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a b s t r a c t

Laser welding is a widely used but complex industrial process. In this work, we propose the use of an
integrated machine intelligence architecture to help address the significant control difficulties that
prevent laser welding from seeing its full potential in process engineering and production. This architec-
ture combines three contemporary machine learning techniques to allow a laser welding controller to
learn and improve in a self-directed manner. As a first contribution of this work, we show how a deep,
auto-encoding neural network is capable of extracting salient, low-dimensional features from real
high-dimensional laser welding data. As a second contribution and novel integration step, these features
are then used as input to a temporal-difference learning algorithm (in this case a general-value-function
learner) to acquire important real-time information about the process of laser welding; temporally
extended predictions are used in combination with deep learning to directly map sensor data to the final
quality of a welding seam. As a third contribution and final part of our proposed architecture, we suggest
that deep learning features and general-value-function predictions can be beneficially combined with
actor–critic reinforcement learning to learn context-appropriate control policies to govern welding
power in real time. Preliminary control results are demonstrated using multiple runs with a laser-
welding simulator. The proposed intelligent laser-welding architecture combines representation, predic-
tion, and control learning: three of the main hallmarks of an intelligent system. As such, we suggest that
an integration approach like the one described in this work has the capacity to improve laser welding
performance without ongoing and time-intensive human assistance. Our architecture therefore promises
to address several key requirements of modern industry. To our knowledge, this architecture is the first
demonstrated combination of deep learning and general value functions. It also represents the first use of
deep learning for laser welding specifically and production engineering in general. We believe that it
would be straightforward to adapt our architecture for use in other industrial and production engineering
settings.

! 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Laser welding is a precise and fast welding technique that sees
widespread use in industrial welding systems [1]. Unfortunately,
laser welding is a complex process that is often hard to control
[2]. To address control difficulties, recent research has
demonstrated cognitive laser welding systems that perform well
on a defined work piece after setup [3]. Nevertheless, cognitive
control is still in an early stage of development [4], and to fulfill
the requirements of modern industry, systems must have the

flexibility to deal with changing conditions without the need for
demanding and time-intensive manual setup [5].

To address the need for both rapid setup times and welding
system flexibility, we propose the idea of a self-learning and self-
improving laser-welding system that would be able to perform
well under changing circumstances. As a classical model-based
approach is not feasible due to the dynamics and uncertainty
inherent to the process, we suggest applying machine learning
techniques. Our proposed approach brings together a selection of
modern machine learning techniques, including deep-learning
neural networks for generating state representations and
state-of-the-art reinforcement learning prediction and control
algorithms. These algorithms empower the system to leverage
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important aspects of intelligence during welding, namely percep-
tion, prediction, and interaction.

Representation: As a laser-welding system’s sensor signals are
multidimensional and multimodal, it is often not realistic to use
them directly as an input for real-time control learning algorithms.
Building on established ideas in dimensionality reduction, we
therefore use a representation-learning (perception) algorithm to
transform the raw sensor data into a low-dimensional and
transformation-invariant representation of the systems state. The
system learns to abstract its inputs. In particular, a technique that
has shown its capability to produce the lowest classification error
for various problems when used for feature extraction is deep
learning [6]. Furthermore, deep auto-encoders have been shown
to successfully compete with state-of-the art feature extraction
techniques (e.g., principal component analysis, linear discriminant
analysis) [7] and improved [8] or directly learned [9,10] policies for
high-dimensional image data in reinforcement learning. Stacked
denoising auto-encoders have shown the capability of achieving
a general representation, which leads to more robustness against
varying data and overfitting [11].

Prediction: A very common problem in industry is the inability
to directly measure process quality. There are several approaches
to this issue, e.g., system models, envelope curves or look-up
tables. But these techniques are restricted either in applicability
(a priori model), accuracy (envelope curves) or scalability (look-
up tables). They are also limited in their capability to adapt to
changes. To deal with these issues, we include predictions about
process quality and state as an important part of intelligence [12]
in our architecture; importantly, we suggest that predictions
should be able to be learned and adapted during the ongoing oper-
ation of a system. To date, prediction learning has been dominated
by linear models that are difficult to apply to nonlinear and time-
varying problems [13]. These problems have been overcome by
recent research using the temporal-difference (TD) reinforcement
learning approach [14]. New techniques have extended classical
TD-learning to allow generalized online predictions [15]. We
include these predictions into our proposed system using a tempo-
rally extended prediction approach called nexting [16] with
general value functions, an approach that is capable of learning
and making real-time predictions at multiple timescales.

Control: There exist a number of different controllers for indus-
trial applications, e.g., PID-controllers, adaptive controllers and
fuzzy controllers. Given a correct and accessible quality measure-
ment, it would be easy to implement these techniques for laser
welding. But all these approaches need a time-consuming and
human assisted setup process and do not work well for changing
conditions. To enable our architecture to provide a high-quality
welding seam on its own, it is necessary to have a controller that
can learn from experience and improve its own performance.
Therefore we suggest a machine learning algorithm, namely an
actor–critic reinforcement learning (ACRL) algorithm [17]. This
type of algorithm consists of two parts: an actor and a critic. The
actor takes actions according to a learned policy while the critic
evaluates these actions. The actor–critic algorithm has several
characteristics that are useful for our specific control problem. As
ACRL algorithms are parameter based, their computation can be
done incrementally (linearly) and they can be updated within mil-
liseconds. Due to the fact that experience—from which the algo-
rithm already had learned—does not need to be stored, the
memory requirements do not increase over time [18]. By using
function approximation they also scale well to real world prob-
lems; this has been shown in various applications [19–22].

