
Some Recent Applications of Reinforcement Learning

A. G. Barto, P. S. Thomas, and R. S. Sutton

Abstract— Five relatively recent applications of reinforcement

learning methods are described. These examples were chosen to

illustrate a diversity of application types, the engineering needed

to build applications, and most importantly, the impressive

results that these methods are able to achieve. This paper is

based on a case-study chapter of the forthcoming second edition

of Sutton and Barto’s 1998 book “Reinforcement Learning: An

Introduction” [7].

I. INTRODUCTION
Machine learning has come into its own as a key technol-

ogy for a wide range of applications. Reinforcement learning
is the branch of machine learning that allows systems to learn
from the consequences of their own decisions instead of from
the decisions of human experts. This makes reinforcement
learning useful in problems where it is difficult, expensive,
or impossible to obtain reliable expert training information.
In this paper we describe five relatively recent applications
of reinforcement learning. These applications were chosen
to illustrate the diversity of problems to which reinforcement
learning is being applied, a range of different reinforcement
learning methods, including some that make use of deep
neural networks, and the engineering needed to make them
work. Most importantly, these applications illustrate the
impressive results that are achievable with reinforcement
learning, foreshadowing the promise of similarly-impressive
results over the future in many other challenging problems.

II. WATSON’S DAILY-DOUBLE WAGERING
IBM WATSON1 is the system developed by a team of

IBM researchers to play the popular TV quiz show Jeop-

ardy!.2 It gained fame in 2011 by winning first prize in an
exhibition match against human champions. Although the
main technical achievement demonstrated by WATSON was
its ability to quickly and accurately answer natural language
questions over broad areas of general knowledge, its winning
Jeopardy! performance also relied on sophisticated decision-
making strategies for critical parts of the game. Tesauro,
Gondek, Lechner, Fan, and Prager [9, 10] adapted Tesauro’s
TD–Gammon system [11, 12] to create the strategy used by
WATSON in “Daily-Double” (DD) wagering in its celebrated
winning performance against human champions. These au-
thors report that the effectiveness of this wagering strategy
went well beyond what human players are able to do in live

A.G. Barto and P.S. Thomas are with the College of Informa-
tion and Computer Sciences, University of Massachusetts Amherst
barto@cs.umass.edu, PThomasCS@gmail.com

R.S. Sutton is with the Department of Computing Science, University of
Alberta, Edmonton, Alberta rsutton@ualberta.ca

1Registered trademark of IBM Corp.
2Registered trademark of Jeopardy Productions Inc.

game play, and that it, along with other advanced strategies,
was an important contributor to WATSON’s impressive win-
ning performance.

Jeopardy! is played by three contestants who face a board
showing 30 squares, each of which hides a clue and has a
dollar value. One or two squares are special DD squares. A
contestant who selects one of these gets an exclusive oppor-
tunity to respond to the square’s clue and has to decide—
before the clue is revealed—on how much to wager, or bet. If
the contestant responds correctly to the DD clue, their score
increases by the bet amount; otherwise it decreases by the bet
amount. Winning or losing often depends on a contestant’s
DD wagering strategy.

Whenever WATSON selected a DD square, it chose its
bet by comparing action values, Q(s, bet), that estimated
the probability of a win from the current game state, s, for
each round-dollar legal bet. Except for some risk-abatement
measures, WATSON selected the bet with the maximum ac-
tion value. Action values were computed whenever a betting
decision was needed by combining a state value function,
V (·, ✓), defined by parameters ✓, estimating the probability
of a win for WATSON from any game state, with an “in-
category DD confidence” estimate of the likelihood that
WATSON would respond correctly to the as-yet unrevealed
DD clue.

V (·, ✓) was learned by the same reinforcement learning
approach used by TD–Gammon: a combination of nonlinear
TD(�) using a multilayer neural network with weights ✓
trained by backpropagating TD errors during many simulated
games. States were represented to the network by features
that included the current scores of the three players, how
many DDs remained, the total dollar value of the remaining
clues, and other information related to the amount of play
left in the game. Unlike TD–Gammon, which learned by self-
play, WATSON’s V was learned over millions of simulated
games against models of human players based on statistics
extracted from an extensive archive of game information
that included information for nearly 300,000 clues. The
in-category DD confidence estimates were based on the
number of right and wrong responses that WATSON gave
in previously-played clues in the current category over many
thousands of historical categories.

