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Abstract

At GTE Laboratories, we are advancing the theory of connectionist learning architectures for real-
time control while exploring their relationships to animal learning models, applications in manufacturing
quality control, and VLST implementations. We seek connectionist-network architectures with improved
convergence rate and scaling properties, as assessed on simulated and actial control problems.

Our primary focus is on extensions to reinforcement learning. These include adaptive critics, fea-
ture/representation adaptation in mmltilayer networks, hybrid connectionist/conventional controllers,
and modular networks for hierarchical control. We are also extending methods for system identification,
or model learning, to include internal models learned using temporal-differences. We propose the inte-
gration of reinforcement and model learning based on their relationships to dynamic programming. We
are working fo resolve how connectionist systems should serve as a total systems concept or as tools in
a larger architecture. :

1 Introduction

Adaptive and robust control techniques have made great progress over the last two decades. Model
reference adaptive control techniques have been developed that are globally stable for the control of certain
kinds of systems in the presence of noise. Adaptive control can be successfully applied to identify and
control systems of certain structures, when the structure is known a priori. For general nonlinear systems,
or systems whose structure is unknown or complex, other methods based on learning or artificial intelligence
must be incorporated into the design of the controller. Most adaptive control methods Tequire a continuous
target or reference signal, whereas many tasks involve goals that are not conveniently expressed as reference
signals.  Adaptive control methods also have difficulty using sensory information whose relationship to
system state is not known a priori. Finally, no general adaptive control method exists for problems with
unknown delays between control actions and resultant feedbacks.

By a learning controller we mean a controller that adapts its input-output behavior on-line and in real
time, based on its experience. Adaptive controllers also fit this definition, but, as that term is currently
used, they are restricted to particular structural forms. We are studying learning controllers composed of
connectionist or neural networks [14, 23, 43, 45]. Our methodology emphasizes empirical comparison of
alternative learning control architectures on specific simulated and actual control problems (e.g., see [6]).,

Connectionist networks are a promising technology for real-time adaptive and learning controllers be-
cause of their capabilities for on-line learning with minimal external intervention, for real-time response,
for utilizing delayed feedback, for learning internal models of the external world, for robustness and noise-
tolerance, and for learning nonlinear mappings. Connectionist networks are also promising because of
their potential for parallel implementation, and because of their similarities with biological information
processing systems.

The authors would like to acknowledge the contributions of this research of Andrew Barto, Ronald Williams, Vijay
Gullapalli, Vijay Samalam, and John Vittal.
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2 Overview of Our Approach

The most direct connectionist-network approach is that of the trainable controller [25, 58]. Here, the
control law is implemented by a connectionist network trained using supervised learning techniques, using
examples of desired input-output behavior provided by a teacher, typically a human expert or an existing
controller. After training, the connectionist network may respond faster or be cheaper to operate than the
teacher, but it cannot learn a better control law than that implemented by the teacher. Thus, trainable
controllers cannot be used on control problems for which we do not already know the solution.

At GTE, we are extending another approach to connectionist learning control, known as reinforcement
learning [7, 8, 9, 10, 11, 17, 24, 29, 33, 36, 48, 60, 61]. In reinforcement learning, the control law is learned
by trial and error, that is, by trying a variety of actions and correlating them with subsequent performance
feedback, called reinforcement. The key characteristic of reinforcement feedback is that it only evaluates
the actions that were taken; it does not indicate which action was correct, as the teacher does for a trainable
controfler.

Reinforcement feedback is the minimum that can be required by way of external supervision. If a
controller is to improve through learning, it must at least be able to detect variations in the quality of its
control. In practice, reinforcement feedback can usually be obtained through simple measurements, and a
knowledgable teacher is not required. For this reason, reinforcement learning can proceed on-line and can
find new, better ways of behaving that were not anticipated or previously known. We are using this ability
to refine conventional controllers that are designed from an inexact model of the system (Section 5).

Reinforcement learning has been shown capable of learning the corréct control law when delays exist
between actions and their consequences. Temporal-difference and adaptive heuristic eritic methods have
been developed [9, 48, 52, 56, 57] that enable reinforcement learning to accommodate substantial delays
between actions and reinforcement. Temporal-difference methods can address notions of long-term goals
and subgoals, and of using an evaluation function such as a Lyapunov function to learn control actions.

