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Abstract

Objective. Neuromodulation technologies are increasingly used for improving function after neural
injury. To achieve a symbiotic relationship between device and user, the device must augment
remaining function, and independently adapt to day-to-day changes in function. The goal of this
study was to develop predictive control strategies to produce over-ground walking in a model of
hemisection spinal cord injury (SCI) using intraspinal microstimulation (ISMS). Approach. Eight
cats were anaesthetized and placed in a sling over a walkway. The residual function of a
hemisection SCI was mimicked by manually moving one hind-limb through the walking cycle.
ISMS targeted motor networks in the lumbosacral enlargement to activate muscles in the other,
presumably ‘paralyzed’ limb, using low levels of current (<130 pA). Four people took turns to

move the ‘intact’ limb, generating four different walking styles. Two control strategies, which used
ground reaction force and angular velocity information about the manually moved ‘intact’ limb to
control the timing of the transitions of the ‘paralyzed’ limb through the step cycle, were compared.

The first strategy used thresholds on the raw sensor values to initiate transitions. The second
strategy used reinforcement learning and Pavlovian control to learn predictions about the sensor
values. Thresholds on the predictions were then used to initiate transitions. Main results. Both
control strategies were able to produce alternating, over-ground walking. Transitions based on raw
sensor values required manual tuning of thresholds for each person to produce walking, whereas
Pavlovian control did not. Learning occurred quickly during walking: predictions of the sensor
signals were learned rapidly, initiating correct transitions after <4 steps. Pavlovian control was
resilient to different walking styles and different cats, and recovered from induced mistakes during
walking. Significance. This work demonstrates, for the first time, that Pavlovian control can
augment remaining function and facilitate personalized walking with minimal tuning

requirements.

1. Introduction

After a spinal cord injury (SCI), people experi-
ence motor and sensory paralysis to varying degrees,
depending on the severity and level of the injury.
Two-thirds of all SCIs in the USA are incomplete
(‘Spinal Cord Injury (SCI) 2017 Facts and Figures
at a Glance’ 2017), yet 50% of people with SCI
never recover the ability to walk again. For people
with paraplegia, regaining the ability to walk is of
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high importance for improving quality of life, with
a majority of people with paraplegia ranking the
restoration of walking as a first or second prior-
ity (Collinger et al 2013). Currently, SCI has no
cure; therefore, regaining the ability to walk has been
pursued through other means such as rehabilitation
(Musselman et al 2009, Lam et al 2015, Morrison
et al 2018), neural technologies (Kobetic et al 1997,
Stein and Mushahwar 2005, Hardin et al 2007, Moritz
et al 2008, Holinski et al 2016), or a combinatorial
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approach (Carhart et al 2004, Angeli et al 2018, Gill
etal 2018).

The neural networks in the spinal cord below
the SCI and their connections to the muscles remain
intact (Hunter and Ashby 1994). These spinal net-
works can be targeted and activated using electrical
stimulation (Mushahwar and Horch 2000b; Saigal
et al 2004, Tator et al 2012, Hofstoetter et al 2015,
Angeli et al 2018, Wagner et al 2018, Gill et al 2018).
One electrical stimulation approach is intraspinal
microstimulation (ISMS), in which fine, hair-like
microwires are implanted in the ventral horn of
the lumbosacral enlargement. Interestingly, stimula-
tion in this region through a single microwire pro-
duces large, graded, single joint movements as well
as coordinated multi-joint synergies (Mushahwar and
Horch 1998, 2000a, 2000b, Mushahwar et al 2000,
Saigal et al 2004, Lau et al 2007, Holinski et al 2016).
Through targeted activation of hind-limb locomotor-
related networks, ISMS has been used to restore
walking in anaesthetized (Holinski et al 2013, 2016)
and chronically spinalized cats (Saigal et al 2004).
Nearly 1 km of over-ground, weight-bearing walk-
ing was produced by ISMS in cats (Holinski et al
2016). These distances were achieved immediately
after implantation of the microdevice and without the
need for extensive rehabilitation. Responses produced
by ISMS remain consistent throughout the use of the
implant (Mushahwar et al 2000), and long-term use
of ISMS for walking will likely further improve walk-
ing distances achieved. Therefore, ISMS is poised to
be a viable clinical approach to restoring walking after
severe paralysis.

An important and clinically-relevant aspect of a
successful neural prosthesis is the control of the device
and how users interact with the control strategy.
Current commercially available devices for restoring
walking after SCI, such as those that use functional
electrical stimulation (FES) and various exoskelet-
ons, have limited control options. Walking is accom-
plished using open loop control with pre-defined tim-
ing of the limb movements (Chaplin 1996, Johnston
et al 2005, Chang et al 2015, Ekelem and Goldfarb
2018). The users are expected to adapt their walking
to accommodate the control strategy in the device.
Control strategies developed for ISMS to date have
primarily focused on restoring walking in models of
complete SCI (Saigal et al 2004, Holinski et al 2011,
2016, Dalrymple and Mushahwar 2017). Feedback,
such as ground reaction force, hip angle, or activ-
ity of sensory neurons from the dorsal root ganglia,
were used to modify the inherent timing of the trans-
itions between the phases of the gait cycle (Saigal et al
2004, Holinski et al 2011, 2013, 2016). A recent paper
depicted the first control strategies developed for
ISMS in a model of incomplete SCI (Dalrymple et al
2018). These strategies augmented the residual func-
tion in a model of hemisection SCI and, using super-
vised machine learning, adapted the control strategy
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for different speeds of walking. Supervised machine
learning has also been used to control surface func-
tional electrical stimulation (FES) systems in per-
sons with SCI (Abbas and Triolo 1997, Popovic et al
1999); however, few studies have focused on com-
pleting an entire walking cycle (Popovi¢ 1993). As
people with SCI experience varying levels of para-
lysis, each person would require their own custom
stimulation settings to restore walking. Moreover,
incomplete injuries evolve over time requiring fur-
ther updating of stimulation settings. Manual tun-
ing of settings is burdensome; it is time-consuming
and based qualitatively on trial and error. A recent
machine learning approach demonstrated the feasib-
ility of adaptive tuning of impedance parameters in
a prosthetic knee (Wen et al 2019); however, to date,
adaptive machine learning approaches have not been
utilized in implanted neural prosthetic approaches for
restoring over-ground walking.