Although its ability to quickly and accurately answer
natural language questions stands out as WATSON’s ma-
jor achievement, all of its sophisticated decision strategies
contributed to its impressive defeat of human champions.
According to Tesauro et al. [9]:

... it is plainly evident that our strategy algorithms
achieve a level of quantitative precision and real-



time performance that exceeds human capabilities.
This is particularly true in the cases of DD wager-
ing and endgame buzzing, where humans simply
cannot come close to matching the precise equity
and confidence estimates and complex decision
calculations performed by Watson.

III. OPTIMIZING MEMORY CONTROL

Most computers use dynamic random access memory
(DRAM) as their main memory because of its low cost
and high capacity. A DRAM controller has to efficiently
use the interface between the processor chip and an off-
chip DRAM system to provide the high-bandwidth and
low-latency data transfer necessary for high-speed program
execution. A memory controller needs to deal with dy-
namically changing patterns of read/write requests while
adhering to a large number of timing and resource constraints
required by the hardware. This is a formidable scheduling
problem, especially with modern processors with multiple
cores sharing the same DRAM.

İpek, Mutlu, Martı́nez, and Caruana [1] (also Martı́nez
and İpek [4]) designed a reinforcement learning DRAM
controller and demonstrated that it can significantly improve
the speed of program execution over what was possible with
conventional controllers at the time of their research. They
were motivated by limitations of existing state-of-the-art
controllers that used policies that did not take advantage of
past scheduling experience and did not account for long-term
consequences of scheduling decisions. İpek et al.’s project
was carried out by means of simulation, but they designed
the controller at the detailed level of the hardware needed to
implement it—including the learning algorithm—directly on
a processor chip.

A DRAM controller maintains a memory transaction

queue that stores memory-access requests from the pro-
cessors sharing the memory system. The controller has to
process requests by issuing commands to the memory system
while adhering to a large number of timing constraints. To
transfer a row of bits into or out of a row of a DRAM array,
the row has to be “opened” by issuing an activate command,
which moves the row’s contents into the array’s row buffer.
With a row open, the controller can issue read and write

commands to the cell array. Each read command transfers
the contents of the row buffer to the external data bus, and
each write command transfers a word in the external data
bus to the row buffer. Before a different row can be opened,
a precharge command must be issued which transfers the
(possibly updated) data in the row buffer back into the
addressed row of the cell array. After this, another activate
command can open a new row to be accessed. Read and write
commands to the currently-open row can be carried out more
quickly than accessing a different row, which would involve
additional precharge and activate commeands.

The simplest scheduling strategy handles access requests
in the order in which they arrive by issuing all the com-
mands required by the request before beginning to service
the next one. But if the system is not ready for one of

these commands, or executing a command would result in
resources being underutilized (e.g., due to timing constraints
arising from servicing that one command), it makes sense to
begin servicing a newer request before finishing the older
one. Policies can gain efficiency by reordering requests,
for example, by giving priority to read requests over write
requests, or by giving priority to read/write commands to
already open rows.

İpek et al. modeled the DRAM access process as a Markov
decision process (MDP) whose states are the contents of
the transaction queue and whose actions are commands to
the DRAM system: precharge, activate, read, write, and
NoOp. The reward signal is 1 whenever the action is read

or write, and otherwise it is 0. The reinforcement learning
algorithm Sarsa was used to learn an action-value function
via linear function approximation implemented by tile, or
CMAC, coding. A relatively long list of potential state
features was generated and then pared down to a handful
using simulations guided by stepwise feature selection. States
were finally represented by six integer-valued features: the
number of read requests in the transaction queue, the number
of write requests in the transaction queue, the number of
write requests in the transaction queue waiting for their
row to be opened, and the number of read requests in the
transaction queue waiting for their row to be opened that
are the oldest issued by their requesting processors. (The
other features depended on how the DRAM interacts with
cache memory, details we omit here.) The integrity of the
DRAM system was assured by not allowing actions that
would violate timing or resource constraints.