Our proposed architecture [23] for integrating representation,
prediction and control in laser welding therefore promises to

address key industry needs relating to both the calibration and
optimization of diverse welding processes. It is described in the
remainder of this manuscript as follows. Section 2 describes the
laser welding system and the monitoring, as well as how the algo-
rithms will work together in the proposed architecture. Section 3
focuses on deep learning and how features are generated via deep
auto-encoders from the existing sensor input. These features are
the input for the reinforcement learning algorithms, explained
and evaluated in Section 4. The results are discussed in Section 5
and followed by concluding remarks in Section 6.

2. Laser welding and the proposed architecture

2.1. The laser welding process and monitoring

Although laser welding is quite common in industrial applica-
tions, it is still necessary to closely and consistently monitor and
control the process [24]. Despite the environmental uncertainties
that the process is exposed to, like changes in temperature, humid-
ity or the welding gas quality, there are also uncertainties caused
by the material. These include, but are not limited to, changes in
the chemical compounding, and the thickness and contamination
of the surface. Fig. 1 illustrates examples for laser welds with
different quality.

In our setting, process monitoring is done by a camera-based
system and photodiodes, which is a common setting in laser weld-
ing applications [25]. As the keyhole, which is the area where the
laser hits the material, oscillates with a typical frequency of
500 Hz [26], all sensors have to sample with at least twice this fre-
quency. This can be considered as a benchmark real-time capabil-
ity for the process. The camera can sample at rates of up to
1500 Hz. It provides important information about geometrical
parameters of the observed keyhole [27] with a resolution of
144! 176 pixels. Additionally, the process is observed by three
photodiodes, sampling at 40 kHz and corresponding to different
wavelengths. The first diode observes the process temperature at
the wavelength between 1100 nm and 1800 nm. The second
observes the plasma radiation at a wavelength of 400–600 nm.
The third diode records the laser back reflection at 1050–1080 nm.

2.2. Architecture

Laser welding is a dynamic process with high uncertainty and
therefore it is not feasible to build a precise model of the process,
which would be the classical control approach. We therefore pro-
pose a machine learning approach. Our suggested architecture
combines deep neural networks (DNN) [7] with reinforcement
learning algorithms [28].

Fig. 2 shows the architecture, which consists of three parts: rep-
resentation, process knowledge (prediction), and process control.
In the first part—deep learning of representations—the monitored
sensor data is processed and transformed into informative features
which are lower in dimension to ensure real-time capability and
robustness. By doing so, the system is able to detect its current
state only by the provided sensor data and is therefore more
invariant to environmental changes. These features are used in
the second part—prediction—to build up knowledge about the pro-
cess. By using temporally extended predictions, the system has the
capacity to evaluate its current performance and predict how its
actions might impact its performance in the future. The features
from the representation and the knowledge from the second part
are combined in the third part—process control—to control the sys-
tem in terms of the laser power applied to the welding surface.
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3. Deep learning

Our representation approach employs techniques from deep
learning. Deep learning is a concept inspired by the way the visual
cortex of mammals is structured [29]. The visual cortex is built in a
hierarchical way—in the first representation layer, simple edges are
detected and then gradually combined to more abstract features in
higher layers, leading to a robust representation. To benefit from
this concept, artificial neural networks with several layers of non-
linearity were created. Adding more layers, however, leads to more
complex and non-convex optimization problems, which can cause
this approach to perform worse than shallow neural networks [30].
This problem has been overcome by a greedy layer-wise pre-
training, where first each layer is trained individually (pre-
training), followed by fine tuning performed on the whole neural
network [7].

Given the right architecture, i.e., reducing the number of neu-
rons in subsequent layers, this learning technique can not only

be used to generate meaningful representations for a given data
set, but also to compress it. In order to create compressed features,
the neural network has to reduce the number of neurons in the
middle layer. This architecture is called an auto-encoder [7]. In
its simplest form, an auto-encoder consists of three layers, namely,
the input layer, the hidden representation layer and the output
layer. We assume that there are p neurons in the input and output
layers, and q neurons in the hidden layer. Let us denote by
f : R! R the activation function, e.g., the sigmoid function, and
x 2 Rp a vector from the input layer. The feature value at the i-th
neuron in the hidden layer is then computed by

hiðxÞ :¼ f w>i xþ bi
! "

; for all i ¼ 1; . . . ; q; ð1Þ

where wi 2 Rp denotes the weighting coefficients associated with
the i-th neuron, and bi 2 R is the corresponding bias (offset). After
calculating the features in the hidden layer, the hidden representa-
tion will serve as an input for the decoding/output layer. Let us
denote by

h :¼ h1ðxÞ;h2ðxÞ; . . . ;hqðxÞ
# $> 2 Rq ð2Þ

the representation vector in the hidden layer. Then, the computa-
tion in the output layer is done as follows

yjðhÞ :¼ f 0 w0>j hþ b0j
% &

; for all j ¼ 1; . . . ;p; ð3Þ

where w0j 2 Rq and b0j 2 R are the parameters associated to the j-th
neuron in the output layer. Let us denote W :¼ ½w1; . . . ;wq' 2
Rp!q and W 0 :¼ ½w01; . . . ;wp' 2 Rq!p. Note that the activation
function f 0 is not required to be the same activation function as
f. If the decoder weights W 0 are tied to the encoder weights W ,
i.e., W 0 ¼ W>, the working of an auto-encoder is comparable to
the behavior of a Restricted Boltzmann Machine [11].