Intuitive control of a neural prosthesis requires
the device to know what the user wants to do pre-
emptively with automatic adaptation to changes in
the environment. Learning predictions of walking-
relevant sensor signals for initiating control outputs
may be a more reliable method to produce walk-
ing. Predictions allow for a timely response that can
be modified with experience. In this study, we com-
pared more traditional control methods with a new,
prediction-based machine learning control method,
called Pavlovian control, to produce over-ground,
alternating walking in a model of hemisection SCL
Specifically, we assessed the need for manual tun-
ing of control settings between reaction-based con-
trol and Pavlovian (or prediction-based) control over
several cat experiments, with different people par-
ticipating to move one limb through the walking
cycle and after perturbations. This presents the first
application of Pavlovian control to produce walking.
It is also the first known application of reinforce-
ment learning techniques in a spinal neural interface.
Using Pavlovian control, we demonstrate that altern-
ating over-ground walking can be achieved quickly
using predictions of walking-relevant sensor signals,
and that the thresholds for Pavlovian control do not
require re-tuning across different conditions.

2. Methods

All experimental procedures were approved by the
University of Alberta Animal Care and Use Commit-
tee under protocol AUP301. Eight adult male cats
(3.96 to 5.22 kg) were individually housed in large
cages and were provided with daily enrichment that
included a large play pen, toys, human interaction,
and soothing music.

2.1. Implant procedure
Investigations were conducted in acute, non-recovery
experiments. Anaesthesia was initially induced with
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isoflurane (5%), followed by sodium pentobarbital
anaesthesia administered intravenously (induction:
25 mg kg™!; maintenance: 1 in 10 dilutions in saline).
All surgical procedures and data collection were per-
formed under sodium pentobarbital (Toossi et al
2019). A laminectomy was performed to expose the
lumbosacral enlargement. An array of 12 microwire
electrodes made of Pt-Ir (80%-20%), 50 pm in
diameter, insulated with 4 pm polyimide except
for approximately 400 pm exposure at the tip, was
implanted in one side of the spinal cord according
to established procedures (Mushahwar et al 2000,
Bamford et al 2017). The microwire tips targeted
lamina IX in the ventral horn based on functional
maps of the motoneuron pools (Vanderhorst and
Holstege 1997, Mushahwar and Horch 1998, 2000b).
In addition to motoneuronal pools, this region con-
tains neural networks that, when stimulated, produce
coordinated multi-joint synergistic movements of the
leg (Engberg and Lundberg 1969, Mushahwar and
Horch 2000b, Saigal et al 2004, Holinski et al 2016,
Bhumbra and Beato 2018).

2.2. Stimulation protocol

Trains of stimuli were delivered using a customized
current-controlled stimulator (Sigenics Inc. Chicago,
IL, USA) and consisted of a trapezoidal waveform that
ramped from threshold to chosen amplitude over 3
time-steps (time-step = 40 ms). The stimulus pulses
in a train were 290 ps in duration, biphasic, charge-
balanced and delivered at a rate of 50 Hz. Stimulation
amplitudes ranged from threshold (<20 pA) to amp-
litudes that produced weight-bearing movements (60
to 80 pA) and did not exceed 130 pA through any
electrode.

The movements elicited by stimulation through
single electrodes were hip flexion, hip extension, knee
extension, ankle dorsiflexion, ankle plantarflexion,
and a backward extensor synergy, which were com-
bined to construct a full walking cycle. Of the 12 elec-
trodes implanted unilaterally, between 5 and 9 were
needed to produce the desired walking movements
and included redundancy in the functional targets.
Stimulation channels were combined to construct the
four phases of the walking cycle: F (early swing), E1
(late swing to paw-touch), E2 (mid-stance), and E3
(propulsion) (Engberg and Lundberg 1969, Goslow
et al 1973). The phases F-E2 and E1-E3 were defined
to be opposite phases of the walking cycle. During
each phase of the walking cycle, the electrode com-
bination and amplitudes remained constant.

2.3. Experimental setup

Following the implantation of the ISMS array, the
anaesthetized cats were transferred to a custom-built
instrumented walkway and placed in a sling that sup-
ported their trunk, head and forelimbs, while the
hind-limbs where left to move freely over the walk-
way (figure 1) (Guevremont ef al 2007, Mazurek et al
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2012, Holinski et al 2016). The sling was suspended
from a cart that moved with the cat over the walkway.
The cart was partially unloaded to offset the weight
of the recording and stimulating equipment and the
mobile vital signs monitors that were placed on it.

Gyroscopes were placed on the tarsals of each
hind-limb to measure angular velocity in real time.
Force plates providing ground reaction force (GRF)
in three dimensions were mounted underneath the
walkway. The sensor signals were filtered using a But-
terworth filter (fc = 3 Hz, 2nd order), digitized at
1 kHz using the Grapevine Neural Interface Processor
(Ripple, Salt Lake City, UT, USA) and streamed into
Matlab (MathWorks, Inc., Natick, MA, USA) during
walking.

Reflective markers were positioned on the iliac
crest, hip, knee, ankle, and metatarsophalangeal
(MTP) joints of the right hind-limb (moved using
ISMS). Kinematics of this limb were recorded using
a camera (120 fps, JVC Americas Corp., Wayne, NJ,
USA) positioned 4.5 m away from the center of the
walkway. Marker positions were tracked post-hoc
using MotionTracker2D, a custom Matlab program
written by Dr. Douglas Weber (University of Pitts-
burgh, Pittsburgh, PA, USA).

A hemisection SCI was modeled in the anaesthet-
ized cats by having a person (naive experimenter)
manually move the left hind-limb through the walk-
ing cycle (person-moved limb; PML) to represent the
‘intact’ leg. The right hind-limb was moved using
ISMS (stimulation-controlled limb; SCL) and repres-
ented the ‘paralyzed’ leg (figure 1). This hemisection
SCI model is similar to Brown-Sequard syndrome in
humans, where one leg is paralyzed and the other is
motor-intact (Kunam et al 2018).

2.4. Control strategies

The goal of the control strategies was to transition the
SCL through the walking cycle such that the phase of
the SCL was opposite to the phase of the PML and
the force produced by the SCL was enough to lift the
animal’s hindquarters (i.e. provide weight-support)
and propel the animal across the walkway to produce
over-ground walking. Both control strategies determ-
ined when the SCL transitioned from one phase to the
next based on sensor information from the PML.