İpek et al. evaluated their learning controller in simulation
by comparing it with several other controllers, including
a First-Ready, First-Come-First-Serve (FR-FCFS) controller
that produced the best on-average performance at the time
of the project, and an unrealizable ideal controller, called the
Optimistic controller, able to sustain 100% DRAM through-
put if given enough demand by ignoring all timing and
resource constraints. They simulated nine memory-intensive
parallel workloads consisting of scientific and data-mining
applications. Measuring performance as the inverse of exe-
cution time normalized to the performance of FR-FCFS, the
learning controller showed an average improvement over the
FR-FCFS controller of 19%, and closed the gap with the
Optimistic’s upper bound by 27%. The study also analyzed
the impact of on-line learning compared to a previously-
learned fixed policy. They trained their controller with data
from nine benchmark applications and then held the resulting
action values fixed throughout the simulated execution of the
applications. They found that the average performance of the
controller that learned on-line was 8% better than that of the
controller using the fixed policy.

This learning memory controller was never committed to
physical hardware because of the large cost of fabrication
and the later development of double data rate DRAM.
Nevertheless, İpek et al. argued that a memory controller
that learns on-line via reinforcement learning has the poten-
tial to improve performance to levels that would otherwise



require more complex and more expensive memory systems,
while removing from human designers some of the burden
required to manually design efficient scheduling policies. The
approach is especially promising for developing sophisticated
power-aware DRAM interfaces.

IV. HUMAN-LEVEL VIDEO GAME PLAY

Multi-layer artificial neural networks (ANNs) have been
used for function approximation in reinforcement learning
ever since the 1986 popularization of the backpropagation
algorithm, and some striking results have been obtained,
such as TD–Gammon [11, 12] and WATSON’s DD wagering
discussed above. These and other applications benefited
from the ability of multi-layer ANNs to learn task-relevant
features. However, in all the examples of which we are aware,
the most impressive demonstrations required the network’s
input to be represented in terms of specialized features
handcrafted based on human knowledge and intuition about
the specific problem to be tackled.

A team of researchers at Google DeepMind [5] developed
a reinforcement learning agent called deep Q-network (DQN)
to show how a single reinforcement learning agent can
achieve high levels of performance in many different prob-
lems without relying on different problem-specific features.
DQN couples a deep convolutional ANN [2] with a form
of Q-learning modified to improve its speed and stability.
The team let DQN learn to play 49 different Atari 2600
video games by interacting with a game emulator. For
learning each game, DQN used the same raw input, the
same network architecture, and the same parameter values
(e.g., step-size, discount rate, exploration parameters, and
many more specific to the implementation). DQN achieved
levels of play at or beyond human level on a large fraction of
these games. Although the games were alike in being played
by watching streams of video images, they varied widely in
other respects. Their actions had different effects, they had
different state-transition dynamics, and they needed different
policies for earning high scores. The deep convolutional
ANN learned to transform the raw input common to all the
games into features specialized for representing the action
values required for playing at the high level DQN achieved
for most of the games.

The scores of DQN were compared with the scores of
the best performing learning system in the literature at the
time, the scores of a professional human games tester, and
the scores of an agent that selected actions at random. The
best system from the literature used linear function approx-
imation with features hand designed using some knowledge
about Atari 2600 games. DQN learned on each game by
interacting with the game emulator for 50 million frames,
which corresponds to about 38 days of experience with each
game. At the start of learning on each game, the weights
of DQN’s network were reset to random values. To evaluate
DQN’s skill level after learning, its score was averaged over
30 sessions on each game, each lasting up to 5 minutes and
beginning with a random initial game state. The professional
human tester played using the same emulator (with the sound

turned off to remove any possible advantage over DQN
which did not process audio). After 2 hours of practice, the
human played about 20 episodes of each game for up to 5
minutes each and was not allowed to take any break during
this time. DQN learned to play better than the best previous
reinforcement learning systems on all but 6 of the games, and
played better than the human player on 22 of the games. By
considering any performance that scored at or above 75% of
the human score to be comparable to, or better than, human-
level play, Mnih et al. concluded that the levels of play DQN
learned reached or exceeded human level on 29 of the 46
games.