The error between the original input vector x and the

reconstruction y :¼ y1ðhÞ; . . . ; ypðhÞ
# $T 2 Rp can be considered as

a measure for the quality of the hidden representation h and
serves as loss function for the backpropagation algorithm [31].
For real-valued inputs, e.g., images, the mean squared error

Fig. 1. Laser welds and corresponding cross sections for zinc-coated steel in overlap position. On the left side is a laser weld of high quality, while the weld on the right side is
a failure. In the upper row the difference can be distinguished by the smoothness of the welding seam. In the cross section it is clearly visible that the laser weld on the right
sight is not sufficient. There is no connection between the two plates.

LASER WELDING SYSTEM

Representation

Process 
Knowledge

Process 
Control

INTELLIGENT 
CONTROL SYSTEM

control signal stream of 
sensor data

knowledge

features

features

Fig. 2. Proposed architecture for intelligent laser welding. The architecture consists
of three elements: representation, process knowledge (prediction), and process
control. The first element extracts meaningful low-dimensional features from the
sensor data. The second element then uses these features to learn about the process
and build up knowledge. This knowledge together with the features is used to
control the process in the third element.
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(MSE) is the most common choice [11], resulting in the final loss
function

Lðx; y;W;W 0Þ ¼ 1
2
kx( yk22 þ

k1
2
kWk2F þ

k2
2
kW 0k2F ; ð4Þ

where k ) kF is the Frobenius norm of matrices. Here, the loss
function consists of two parts: the residual/reconstruction error
term and a regularization term, also known as a weight decay term.
The weight decay parameters ki > 0 control the magnitude of
weights in different layers in order to prevent the auto-encoder
from overfitting [32].

To extend the traditional autoencoding principle to deep learn-
ing, auto-encoders are stacked on top of each other, as illustrated
in Fig. 3. In this setting, the hidden representation of the first enco-
der serves as input for the next one, and so on. This creates repre-
sentations from representations, analogous to deep belief neural
networks. Following the idea of greedy layer-wise pre-training,
first a traditional one-step auto-encoder is trained. After conver-
gence, the decoding weights are fixed and another one-step auto-
encoder is stacked as depicted in Fig. 3. This procedure is repeated
until the full architecture is built up; this process is then followed
by fine tuning over the whole stacked auto-encoder.

During layer-wise greedy pre-training, each auto-encoder input
is corrupted with white Gaussian noise, sampled from a Gaussian
distributionNðl;r2Þwith mean l and standard deviation r. White
Gaussian noise, with l ¼ 0, was chosen as it corresponds to noisy
sensor readings, which occur in cameras and photodiodes. It has
been shown that trying to reconstruct the uncorrupted image from
corrupted inputs leads to more meaningful representations [33]. As
can be seen in Table 1, the noise has a mean of zero and for the first
auto-encoder a standard deviation of r ¼ 0:5. In the subsequent
layers the standard deviation is adapted to activation of the layer
to avoid unreasonably high activations due to the corruption. This
is done by computing the standard deviation of the activation in
each layer rk, where k indicates the layer, and reducing it to 10%
of the activation for the noise sampling. In each layer 50% of the

input neurons are corrupted with noise. An extensive introduction
to stacked denoising auto-encoders can be found in [11].

As activation function for the encoder we selected a partially
linear function that has more desirable properties than the typical
logistic or tanh activation functions [34]. A unit that uses this
activation function is called a rectifier linear unit (ReLU). The ReLU
activation function is defined as

f ðxÞ ¼ maxðx; 0Þ; ð5Þ

and as a consequence, roughly 50% of the units in the hidden layers
are off for random initial weights. Therefore ReLUs learn a sparser
representation compared to other units. Further, ReLUs allow faster
training in a twofold sense: they need less iterations to progress and
the execution of their activation function is much faster on most
CPUs [35]. The decoder uses a non-squashing activation function,
as suggested for real-valued inputs [11]. The choice of the learning
rate has a crucial influence on the convergence and accuracy of
results. The learning rate decreases and the momentum increases
linearly, as described in [36,37], after half of the iterations for both
pre-training and fine tuning.

(a) (b) (c) (d)

(e)

Fig. 3. Stacked denoising auto-encoder. (a) An auto-encoder with only one hidden layer learns the mapping from a corrupted input to the output. (b) As soon as learning
converges the weights are fixed. (c) A new, smaller, layer is stacked on top of the first layer. The inputs to the second hidden layer are corrupted with noise again. (d) After
convergence, the learned weights for the first and the second hidden layers are fixed. (e) The final architecture, as used for the experiments in this work. The actual number of
neurons used in each layer is described in Table 1.

