
ARTICLE IN PRESS
Automatica () –

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Natural actor–critic algorithmsI

Shalabh Bhatnagar a,∗, Richard S. Sutton b, Mohammad Ghavamzadeh c, Mark Lee b
a Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India
b The RLAI Laboratory, Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E8
c INRIA Lille - Nord Europe, Team SequeL, France

a r t i c l e i n f o

Article history:
Received 23 May 2007
Received in revised form
1 January 2009
Accepted 3 July 2009
Available online xxxx

Keywords:
Actor–critic reinforcement learning
algorithms
Policy-gradient methods
Approximate dynamic programming
Function approximation
Two-timescale stochastic approximation
Temporal difference learning
Natural gradient

a b s t r a c t

We present four new reinforcement learning algorithms based on actor–critic, natural-gradient and
function-approximation ideas, and we provide their convergence proofs. Actor–critic reinforcement
learning methods are online approximations to policy iteration in which the value-function parameters
are estimated using temporal difference learning and the policy parameters are updated by stochastic
gradient descent. Methods based on policy gradients in this way are of special interest because of
their compatibility with function-approximation methods, which are needed to handle large or infinite
state spaces. The use of temporal difference learning in this way is of special interest because in many
applications it dramatically reduces the variance of the gradient estimates. The use of the natural gradient
is of interest because it can produce better conditioned parameterizations and has been shown to
further reduce variance in some cases. Our results extend prior two-timescale convergence results for
actor–critic methods by Konda and Tsitsiklis by using temporal difference learning in the actor and by
incorporating natural gradients. Our results extend prior empirical studies of natural actor–criticmethods
by Peters, Vijayakumar and Schaal by providing the first convergence proofs and the first fully incremental
algorithms.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Many problems of scientific and economic importance are op-
timal sequential decision problems and as such can be formulated
as Markov decision processes (MDPs) (Bertsekas & Tsitsiklis, 1996;
Rust, 1996; White, 1993). In some cases, MDPs can be solved ana-
lytically, and in many cases they can be solved iteratively by dy-
namic programming or linear programming. However, in other
cases these methods cannot be applied either because the state
space is too large, a systemmodel is available only as a simulator, or
no systemmodel is available. It is in these cases that the techniques
and algorithms of reinforcement learning (RL) may be helpful.
Reinforcement learning (Bertsekas & Tsitsiklis, 1996; Sutton

& Barto, 1998) can be viewed as a broad class of sample-based
methods for solving MDPs. In place of a model, these methods use
sample trajectories of the system and the controller interacting,
such as could be obtained from a simulation. It is not unusual in

I This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Giuseppe De
Nicolao under the direction of Editor Ian R. Petersen.
∗ Corresponding author. Tel.: +91 80 2293 2987; fax: +91 80 2360 2911.
E-mail addresses: shalabh@csa.iisc.ernet.in (S. Bhatnagar),

sutton@cs.ualberta.ca (R.S. Sutton), mohammad.ghavamzadeh@inria.fr
(M. Ghavamzadeh), mlee@cs.ualberta.ca (M. Lee).

practical applications for such a simulator to be available when
an explicit transition-probability model of the sort suitable for use
by dynamic or linear programming is not (Crites & Barto, 1998;
Tesauro, 1995). Reinforcement learning methods can also be used
with no model at all, by obtaining sample trajectories by direct
interaction with the system (Kohl & Stone, 2004; Ng et al., 2004).
One of the biggest challenges to solve MDPs with conventional

methods is handling large state (and action) spaces. This is some-
times known as the ‘‘curse of dimensionality’’ because of the ten-
dency of the size of a state space to grow exponentially with the
number of its dimensions. The computational effort required to
solve an MDP thus increases exponentially with the dimension
and cardinality of the state space. A natural and venerable way
of addressing the curse is to approximate the value function and
policy parametrically with a number of parameters much smaller
than the size of the state space (Bellman & Dreyfus, 1959). How-
ever a straightforward application of such function-approximation
methods to dynamic programming has not proved effective on
large problems. Some work with RL and function approximation
has also run into problems of convergence and instability (Baird,
1995; Boyan & Moore, 1995), but about a decade ago it was es-
tablished that if trajectories were sampled according to their dis-
tribution under the target policy (the on-policy distribution) then
convergence could be assured for linear feature-based function ap-
proximators (Sutton, 1996; Tadic, 2001; Tsitsiklis &VanRoy, 1997).

0005-1098/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2009.07.008

Please cite this article in press as: Bhatnagar, S., et al. Natural actor–critic algorithms. Automatica (2009), doi:10.1016/j.automatica.2009.07.008

http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:shalabh@csa.iisc.ernet.in
mailto:sutton@cs.ualberta.ca
mailto:mohammad.ghavamzadeh@inria.fr
mailto:mlee@cs.ualberta.ca
http://dx.doi.org/10.1016/j.automatica.2009.07.008

ARTICLE IN PRESS
2 S. Bhatnagar et al. / Automatica () –

Reinforcement learning’s most impressive successes have in fact
been on problems with extremely large state spaces that could not
have been solved without function approximation (Crites & Barto,
1998; Ng et al., 2004; Tesauro, 1995). The ability of sample-based
methods to use function approximation effectively is one of the
most important reasons for interest in RL within the engineering
disciplines.
Policy-gradientmethods are someof the simplest RL algorithms

and provide both a good illustration of RL and a foundation for
the actor–critic methods that are the primary focus of this paper.
In policy-gradient methods, the policy is taken to be an arbitrary
differentiable function of a parameter vector θ ∈ Rd. Given some
performance measure J : Rd

→ R, we would like to update the
policy parameter in the direction of the gradient:

∆θ ∝ ∇θ J(θ). (1)

The gradient is not directly available of course, but sample
trajectories can be used to construct unbiased estimators of it,
estimators that can be used in a stochastic approximation of
the actual gradient. This is the basic idea behind all policy-
gradient methods (Aleksandrov, Sysoyev, & Shemeneva, 1968;
Baxter & Bartlett, 2001; Bhatnagar, 2005, 2007; Ghavamzadeh
& Mahadevan, 2003; Ghavamzadeh & Engel, 2007a,b; Glynn,
1990; Konda & Tsitsiklis, 2003; Marbach & Tsitsiklis, 2001; Peters
& Schaal, 2008; Sutton, McAllester, Singh, & Mansour, 2000;
Williams, 1992). Theoretical analysis and empirical evaluations
have highlighted amajor shortcoming of these algorithms, namely,
the high variance of their gradient estimates, and thus the slow
convergence and sample inefficiency.
One possible solution to this problem, proposed by Kakade