For an artificial learning system to achieve these levels
of play would be impressive enough, but what makes these
results remarkable—and what many at the time considered
to be breakthrough results for artificial intelligence—is that
the very same learning system achieved these levels of play
on widely varying games without relying on any game-
specific modifications. But as pointed out in [5], DQN is
not a complete solution to the problem of task-independent
learning. Although the skills needed to excel on the Atari
games were markedly diverse, all the games were played by
observing video images, which made a deep convolutional
ANN a natural choice for this collection of tasks. In addition,
DQN’s performance on some of the Atari 2600 games fell
considerably short of human skill levels on these games.
The games most difficult for DQN likely require planning
methods that DQN did not include.

V. MASTERING THE GAME OF GO

The ancient Chinese game of Go has challenged artificial
intelligence researchers for many decades. Methods that
achieve human-level skill, or even superhuman-level skill,
in other games have not been successful in producing strong
Go programs. Thanks to a very active community of Go
programmers and international competitions, the level of
Go program play has improved significantly over the years.
Until recently, however, no Go program had been able to
play anywhere near the level of a human Go master. A
Google DeepMind team [6] developed a program called
AlphaGo that broke this barrier by combining deep convolu-
tional ANNs, supervised learning, Monte Carlo tree search
(MCTS), and reinforcement learning. By the time of the 2016
publication [6], AlphaGo had been shown to be decisively
stronger than other current Go programs, and it had defeated
the human European Go champion 5 games to 0. These
were the first victories of a Go program over a human
professional Go player without handicap in full Go games.
Shortly thereafter, AlphaGo went on to stunning victories
over an 18-time world champion Go player, winning 4 out of
a 5 games in a challenge match, making worldwide headline
news. Artificial intelligence researchers thought that it would
be many more years, perhaps decades, for a program to reach
this level of play.

Go is a game between two players who alternately place
black and white ‘stones’ on unoccupied intersections, or
‘points,’ on a board with a grid of 19 horizontal and 19



vertical lines. The game’s goal is to capture an area of the
board larger than that captured by the opponent. Stones are
captured according to simple rules. Methods that produce
strong play for other games, such as chess, have not worked
as well for Go. The search space for Go is significantly larger
than that of chess because Go has a larger number of legal
moves per position than chess (⇡ 250 versus ⇡ 35) and
Go games tend to involve more moves than chess games
(⇡ 150 versus ⇡ 80). But the size of the search space is
not the major factor that makes Go so difficult. Exhaustive
search is infeasible for both chess and Go, and Go on smaller
boards, e.g., 9 ⇥ 9, has proven to be exceedingly difficult
as well. Experts agreed that the major stumbling block to
creating stronger-than-amateur Go programs is the difficulty
of defining an adequate position evaluation function. A good
evaluation function allows search to be truncated at a feasible
depth by providing relatively easy-to-compute predictions of
what deeper search would likely yield.

AlphaGo used two deep convolutional ANNs: a policy
network, and a value network. Each network had 13 layers.
The final layer of the policy network had a unit for each
point on the 19 ⇥ 19 board, and its output was a probability
distribution over legal actions. The value network had a
single output unit that produced state-value estimates, that
is, estimates of the probability that AlphaGo would win the
game from the game position currently represented by the
network’s input. Each network’s input was a 19 ⇥ 19 ⇥
48 image stack in which each point on the Go board was
represented by the values of 48 binary or integer-valued
features. For example, for each point, one feature indicated
if the point was occupied by one of AlphaGo’s stones, one
of its opponent’s stones, or was unoccupied, thus providing
the “raw” representation of the board configuration. Other
features were based on the rules of Go, such as the number
of adjacent points that were empty, the number of opponent
stones that would be captured by placing a stone there,
the number of turns since a stone was placed there, and
other feature vectors that the design team considered to be
important.

Each network was trained off-line before live play and
remained fixed during actual games. The policy network
was first trained by supervised learning to predict moves
contained in a database of nearly 30 million expert moves.
Training took approximately 3 weeks using a distributed
implementation of stochastic gradient ascent on 50 proces-
sors. It achieved 57% accuracy, compared to best accuracy
achieved by other groups at the time of publication of 44.4%.
Reinforcement learning was then used to improve this policy.
This was done with policy-gradient reinforcement learning
on simulated games between the network’s current policy
and opponents using policies randomly selected from policies
produced by earlier iterations of the learning algorithm. By
simulating many games in parallel on 50 processors, the
DeepMind team trained the network on a million games in
a single day. In testing, the final policy won more than 80%
of games played against the policy learned by supervised
learning, and it won 85% of games played against a Go

program using Monte Carlo search that simulated 100,000
games per move. The value network was trained by Monte
Carlo policy evaluation on data obtained from a large number
of simulated games in which each player used the policy
learned by the policy network.