The second major approach to learning control that we are extending at GTE Laboratories is using
connectionist networks for model learning. By model learning we mean any approach to learning control in
which the controller does not directly learn a control law, but rather learns an internal model of the system,
from which the control law is determined [27, 28, 30, 35, 39, 41, 59]. A learned system model permits more
flexible behavior than a single learned control law because a model can contain more knowledge about the
system. While a control law merely specifies what to do in each situation, a system model can specify how
the system behaves in a range of possible situations. Another advantage of the model-learning approach
is that it is related to conventional adaptive control methods, which may enable better understanding and
transfer of theory. -

On the other hand, model-learning approaches have some of the same problems as conventional con-
trol methods. First, there is the problem of determining a control law once the model is known. For
nonlinear, non-invertible models such as those typically formed by multilayer connectionist networks, this
remains problematic, Although gradient methods exist for such models [27, 38, 41], no way is known to
accommodate delays between actions and corresponding feedbacks. Furthermore, to learn a good model,
the system must be ezplored—its behavior must be observed under a wide variety of situations in response
to a wide variety of actions. How is this exploration to be ensured on a continuing basis? And how is
the need for exploration to be balanced against the need for good control, which by definition implies a
reduction in the variety of actions? This problem has so far prevented model-learning approaches from
meeting their expectations in terms of rapid learning. Third, model-learning approaches, like conventional
adaptive control approaches, have generally required the environment to provide detailed reference signals
specifying desired system outputs.
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In our view, model learning and reinforcement learning are not.so much alternative approaches as
they are different, complementary parts of a solution to the overall problem of learning control. We are
researching ways to extend both reinforcement-learning and model-learning approaches, and, moreover, to
integrate them into an architecture that combines their strengths. This and the other major components
of our approach—as listed in the abstract—are discussed in the remaining sections of the paper.

3 Internal Models based on Temporal-Difference Learning

The classical a,ppfoa,ch to modeling has been to describe a system by a set of differential or difference
equations in terms of its input, output, and internal state. This approach is limited to capturing temporal
relationships acting at a single time scale.

Anytime we choose actions to influence our long term future, we must make long term predictions.
In principle, these can be formed by combining many smaller short term predictions. However, that
approach is very brittle: if one step in the chain is missing, the long-term prediction cannot be made. It
also is computationally intensive, because it requires a detailed and accurate level of modeling. Temporal-
difference methods provide a different approach to learning models of dynamic systems. Rather than relying
entirely on their local structure—-the relationship between inputs, actions and state at an instant in time—
as in conventional models, one instead allows longer term relationships to be stated and combined. Sutton
[52] has argued that for all predictions other than immediate, next step predictions, temporal-difference
methods have substantial advantages in terms of implementation and speed of learning.

Barto, Sutton, and Anderson [9] used an adaptive heuristic critic (AHC) that was an early version of
the temporal difference system. The AHC learned a model of the reinforcement process that contained
delays (see Section 7 for more discussion). The AHC algorithm as described by Sutton [48] is based on
the class of linear models, and the simulation of Anderson [5], which uses the back propagation method, is
based on nonlinear layered networks.

We are extending the current class of temporal-difference methods into a full model, enabling the
prediction of not just reinforcement, but of all the observable states of a system. These will be long term
predictions combined using a recurrent network architecture. Sutton, Barto, and Pinette [47, 49] proposed
the basic architecture that we are extending. The major extension will be to combine multiple time scales.
For example, to predict events on a manufacturing line one clearly has to model at a variety of time
scales—months, weeks, days, hours, minutes, and even seconds.

4 Learning Internal Data Representations

One of the most important design aspects of a connectionist network architecture is the preprocessing:
the set of features used to internally represent data from the network’s environment. The representa-
tion used for a particular problem can make the learning task faced by the network extremely simple or
prohibitively complex. In real modeling and control problems, there is insufficient information a priori
to determine which is the “right” representation. Therefore, it is essential that a connectionist network
be able to enhance its internal data representation with experience, tailoring it to specific tasks. This
enhancement is important in reinforcement learning and model learning as well as in the passing of data
between levels of a hierarchical controller.
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A network’s internal data representation is defined by the set of features encoded by the network’s
units. The most common method today for learning new features in layered networks is the error back-
propagation algorithm [40], which performs a gradient-descent search of an error function with respect to
the weights of a network. Gradient descent is known to scale poorly with the complexity and size of the
function being searched, due to the presence of local minima and regions of small gradient. In fact, for the
learning of representations, gradient descent can be very inefficient [50].