(2002) and then refined and extended by Bagnell and Schneider
(2003) and by Peters, Vijayakumar, and Schaal (2003), is based on
the idea of natural gradients previously developed for supervised
learning by Amari (1998). In the application to RL, the policy
gradient in (1) is replaced with a natural version. This is motivated
by the intuition that a change in the policy parameterization
should not influence the result of the policy update. In terms
of the policy update rule (1), the move to natural gradient
amounts to linearly transforming the gradient using the inverse
Fisher information matrix of the policy. In empirical evaluations,
natural policy gradient has sometimes been shown to outperform
conventional policy-gradient methods (Bagnell & Schneider, 2003;
Kakade, 2002; Peters et al., 2003; Richter, Aberdeen, & Yu, 2007).
Moreover, the use of natural gradients can lead to simpler, and in
some cases, more computationally efficient algorithms. Three of
the four algorithms we introduce in this paper incorporate natural
gradients.
In this paperwe focus on a sub-class of policy-gradientmethods

known as actor–critic algorithms. These methods can be thought
of as reinforcement learning analogs of dynamic programming’s
policy iteration method. Actor–critic methods are based on
the simultaneous online estimation of the parameters of two
structures, called the actor and the critic. The actor corresponds to
a conventional action–selection policy, mapping states to actions
in a probabilistic manner. The critic corresponds to a conventional
state-value function, mapping states to expected cumulative
future reward. Thus, the critic addresses a problem of prediction,
whereas the actor is concerned with control. These problems are
separable, but are solved simultaneously to find an optimal policy.
A variety of methods can be used to solve the prediction problem,
but the ones that have proved most effective are those based on
some form of temporal difference (TD) learning (Sutton, 1988), in
which estimates are updated on the basis of other estimates. Such
‘‘bootstrapping methods’’ (Sutton & Barto, 1998) can be viewed as
a way of accelerating learning by trading bias for variance.
Actor–critic methods were among the earliest to be investi-

gated in reinforcement learning (Barto, Sutton, & Anderson, 1983;

Sutton, 1984). Theywere largely supplanted in the 1990s bymeth-
ods that estimate action-value functions (mappings from states
and actions to the subsequent expected return) that are then used
directly to select actions without constructing an explicit policy
structure. The action-value approach was initially appealing be-
cause of its simplicity, but theoretical complications arose when
it was combined with function approximation: these methods do
not converge in the normal sense, but rather may ‘‘chatter’’ in the
neighborhood of a good solution (Gordon, 1995). These complica-
tions lead to renewed interest in policy-gradient methods. Policy-
gradient methods without bootstrapping can easily be proved
convergent, but can suffer from high variance resulting in slow
convergence as mentioned above, motivating their combination
with bootstrapping temporal difference methods as in actor–critic
algorithms.
In this paper we introduce four novel actor–critic algorithms

along these lines. For all four methods we prove convergence of
the parameters of the policy and state-value function to a small
neighborhood of the set of local maxima of the average reward
when the TD error inherent in the function approximation is small.
Our results are an extension of our prior work (Bhatnagar, Sutton,
Ghavamzadeh, & Lee, 2008), and of prior work on the convergence
of two-timescale stochastic approximation recursions (Abdulla
& Bhatnagar, 2007; Bhatnagar & Kumar, 2004; Konda & Borkar,
1999; Konda & Tsitsiklis, 2003). That work had previously
shown convergence to a locally optimal policy for several non-
bootstrapping algorithmswith orwithout function approximation.
Convergence of general two-timescale stochastic approximation
algorithms has been shown under some assumptions in Borkar
(1997). Konda and Tsitsiklis (2003) have shown convergence for
an actor–critic algorithm that uses bootstrapping in the critic,
but our results are the first to prove convergence when the
actor is bootstrapping as well. Our results also extend prior two-
timescale results by incorporating natural gradients. Our results
and algorithms differ in a number of other, smaller ways from
those of Konda and Tsitsiklis; we detail these in Section 6 after the
analysis has been presented.
Two other aspects of the theoretical results presented here

should be mentioned at the outset. First, one of the issues that
arises in policy-gradient methods is the selection of a baseline
reward level. In contrast to previous work, we show that, in
an actor–critic setting when compatible features are used, the
baseline thatminimizes the estimator variance for any given policy
is in fact the state-value function. Second, for the case of a fixed
policywe use a recent result by Borkar andMeyn (2000) to provide
an alternative, simpler proof of convergence (cf. Tsitsiklis & Van
Roy, 1997; Tsitsikis & Van Roy, 1999) in the Euclidean norm of TD
recursions.
In this paper we do not explicitly consider the treatment of

eligibility traces (λ > 0 in TD(λ) (Sutton, 1988)), which have been
shown to improve performance in cases of function approximation
or partial observability, but we believe the extension of all of
our results to general λ would be straightforward. Less clear is
how or whether our results could be extended to least-squares
TD methods (Boyan, 1999; Bradtke & Barto, 1996; Farahmand,
Ghavamzadeh, Szepesvári, & Mannor, 2009; Lagoudakis & Parr,
2003). It is not clear how to satisfactorily incorporate these
methods in a context in which the policy is changing. Our proof
techniques do not immediately extend to this case and we leave it
for futurework.Wedo consider the use of approximate advantages
as in the works of Baird (1993) and of Peters and Schaal (2008).
Because of space limitations, we do not present empirical results
obtained from our algorithms in this paper but these can be seen in
Section 8 of our technical report (Bhatnagar, Sutton, Ghavamzadeh,
& Lee, 2009).