2.4.1. Reaction-based control strategy

For reaction-based control, thresholds were placed
on the sensor signals recorded from the PML dur-
ing walking to trigger transitions between the phases
of the walking cycle in the SCL. The sensor signals
used for defining the transitions between phases of
the walking cycle were vertical GRF (vGRF) and angu-
lar velocity of the PML (figure 2(A)). The transitions
were controlled by rules involving the current phase
in the walking cycle, comparing the sensor values
with threshold values, and the direction of the slope
of the sensor values. Thresholds were placed on the
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Figure 1. Experimental setup for over-ground walking. A naive experimenter moved the left hind-limb through the walking cycle.
Sensor signals from force plates under the walkway and a gyroscope on the tarsals from both hind-limbs were converted to digital
signals by the DAQ and streamed into Matlab. In Matlab, a custom control algorithm was used to control the stimulation to the
spinal cord to move the right hind-limb to the opposite phase of the walking cycle.

sensor signals at times that accounted for an elec-
tromechanical delay (the delay from the time a stim-
ulus was delivered to the time movement occurred)
of approximately 200 ms (Dalrymple et al 2018).
Because the thresholds were placed on the raw sensor
signals, this control strategy was reactive to these
raw signals as opposed to predictive of the signals,
which was the case in Pavlovian control (see below).
Hence, this strategy was referred to as reaction-based
control.

2.4.2. Pavlovian control strategy

Automatic prediction of the control output is
required to produce personalized walking that aug-
ments remaining function after a SCI. We used
reinforcement learning methods to predict three
walking-relevant signals in real time: the vGRF, angu-
lar velocity, and unloading. Unloading was defined as
the weight-bearing threshold (equal to 12.5% of the
cat’s body weight in this setup (Lau et al 2007)) minus
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the vGRE. Unloading differs from vGRF as it informs
when the PML is below or above a weight-bearing
threshold, which is specific to each animal, and indic-
ates more precisely safe limb loading. Thresholds on
the learned predictions, in addition to the slope of
the predictions and knowledge of the current phase,
were used to control ISMS to transition the SCL to the
opposite phase of the PML (figure 2(B)). The use of
alearned prediction of a sensory stimulus (reinforce-
ment learning of sensor signals) to trigger a fixed
response (ISMS transition to phase of the walking
cycle) is referred to as Pavlovian control because it is
modelled after Pavlovian conditioning (Modayil and
Sutton 2014).

The transitions between the phases of the walking
cycle were made either by the prediction of the sensor
signals crossing the threshold, or the raw sensor sig-
nal crossing a threshold, whichever occurred first.
Instances where the raw sensor signals were used to
initiate a transition between the phases of the walking
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Figure 2. (A) Phases of the walking cycle (E2, E3, F, E1) and thresholds for one naive experimenter (person A) on raw sensor
signals from the PML (person-moved limb) for reaction-based control (RBC). (B) Threshold settings on predictions of sensor
signals from the PML using Pavlovian control (PC). AU = arbitrary units due to normalization during acquisition. Shaded
regions indicate the phase of the walking cycle detected on the PML, divided by vertical lines indicating timing of transitions.
Horizontal lines mark the threshold values for corresponding phase. Arrows indicate the direction of the slope of the signal

required by the algorithm.

cycle are referred to as back-up reactions. The rel-
ative thresholds for the back-up reactions were held
constant throughout all walking trials for a given
cat, as they were adjusted based on the weight of
each cat.

2.4.3. Machine learning methods for Pavlovian control
2.4.3.1. State representation of sensor signals

Function approximation was used to represent the
highly sampled, complex sensor signals as a binary
vector representation of the state space, named the
feature vector, x. Six sensor signals were chosen to
form the state space: left (‘intact leg’) vGRE right
(‘paralyzed leg’) vGRE, the sum of left and right
vGREFs, left angular velocity, right angular velocity,
and the exponential moving average of the left vGRE.
The exponential moving average gives a long-term
history of the force signal and helps differentiate
between the periodical increase and decrease of the
other sensor signals. To create the feature vector x, the
sensor values were first normalized to values between
0 and 1. These normalized values were then coded
into a binary vector using Selective Kanerva coding
(Travnik and Pilarski 2017).

To perform selective Kanerva coding, K = 5000
specific states, also referred to as prototypes, were
randomly distributed over the entire normalized, 6-
dimensional state space (6 sensors; figure 3). The pro-
totype locations were held constant for all experi-
ments. Hoare’s quickselect was used to find the ¢
closest prototypes to the current state according to
their Euclidean distance (Travnik and Pilarski 2017).
Three values of ¢, determined by choosing small
ratios, 1, such that ¢ = Kn were used. The values of
¢ were equal to 500, 125, and 25, corresponding to
7 values of 0.1, 0.025, and 0.005, respectively. Using
multiple ¢ values is similar to the use of overlapping
tilings in tile coding (Sutton and Barto 2018); it allows
for coarse and fine representation of the state in the
feature vector.

During a walking trial, the combination of sensor
signals acquired at each time-step corresponded to
a state in the state space, termed the current state
(Dalrymple 2019). The c-closest prototypes to the
current state were activated in the feature vector
(i.e. set equal to 1), while the rest were inactivated
(i.e. set equal to 0). The total number of features
in x was 3 K, where 650 (c; + ¢, + c3) features
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Figure 3. A depiction of selective Kanerva coding. The current state is 6-dimensional, one dimension per sensor signal used to
represent the state space (left vVGRF; right vGRF; sum of left and right vGRF; left angular velocity; right angular velocity; moving
average of left vVGRF). Prototypes closest to the current state within the state space are activated at each time-point. The result
from selective Kanerva coding is a vector, where each point corresponds to a prototype. All points in the vector are either a 0

(unactivated) or a 1 (activated).

Algorithm 1. Selective Kanerva Coding as used in this work.
Bolded variables refer to vectors or matrices; italicized variables
refer to constants with values that pertain to this work.

K = number of prototypes; n = number of sensors; ¢ = closest
prototypes to current state; P = prototype; S = state;

D = distance vector; d = Euclidean distance; x = feature vector.