An alternative to gradient-based search is the generate-and-test approach to searching for useful features
(see [3, 4]). In this approach, new features are generated and tested by adding them to a network while the
network continues to learn. Gradient-descent and generate-and-test methods are complementary: when
close to an optimum, gradient descent can be quite efficient, while generate-and-test has advantages when
far from an optimum or on a hilly surface.

Novel algorithms that are a combination of gradient-descent and generate-and-test methods are being
developed at GTE Labs. Several critical issues must be addressed in this work. Measures must be found
that indicate the usefulness of units in a network. New features should only be generated in unused units.
Algorithms that shift emphasis continuously between gradient-descent and generate-and-test should result
in adaptations inversely proportional to the usefulness of a unit. Another difficulty is that unused units
can remain unused for a long time if they are adapting according to a gradient technique. Techniques for
quickly changing the weights of unused units are needed that drive the weights towards values represent-
ing potentially useful features. Another question being addressed concerns the possible output functions
employed by the units. Some functions are more amenable than others to the generate-and-test methods.

5 Hybrid Connectionist/Conventional Controllers

The design of a conventional controller is very difficult if the system is complex or possesses unknown
nonlinearities. In these cases, implementation engineers will generally follow an iterative design strategy. A
controller is designed and implemented, and its performance is evaluated by the engineer. Performance is
usually better than that of the uncontrolled system, but still not satisfactory in all cases. Rather than redo
the whole design, a new controller is often developed for the cases where the first controller is unsatisfactory.
The output of the new controller is then, for example, added to that of the original controller, refining
and improving its control. This overall process of changing and improving the original controller may be
repeated many times.

We have explored a way to automate this iterative implementation strategy using hybrid connection-
ist/conventional controllers. The first controller is a conventional one, designed by pole placement methods.
The refining controller is a reinforcement-learning connectionist network. This approach is very different
from current adaptive and self-tuning PID controllers, in which the adaptation is parametric in the system
model or in the controller gains. We have used this hybrid approach to refine the control of a second order
system. The reinforcement-learning network successfully learned a control signal that compensated for the
effect of an unknown additive nonlinearity [18, 19, 20, 22). Another important feature of the work in
[21, 22] is the use of a real-valued output reinforcement learning algorithm developed by Gullapalli [26).
This algorithm enables a. very general control signal to be learned that can vary widely over state space.

The issue of internal or input space representation discussed in Section 4 is an important one for refine-
ment learning control. In earlier work [18, 19, 21], the input space was quantized into control situations [32]
or boxes [34] for the learning controller. A new input space representation for this problem has been studied
empirically by Franklin [22]. It consists of functions that act as receptive fields [37] and have the shape
of multivariate gaussian probability density functions. They are adapted by adjusting their positions and
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by widening or narrowing their widths. In our implementations these functions were the first layer in the
learning network.

We continue to be concerned with refining controlled processes. Refinement techniques are especially
important for improving already existing controllers that cannot be completely redesigned. These tech-
niques will also be useful in learning to control systems that must be under some sort of initial control.
In these cases, it may be either dangerous for the system to be subjected to arbitrary control signals or
it may be impossible to learn to control it without a base controller. We are also interested in exploring
refinement at a more general level, for example to improve the choice of subgoals of a system given an
overall goal and a set of initial subgoals.

6 Modular Networks for Hierarchical Control

The solution of complex control problems must involve multiple levels of control (e.g., see [1, 2]). We
can make the analogy of a corporation. Each officer or employee may be thought of as expressing a purpose.
Al the purposes are subpurposes of the over-riding corporate purposes, one of which, ostensibly the over-
riding one, is to make a profit. The fact that subpurposes may conflict with each other is a desirable
feature of this situation. In machine learning, it may be imagined that every control loop must be run
with respect to the overall goal of the system. But clearly, the particular tactics of a janitor in cleaning
the floor cannot be guided by the current price of a share of stock. That argument applies especially to
systems where the preprocessing for the connectionist learning network must itself be subject to continual
tuning. Not only will a realistic system have a hierarchy of purposes or goals for its separate levels, but
it will need to respond to several different and changing purposes at each level. A driver must not only
keep to the right, but also avoid pedestrians, move to the left to pass stationary vehicles, stop at traffic
lights and so on. Connectionist systems may be able to balance purposes in a natural way. One difficulty
in adapting a hierarchical structure of control modules is in deciding at which level a particular behavior
should be modified.