Please cite this article in press as: Bhatnagar, S., et al. Natural actor–critic algorithms. Automatica (2009), doi:10.1016/j.automatica.2009.07.008

ARTICLE IN PRESS
S. Bhatnagar et al. / Automatica () – 3

The rest of the paper is organized as follows. In Section 2 we
present our RL framework and provide an overview of policy-
gradient methods. In Section 3 we discuss policy-gradient meth-
ods with function approximation and present some preliminary
results. We show here in particular that the minimum variance
baseline for the action-value function corresponds to the state-
value function and obtain a form of bias in gradient estimates
that results from the use of function approximation. Our four
actor–critic algorithms and their convergence analysis are pre-
sented in Sections 4 and 5, respectively. In Section 6 we discuss
the relationship of our algorithms to the actor–critic algorithm of
Konda and Tsitsiklis (2003) and to the natural actor–critic algo-
rithmof Peters et al. (2003). Section 7 contains concluding remarks.

2. The policy-gradient framework

We consider the standard reinforcement learning framework
(e.g., see Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998) in
which a learning agent interacts with a stochastic environment.
The overall model we consider is that of a discrete time Markov
decision process (MDP) with finite numbers of states and actions,
and bounded rewards.We allowS andA to respectively denote the
state and action spaces of this MDP. For simplicity, we assume that
S is the set S = {1, . . . , n}. We denote by st , at , and rt , the state,
action, and reward at time t , respectively. We assume that reward
is stochastic, real-valued and uniformly bounded. For simplicity
and ease of notation, we assume that all actions in A are feasible
in each state. The state transition probabilities for the environment
will be characterized by P(s, a, s′) = Pr(st+1 = s′|st = s, at = a),
∀s, s′ ∈ S, a ∈ A. Further, the single-stage expected reward when
action a is taken in state s will be denoted R(s, a) = E[rt+1|st =
s, at = a].
An admissible policy π̄ is a decision rule that is described by

a sequence of functions π̄ = {µ0, µ1, . . .} such that each µt :
S → A, with action µt(s) taken in state s at instant t ≥ 0.
A stationary policy is a time invariant decision rule, i.e., one for
which µt = µ, ∀t ≥ 0, for some µ : S → A. Most
often, one refers to the function µ itself as the stationary policy.
A stationary randomized policy π that we refer to as simply a
randomized policy is specified via a probability distribution π(s, ·)
over A, for s ∈ S. Under the long-run average reward setting
considered in this paper, it can be shown that a stationary optimal
policy exists e.g., (see Puterman, 1994). Note that any stationary
policy is trivially a randomized policy as well. We motivate the
following discussion from the viewpoint of randomized policies as
we consider a parameterized class of these in this paper. From now
on, for simplicity, we shall refer to a randomized policy as a policy.
For a given policy, the sequence of states produced by the MDP is
a Markov chain. Throughout the paper we assume

(A1)Under any policy π , theMarkov chain resulting from theMDP
is irreducible and aperiodic.

Let dπ (s) denote the stationary probability of the Markov chain
being in state s ∈ S, and let dπ = (dπ (s), s ∈ S). Our aim is to find
a policy π that maximizes the long-run average reward J(π) given
by

J(π) = lim
T→∞

1
T
E

[
T−1∑
t=0

rt+1

∣∣∣∣∣π
]

=

∑
s∈S

dπ (s)
∑
a∈A

π(s, a)R(s, a). (2)

The limit in (2) is well defined by (A1). Let π opt denote an optimal
policy π opt = argmaxπ J(π). Further, we shall denote by Q π (s, a),

the expected differential reward associated with a state–action
pair (s, a), given policy π , that is defined by ∀s ∈ S, a ∈ A,

Q π (s, a) =
∞∑
t=1

E[rt+1 − J(π)|s0 = s, a0 = a, π].

Likewise, we denote by Vπ (s), the expected differential reward as-
sociated with a state swhen actions are selected according to pol-
icy π . Here Vπ (s) =

∑
a∈A π(s, a)Q

π (s, a). The Poisson equation
under policy π is given by

J(π)+ Vπ (s) =
∑
a∈A

π(s, a)

[
R(s, a)+

∑
s′∈S

P(s, a, s′)Vπ (s′)

]
, (3)

s ∈ S (Puterman, 1994). In policy-gradient methods, we define a
class of parameterized randomized policies {π θ (s, .), s ∈ S, θ ∈
Rd1}, estimate the gradient of the average reward with respect to
the policy parameters θ from the observed states, actions, and re-
wards, and then improve the policy by adjusting its parameters in
the direction of an estimate of the gradient of J with respect to θ .
Because in this setting a policy π is represented by its parameters
θ , J can be viewed as a function of θ and by abuse of notation, we
let J(θ) denote the long-run average reward when the parameter
is θ . In what follows, we shall interchangeably use J(π) or J(θ) to
denote the long-run average reward when the policy π or its asso-
ciated parameter θ are to be emphasized. We also drop θ from π θ ,
and simply denote this quantity as π . The optimum parameter can
now be obtained as θ opt = argmaxθ J(θ). The following assump-
tion is a standard requirement in policy-gradient methods.
(A2) For any state–action pair (s, a), π(s, a) is continuously
differentiable in the parameter θ .
Previous works (Baxter & Bartlett, 2001; Konda & Tsitsiklis,

2003; Marbach & Tsitsiklis, 2001; Sutton et al., 2000) have shown
that the gradient of the average reward for parameterized policies
that satisfy (A1) and (A2) is given by1

∇J(π) =
∑
s∈S

dπ (s)
∑
a∈A

∇π(s, a)Q π (s, a). (4)

For the case of Markov processes with a parameterized infinitesi-
mal generator, a similar expression was obtained by Cao and Chen
(1997). Observe that if b(s) is any given function of s (also called a
baseline), then∑
s∈S

dπ (s)
∑
a∈A

∇π(s, a)b(s)

=

∑
s∈S

dπ (s)b(s)∇

(∑
a∈A

π(s, a)

)
=

∑
s∈S

dπ (s)b(s)∇(1) = 0, (5)

and thus, for any baseline b(s), the gradient of the average reward
can be written as

∇J(π) =
∑
s∈S

dπ (s)
∑
a∈A

∇π(s, a)[Q π (s, a)± b(s)]. (6)

The baseline b(s) can be chosen in a way that the variance of the
gradient estimates ∇J(π) is minimized (Greensmith, Bartlett, &
Baxter, 2004).
The natural gradient, denoted ∇̃J(π), can be calculated by

linearly transforming the regular gradient,∇J(π), using the inverse
Fisher information matrix of the policy: ∇̃J(π) = G(θ)−1∇J(π).