Selective Kanerva Coding

Parameters provided: K, 1, c1, ¢2, ¢3
Initialize prototypes P randomly once ever
Input new state S

Reset D = zeros(K,1)

Fori=1toK

Forj=1ton

D; + d(P;j, S;) d = Euclidean distance

I + Quickselect(D) Indices of sorted distances

Form=1to3
ind;, < I(1 to ¢y)
Xindm < 1
Output x

Offset by (m — 1) x K

were active at all times. The pseudocode for select-
ive Kanerva coding used in this work is provided in
algorithm 1.

2.4.4. True online temporal difference learning

True online temporal difference learning (TOTD),
which is a reinforcement learning method, was used
to learn the predictions of the sensor signals in
real time during walking. Traditionally, reinforce-
ment learning accomplishes a goal by maximizing
future reward (Sutton and Barto 2018), but can also
be used to estimate, or predict, the future values
of signals other than reward. For example, general
value functions (GVFs) can be learned to predict
arbitrary signals of interest, called cumulants (Z)
(White 2015). True online temporal difference learn-
ing (TOTD) was used to estimate the return, or future
values of cumulants, using previously obtained estim-
ates (algorithm 2). TOTD is an updated temporal
difference learning method that has added terms to

6

Algorithm 2. True online temporal difference learning.
Reinforcement learning algorithm to estimate the discounted
future values of sensor signals during walking. w = weight vector;
e = eligibility trace; V = general value function; S = state;

x = feature vector; Z = cumulant; § = temporal difference;

Y = termination signal/discounting factor; A = eligibility trace
parameter; x = learning step-size.

True Online TD(A)

Initialize w, e, V14, S, X

Repeat every time-step:

Generate next state S and cumulant 2’

x‘ < SKC(S’)

Vewx

V —wl ¥

d+Z+yV -V

e+ yhe +x — xyAle'x)x

ww+ a(d+V—Vyge — x(V — Vyg)x
Vo — Vix ¢ x

Dutch trace

the eligibility trace and weight update equations (van
Seijen et al 2015).

During walking, TOTD predicted the future val-
ues of three signals of interest that were recor-
ded from the PML. Specifically, the returns of the
cumulants were estimated in real time through the
inner product of the weight vector (updated dur-
ing TOTD) and the feature vector from function
approximation (selective Kanerva coding), to pro-
duce the GVF for that cumulant (algorithm 2).
The learning step-size (), which determines the
magnitude of the update, was set to 0.001, which
was determined empirically. The bootstrapping para-
meter for the eligibility trace (A) was set to 0.9 as
is often standard. Different termination signals (y)
were determined for each cumulant empirically: 0.9
for unloading, 0.71 for vGRE and 0.75 for the angu-
lar velocity of the PML. Because vy = 1 — F, where
T = 40 ms (one time-step), these values of y corres-
ponded to timescales of 400 ms, 138 ms, and 160 ms,
respectively.



10P Publishing

J. Neural Eng. 17 (2020) 036002

2.5. Experimental protocol

A walking trial consisted of one trip across the walk-
way (~ 3 m). A naive experimenter manually moved
the PML through the walking cycle, and up to four
different naive experimenters moved the limb in
each experiment. Since the cats were anaesthetized,
the movements of the PML were entirely made by
the experimenter, meaning that the signals from the
vGRFs and angular velocity resulted from the exper-
imenter’s best approximation of the movements that
would be made by an awake cat. The movements of
the PML did not translate to the cat or cart due to the
effects of the anaesthesia (i.e. did not produce weight-
bearing or propulsive effects). The contractions of the
muscles produced by ISMS in the SCL propelled the
anaesthetized cat and cart along the walkway. The
control method (reaction-based or Pavlovian) used
for each walking trial was determined randomly by a
different person than the one walking the PML, or by
arandom number generator. The person moving the
limb was blinded to the control method driving ISMS
for each trial.

For some trials, experimenters were told to pur-
posefully make a mistake while walking the PML. A
mistake was not explicitly defined; it was left to the
discretion of the person walking the PML. Intentional
mistakes included elongating the stance or the swing
phase, shaking the limb in the air, or slipping forward
or backward.

2.5.1. Reaction-based control trials

The first 2 consecutive walking trials for each naive
experimenter moving the PML were set up using
thresholds for transitions through the phases of the
walking cycle based on bench testing and knowledge
from previous work (Dalrymple et al 2018). The
thresholds were then revised based on the success
of the transitions through the phases of the walk-
ing cycle and the collected sensor signals. The revised
thresholds were then tested in the following walking
trial and retuned until consistent walking was pro-
duced. After this initial tuning period, the person-
specific thresholds remained constant throughout all
cat experiments. An example of the thresholds spe-
cific to experimenter A is shown in figure 2(A).
Optimizing initial thresholds for each person and
holding them constant throughout all experiments
allowed for a fair comparison of the control strategies
with their best possible thresholds from start-up.
Each person performed walking trials using the cus-
tomized thresholds from the three other naive exper-
imenters walking the PML in addition to trials with
their own thresholds.

2.5.2. Pavlovian control trials

Of the eight cat experiments conducted in this study,
the first three had one set of thresholds on the pre-
dicted values of the sensor signals, while the remain-
ing five had a different set of thresholds. As this
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was the first testing of these newly developed con-
trol strategies in an animal, initial setting of para-
meters was needed. By comparison, the rule-based
control strategy had been employed in previous work
(Dalrymple et al 2018), and was therefore tried and
tested in an experimental setting already. The learn-
ing parameters and methods for Pavlovian control
remained constant throughout the study. The initial
thresholds for Pavlovian control were chosen based
on testing on previously collected data from treadmill
stepping (Dalrymple et al 2018) and bench testing on
the walkway without a cat. These thresholds resulted
in 55.4% of the steps triggered by back-up reactions
and 2.0% of steps having missed phase transitions.
Therefore, the thresholds were revised along with a
change in which signal was used to predict some of
the phases and held constant for the following five
experiments. The back-up reaction thresholds were
unchanged.

Several different trial types were conducted to
investigate early learning, continued learning, and
how the learning adapted or recovered after changes
between cat experiments and people walking the
PML. Early learning was evaluated by initializing
the learning weights, eligibility trace, and GVFs to
0 at the beginning of a walking trial. In these trials,
learning began anew with no prior knowledge. These
early learning trials were repeated in every cat exper-
iment with the different naive experimenters walking
the PML.

