to show that d(I — Q™) > 0. But
d(] Q")_U(] Q) 1”‘@”)-U(]+Q+Q2+"'+Q"'I)ZO. since © > 0 and all

nowers O have nonnegative elements. -




Corollary 7 For any nonzero sequence of Ci such that C, > 0 and 3~ Cy < o0,

D(Y. CklI = Q%)) + (3. Cull = Q¥))D > 0.

k>1 k>1

Proof: It is a direct consequence of Corollary 6. O
Corollary 8

DU+@H+(I+@%™D > 0.
Proof: We prove a bit general results. If A is symmetric with non-negative elements and
(I—A) > 0, then (/+A) > 0. Since A is symmetric, [|All = p(A), and there exists a vector z
with non-negative elements such that Az = p(A)z. Then 0 < (I — A)z, z = (1 — p(AN=ll?,

so p(A) <1 and —I < A < I. Returning to our original problem, we use symmetricity and
positive definiteness in terms of D-inner product. a

Proposition 4
A+ A >0 iff A7+ (A7) >0.

Proof: First of all, if A+ A* > 0, then by Lyapunon Theorem all eigenvalues of A have
positive real parts. So at least A™! exists. Below we use the following well-known and very

useful implication:
(P>0)A(det(X)#0) = XPX">0.

The following identities prove this proposition:
0 < A—I(A+ A*)(A*)—l — (Ax)-—l +A—l — A—l + (A—l)*.
0

Remark: It is clear that Proposition 4 works for any P > 0 using the following substitution:

A" = Ap and > = >p.

Definition 9 ‘An invertible cone of functions is a set C of functions which satisfy the fol-
lowing two properties:

1. fi.f2€ C = afi + Bf € C for any a.f > 0 and o? + 5% > 0.

2. feC=;€C.

We use C(f1,- -+, fn) to denote the minimal invertible cone containing all functions f;.

1o
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Proposition 5 Suppose that the following inequality holds for some matriz ) and some
functions f;:

@)+ (fil@))" >0, 1<z<n,
then for any function f € C(f1,---, fn)

F@y+ (f(@)) > 0.

Proof: This proposition is just a direct application of Proposition 4 and convexity of a set
of positive definite matrices. 0

Theorem 5 Consider an arbitrary function f which belongs to invertible cone Cq generated

by 1 and 1 & z", then
Df(Q)+ f(QTYD >0

where () is semi-stochastic, p(Q) < 1, D = Diag(d;), d(I — Q) > 0, and d; > 0.
Proof: This theorem follows directly the previous corollaries. a

Proposition 6 (Caley Transform} Suppose that I + X is invertible, then
I-X)I+X)""+((I-X)T+X)")" >0 iff | X|I<1, - (28)

and
T-X)T+X)"+((T-X)T+ X)) 20 iff |X]| <1 - (29)

Proof: We prove only ( 28). ( 29) can be proved similarly. Let us recall that for nonsingular
matrix B, the following equivalence holds:

A>0 <= XAX">0.

So

T+X) " I-X)+(T-X)(({I+X)H)* >0
T+X) I +X)T-X)+ T =X +X)™H))T + X) >=;0

p—

= I-X){I+X)+{I+X)I-X) >0

= [-X+XT - XX"+]+X-X"-XX* >0
= XX* < I

= ||X]] < 1.

Corollary 9 For any compler number z. |z| = 1,
(21 = X)(=I + X)7 + (=] = X)(=I + X)) > 0 iff |X] <1,

assuming (zI + X) is invertible. which obviously holds if p(X) < 1. The above also holds
when > is replaced by >.
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given a current state. In this section, we make the problem more general: The Markov chain -
can generate a non-zero reward at any state, and the learning task 1s, given a current state i,
predicting the total rewards at the end, V; = X7 - w. Below we define a new weight-update
operator for this type of learning tasks. With this operator, We will show that the mean of YoosE
the prediction €rrors at epoch 7 is exactly the same as what we obtained before; that is,
Equation ( 1)- Because of the same error dynamics, the “convergence with probability one”

property as well as other theorems apply to this type of learning tasks as well.

Let ¢(s) be the «reward” received at state s. Since we have considered in the previous
sections the case that ¢(s) = 0 for all non-absorbing states, here it is enough to consider

only the case that
#(s)=0 Vs€ A.

Let ¢ = (¢(Sl),¢(52),"',¢(Sn))T, where s; is a non-absorbing state and 7 is the total
number of non-absorbing states. As usual, let V* be the perfect prediction.

Theorem 7

vro-Q e (30)
Proof:
Ve = E(i S(s()Ns(0) =i €N)
_ LI+Q+Q+ Q@+
L(I - Q)¢

where [; is a n-dimensional vector whose elements are all 0 except for the i-th element.
Hence, the above theorem follows. o

Now we define an update operator to predict cumulative rewards:
Definition 10
N
Awg & XTpyw — Xagyw +e(s(®) + B(s(t + 1)) + -+ + Bt + k= 1) Xs0 (31)
Theorem 8 Corollary 1 still holds for the new operator in predicting cumulative rewards.

Proof: In a similar way to prove Lemma 2, we now establish something similar to Lemma
2. (Recall that z = 0 now.)

E(Awsklp, T)
_ XDiag(u@)(@ - DX w+X Diagu@)I +Q+Q* +--+ Q*'1é
X Diag(uQ')(I — @)U ~ Qe — XTw)
_  XDiag(u@)(I — Q)V™ — XTw) (32)

il

32), it 1s straightforward to prove the above theorem (see the proofs for Theorem 1

From (
a

and Corollary 1).
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