1 In the rest of the paper we use the notation∇ to denote∇θ — the gradient with
respect to the policy parameters.

Please cite this article in press as: Bhatnagar, S., et al. Natural actor–critic algorithms. Automatica (2009), doi:10.1016/j.automatica.2009.07.008

ARTICLE IN PRESS
4 S. Bhatnagar et al. / Automatica () –

The Fisher information matrix G(θ) can be seen (Bagnell &
Schneider, 2003; Kakade, 2002; Peters et al., 2003) to be

G(θ) = Es∼dπ ,a∼π [∇ logπ(s, a)∇ logπ(s, a)>]

=

∑
s∈S

dπ (s)
∑
a∈A

π(s, a)∇ logπ(s, a)∇ logπ(s, a)>. (7)

Matrix G(θ) plays an important role in the algorithms that
use natural gradients (Kakade, 2002; Peters & Schaal, 2008).
Here Es∼dπ ,a∼π [·] denotes the expectation under the conditional
joint distribution where states are first selected according to
distribution dπ , and then given that a state s is selected, actions are
selected according to distribution π(s, ·). The Fisher information
matrix is clearly positive definite (Kakade, 2002).
A well-studied example of parameterized randomized policies,

which we use in our experiments, is the Gibbs (or Boltzmann)
distribution having the form

π(s, a) =
eθ
>φsa∑

a′∈A
eθ>φsa′

, ∀s ∈ S, ∀a ∈ A, (8)

where each φsa is a d1-dimensional feature vector for the
state–action pair (s, a).

3. Policy gradient with function approximation

Now consider the case in which the action-value function
for a fixed policy π , Q π , is approximated by a learned function
approximator. If the approximation is sufficiently good, we might
hope to use it in place of Q π in Eqs. (4) and (6), and still point
roughly in the direction of the true gradient. Sutton et al. (2000)
showed that if the approximation Q̂ πw with parameter w ∈ Rd1

is compatible, i.e., ∇wQ̂ πw (s, a) = ∇ logπ(s, a), and minimizes the
mean-squared error

Eπ (w) =
∑
s∈S

dπ (s)
∑
a∈A

π(s, a)[Q π (s, a)− Q̂ πw (s, a)]
2 (9)

for parameter valuew?, thenwe can replaceQ π with Q̂ πw? in Eqs. (4)
and (6). We work with linear approximation Q̂ πw (s, a) = w

>ψsa in
which theψsa’s are compatible features defined according toψsa =
∇ logπ(s, a). Convergence of a temporal difference critic under
a linear approximation when trajectories are sampled according
to their distribution under the target policy has been established
earlier (Sutton, 1996; Tadic, 2001; Tsitsiklis & Van Roy, 1997).
Note that compatible features are well defined under (A2). As an
example, the compatible features for the Gibbs policy in Eq. (8) are
ψsa = φsa −

∑
a′∈A π(s, a

′)φsa′ . The Fisher information matrix of
Eq. (7) can be written using the compatible features as

G(θ) = Es∼dπ ,a∼π [ψsaψ>sa] =
∑
s∈S

dπ (s)
∑
a∈A

π(s, a)ψsaψ>sa . (10)

Suppose Eπ (w) denotes the mean-squared error

Eπ (w) =
∑
s∈S

dπ (s)
∑
a∈A

π(s, a)[Q π (s, a)− w>ψsa − b(s)]2 (11)

of our compatible linear parameterized approximation, w>ψsa,
and an arbitrary baseline b(s). Let w? = argminwEπ (w) denote
the optimal parameter. Lemma 1 shows that the value of w?
does not depend on the given baseline b(s); as a result the
mean-squared error problems of Eqs. (9) and (11) have the same
solutions. Next in Lemma 2, we show that if the parameter is
set to be equal to w?, then the resulting mean-squared error
Eπ (w?) (now treated as a function of the baseline b(s)) is further
minimizedwhen b(s)= Vπ (s) (see also Chapter 11 ofMeyn, 2007).
In otherwords, the variance in the action-value-function estimator

is minimized if the baseline is chosen to be the value function
itself.2 The proofs of Lemmas 1 and 2 can be found in Bhatnagar
et al. (2009, 2008).

Lemma 1. The optimumweight parameter w? for any given θ (policy
π) satisfies3

w? = G(θ)−1Es∼dπ ,a∼π [Q π (s, a)ψsa].

Lemma 2. For any given policy π , the minimum variance baseline
b?(s) in the action-value-function estimator corresponds to the state-
value function Vπ (s).

From Lemma 1, w?>ψsa is a least-squared optimal paramet-
ric representation for the action-value function Q π (s, a). On the
other hand, fromLemma2, the same is also a least-squared optimal
parametric representation for the advantage function Aπ (s, a) =
Q π (s, a) − Vπ (s). The mean-squared error (11) is seen to be min-
imized w.r.t. the baseline b(s) for b?(s) = Vπ (s), thereby making
it more meaningful to considerw?>ψsa to be the least-squared op-
timal parametric representation for the advantage function rather
than the action-value function itself.
The temporal difference (TD) error δt is a random quantity that

is defined according to

δt = rt+1 − Ĵt+1 + V̂st+1 − V̂st , (12)

where V̂si is an unbiased estimate of the differential reward in
states si, i = t, t + 1. Likewise, Ĵt+1 is an unbiased estimate of
the average reward. Thus, in particular, these estimates satisfy
E[V̂st |st , π] = Vπ (st) and E[Ĵt+1|st , π] = J(π), for any t ≥ 0,
respectively. We assume here that actions are chosen according to
policyπ . The next lemma is also a simple result that shows that δt is
an unbiased estimate of the advantage function Aπ , see Bhatnagar
et al. (2009, 2008) for a proof. A proof of this lemma is also available
in Peters et al. (2003) and Peters and Schaal (2008).

Lemma 3. Under given policy π with actions chosen according to it,
we have

E[δt |st , at , π] = Aπ (st , at).

By setting the baseline b(s) equal to the value function Vπ (s), Eq.
(6) can be written as

∇J(π)=
∑
s∈S

dπ (s)
∑
a∈A

π(s, a)ψsaAπ (s, a).