Learning also continued across several walk-
ing trials within each cat experiment. Throughout
these trials within the experiment, multiple naive
experimenters took turns to walk the PML through
the walking cycle. Furthermore, the carry-over of
learning from one cat experiment to the next was
tested over 5 cats. Repeating these carry-over tri-
als in a new cat experiment allowed repeated invest-
igation of the transfer of the learning algorithm
between experiments with different cats and dif-
ferent experimenters walking the PML (i.e. differ-
ent walking styles). A set of trials were also con-
ducted whereby learning continued throughout 5
cat experiments, where multiple experimenters took
turns to walk the PML within each experiment. These
trials investigated the long-term learning and the
adaptation to changes in cats and people walking
the PML.

2.6. Data processing and analysis

2.6.1. Calculating alternation

The alternation of the two hind-limbs was calculated
from the vGRFs using previously described methods
(Dalrymple et al 2018). Briefly, the time spent in ver-
tical loading per leg was converted into the degrees
of a circle, with the onset of vertical loading of the
PML defining the points of 0° and 360°. The half-way
time of vertical loading for each limb was converted to
degrees according to the step period. The difference of
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the phase for each limb should equal 180° for perfect
alternation.

2.6.2. Defining transitions as triggered by a prediction
or a reaction

A step was considered to be entirely under Pavlovian
control if transitions through all 4 phases of the
gait cycle were achieved based on the thresholds
placed on the predicted sensor values. If any of
the phases required a back-up reaction (based
on thresholds placed on the raw sensor values)
to transition, then that entire step was counted
as such.

2.6.3. Learning curves

The online prediction of the return (predicted dis-
counted future values of the sensor signals) with
the ideal return (actual discounted sum of future
values of the sensor signals) was compared for
each sensor value (Sutton and Barto 2018). Dur-
ing walking, TOTD estimated the return based on
previous interaction and current sensor values. The
ideal return was calculated post-hoc by summat-
ing the future raw sensor values discounted by
the discount factor (y) used for each sensor sig-
nal. The mean squared error between the online
return and the ideal return for each sensor sig-
nal was calculated for early learning trials, and
averaged the errors over the trial time (Modayil
etal 2014).

2.7. Statistics

A one-sample t-test was used to compare the altern-
ation phase differences with the target of 180°.
A p-value < 0.05 was considered to indicate sig-
nificance. The effect size was determined using
Cohen’s d.

Chi-squared (X?) tests were conducted to com-
pare the proportion of prediction-triggered phase
transitions between different types of Pavlovian con-
trol walking trials (early, within one cat, carry-
over, and continued learning), as well as for com-
paring the proportion of missed phase transitions
across control methods. Cross-tabulations were gen-
erated for all pair-wise combinations. The X2 with
the continuity correction for 2 X 2 contingency
tables were reported, with the «-level adjusted using
the modified Bonferroni correction for multiple
comparisons.

3. Results

A total of 7943 steps from 770 trials were recorded
from eight cats. On average, the step period was 1.32 s
(SD = 0.26 s) and ranged from 0.44 s to 2.82 s.

3.1. Walking with reaction-based control
Reaction-based control was tested in all eight cats,
resulting in 264 walking trials. The transferability of

8

AN Dalrymple et al

Table 1. Proportion of missed steps for combinations of people
walking the PML (person-moved limb) using customized
threshold settings for each person during reaction-based control.

A B C D

A 11.0% 100.0% 94.0% 54.8%

. B 7.1% 104% 46.6% 12.5%
Threshold settings -~ S0 44105 12,00  6.0%
D 124% 12.8% 42.0% 11.5%

the tuned parameters for one walking pattern (by
one naive experimenter) to another and the need for
retuning of parameters for reaction-based control of
over-ground walking was documented. We found that
one naive experimenter’s thresholds were not trans-
ferable to the other naive experimenters. This was
because there was high variability in the force pro-
duction and movements produced by the 4 naive
experimenters walking the PML (figure 4(a)); there-
fore, customized thresholds for transitions between
the phases of the walking cycle for each person
were needed. The best performance of customized
thresholds was 89.6% of steps successfully transition-
ing through the phases of the walking cycle. Over-
all, 18.7% (680/3645) of the total number of steps
in all walking trials under reaction-based control
had missed phase transitions due to the absence
of threshold crossing by the raw sensors in these
instances (table 1).

The alternation between the PML and the SCL
was assessed using the phase difference between the
two legs, where a phase difference of 180° indicated
perfectalternation (Dalrymple et al 2018). Both hind-
limb alternation and successful transitions through
the phases of the walking cycle needed to occur for
walking to be considered functionally effective. Over-
all, reaction-based control achieved a phase differ-
ence of 179.6° (SD = 19.0°). There were instances
where the parameter settings for one naive experi-
menter (person C) walking the PML resulted in fewer
missed phase transitions when utilized for another
experimenter walking the PML (persons A and D;
table 1). However, poor PML-SCL alternation was
encountered due to large variability in the walk-
ing patterns produced by the different experimenters
walking the PML (figure 4(B)). This was because per-
sons A and D made larger movements with larger
sensor values than required for the settings tuned for
person C, triggering phase transitions between the
phases of the gait cycle earlier than needed to produce
alternating walking. This produced a phase difference
significantly less than 180° with very large effect sizes
(phase difference for A = 155.0°; phase difference for
D = 155.9°%; p < 0.0001; df = 173, 46; one-sample t-
test; Cohen’s d = 0.64, 1.97). The inconsistent altern-
ation and unsuccessful phase transitions across dif-
ferent people walking the PML (i.e. different walking
styles) highlight the need for an automatically pre-
dictive control system.
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Figure 4. Walking using reaction-based control (n = 264 trials). (A) Ground reaction forces and angular velocities produced by
each of the 4 naive experimenters walking the PML (person-moved limb). (B) Alternation phase differences of the hind-limbs for
each person walking the PML with threshold settings tuned for each person. Target alternation difference is 180°. *p < 0.0001.