Table 1
Deep auto-encoder parameters.

Parameter Value

Neurons per layer (encoder and
bottleneck)

1024—2048—1024—512—256—16

Decay learning rate 0:0005—0:00025
Momentum rate 0:005—1
L1 weight decay factor 0.00005
Mini-batch size Pre-training: 100, fine-tuning: 200
Additive Gaussian noise in layer 1 Nð0;0:5Þ
Additive Gaussian noise in layer 2—4 Nð0;0:1rkÞ
Corruption rate 50%
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To further speed up the training, we apply Mini-Batch Stochas-
tic Gradient Descent (MB-SGD) [38] to the pre-training and fine
tuning. MB-SGD is a trade-off between the iterations until conver-
gence and the time to calculate an iteration and therefore is the
fastest when the mini-batch size is optimal. For a faster conver-
gence and lower error we apply the classical momentum method
[39] to MG-SGD. Once the training process has converged, the
decoding layers, i.e., all layers after the bottleneck, i.e., the auto-
encoder with the smallest number of neurons for the hidden rep-
resentation,which is denoted h5 in Fig. 3e, can be removed and
the hidden representation in the bottleneck layer can be used as
low dimensional representations, or features, as depicted in Fig. 2.

To test the performance of the DNN approach described above,
experiments were conducted on 16,000 laser welding images from
different processes, divided into four sets of equal size. These sets
were used for fourfold cross-validation. A region of interest was
applied to each image and the section was subsampled to a size
of 32! 32. For the hidden representation in the bottleneck exper-
iments with q 2 f4;8;16;32;64g were done. Using 16 features
yielded the lowest error. The deep auto-encoder achieved a mean
value of reconstruction error of 16.6% from 16-dimensional fea-
tures on 8 different test data sets. Compared to Principal Compo-
nent Analysis (PCA), which had a mean reconstruction error of
15.5%, the deep auto-encoder is a competitive alternative. The deep
auto-encoder features also yielded a lower classification error
when used as input for two Support Vector Machine (SVM) classi-
fiers to distinguish between clean and contaminated welding
seams (see Table 2).

The purpose of the representation approach is to extract mean-
ingful and compressed features in order to be able to distinguish
different states, e.g., a clean welding seam or corrupted seam.
Fig. 4 demonstrates the reaction of the neural network to different
images. It can be seen that the activations vary and the neural net-
work is therefore able to distinguish the different states presented

by the images. The activation range in the bottleneck layer, as
shown in Fig. 4, was not bounded in any way and is only dependent
on the layer number. Due to the used activation function and the
resulting sparse representation, the activation amplitude will
become less with each added layer.

To give further insights into the learned DNN, we visualize its
features in a specific way: all, except one, features are set to zero.
The resulting output of the decoder is scaled by the value of the
remaining active feature. Using this technique, we generate an
image which shows the specialization and activity of the particular
feature as bright parts. This is repeated for every feature. The
output visualization for this process can be found in Fig. 5.

4. Reinforcement learning

Reinforcement learning (RL) is a branch of machine learning
and artificial intelligence that focuses on goal-directed learning
and decision making [28]. In an RL problem, the goal or objective
of learning is specified in terms of a single scalar signal known as
reward that provides a measure of success or failure. As such,
methods for solving RL problems do not explicitly rely on labeled
training examples during learning as in the related field of super-
vised learning—a RL solution method learns through trial and error.
During ongoing interactions with a problem or environment, a rein-
forcement learner takes actions and observes the resulting reward.
These observations are then used by the learner to change the way
it selects actions. In other words, an RL solution method uses val-
uations of situations and situation-action pairings to alter the
way it maps situations to available actions. This mapping is termed
a policy. Because policy change is driven by the maximization of an
outcome, as opposed to fitting to a desired means of achieving an
outcome, RL does not necessarily require a designer to provide
comprehensive domain information for each new learning
scenario. RL can consider the whole problem without explicitly
dividing and optimizing sub-problems. Because of this generality,
and also because RL is primarily concerned with learning from
ongoing sequences of experience, it is well suited for changing
environments and varying conditions [28]. Integral to an RL
approach are methods for learning expectations of future observa-
tions from samples of experience (prediction learning), and using
samples of experience to affect policy change (control learning).

In general, a RL problem can be well thought of as a Markov
Decision Process (MDP), wherein action choices by a learner
partially determine the learner’s progression through a set of situ-
ations known as states, and rewards resulting from the transition
from one state to another by way of a given action. Formally, an
MDP can be defined by a quadruple ðS;A;P;RÞ, wherein S denotes

Table 2
Comparison of the SVM classification error, using PCA and deep auto-encoder
extracted features with different numbers of features. The best classification results
for both approaches are marked in bold.