During live play, AlphaGo selected its moves by us-
ing the policy and value networks in a novel variant of
MCTS, a recent and strikingly successful combination of
tree search and Monte Carlo policy evaluation responsible
for the impressive gains of the most successful preceding
Go programs. MCTS is an enhanced rollout algorithm [8]
that is executed after encountering each new game state to
select the game program’s move; it is executed again to select
the move for the next state, and so on. Each execution is an
iterative process that evaluates possible moves by simulating,
or “rolling out”, many complete games starting from the
current board position. The results of the rolled out games
are averaged to estimate the values of states in a search tree
that grows as more rollouts are conducted. The core idea
of MCTS is to successively focus its rollouts by extending
the initial portions of rolled-out games that received high
evaluations in earlier simulations.

In AlphaGo’s version of MCTS, the policy network guides
the initial part of each rollout to a leaf node, sL, of its
current search tree, with the rest of each rollout played with
both sides using a “rollout policy” produced by a simpler
and faster network that could be executed quickly enough
to allow a large number of rollouts to be carried out during
the available decision time. (This network was trained by
supervised learning on a corpus of 8 million human moves
and allowed approximately 1,000 complete game simulations
per second to be run on each of the processing threads that
AlphaGo used.) To decide if sL is promising enough to
expand the tree by adding some of its successor nodes to the
tree, it is evaluated in two ways. In contrast to basic MCTS,
which evaluates a node solely on the basis of the return of
a rollout passing through it, AlphaGo’s variant of MCTS,
called “asynchronous policy and value MCTS,” combined
this rollout value estimate with the value produced by the
value network previously trained by reinforcement learning:

V (sL) = (1� �)v(sL) + �zL,

where v(sL) is the output of the value network for the board
state sL, and zL is the return of the rollout from leaf sL.
The parameter � controls the mixing of the values resulting
from these two evaluation methods.

The DeepMind team evaluated different versions of Al-
phaGo in order to asses the contributions made by these
various components. With � = 0, AlphaGo used just the
value network without rollouts, and with � = 1, evaluation
relied just on rollouts. They found that AlphaGo using
just the value network played better than the rollout-only
AlphaGo, and in fact played better than the strongest of
all other Go programs. The best play resulted from setting
� = 0.5, indicating that combining the value network with
rollouts was particularly important to AlphaGo’s success.
These evaluation methods complemented one another: the



value network evaluated the high-performance policy that
was too slow to be used in live play, while rollouts using
the weaker but much faster rollout policy were able to add
precision to the value network’s evaluations for specific states
that occurred during games.

Overall, AlphaGo’s remarkable success helped fuel a new
round of enthusiasm for the promise of artificial intelligence,
specifically for systems combining reinforcement learning
with deep ANNs, to address problems in many other chal-
lenging domains.

VI. PERSONALIZED WEB SERVICES

Personalizing web services such as the delivery of news
articles or advertisements is one approach to increasing
users’ satisfaction with a website or to increase the yield
of a marketing campaign. A policy can recommend content
considered to be the best for each particular user based on a
profile of that user’s interests and preferences inferred from
their history of online activity. This is a natural domain for
reinforcement learning. A reinforcement learning system can
improve a recommendation policy by making adjustments in
response to user feedback. One way to obtain user feedback
is by means of website satisfaction surveys, but for acquiring
feedback in real time it is common to monitor user clicks as
indicators of interest in a link.

A method long used in marketing, called A/B testing, is a
simple type of reinforcement learning used to decide which
of two versions, A or B, of a website users prefer. Because
it is non-associative, like a two-armed bandit problem, this
approach does not personalize content delivery. Adding con-
text consisting of features describing individual users and
the content to be delivered allows personalizing service.
This has been formalized as a contextual bandit problem
(or an associative reinforcement learning problem) with the
objective of maximizing the total number of user clicks. Li,
Chu, Langford, and Schapire [3] applied a contextual bandit
algorithm to the problem of personalizing the Yahoo! Front
Page Today webpage (one of the most visited pages on the
internet at the time of their research) by selecting the news
story to feature. Their objective was to maximize the click-

through rate (CTR), which is the ratio of the total number
of clicks all users make on a webpage to the total number
of visits to the page. Their contextual bandit algorithm
improved over a standard non-associative bandit algorithm
by 12.5%.