3.2. Walking with Pavlovian control

3.2.1. Learning predictions of sensor signals occurs
quickly

The Pavlovian controller learned predictions in real
time during over-ground walking. Without prior
learning, predictions became the only signals that ini-
tiated proper phase transitions within a maximum of
four steps, which corresponded to approximately 4 s.
Back-up reactions for phase transitions most com-
monly occurred within the first step, indicating that
learning the predicted signals occurred quickly res-
ulting in appropriate phase transitions (table 2). Fast
learning is also demonstrated by the learning curves,
where the mean squared error between the online
and ideal returns decreased exponentially as learning
continued within the trial (figure 5). Throughout all
1036 steps in the early learning trials (n = 88 trials),
only 3 had failed phase transitions throughout the
walking cycle. In 87.2% of the steps taken, the phase
transitions were initiated by the predictions crossing
the thresholds. Early learning trials had an average
phase difference of 181.9° + 7.8°. Therefore, the naive
learning algorithm was able to learn accurate predic-
tions of walking-relevant sensor signals quickly, pro-
ducing functional over-ground walking using ISMS.

Table 2. Back-up reactions in early learning trials using Pavlovian
control. Within how many steps at the beginning of a walking trial
was a back-up reaction triggered for each person walking the PML
(person-moved limb).

1 Step 2 Steps 3 Steps More
A 92.3% 3.8% 3.8% 0.0%
B 97.1% 2.9% 0.0% 0.0%
C 69.6% 8.7% 17.4% 4.3%
D 20.0% 0.0% 40.0% 40.0%
All 84.1% 4.5% 8.0% 3.4%

3.2.2. Learning that continued within a cat experiment
produced better Pavlovian control

As learning continued past one walking trial within
a cat experiment, the predictions of the walking-
relevant signals became smoother and more reliable
as they accumulated more experience (figures 6(A)
and B). The proportion of steps initiated by threshold
crossings on the predicted sensor signals significantly
increased compared to trials without prior learn-
ing (initialized to zero: 87.4% predictions; contin-
ued within one cat: 95.6% predictions; p < 0.0001,
X? test; figure 6(D)). The phase difference achieved
in these trials was 181.1° and was not significantly
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different from the target of 180° + 5.9° (p = 0.077;
df = 98; one-sample t-test), demonstrating the abil-
ity to maintain alternation of the hind-limbs as online
learning continued within a cat experiment for all
experimenters walking the PML (figure 6(e)).

3.2.3. Learning continued to initiate prediction-based
transitions across several cats and walking styles

The ability of the Pavlovian control to adapt to sudden
changes in walking style was examined by evaluating

the walking trials at the transition between differ-
ent naive experimenters walking the PML. As dif-
ferent naive experimenters took turns to move the
PML through the walking cycle, learning quickly
acclimated to the new person and their style of walk-
ing. Of the 84 transition points between people,
64 did not require a back-up reaction to trans-
ition the SCL through the phases of the walking
cycle (figure 7(A)). Only five trials required more
than 1 step to adjust to the new naive experimenter

10
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walking the PML before only prediction-triggered
transitions occurred. This impressively demonstrated
fast adaptations to new environments, resulting in the

first personalized and automatically predictive con-
trol strategy for a neural prosthesis. The next point
of interest was to determine if the settings learned for
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#p = 0.026.

Pavlovian control in one animal could transfer and
adapt to the next animal. This is analogous to hav-
ing a new user of a clinical system have their initial
settings mirror those of previous users instead of fine
tuning the settings from scratch for the new user. Very
interestingly, the learned predictions from previous
experiments translated well to new cat experiments.
In the first walking trial in the new animal, 83.3%
of the steps taken did not require a back-up reac-
tion for phase transitions, and 10.0% of steps requir-
ing a back-up reaction were the first step in the trial.
The steps in these walking trials were alternating, with
an average phase difference of 179.1° &+ 3.2°, which
was significantly different from 180° but with a small
Cohen’s d effect size (p = 0.026; df = 60; one-sample
t-test; Cohen’s d = 0.29; figure 7(B)).

3.2.4. Learning continued to improve across several
cats and walking styles

Long-term learning during walking was possible by
continuing the learning over several cat experiments
with different naive experimenters taking turns to
walk the PML. This provided an excellent represent-
ation of day-to-day changes that may occur in the
walking styles produced by the users. The learned pre-
dictions triggered phase transitions in more than 91%
of the steps taken for all naive experimenters walk-
ing the PML, which was significantly higher than the
proportion of prediction initiated transitions in early
learning trials (p < 0.0001; X? test figure 8(A)). Up
to 98.7% of steps were transitioned using predictions
(Person B; figure 8(B)). On average, these continuing
walking trials had a phase difference of 180.8° £ 5.5°
(p =0.113; df = 114; one-sample t-test; figure 8(C)).
Importantly, there were no missing phase transitions
for walking in any trials where learning continued
beyond the first learning trial.

3.2.5. Pavlovian control recovered from mistakes

Finally, we tested how the learning recovered from
perturbations during walking. This is important
because the end users of a neural prosthesis may have
instances of instability. Different types of intentional

12

mistakes were made by the naive experimenters walk-
ing the PML throughout various stages of learning.
The predictions were immune to the new and unex-
pected values of the sensor signals when walking was
interrupted. Following a mistake, 94.4% (51/54) of
the steps that followed had phase transitions triggered
by the predicted sensor values (figure 9). Therefore,
not only was the Pavlovian controller able to accom-
modate multiple users (i.e. cats) and multiple styles of
walking (i.e. different people walking the PML), but
it also was able to recover from mistakes made during
walking.

4. Discussion

The goal of this study was to produce, for the
first time, predictive, personalized, alternating, over-
ground walking in a model of hemisection SCI using
ISMS. The control strategy took advantage of ‘resid-
ual function’ to restore over-ground walking in anaes-
thetized cats. Reinforcement learning was used to
learn predictions of walking-relevant sensor values.
Pavlovian control used the predicted sensor values
and threshold crossings on these predictions to con-
trol ISMS such that the ‘paralyzed limb’ is moved
to the opposite phase of the walking cycle as the
‘intact limb’. Pavlovian control was used across differ-
ent people walking the ‘intact limb’ and throughout
different cat experiments without requiring adjust-
ments to the threshold settings. Learning occurred
very quickly and consistently produced prediction-
driven transitions between the phases of the gait cycle.
The learned predictions were also resilient enough to
recover quickly following a mistake during walking.
Personalized walking was possible for the first
time because reinforcement learning acclimated to
different people moving the ‘intact limb’ as well as
to different cats. This comes in contrast to other
approaches where the pattern of walking by the
user (person) is dictated by the control algorithm.
Adaptability and personalized walking are important
because people with a SCI walk differently from each
other, and there are changes in walking day-to-day for
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a given person as well as with ongoing rehabilitation.
Additionally, ISMS may facilitate plasticity and pro-
mote functional improvements as was demonstrated
in the recovery of upper limb function of rats with
a contusion SCI (Kasten et al 2013, Mcpherson et al
2015). Therefore, an automatically adaptable control
system is highly desired to allow for minimal repro-
gramming.