From Lemma 3, δt is an unbiased estimate of the advantage
function Aπ (s, a). Thus, ∇̂J(π) = δtψstat is an unbiased estimate
of ∇J(π). However, calculating δt requires having estimates, Ĵ , V̂ ,
of the average reward and the value function. While an average
reward estimate is simple enough to obtain given the single-stage
reward function, the same is not necessarily true for the value
function. We use function approximation for the value functions
as well. Suppose fs is a d2-dimensional feature vector for state s
(for some d2 ≥ 1). We denote fs = (fs(1), . . . , fs(d2))>. One may
then approximate Vπ (s) with v>fs, where v is a d2-dimensional

2 It is important to note that Lemma2 is not about theminimumvariance baseline
for gradient estimation. It is about the minimum variance baseline of the action-
value-function estimator.
3 This lemma is similar to Theorem 1 by Kakade (2002), except that we consider
baseline b(s) which again can be seen as additional basis functions in the sense
of Peters et al. (2003) and Peters and Schaal (2008).

Please cite this article in press as: Bhatnagar, S., et al. Natural actor–critic algorithms. Automatica (2009), doi:10.1016/j.automatica.2009.07.008

ARTICLE IN PRESS
S. Bhatnagar et al. / Automatica () – 5

weight vector which can be tuned (for a fixed policy π) using a
TD algorithm. In our algorithms, we then use

δt = rt+1 − Ĵt+1 + v>t fst+1 − v
>

t fst (13)

as an estimate for the TD error, where vt corresponds to the
value function parameter at time t . From now on, unless explicitly
mentioned, we shall consider δt to be defined according to (13). Let
V̄π (s) denote the quantity

V̄π (s) =
∑
a∈A

π(s, a)

[
R(s, a)− J(π)+

∑
s′∈S

P(s, a, s′)vπ>fs′

]
, (14)

where vπ>fs′ is an estimate of the differential value function Vπ (s′)
that is obtained upon convergence of a TD recursion (above) viz.,
limt→∞ vt = vπ with probability one. Also, let δπt denote the
associated quantity

δπt = rt+1 − Ĵt+1 + v
π>fst+1 − v

π>fst . (15)

Here rt+1 and Ĵt+1 are the same as before. Then δπt corresponds to a
stationary estimate of the TD error (with function approximation)
under policy π . We have the following analog of Theorem 1
of Sutton et al. (2000).

Lemma 4.

E[δπt ψstat |θ] = ∇J(π)+
∑
s∈S

dπ (s)[∇V̄π (s)−∇vπ>fs].

Proof. A simple calculation shows that

E[δπt ψstat |θ] =
∑
s∈S

dπ (s)
∑
a∈A

∇π(s, a)

[
R(s, a)− J(π)

+

∑
s′∈S

P(s, a, s′)vπ>fs′ − vπ>fs

]
. (16)

Now from (14),

∇V̄π (s) =
∑
a∈A

∇π(s, a)

[
R(s, a)− J(π)+

∑
s′∈S

P(s, a, s′)vπ>fs′

]

+

∑
a∈A

π(s, a)

[
−∇J(π)+

∑
s′∈S

P(s, a, s′)∇vπ>fs′

]
.

From (16) and the above, we get∑
s∈S

dπ (s)∇V̄π (s) = E[δπt ψstat |θ] − ∇J(π)

+

∑
s∈S

dπ (s)
∑
a∈A

π(s, a)
∑
s′∈S

P(s, a, s′)∇vπ>fs′ . (17)

Now observe that dπ (s) correspond to the stationary probabilities
that satisfy, ∀s ∈ S,

dπ (s) =
∑
s′′∈S

dπ (s′′)pπ (s′′, s),
∑
s′′∈S

dπ (s′′) = 1, (18)

where pπ (s′′, s) =
∑
a∈A π(s

′′, a)P(s′′, a, s) are the transition
probabilities of the resulting Markov chain under policy π . Hence,∑
s∈S

dπ (s)
∑
a∈A

π(s, a)
∑
s′∈S

P(s, a, s′)∇vπ>fs′

=

∑
s′∈S

∑
s∈S

dπ (s)pπ (s, s′)∇vπ>fs′ =
∑
s′∈S

dπ (s′)∇vπ>fs′ . (19)

The claim now follows from (17). �

Note that according to Theorem 1 of Sutton et al. (2000),
E[δtψstat |θ] = ∇J(π), provided δt is defined according to (12).
For the case with function approximation that we study, from
Lemma 4, the quantity

∑
s∈S d

π (s)[∇V̄π (s) − ∇vπ>fs] may be
viewedas the error or bias in the estimate of the gradient of average
reward that results from the use of function approximation. It is
interesting to observe that this does not depend on the differential
reward Vπ (s) that is obtained as a solution to (3). We also have

Corollary 1.
∑
s∈S d

π (s)[V̄π (s)− vπ>fs] = 0.

Proof. This follows directly from the definition of V̄π (s) in (14),
the definition of J(π) in (2), and an analogous equation as (19)with
vπ>fs′ in place of ∇vπ>fs′ . �

4. Actor–critic algorithms

We present four new actor–critic algorithms in this section.
They update the policy parameters along the direction of the av-
erage reward gradient. While estimates of the regular gradient are
used for this purpose in Algorithm1, natural gradient estimates are
used in Algorithms 2–4. Let V̂ (s, v) = v>fs denote the parameter-
ized approximation to the differential value function in state s. One
can also denote the sameas V̂ (v) = 8v, where8 is ann×d2matrix
whose kth column (k = 1, . . . , d2) is f (k) = (fs(k), s ∈ S)>. We
make the following assumption as in Tsitsikis and Van Roy (1999)
(see also Tsitsiklis & Van Roy, 1997).
(A3) The basis functions {f (k), k = 1, . . . , d2} are linearly
independent. In particular, d2 ≤ n and 8 has full rank. Also, for
every v ∈ Rd2 ,8v 6= e, where e is the n-dimensional vector with
all entries equal to one.
Let {αt} and {βt} be two step-size schedules that satisfy (20).