Theocharous, Thomas, and Ghavamzadeh [13] argued that
better results are possible by formulating personalized rec-
ommendation as an MDP with the objective of maximizing
the total number of clicks users make over repeated visits
to a website. Policies derived from the contextual bandit
formulation do not take long-term effects of actions into
account, effectively treating each visit to a website as if it
were made by a new visitor uniformly sampled from the
population of the website’s visitors. By not using the fact
that many users repeatedly visit the same websites, greedy
policies do not take advantage of possibilities provided by
long-term interactions with individual users.

Working at Adobe Systems Incorporated, Theocharous et
al. conducted experiments to see if policies designed to max-
imize clicks over the long term could in fact improve over
short-term greedy policies. The Adobe Marketing Cloud, a
set of tools that many companies use to to run digital market-
ing campaigns, provides infrastructure for automating user-
targeted advertising and fund-raising campaigns. Actually
deploying novel policies using these tools entails significant
risk because a new policy may end up performing poorly.
For this reason, the research team needed to assess what
a policy’s performance would be if it were to be actually
deployed, but to do so on the basis of data collected under
the execution of other policies. A critical aspect of this
research, then, was off-policy policy evaluation. Further, the
team wanted to do this with high confidence to reduce the
risk of deploying a new policy. High confidence off-policy
evaluation was a central component of this research (see also
[14, 15]).

Theocharous et al. [13] compared the results of two
algorithms for learning ad recommendation policies. The
first algorithm, which they called greedy optimization, had
the goal of maximizing only the probability of immediate
clicks. As in the standard contextual bandit formulation, this
algorithm did not take the long-term effects of recommen-
dations into account. The other algorithm, a reinforcement
learning algorithm based on an MDP formulation, aimed at
improving the number of clicks users made over multiple
visits to a website. They called this latter algorithm life-time

value (LTV) optimization. Both algorithms faced challenging
problems because the reward signal in this domain is very
sparse since users usually do not click on ads, and user
clicking is very random so that returns have high variance.

Data sets from the banking industry were used for training
and testing these algorithms. The data sets consisted of many
complete trajectories of customer interaction with a bank’s
website that showed each customer one out of a collection
of possible offers. If a customer clicked, the reward was 1,
and otherwise it was 0. One data set contained approximately
200,000 interactions from a month of a bank’s campaign that
randomly offered one of 7 offers. The other data set from
another bank’s campaign contained 4,000,000 interactions in-
volving 12 possible offers. All interactions included customer
features such as the time since the customer’s last visit to the
website, the number of their visits so far, the last time the
customer clicked, geographic location, one of a collection of
interests, and features giving demographic information.

LTV optimization used a batch-mode reinforcement learn-
ing algorithm called fitted Q iteration (FQI). Batch mode
means that the entire data set for learning is available from
the start, as opposed to the on-line mode of the algorithms
in which data are acquired sequentially while the learning
algorithm executes. Batch-mode reinforcement learning al-
gorithms are sometimes necessary when on-line learning is
not practical, and they can use any batch-mode supervised
learning regression algorithm, including algorithms known
to scale well to high-dimensional spaces.

To measure the performance of the policies produced by



the greedy and LTV approaches, Theocharous et al. used the
CTR metric and a metric they called the LTV metric. These
metrics are similar, except that the LTV metric critically
distinguishes between individual website visitors:

CTR =
Total # of Clicks

Total # of Visits
,

LTV =
Total # of Clicks

Total # of Visitors
.

Because LTV is larger than CTR to the extent that individual
users revisit the site, it is an indicator of how successful
a policy is in encouraging users to engage in extended
interactions with the site.