Classification error PCA Deep auto-encoder

SVM RBF kernel (4 features) 4.93% ± 0.27% 5.54% ± 0.51%
SVM RBF kernel (8 features) 1.66% ± 0.17% 1.39% ± 0.16%
SVM RBF kernel (16 features) 1.79% ± 0.19% 0.81% ± 0.11%
SVM RBF kernel (32 features) 5.68% ± 0.23% 2.07% ± 0.10%
SVM RBF kernel (64 features) No convergence 5.43% ± 0.33%
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Fig. 4. Neural network reaction to different inputs. The figure shows the original image (after preprocessing), the reconstruction, and the color-coded activations for two
different processes. The error is the MSE between the original image and the reconstruction. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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the set of states, A the set of admissible actions,
P : S!A! S! ½0;1' the transition probabilities between states,
and R : S!A! S! R the rewards observed on these transitions.
At each time step t 2 f0; . . . ; Tg, the learner choses an action
a 2 A in state s 2 S, following a policy p : S! A. The system will
then observe a successor state s0 2 S and reward r ¼ Rðs; a; s0Þ 2 R,
according to the transition probabilities and rewards given by P

and R. Given an MDP, a RL system aims to maximize the expected
sum of future rewards. This quantity is known as the return, and is
typically weighted according to a discount factor c 2 ½0;1' that
determines if the learning objective places more weight on imme-
diate (c approaches 0) or future rewards (c approaches 1). In order
to maximize return the learner uses each sampled transition to
improve a value function, which is a learned approximation of the
true expected return for all given states (Vp : S! R) or state-
action pairs (Qp : S!A! R) while following policy p. The learned
value function is subsequently used to improve p. This iterative
process is known as generalized policy iteration, and is a hallmark
of RL. As such, p (a control policy) and Vp (predictions of expected
future reward for all states) represent the outputs or solutions
learned by an RL method.

In order to represent the continuous state spaces to an RL algo-
rithm, as in many real-world problems of interest, observations
from the environment need to be approximated. One approxima-
tion technique well suited to online implementation is tile coding,
which transforms continuous variables into a sparse, binary repre-
sentation [28]. We employed the standard tile coding approach
described by Sutton and Barto [28], giving in a function
x : S! Bn that maps a g-dimensional column vector s 2 S#R g

to an n-dimensional binary column vector xðsÞ. Vp may then be
approximated by learning a columnar weight vector w, also of
dimension n; the inner product of w>xðsÞ gives the learned return
for any given state.

4.1. Prediction

To control a welding process reliably, it is necessary to have suf-
ficient information about the current performance of the system.
As such a performance measure is not directly available in laser
welding processes, we now present our implementation of a speci-
fic RL algorithmic approach known as nexting [16] to estimate the
effectiveness of process control. Nexting is a term known from psy-
chology—it refers to a short-term prediction about what will hap-
pen next [40]. As demonstrated by Modayil et al., nexting also has
application in computational prediction problems, and specifically
presents a way to leverage well known techniques from RL to esti-
mate the outcomes of various real-time signals [16]. In particular,
nexting makes use of temporal-difference learning [28] with linear
function approximation and general value functions [14], and is
therefore capable of making predictions about arbitrary non-
reward or reward signals at multiple time scales. Our temporal-
difference learning algorithm for process quality nexting is pre-
sented in Table 3, following the approach described by Pilarski,
Dick, and Sutton [22]. For this work, we evaluated two discount
rates, c ¼ 0 and c ¼ 0:8. With c ¼ 0 the algorithm predicts the
immediate pseudo-reward, i.e., the current quality, in a way anal-
ogous to incremental supervised learning using least-mean-
squared updates; the choice of c ¼ 0:8 results in a more farsighted
prediction. The trace decay parameter was set to k ¼ 0:9, and we
used a step size (learning rate) of a ¼ 1

m, where m is the number
of active tiles in the tile-coded feature representation xðsÞ. Weight
and trace vectors were n ¼ 10;001-dimensional column vectors,
and were initialized to zero.

To provide input to the learner, different laser welding pro-
cesses were performed and the resulting sensor data was recorded.
Later, these welds were evaluated by an expert and labeled, which
means each process is classified by its quality, according to EN ISO

Fig. 5. DNN feature visualization and original images. The dark spots in the original image are due to contamination with oil. To improve the visibility, a luminance filter has
been applied to the images. For each input image 16 features-images are reconstructed, which show the specialization and activation for the image. It can be seen that not
only the level of activation but also the specialization for each feature is dependent on the input image. Different features specialize on different aspects of the input image.
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13919-1:1996. The labels range from 1 to 4, where 1 indicates a
non-sufficient laser weld and 4 denotes the ideal laser weld,
denoted as B in the EN ISO 13919-1:1996. The labels 2 and 3 cor-
respond to the classes D and C, respectively. These expert-derived
quality measures served as the signal to be predicted by the nex-
ting algorithm—i.e., the pseudo-reward signal r used as part of
the temporal-difference update in line 4 of Table 3. Based on the
current state—i.e., the sensor data, denoted s—the algorithm
calculates a predicted value, using its weight vector w. This value,
w>xðsÞ, is then compared with the actual quality r and the
discounted prediction for the next observed state cw>xðs0Þ to
compute the scalar temporal-difference error d (td-error d, line
4). The weights are then shifted so as to reduce the td-error (line
6), improving the algorithm’s prediction such that the algorithm
approaches the td-fixpoint: r þ cw>xðs0Þ ¼ w>xðsÞ. This update is
done sequentially for each time step in the dataset. As a result of
this training process, the weight vector w becomes a compact sum-
mary of the feature-to-quality relationships underlying the labeled
examples. After the weight vector is learned appropriately, the
learned weights, and thus the stored predictions, can be applied
to new processes. For visual comparison with the labeled process
quality values, the learned return w>xðsÞ may be c-normalized
according to the degree of discounting using ð1( cÞw>xðsÞ.