Further, let {ξt} defined by ξt = cαt for some c > 0 be the step-
size schedule for the average reward recursions in our algorithms.∑
t

αt =
∑
t

βt = ∞,
∑
t

(α2t + β
2
t) <∞, αt = o(βt). (20)

From the last condition in (20), βt → 0 faster than αt . Thus the
critic is a faster recursion than the actor.
We now present our actor–critic algorithms. For the actor up-

dates in our algorithms, we use a projection operator 0 : Rd1 →
Rd1 that projects any x ∈ Rd1 to a compact set C = {x | qi(x) ≤
0, i = 1, . . . , s} ⊂ Rd1 , where qi(·), i = 1, . . . , s are real-valued,
continuously differentiable functions on Rd1 that represent the
constraints specifying the (above) compact region. Here for each
x on the boundary of C , the gradients of the active constraints are
considered to be linearly independent. This is the setting consid-
ered for projection-based algorithms in Chapter 5 of Kushner and
Clark (1978). For any x ∈ Rd1 , 0(x) ∈ C and in particular for
x ∈ C , 0(x) = x itself. As explained in Chapter 2 of Kushner
and Clark (1978), any compact hyperrectangle in Rd1 is a special
case of C (above). The projection method is an often used tech-
nique to ensure boundedness of iterates in stochastic approxima-
tion algorithms, see for instance, Abounadi, Bertsekas, and Borkar
(2001), where it has been used in the context of a stochastic short-
est pathQ-learning algorithm. Somediscussion on this is also avail-
able in Tsitsikis (1994). The other approach (that is also usually
taken, which we do not follow) is to simply assume that the iter-
ates (see below) (23), (29), (34) and (39) are bounded without the
projection, and then show their convergence under this assump-
tion. In our experiments, however (see Bhatnagar et al., 2009), we
do not project the iterates to a constraint region as they are seen
to remain bounded (without projection). In Remark 2 (that follows
Theorem 1), we explain the difficulties in proving boundedness of
iterates in the absence of the projection operator 0(·).

Please cite this article in press as: Bhatnagar, S., et al. Natural actor–critic algorithms. Automatica (2009), doi:10.1016/j.automatica.2009.07.008

ARTICLE IN PRESS
6 S. Bhatnagar et al. / Automatica () –

Algorithm 1 (Regular-Gradient Actor–Critic).

Ĵt+1 = (1− ξt)Ĵt + ξt rt+1, (21)
vt+1 = vt + αtδt fst , (22)

θt+1 = 0(θt + βtδtψstat), (23)

with δt as in (13). This is the only actor–critic algorithm presented
in the paper that is based on the regular-gradient estimate. It
stores two parameter vectors θ and v. Its per time-step compu-
tational cost is linear in the number of policy and value-function
parameters.

The next algorithm is based on the natural-gradient estimate
∇̃J(θt) = G(θt)−1δtψstat in place of the regular-gradient estimate
in Algorithm 1. We derive a procedure below for recursively
estimating G(θ)−1 on a faster timescale. The above estimation
is done on a faster scale so that convergence of the associated
iterates is achieved prior to a θ-update. SupposeG−1t denote the tth
estimate of G(θ)−1. Our procedure is obtained in a similar manner
as the method described on pp. 147–152 of Widrow and Stearns
(1985). The latter approach however considers the estimates as
being obtained via a ‘‘fading memory’’ condition in which the
most recent observation is given the highest weight. The weights
themselves decrease geometrically over past observations. On the
other hand, unlikeWidrow& Stearns, 1985, we consider stationary
averages that depend on parameter θ , that in turn gets updated
along the ‘‘slower timescale’’. This constitutes a natural setting for
our algorithm. We show in Lemma 6 that G−1t → G(θ)−1 as t →
∞ with probability one. This is required for proving convergence
of our algorithm. On the other hand, showing the same for the
corresponding estimates in Widrow and Stearns (1985) does not
seem possible because Gt 6→ G(θ) there.
We consider Gt , t ≥ 0, defined as (the sample averages)

Gt =
1
t + 1

t∑
l=0

ψslalψ
>

slal .

Thus, one may obtain recursively

Gt =
(
1−

1
t + 1

)
Gt−1 +

1
t + 1

ψstatψ
>

stat . (24)

More generally, one may consider the recursion

Gt = (1− αt)Gt−1 + αtψstatψ
>

stat , (25)

where the step-size αt is as before. This would correspond to a
case of weighted averages (with the weights corresponding to
the step-sizes αt). However, through a stochastic approximation
argument, one can see that (25) would asymptotically converge to
G(θ), almost surely, if θ is held fixed. In fact, with an appropriate
choice of {αt}, one can obtain faster convergence of iterates in
(25) over those in (24). Using Sherman–Morrison matrix inversion
lemma, one obtains

G−1t =
1

1− αt

[
G−1t−1 − αt

(G−1t−1ψstat)(G
−1
t−1ψstat)

>

1− αt + αtψ>statG
−1
t−1ψstat

]
. (26)

The following assumption is on the matrices Gt , G−1t .

(A4)We have supt,θ,s,a ‖ Gt ‖, supt,θ,s,a ‖ G
−1
t ‖<∞.

This assumption will be used in proving the convergence of our
Algorithms 2 and 4. It is similar to a corresponding requirement
in the case of certain Hessian matrices in the Newton-based
simulation optimization schemes in Bhatnagar (2005, 2007). A
sufficient condition for both the requirements in (A4) is that
(cf. pp. 35 of Bertsekas, 1999) for some scalars c1, c2 > 0,

c1 ‖ z ‖2 ≤ z>ψsaψ>sa z ≤ c2 ‖ z ‖
2,

for all s ∈ S, a ∈ A, z ∈ Rd1 and θ . It is then easy to see that
c̄1 ‖ z ‖2 ≤ z>Gtz ≤ c̄2 ‖ z ‖2, for all t ≥ 0, and the eigenvalues of
Gt lie between c̄1 and c̄2. Here c̄1 = min(a, c1) and c̄2 = max(a, c2).
Also, c̄1, c̄2 > 0. Hence, the procedure (below) does not get stuck
at a nonstationary point. Under the above sufficient condition, (A4)
follows from Propositions A.9 and A.15 of Bertsekas (1999).
Our second algorithm stores matrix G−1 and two parameter

vectors θ and v. Its per time-step computational cost is linear in the
number of value-function parameters and quadratic in the number
of policy parameters.

Algorithm 2 (Natural-Gradient Actor–Critic with Fisher Information
Matrix).