4.1. Learning methods

This study used TOTD to learn GVFs for three cumu-
lants during walking that were used for Pavlovian
control. When a GVF crossed a pre-defined threshold,
a stimulation response was delivered to move the SCL
to the opposite phase of the walking cycle relative

AN Dalrymple et al

to the PML. The selective Kanerva function approx-
imation method, predictions using GVFs, learning
through TOTD, and Pavlovian control are relatively
recent advancements made in the field of comput-
ing science (Sutton et al 2011, Modayil and Sut-
ton 2014, van Seijen et al 2015, Travnik and Pil-
arski 2017). Selective Kanerva coding was chosen
because it performs well online with a large num-
ber of sensors (Travnik and Pilarski 2017). It is also
simple to implement and conceptualize. GVFs have
proven to be a valuable tool in reinforcement learn-
ing: they allow the prediction of arbitrary signals;
thus making reinforcement learning more power-
ful and applicable to more problems. In the field
of rehabilitation, TD(A) has been used to produce
GVFs for upper-limb prostheses (Pilarski et al 2012,
2013a, 2013b, Sherstan and Pilarski 2014, Edwards
et al 2016). TOTD offers an equivalence to the the-
oretical forward view of TD learning with negligible
increase in computational cost (van Seijen et al 2015)
and has been used to predict the shoulder angle of
an upper-limb prosthesis (Travnik and Pilarski 2017).
Pavlovian control has successively been used to con-
trol switching events of an upper-limb prosthesis in
able-bodied study participants (Edwards et al 2013)
and participants with amputations (Edwards et al
2016). It has also been used to control the turning
off and spinning of a mobile robot (Modayil and
Sutton 2014).

Pavlovian control is an appropriate approach to
restoring walking after SCI using neural technology
because learning the GVFs can occur very rapidly.
Since the control strategy only requires the predic-
tion to cross a threshold, online control can be ini-
tiated quickly. The learned predictions do not fluc-
tuate nor are largely affected by sudden changes
in the raw data, making them more reliable for
threshold crossings in state control than the raw sig-
nals. Additionally, Pavlovian control does not require
exploration of the state space, which is necessary
in traditional reinforcement learning control meth-
ods. This is beneficial during walking because explor-
ation of the state space could pose a danger to
the user. For example, exploration may produce
unsafe movement combinations such as double limb
unloading. The state space could be restricted to
avoid these dangerous situations, but this would
limit the capacity of reinforcement learning and
negate its usefulness. Therefore, Pavlovian control,
which uses predictions to drive a fixed stimulation
response, is suitable for a repetitive task such as
walking.

Pavlovian control also allows for the knowledge
of the expert designer to be incorporated into the
rules that define the uses of the predictions and
the output. This study, for the first time, com-
bined all of these methods and used them to control
a neural interface to produce over-ground walking
in vivo.
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4.2. Biological parallels

Making predictions during a functional task is very
useful and is commonly done naturally. For example,
during walking, the central nervous system is con-
tinuously integrating sensory input from cutaneous
receptors on the feet, stretch and loading sensors in
the muscles and tendons, as well as visual and ves-
tibular information to maneuver through the envir-
onment effectively and safely (Zehr et al 1997, Zehr
and Stein 1999, Donelan and Pearson 2004, Marigold
2008, Mathews et al 2017). These sensory streams can
be used to form short-term predictions that can be
used in turn to adapt the gait pattern. Unexpected
sensory stimuli result in reflexive changes, and with
repetition, adaptation to the sensory stimuli occurs.
For example, if an obstacle is placed in front of a cat’s
hind-limb during the swing phase causing activation
of cutaneous receptors on the dorsum of the paw,
the knee will flex further to clear the obstacle (Mcvea
and Pearson 2007). This is a reflexive, or automatic
response to the sensory stimulus, which is mediated
by the spinal cord. If the obstacle is present for 20
continuous steps, the foot will begin lifting higher
during swing in anticipation of the obstacle. Such
effects, which are mediated by the cerebellum, can last
for more than 24 h in some cases (Xu et al 2006).
Although this is not exactly an example of Pavlovian
control, it demonstrates the usefulness of predictions
and how they can be utilized by the nervous system.

4.3. Relation to other control strategies
Current commercially available devices for restoring
walking after SCI, such as the Parastep, Praxis, and

various exoskeletons, have limited control options.
The Parastep and Praxis systems use surface and
implanted functional electrical stimulation (FES)
electrodes, respectively (Chaplin 1996, Johnston et al
2005). Walking is accomplished using open loop
alternation between stimulation of the quadriceps
muscles and the peroneal nerve, with each step ini-
tiated using push-buttons on a walker. Powered exo-
skeletons initiate open-loop walking by the user lean-
ing forward (Chang et al 2015, Ekelem and Goldfarb
2018). The users are expected to adapt their walking
to accommodate the control strategy in the device. To
restore meaningful and functional walking, especially
after an incomplete SCI, the control strategy needs
to adapt to the user, utilize residual function, and
deliver stimulation to compensate for the deficits as
needed.

Both the Pavlovian and reaction-based controllers
were finite state controllers, which is a concept that
has been used previously to produce walking in mod-
els of SCI. Finite state control has the advantage of
incorporating expert knowledge in a straight-forward
manner to define the rules for walking (Popovi¢ 1993,
Sweeney et al 2000). Finite state control of surface
(Andrews et al 1988) and intramuscular (Guevre-
mont et al 2007, Mazurek et al 2012) FES of the
leg muscles used information from ground reaction
forces and hip angle to control the transition between
the phases of the gait cycle. Previous controllers for
ISMS in a model of complete SCI used ground reac-
tion forces and hip angle (Saigal et al 2004, Holinski
et al 2016) or recordings from the dorsal root ganglia
(Holinski et al 2013) to transition the hind-limbs
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through the different phases of the walking cycle
(Dalrymple and Mushahwar 2017).