We have explored the use of adaptive strategies for playing simple two-person zerc-sum games [46]. The
adaptation is different from that usually considered in adaptive control; it is a form of test and gradient
descent. One of the more general conclusions that can be drawn from this work is that adaptive learning
from experience seems to be far richer a topic and more complicated a process than would be imagined.
There are many lessons here for studies in learning from experience in more complicated domains. The
general adaptive element here includes 1) an action cycle, which exercises some control; 2} a testing
cycle, which informs the strategy, through 3) its evaluation function, which way and how much to alter
the parameter of its strategy. Such an element may itself be controlled with adaptive loops, and these
hierarchical systems can exhibit surprisingly subtle and powerful behavior. In this work [46], Selfridge
explores the use of such adaptive procedures on variables that can attain some range of real values. In
these experiments, it turns out that convergence to minimax is the exception, and behavior in most cases
tends to some kind of a joint limit cycle. The result is that such competitive systems usually do not
converge to any kind of stability. An interesting application of this is to distributed or hierarchical control
systems where different control units may be considered to be competing for some resource.

We are exploring ways in which reinforcement learning might be used for modifying connectionist
network modules interconnected in a hierarchical structure. We will begin by using the known and tested
capabilities of connectionist networks as units or modules that control other similar modules. We are also
investigating ways of tuning individual controllers by connectionist networks as a continuing process, either
in a training mode, or by reinforcement learning. We expect that good performance on simpler subtasks
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will facilitate performance on harder ones [44]. One possible technique for the development of a learning
hierarchy is to study the presentation of tasks in an increasing order of difficulty. It must be realized that
the journey towards hierarchical control has hardly begun, and that the road is likely to be a rocky one.
For example, there is no reason to believe that the control variables that provide the rewards at one level
are suitable for another. Indeed, the entire structuring of rewards and changes must be fashioned to satisfy

a number of differing goals.

7 Integrating Model Learning and Reinforcement Learning through
Dynamic Programming

In our view, model learning and reinforcement learning are not so much alternative approaches as
they are different, complementary parts of the overall problem of learning control. Reinforcement learning
is good at quickly learning simple control laws, at handling delayed feedback, and at learning without
teachers or reference signals. Model learning is potentially faster and much more flexible and powerful
in responding to changes in the plant. We propose to research both kinds of learning in connectionist
controllers, and, moreover, to explore their integration in a single controller that takes full advantages of
each of their capabilities.

Our approach to integrating reinforcement learning and model learning is based on the conventional
control method of dynamic programming [16]. There is not room ‘here to fully explain the proposed
integration, but the key idea is to think of reinforcement learning as dynamic programming where the
actual system acts as its own model. The interaction between the reinforcement learning algorithm and
the real system is very similar to that between certain dynamic programming algorithms and the system
model. Dynamic programming involves a process that, like a temporal-difference critic, gradually builds
up an evaluation function over states reflecting the long-term consequences for reward of being in that
state. One dynamic programming procedure, policy improvement, also gradually builds up estimates of
the optimal control law using the developing evaluation function, just as the reinforcement learning process
gradually learns a control law using the critic’s evaluations. Of course, there are substantial differences
as well. Policy improvement alternates between updating the control law for all states and updating
the evaluation function for all states, whereas reinforcement learning does a control law update and an
evaluation function update for each state that is visited. In addition, when the dynamic-programming
process updates a state, it normally considers all possible actions and outcomes from that state, whereas
reinforcement learning considers only the action actually selected and the outcome that actually occurs.
This reflects a major limitation of using the actual system as model - actions cannot be retracted, and only
samples from the probability distributions are known, not the actual distributions that would be available
from an explicit model; the actual system acts only as a Monte Carlo model.