Ĵt+1 = (1− ξt)Ĵt + ξt rt+1, (27)
vt+1 = vt + αtδt fst , (28)

θt+1 = 0(θt + βtG−1t δtψstat), (29)

with δt as in (13). Also, the estimate of the inverse Fisher
informationmatrix updated according to Eq. (26). LikeWidrowand
Stearns (1985), we let G−10 = kI , where I is a d1 × d1-dimensional
identity matrix and k > 0. Thus G−10 and hence also G0 are positive
definite and symmetric matrices. From (25), Gt , t ≥ 1 can be seen
to be positive definite and symmetric because these are convex
combinations of positive definite and symmetric matrices. Hence,
G−1t , t ≥ 1 are positive definite and symmetric matrices as well.

As we mentioned in Section 3, it is better to think of the
compatible approximation w>ψsa as an approximation of the
advantage function rather than of the action-value function. In our
next algorithm, we tune the weight parameters w in such a way
as to minimize an estimate of the least-squared error Eπ (w) =
Es∼dπ ,a∼π [(w>ψsa−Aπ (s, a))2].Note that the gradient of Eπ (w) is

∇wEπ (w) = 2
∑
s∈S

dπ (s)
∑
a∈A

π(s, a)[w>ψsa − Aπ (s, a)]ψsa.

We use the following estimate of ∇wEπ (w).

∇̂wEπ (w) = 2(ψstatψ
>

statw − δtψstat). (30)
Hence, we update advantage parameters w along with value-
function parameters v in the critic update of this algorithm as

wt+1 = wt − αt∇̂wtE
π (wt) = wt − αt(ψstatψ

>

statwt − δtψstat).

The factor 2 on the RHS of (30) does not play a role because
of the diminishing step-size sequence αt , t ≥ 0 and so has
been dropped in the above recursion. We maximize the long-
run average reward J(θ) along the slower timescale and use the
natural-gradient estimate for this purpose. Like Peters et al. (2003)
and Peters and Schaal (2008), the natural-gradient estimate that
we use in the actor update of Algorithm 3 is ∇̃J(θt) = wt+1. This
algorithm stores three parameter vectors, v,w, and θ . Its per time-
step computational cost is linear in the number of value-function
parameters and quadratic in the number of policy parameters.

Algorithm 3 (Natural-Gradient Actor–Critic with Advantage Param-
eters).

Ĵt+1 = (1− ξt)Ĵt + ξt rt+1, (31)
vt+1 = vt + αtδt fst , (32)

wt+1 = [I − αtψstatψ
>

stat]wt + αtδtψstat , (33)

θt+1 = 0(θt + βtwt+1), (34)

with δt as in (13). Although the estimates of G(θ)−1 are not
explicitly computed and used in Algorithm 3, the convergence
analysis of this algorithm in the next section shows that the overall
scheme still moves in the direction of the natural gradient of
average reward.

Please cite this article in press as: Bhatnagar, S., et al. Natural actor–critic algorithms. Automatica (2009), doi:10.1016/j.automatica.2009.07.008

ARTICLE IN PRESS
S. Bhatnagar et al. / Automatica () – 7

In Algorithm 4, however, we explicitly estimate G(θ)−1 (as in
Algorithm 2), and use it in the critic update for w. The overall
scheme is again seen to follow the direction of the natural gradient
of average reward. Here, we let

∇̃wEπ (w) = 2G−1t (ψstatψ
>

statw − δtψstat) (35)

be the estimate of the natural gradient of the least-squared error
Eπ (w). This also simplifies the critic update for w. Further, we
remove the factor 2 from the natural-gradient estimate (35)
because of diminishing αt , t ≥ 0, as before. Algorithm 4 stores a
matrix G−1 and three parameter vectors, v, w, and θ . Its per time-
step computational cost is linear in the number of value-function
parameters and quadratic in the number of policy parameters.

Algorithm 4 (Natural-Gradient Actor–Critic with Advantage Param-
eters and Fisher Information Matrix).

Ĵt+1 = (1− ξt)Ĵt + ξt rt+1, (36)
vt+1 = vt + αtδt fst , (37)

wt+1 = (1− αt)wt + αtG−1t δtψstat , (38)

θt+1 = 0(θt + βtwt+1), (39)

with δt as in (13) and where the estimate of the inverse of the
Fisher information matrix is updated according to (26). As with
Algorithm 2, we let G−10 = kI with k > 0.

5. Convergence analysis

We now present the convergence analysis of our algorithms.
The analysis mainly follows the ordinary differential equation
(ODE) approach (Benveniste, Metivier, & Priouret, 1990; Kushner
& Clark, 1978; Kushner & Yin, 1997). Note that the problem we
consider is a maximization and not a minimization problem. For
the purpose of analysis, we consider an associated problem with
costs defined as negative rewards and our aim is to minimize the
associated long-run average cost. The negative of the minimum
cost thus obtained then corresponds to the maximum reward in
the original problem. This is useful in pushing through certain
stability arguments and showing convergence of iterates. Our
algorithms use function approximation and aim at finding the local
maxima of the average rewards. All our convergence results are in
the Euclidean norm. Further, for any matrix A, we define its norm
as the induced matrix norm ‖ A ‖ = max{x|‖x‖=1} ‖ Ax ‖.

5.1. Convergence analysis for Algorithm 1

We require Assumptions (A1)–(A3) here. As explained above,
one may view −rt+1 as the cost incurred at instant t in a
transformed problem. Because of the above, a change occurs only
in the actor recursion (23) due to this transformation, and it
becomes

θt+1 = 0(θt − βtδtψstat). (40)

Recursions for the average reward (21), TD error (13), and critic
(22), being fixed point recursions (see Tsitsikis & Van Roy, 1999),
are left unchanged. For any given policy π (along the faster
timescale), average reward (21), TD error (13), and critic (22)
recursions correspond to the TD(λ) recursions in Tsitsikis and Van
Roy (1999) with λ = 0.
Let D denote the diagonal matrix with elements dπ (s1), . . . ,

dπ (sn) along its diagonal. Let Pπ be the probability matrix Pπ =
[pπ (s, s′)]s,s′∈S for the Markov chain under policy π and Rπ be
the corresponding column vector of average rewards whose ith
element is

∑
a∈A π(si, a)R(si, a). Also, let T : Rn → Rn be

the operator given by T (J) = Rπ − J(π)e + Pπ J . The proof of

convergence of TD(λ) by Tsitsikis and Van Roy (1999) is based
on a result by Benveniste et al. (1990). We provide in Lemma 5
an alternative simpler proof of convergence under the same
assumptions used by Tsitsikis and Van Roy (1999), using a recently
developed result by Borkar andMeyn (2000).We considerλ = 0 to
suit our algorithm. The proof however carries through quite easily
for λ > 0 as well. We have