The algorithm was trained on a zinc-coated laser welding pro-
cess in an overlap position. The laser was set to the appropriate
conditions for the material, i.e., a power of 2000W and a velocity
of 3.5 m/min. The welding seam was contaminated with grease
on two different spots. The contamination impacts the quality of
welding, as the grease starts to burn once the laser hits it. This
most likely results in an insufficient joint and therefore in a drop
of the welding quality for this area. For each experiment we eval-
uated our approach using two error measures (Fig. 6, listed below
each plot title). The first and most appropriate measure, given the
rank-ordered nature of the quality labels, is the simple mean-
absolute-error, or distance error, between the normalized predic-
tion and the true quality. To provide an analogy to the supervised
learning case with c ¼ 0, we also describe the classification error,
wherein the prediction is rounded to the nearest integer and com-
pared to the true label, indicating whether the algorithm predicts
the right quality class. The state was provided by the 16 DNN fea-
tures from the camera image, plus the photodiode data, resulting
in a 19-dimensional state vector s. By using the features from the
DNN representation-learning algorithm, we follow the architecture
introduced in Fig. 2. The first three plots in Fig. 6 demonstrate the
algorithm’s capability to learn and generate the immediate process
quality for the sensor data (c ¼ 0). The first plot in Fig. 6 illustrates
the performance on a representative training process after multiple
passes through the data. It can be seen that the algorithm is cap-
able of learning the process and correctly predicts the true quality
from the sensor data.

To also show the capability for predicting unknown processes,
the algorithm was trained on one set of processes and then evalu-
ated on a different, previously unseen process. The second plot in
Fig. 6 shows prediction performance on the testing dataset after
one training iteration through the training dataset, equivalent to
online learning using the previous process as a starting point. After
seeing only one pass through the training data the algorithm is
already capable of following trends in the testing data, but the per-
formance is still limited. While the learner is able to differentiate
between the acceptable and bad parts of the process, the distinc-
tion between the good and bad classes is less clear, as can be seen
by the distance error of 0.48. For comparison, learning was then
continued iteratively on the training data until convergence, with
testing again done on a single pass through the testing data. The
results are shown in the third plot of Fig. 6. With added training
the algorithm is able to clearly differentiate between the accept-
able and the bad parts and the distance error has decreased to
0.28.1

While providing an instantaneous measure of quality is impor-
tant, the use of a temporal-difference learning approach such as
nexting provides advantages over conventional supervised learn-
ing in that it can also incrementally learn temporally abstract
quantities—in effect, the performance over a given window of the
future. This forecasting can be important for changing control
parameters in advance of future observations. The last plot of
Fig. 6 demonstrates the capability of temporal extended predic-
tions. The algorithm was trained to anticipate the process behavior
over a discounted window of approximately five frames ahead
(c ¼ 0:8), which corresponds to 0.1 ms. As shown, the system is
able to learn temporally abstract forecasts for the provided weld-
ing process, though the c-normalized distance error increased
slightly to 0.3. Classification error is not shown, as it has no clear
semantics for c > 0.

4.2. Control

To address the continuous action space inherent to the laser
welding problem, we selected a continuous-action actor–critic
reinforcement learning (ACRL) method, as outlined by Pilarski
et al. [18,22], that uses a one-dimensional action space. This algo-
rithm is depicted in Table 4, using the same conventions and nota-
tion as the nexting algorithm in Table 3. As detailed below, for this
preliminary control experiment we used a simulated welding pro-
cess. The current state is provided to the algorithm in form of the
laser welding width; the output action of the learner is used to
control the applied laser power, which is a real number in the
range ½1;5'. The actor follows a stochastic control policy pðajsÞ,

Table 3
Nexting algorithm for use in laser welding process quality prediction.

Algorithm 1 Nexting with Temporal-Difference Learning

1: initialize: w; e; s
2: repeat:
3: observe r; s0

4: d r þ cw>xðs0Þ (w>xðsÞ // calculate the td-error, based on the current weights
5: e ckeþ xðsÞ // update the eligibility trace e, based on decay and visited state
6: w wþ ade // update the weight vector w based on the td-error
7: s s0 // make successor state the current state

w 2 Rn: Value function weight vector e 2 Rn: Eligibility trace vector
s 2 S#Rk: Current state vector s0 2 S#Rk: Successor state vector
r 2 R: Reward c 2 ½0;1': Discount factor
xðsÞ 2 Bn: Tile coded state vector a 2 ð0;2Þ: Learning rate
k 2 ½0;1': Eligibility trace decay factor