Testing the policies produced by the greedy and LTV
approaches was done using a high confidence off-policy
evaluation method on a test data set consisting of real-
world interactions with a bank website served by a random
policy. As expected, results showed that greedy optimization
performed best as measured by the CTR metric, while
LTV optimization performed best as measured by the LTV
metric. Furthermore, the high confidence off-policy policy
evaluation method provided probabilistic guarantees that the
LTV optimization method would, with high probability, pro-
duce policies that improve upon policies currently deployed.
Assured by these probabilistic guarantees, Adobe announced
in 2016 that the new LTV algorithm would be a standard
component of the Adobe Marketing Cloud so that a retailer
could issue a sequence of offers following a policy likely to
yield higher return than a policy that is insensitive to long-
term results.

VII. CONCLUSION

The reinforcement learning applications described here il-
lustrate how reinforcement learning has achieved impressive
results over a diverse set of challenging problems. The daily-
double wagering strategy developed for IBM’s WATSON

Jeopardy! player was learned through simulated games
against models of human players. It went well beyond what
human players are able to do in live game play, and it was
an important contributor to WATSON’s impressive winning
performance. The reinforcement learning DRAM memory
controller illustrates how on-line reinforcement learning im-
plemented in hardware has the potential to improve computer
performance to levels that would otherwise require more
complex and more expensive systems. The DQN video game
player illustrates how reinforcement learning coupled with
deep neural networks can help alleviate the problem of
having to handcraft specialized features based on human
knowledge and intuition about the specific problem to be
tackled. AlphaGo employed deep neural networks together
with reinforcement learning and Monte Carlo tree search
to achieve stunning victories over human Go masters, a
feat that artificial intelligence researchers thought that would
not be possible for many years. Batch-mode reinforcement
learning applied to the problem of personalizing web services
yielded a policy that encourages users to engage in extended

interactions with a site. This policy is now a standard
component of the Adobe Marketing Cloud.

Taken together, these examples serve as inspiration for
applying reinforcement learning to a wide variety of chal-
lenging problems of real-world importance.

REFERENCES

[1] E. İpek, O. Mutlu, J. F. Martı́nez, and R. Caruana. Self-optimizing
memory controllers: A reinforcement learning approach. In 35th

International Symposium on Computer Architecture, ISCA’08, pages
39–50. IEEE, 2008.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[3] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-
bandit approach to personalized news article recommendation. In
Proceedings of the 19th International Conference on World Wide Web,
pages 661–670. ACM, 2010.

[4] J. F. Martı́nez and E. İpek. Dynamic multicore resource management:
A machine learning approach. Micro, IEEE, 29(5):8–17, 2009.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[6] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis. Mastering the game of go with deep neural networks
and tree search. Nature, 529(7587):484–489, 2016.

[7] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduc-

tion. MIT Press, Cambridge, MA, 1998.
[8] G. Tesauro and G. R. Galperin. On-line policy improvement using

monte-carlo search. In NIPS, volume 96, pages 1068–1074, 1996.
[9] G. Tesauro, D. C. Gondek, J. Lechner, J. Fan, and J. M. Prager.

Simulation, learning, and optimization techniques in watson’s game
strategies. IBM Journal of Research and Development, 56(3.4):16–1–
16–11, 2012.

[10] G. Tesauro, D. C. Gondek, J. Lenchner, J. Fan, and J. M. Prager.
Analysis of WATSON’s strategies for playing Jeopardy! Journal of

Artificial Intelligence Research, 21:205–251, 2013.
[11] G. J. Tesauro. Practical issues in temporal difference learning. Machine

Learning, 8:257–277, 1992.
[12] G. J. Tesauro. TD–gammon, a self-teaching backgammon program,

achieves master-level play. Neural Computation, 6(2):215–219, 1994.
[13] G. Theocharous, P. S. Thomas, and M. Ghavamzadeh. Personalized

ad recommendation for life-time value optimization guarantees. In
Proceedings of the Twenty-Fourth International Joint Conference on

Artificial Intelligence (IJCAI-15), 2015.
[14] P. S. Thomas. Safe Reinforcement Learning. PhD thesis, University

of Massachusetts Amherst, 2015.
[15] P. S. Thomas, G. Theocharous, and M. Ghavamzadeh. High-confidence

off-policy evaluation. In Proceedings of the Twenty-Ninth AAAI

Conference on Artificial Intelligence, pages 3000–3006. The AAAI
Press, Palo Alto, CA, 2015.