The current study demonstrated that predictions
can be learned to initiate transitions between the
phases of the gait cycle using only two sensor signals:
ground reaction force and angular velocity. These
sensors can easily be integrated into a wearable sys-
tem; gyroscopes are small microchips and force sens-
itive resistors can be placed in the soles of shoes (Kirk-
wood et al 1989, Kostov et al 1992). Recent work
has demonstrated that kinematic data can be used to
identify the phases of the gait cycle during walking
(Drnach et al 2018). Switched linear dynamical sys-
tems (SLDS) was used to model the joint angle kin-
ematics in neurologically intact people walking on
a treadmill. The offline SLDS models were able to
label the correct phase of the gait cycle with 84% pre-
cision. Future work may incorporate more portable
sensors such as goniometers along with online mod-
els to build predictions of gait phases.

Control strategies utilizing machine learning are
needed for automatic adaptation of stimulation set-
tings to restore walking. Supervised machine learn-
ing has been used to control surface functional elec-
trical stimulation (FES) systems in persons with
SCI to track joint angles (Abbas and Triolo 1997,
Popovic et al 1999, Qi et al 1999), initiate the swing
phase (Kirkwood and Andrews 1989, Kostov et al
1992, 1995, Sepulveda et al 1997, Tong and Granat
1999), control FES over multiple joints (Fisekovic
and Popovic 2001), predict different phases of the
gait cycle in neurologically-intact subjects (Kirkwood
and Andrews 1989, Williamson and Andrews 2000),
and in finite control of FES walking after complete
SCI (Popovi¢ 1993). However, supervised learning
requires manual labelling of data and is limited by the
data set used for training. Many examples with suffi-
cient variability are needed in the training data set to
obtain an accurate generalization. Ideally, stimulation
settings would be tuned once during the initial set-up
for each person, and thereafter automatically adjust
to any changes in daily gait patterns.

4.4. Experimental limitations

The model of a hemisection SCI used in this study
enabled thorough testing of the control strategies
while avoiding the need for inducing SCIs. It allowed
testing of the ability of the control strategies to aug-
ment residual function in a controlled manner. This
necessitated voluntary control of one hind-limb to be
mimicked by a person moving the limb through the
walking cycle. This was the first testing of these con-
trol strategies, and the outcomes served as a proof-of-
concept implementation. Further work may test these
control strategies in chronically injured cats.

A hemisection SCI has more stereotypic func-
tional deficits compared to other injuries such as
bilateral contusion SCIs. Although these SCIs are rare,
e.g. Brown-Sequard syndrome (Roth et al 1991, Wirz
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et al 2010), the control strategies may be extended
to hemiplegia in general, which includes stroke and
traumatic brain injury.

The thresholds for Pavlovian control were final-
ized after initial testing in early experiments. They
were chosen based on testing on previously collec-
ted data from treadmill stepping (Dalrymple et al
2018) and bench testing on the walkway without a
cat. Moderate performance of walking was achieved;
however, transitions were improved with changes
to the thresholds and the signals on which the
thresholds were placed. It is important to note that
the learning parameters of the predictions were never
changed as they were consistently accurate. Addi-
tionally, once the new thresholds were set, they were
never modified thereafter. This demonstrates that
the initial design decision of where to place the
thresholds was important, but once it was finalized,
no further changes were necessary. The thresholds
for Pavlovian control did not require tuning for
different people and cats, because the learned pre-
dictions acclimated to the changes. However, it
may be beneficial to introduce adaptive thresholds
in the future, especially if these strategies were to
be employed in more variable injury models. Fur-
thermore, the stimulation amplitudes and channels
that produced the functional responses remained
constant during a walking trial. Future work may
introduce a learning strategy that aims to optimize
and adapt the stimulation channels and amplitudes
in addition to current strategy which controls the
timing.

4.5. Future considerations

Pavlovian control learned predictions for ground
reaction force and angular velocity signals; how-
ever, other sensor signals could also be used to
provide more information about the environment.
For example, muscle activity recorded using EMG,
joint angles provided by goniometers, or visual
information through cameras or infrared sensors
could all be recorded and used to acquire more
predictions. The addition of sensors (e.g. EMG,
goniometers) could be useful to restore walking after
variable injuries or to provide information regarding
the walking terrain (visual, infrared) to adapt the con-
trol strategy. For example, if a user needed to step up
a curb, visual or infrared sensors as well as goniomet-
ers and EMG activity could be used by a Pavlovian
controller to predict the change in gait and adjust
the stimulation output accordingly to facilitate curb-
stepping. Additional sensors could also be used to
provide stability information such as loss of balance,
fatigue, and the reliance on the upper body for sup-
port. More control rules could be incorporated to pre-
dict and correct these unsafe situations. Furthermore,
the addition of sensors is feasible if a state representa-
tion method such as selective Kanerva coding is used,
as was the case in this work, because it is not affected
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by the increase in dimensions (Travnik and Pilarski
2017).

Pavlovian control can easily be expanded to neur-
omodulation systems such as deep brain stimulation
for various conditions including Parkinson’s disease
and depression, neuroprosthetic systems for restoring
function after stroke or traumatic brain injury, and
exoskeletons and artificial limbs.

5. Conclusion

Pavlovian control of walking augmented function
in a model of hemisection SCI. Using predictions
of sensor signals during walking, Pavlovian control
was resilient to transitions between different walking
styles, between cat experiments, and recovered from
mistakes made during walking.

Pavlovian control of ISMS has the potential
to enhance ambulation capacity greatly, generat-
ing functional over-ground walking. Very import-
antly, we have demonstrated, for the first time, that
control strategies using intelligent machine learning
approaches such as Pavlovian control can reduce the
burden of tuning stimulation parameters for con-
trolling a neuroprosthesis. This increases the ease
of translation of innovative neural technologies to
clinical settings. The control strategy can also be
extended to other injury models and interventions
such as peripheral FES, lower-limb prostheses, and
exoskeletons.
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