Viewing reinforcement learning as a dynamic programming process suggests a conceptually clear way of
combining it with model learning. Three connectionist networks are used, one to implement the model, one
to implement the control law, and one to implement the evaluation function or critic. The model network
learns in the usual way to form a forward model—given a state and an action it predicts the next state and
reward. The control-law and critic networks learn according to a reinforcement learning algorithm working
in two ways. One way is to do dynamic programming on the model to gradually improve the control law
and evaluation function {critic) on the assumption that the current model is correct. This should give us
all of the benefits of the model-learning approach. The second way is to do dynamic programming on the
actual process as model; this should be the same as conventional reinforcement learning. That is, we view
these two approaches as the same dynamic-progra.mming/reinforcement-leaming process operating on two
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different structures—the model and the actual system. This integration has the following advantages:
o Delayed effects of actions on rewards are taken into account, both in reinforcement learning and in

model use;

o Model use, a computationally intensive search process, can be done incrementally and as time allows:
if rapid response is at a premium, actions can be read directly from the control law relying on
reinforcement learning, whereas, if time is available, the model can be used to improve the control

law before using it;
o Model learning can take full advantage of all feedback provided by the environment;

¢ The model is not required to be either invertible or differentiable in order to be used, althongh
gradient methods can be used to speed the search if the model is differentiable.

"The current status of this work is described in [12, 14, 52, 53].

8 Relationships to Animal Learning

Learning is of course also studied by life-scientists. It is appropriate to ask about the nature of the
correspondence between the behavior of animals in conditioning experiments and the mathematical theories
and computational procedures developed for “synthetic” learning. We are exploring in detail a model of
classical conditioning in animals that is based on temporal-difference learning (as in adaptive critics)
[46, 52] and also broader relationships between instrumental animal learning and reinforcement learning
[12, 14, 50]. We are beginning to build a framework that we hope will lead to increased understanding of
animal behavior as well as novel computational procedures for practical tasks.

9 VLSI Implementations

In many control applications, the computations must be performed in real time, suggesting the need for
special purpose hardware. Connectionist learning systems are particularly intrigning in this regard since
in principle they can be mapped directly onto analog VLSL. Because learning can compenstate for defects
and imprecision in the circuits, these designs can be considerably simpler than more traditional analog
circuits. However, in practice most existing connectionist learning algorithms do not map well onto VLSI
due their reliance upon high precision floating point arithmetic. Rather thar trying to implement known
algorithms and architectures in VISI, we are concentrating on developing a set of analog computational
primitives from which VLSI connectionist network learning systems can be built. The full potential of VL5I
connectionist networks can be realized only by developing structures within the constraints imposed by
device physics and fabrication technology [30, 41]. To encourage athers to work within these constraints, we
are developing C++ behavioral models of our circuits that can be used in connectionist network simulations
to develop VLSI compatible algorithms and architectures.

10 Application: Monitoring Manufacturing Processes

One application of connectionist learning being pursued at GTE Labs involves using neural networks to
analyze quality control on a fluorescent lamp manufacturing line. All manufacturing processes are subject
to incompletely understood changes due to variations in raw materials, environmental factors such as
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weather, wearing and aging of the machinery, and changes in operators. By using past experience to find
correlations between approximately 100 sensory measurements, we will determine which process variables
most affect quality. These correlations are then turned over to engineers, who are responsible for making
all actual changes to the running of the plant at this time. '

Our approach is to compare conventional (batch) and connectionist-learning (incremental) techniques.
Conventional computer-integrated manufacturing (CIM) approaches suffer from several problems that can
potentially be solved by learning approaches. We have shown in simulation that connectionist learning net-
works can monitor manufacturing processes to determine causal relationships with an accuracy competitive
with that of conventional statistical techniques [19]. Moreover, the network operates on-line, in real-time,
and with substantial savings in computational complexity as compared to conventional CIM techniques.
The network requires processing per time step that is O(n), where n is the number of sensors, whereas
the total processing required by a conventional method such as linear regression is approximately O{n?),
and even the most incremental implementation of linear regression requires at least O(n?) processing per
time step. For hundreds of sensors, this and other computational advantages of the learning network have
a tremendous effect; the network can be implemented on a much smaller computer, or it can be used
with many more sensors, or more frequently sampled sensors. The reduced computational complexity of
the connectionist network approach also allows more freedom in the choice of the model used to predict
outcomes and correlations.

A. connectionist network is currently installed and learning at one fluorescent-lamp manufacturing plant,
but it is too early yet to assess its performance.
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