1 The initial error at the beginning of the processes is due to the fact that the
camera starts to record before the laser is switched on.
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sampled from a Gaussian distribution Nðl;r2Þ with mean l and
standard deviation r, which are linear combinations of a corre-
sponding learned weight vector and the feature vector as shown
in Table 4, lines 3 and 4. Actions were then mapped and clipped
to the welding system’s power range so that the applied power
could not be bigger than the system’s limits. The learned standard
deviation is a measure for the exploration of the algorithm. If r is
large, the algorithm is more likely to explore different actions. As
exploration steps usually result in a poor performance, the stan-
dard deviation has to decrease once the right mean has been found
to achieve a stable, good performance. In a fully integrated system,
the reward measure delivered to the control learning process
would be a measure of the welding seam’s integrity—i.e., the pre-
diction of welding quality shown in the previous section and made
available through nexting and learned representations. However,
for rapid in-simulator testing of method viability, we provided
the learner with a reward signal corresponding to the difference
between the achieved welding depth d and a target depth d* com-
puted as r ¼ (0:5þ 1=½1þ expðjd* ( djÞ'. This reward function was
designed as a sigmoid function to keep the reward bounded and
prevent large td-errors, which might lead to divergence. The
function’s range is [(0:5; 0] with the value 0 corresponding to
the correct welding depth.

In actor–critic learning, the actor learns a policy to generate
actions while the critic evaluates the algorithm’s performance so
as to reduce the variance of the learning updates. For every sample
quadruple (s; a; r; s0) the critic calculates the td-error and uses it to
update the value function v as well as the weights for calculating l
and r. For our experiments we used the following learning param-
eters: learning rate av ¼ 0:1

m ;aw ¼ 0:1
m , discount rate c ¼ 0:99, trace

decay parameters ka ¼ 0:3, kc ¼ 0:3 and sigma start rc ¼ 1, where
m is the number of active tiles. All trace and actor weight parame-
ters w were initialized to zero. The algorithm was optimistically
initialized, which means the weight vector v is set such that all
states have an ideal value at the start of learning, i.e., zero.

For initial process control results, the control algorithm was
tested on a preliminary simulator [41], which provides the welding
seam depth based on the welding seam width, with a welding
depth ranging from 10 mm to 20 mm and a welding seam width
of 1.2–4.4 mm. The possible laser power ranges from 1.5 kW to
5 kW. To design the simulator closer to a real laser welding system,
the subsequent changes were made following consultation with
industry experts in laser welding. To model sensor noise, the weld-
ing seam width, which corresponds to the state of the system, was
inflicted with white Gaussian noise of the standard deviation
r ¼ 0:05. As real laser welding systems can make changes to their
laser power only with a certain speed, the change in the simulator
was restricted to 200W per iteration. Finally, as real systems have
physical response times, the welding was limited so as to only
change by a maximum of 0.3 mm per iteration. This corresponds
to 10% of the possible welding seam width range.

30 independent runs of learning using the simulator were per-
formed and averaged. Fig. 7 shows the results for several actor–
critic parameters over the learning process. As the algorithm
selected its actions, i.e., the applied laser power, from a normal dis-
tribution, it performed random actions at the beginning of the
learning process. In response to the received reward, the learner
shifted the learned l value towards the correct action and
decreased r to take less exploration steps as the learning process
converged to a suitable target policy. We further see that with

Fig. 6. Learning process for the nexting algorithm. The process is a contaminated weld of zinc-coated steel in an overlap position. The green line is the true process quality,
estimated by an expert, while the blue line is the algorithm’s prediction. The first plot shows the performance on a trained process. The second plot demonstrates the
prediction on an unknown process, at the beginning of the training. The third plot is the prediction for the same unknown process, after the training is completed. The last plot
demonstrates a c-normalized temporally extended prediction, where each prediction is five steps in advance; to have a benchmark, the ideal c-normalized prediction was
calculated and is shown by the red line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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continued learning the system was able to precisely achieve the
desired welding depth, as indicated by the depth error and the
observed reward values both approaching zero. Although the algo-
rithm had to cope with a noisy process and related limitations, it
was able to find the correct solution with a precision that was only
dependent on the amount of noise. None of the trials diverged,
which further indicates the robustness of the algorithm.

5. Discussion

In this paper we proposed a new architecture that should be
able to learn and control a wide class of specific laser-welding
problems. In this architecture, representation learning was used
to acquire salient features directly from welding process data. This
learned representation was provided as direct input to a prediction

Table 4
Actor–critic algorithm with continuous-valued output actions for controlling laser welding power.

Algorithm 2 Continuous-Action Actor–Critic Reinforcement Learning [18]

1: initialize: wl;wr; v ; el; er; ev ; s
2: repeat:
3: l w>lxðsÞ // compute the current mean for the Gaussian distribution

4: r exp½w>lxðsÞ þ logðrcÞ' // compute the current std for the Gaussian distribution

5: a Nðl;r2Þ // randomly choose action from Gaussian distribution
6: take action a, observe r; s0

7: d r þ cv>xðs0Þ ( v>xðsÞ // calculate the error, based on the current weights
8: ev  kcev þ xðsÞ // update the eligibility trace ev , based on decay and visited state
9: v  v þ avdev // update the value function v, based on learning rate and error
10: el  kael þ ða( lÞxðsÞ // update the eligibility trace el , based on decay and visited state
11: wl  wl þ awdel // update the weight vector wl based on the td-error

12: er  kaer þ a( lð Þ2=r2 ( 1
h i

xðsÞ // update the eligibility trace er , based on decay and visited state

13: wr  wr þ awder // update the weight vector wr based on the td-error
14: s s0 // make successor state the current state

l 2 R: Gaussian distribution mean r 2 R: Gaussian distribution std
rc 2 R: Starting value for r a 2 R: Chosen action
wl;wr;v 2 Rn: Weight vector el; er; ev 2 Rn: Eligibility trace vectors

s 2 S#Rk: Current state vector s0 2 S#Rk: Successor state vector
r 2 R: Reward c 2 ½0;1': Discount factor
xðsÞ 2 Bn: Tile coded state vector av ;aw 2 ð0;2Þ: Learning rates
ka; kc 2 ½0;1': Eligibility trace decay factors
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Fig. 7. Average learning performance for the continuous actor–critic algorithm over 30 independent runs. The two topmost plots (a) and (b) show the learned parameters for
the Gaussian distribution, with its output actions shown in plot (c). Plot (d) shows how the algorithm performed over time in terms of reward. The plots (e) and (f) visualize
the achieved welding depth and distance to the desired welding depth.
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learner, such that the system was able to estimate missing infor-
mation about the welding process—in this case, the quality of the
welding seam, something that is impossible to measure directly
during the act of welding. Finally, we described how knowledge
in the form of features and quality information could potentially
be passed to a system-integrated control learner to alter and opti-
mize the power of laser welding in response to new situations and
workpieces. Although the proposed architecture is flexible enough
to deal with varying conditions in the process, the representation
and knowledge framework in the present work has been special-
ized to deal with one specific laser-welding process of interest.
Our architecture is capable of being extended as new process-
related needs are identified, and we expect the present results will
transfer well to different settings. Furthermore, while process qual-
ity was the target of nexting predictions in this work, in principle
any process-related signal or group of signals could be predicted
using general value functions and used to inform a downstream
control process or control learner. Our proposed architecture
provides an way to use more general predictive representations
of state [42] in control learning.

Representation: In Section 3 it was shown that our DNNwas able
to extract meaningful features in a laser-welding setting, which
could then be used to represent the current process state to
integrated knowledge and control processes. Tests with a SVM
classifier showed that the features generated by the DNN perform
better than PCA features.

Prediction: The knowledge process demonstrated its capacity to
learn about welding process behavior and not only to reproduce
learned information, but also predict unknown processes. Fig. 6
demonstrates quality classification with 82% accuracy. If only used
to differentiate between good and non-sufficient parts of the weld-
ing seam, the accuracy of the predictor is 93.1%. By also making
temporally extended predictions, as in the bottom plot of Fig. 6,
process behavior can be anticipated and control actions could
potentially be applied in a preventative way before the quality
changes. Computing predictions was done within 21 ls, which is
within the requirements for real-time operation.

Control: The control algorithm described in Section 4.2
consistently converged to the correct solution in a short learning
time. Even with distinct limitations, e.g., a noisy input and sluggish
system response, the actor–critic approach was able to consistently
converge to the correct solution. It was also fast enough from a
computational point of view. The whole simulation took 66.3 s,
whereas 52.6 s were used to simulate the laser welding system.
Therefore, a single control iteration took only 0.34 ms, which is
within the process requirements for real time capability (1 ms).
The computer for the experiment used an Intel Core i5-2400 with
a 3.1 GHz clock rate, 6 MB of shared L3 cache, 4 GB DDR3 RAM, and
ran 64-bit Windows 7. The implementation of the simulator is
applicable under the assumption that the representation algorithm
is able to provide meaningful features about the systems state and
that the prediction process can accurately predict the current
performance. Additional work in the industrial setting is needed
to demonstrate a fully integrated framework wherein learned
DNN features and nexting predictions are used directly as input
to the ACRL control learner during welding.

6. Conclusion

In this paper we have shown a new possible architecture for
laser welding. Our proposed system includes methods to observe
a process, build up knowledge about it, and then find ways to con-
trol it. The system has the capacity to improve its own perfor-
mance, due to the way that it optimizes the process in terms of
goals rather than in terms of mechanisms. It therefore promises
to address key requirements of modern industry, in a way that

our architecture combines fast learning with the capability to work
well under changing circumstances.

In this work we described a possible combination of recent rein-
forcement learning and deep learning algorithms and provided
insights into the impact this combination may have on laser-
welding technology. To our knowledge, this is the first demon-
strated combination of deep learning with nexting and general
value functions, and one of only a very small number of papers
describing the combination of reinforcement learning and deep
learning systems, e.g., [8–10]. Additionally, it is the first demon-
strated use of deep learning in laser welding and industrial produc-
tion processes. This study is also unique in its use of reinforcement
learning to acquire generalized predictions for use as inputs to a
laser welding system. This makes the present work an important
contribution to not only industrial process engineering, but also
to the study of intelligent systems and machine intelligence. How-
ever, we do not wish to constrain our approach to the exact learn-
ing methods deployed in the present work; another important
contribution of this paper is to suggest that the full integration of
representation, prediction, and control learning into a single
framework holds great promise for laser welding and other pro-
duction engineering domains. We strongly believe that our
approach is transferable to a broad range of industrial applications.
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