Lemma 5. For any given π and { Ĵt}, {vt} as in (21) and (22),
respectively, we have Ĵt → J(π) and vt → vπ with probability one,
where

J(π) =
∑
s∈S

dπ (s)
∑
a∈A

π(s, a)R(s, a), (41)

is the average reward under π and vπ is obtained as the unique
solution to

8>D8vπ = 8>DT (8vπ). (42)

Proof. The proof is based on verifying the Assumptions (A1)–(A2)
of Borkar and Meyn (2000). First consider the average reward
recursion (21). The ODE describing the asymptotic behavior of this
recursion corresponds to

η̇ = −η +
∑
s∈S

dπ (s)
∑
s∈A

π(s, a)R(s, a). (43)

Let f (η) denote the RHS of (43). Then f (η) is Lipschitz continuous
in η. Let f∞(η) = limr→∞

f (rη)
r . The function f∞(η) exists and is

simply f∞(η) = −η. The origin is clearly an asymptotically stable
equilibrium for the ODE η̇ = f∞(η).
Now consider recursions for TD error (13) and critic (22).

Consider the following ODE (in vector-matrix notation) associated
with them.

v̇ = 8>D(T (8v)−8v). (44)

Let g1(v) denote the RHS of (44). Then g1(v) is also Lipschitz
continuous in v. Further, for g1

∞
(v)

4
= limr→∞

g1(rv)
r , it can be seen

that g1
∞
(v) exists and equals g1

∞
(v) = 8>D(Pπ − I)8v, where I is

the identity matrix. Consider now the system

v̇ = g1
∞
(v). (45)

Note that the matrix Pπ has a simple eigenvalue of one and its
remaining eigenvalues have real parts that are less than one. Thus
(Pπ − I) will have one eigenvalue of zero and other eigenvalues
with negative real parts. Also, corresponding to the eigenvalue
zero, the matrix (Pπ − I) has a left eigenvector dπ> and a right
eigenvector e = (1, . . . , 1)> (the n-dimensional unit vector),
respectively. Thus, in principle, the set of asymptotically stable
fixed points of (45) would correspond to the set {αv | 8v =
e and α ∈ R, α 6= 0} ∪ {v = 0}. Now by the second part of
Assumption (A3), 8v 6= e, for every v ∈ Rd2 . Thus the only
asymptotically stable equilibrium for (45) is the origin.
Next, define N1(t), M1(t), t ≥ 0, according to N1(t) = rt+1 −

E[rt+1 | F1(t)],M1(t) = δt fst−E[δt fst | F1(t)], respectively, where
F1(t) = σ(vr , Ĵr ,M1(r),N1(r), r ≤ t). It is easy to see that

E[‖ N1(t + 1) ‖2 | F1(t)] ≤ C1(1+ ‖ Ĵt ‖2+ ‖ vt ‖2),
E[‖ M1(t + 1) ‖2 | F1(t)] ≤ C2(1+ ‖ vt ‖2+ ‖ Ĵt ‖2),

t ≥ 0, for some C1, C2 <∞. In fact, quantitiesN1(t) can be directly
seen to be uniformly bounded almost surely. Thus Assumptions
(A1) and (A2) of Borkar andMeyn (2000) can be seen to be satisfied
in the case of the average reward (21), TD error (13), and critic (22)
recursions. From Theorem 2.1 of Borkar and Meyn (2000), average
reward, TD error, and critic iterates are uniformly bounded with

Please cite this article in press as: Bhatnagar, S., et al. Natural actor–critic algorithms. Automatica (2009), doi:10.1016/j.automatica.2009.07.008

ARTICLE IN PRESS
8 S. Bhatnagar et al. / Automatica () –

probability one. Now note that (43) has J(π) defined as in (41) as
its unique globally asymptotically stable equilibrium.
Next, suppose that v = vπ is a solution to the system

8>D8v = 8>DT (8v). (46)

We show that vπ is the unique globally asymptotically stable
equilibrium of the ODE (44) with the function W (·) defined by
W (v) = 1

2M(v)
>M(v) with M(v) = 8>D(T (8v) − 8v) serving

as an associated strict Lyapunov function. Thus

dW (v)
dt

= ∇W (v)>v̇ = M(v)>8>D(Pπ − I)8M(v).

In lieu of (A3), for any r ∈ Rd2 ,8r is a nonconstant vector (i.e., one
that is not of the form αe for α 6= 0). Thus,

r>8>D(Pπ − I)8r < 0, ∀r 6= 0̄,

(0̄ being the vector in Rd2 with all entries 0), i.e., the matrix
8>D(Pπ − I)8 is negative definite (see also the proof of Lemma
7, p. 1803 of Tsitsikis and Van Roy (1999) for a similar conclusion).
Now any v̂ = vπ + αv, with α ∈ R, α 6= 0 and v such that8v = e
will also be a solution to the linear system of Eqs. (46). However,
again by Assumption (A3), 8v 6= e for any v ∈ Rd2 . Thus any v̂ as
above will not be a solution and the only solution is v = vπ which
is therefore unique. Thus, dW (v)dt < 0 on the set {v ∈ Rd2 | v 6= vπ },
and dW (v)dt = 0 on the set {v = v

π
}. Thus for (44), vπ is the unique

globally asymptotically stable equilibrium. Assumptions (A1)–(A2)
of Borkar and Meyn (2000) are now verified and the claim follows
from their Theorem 2.2, p. 450 of Borkar and Meyn (2000). �

Remark 1. Note that (A3) has also been used in the analysis
of average cost TD learning by Tsitsikis and Van Roy (1999)
(cf. Assumption 2, p. 1800). We also require this assumption as our
TD recursions are exactly the same as those in Tsitsikis and Van
Roy (1999). On the other hand, in a recent paper Borkar (2008)
develops a variant of TD learningwith function approximation that
is based on the relative value iteration scheme. For such a scheme,
one would not require the later part of (A3) (i.e., Assumption 2(b)
of Tsitsikis & Van Roy, 1999).

Consider now recursion (40) along the slower timescale
corresponding to βt . Let v(·) be a vector field on C . Define another
vector field

0̂(v(y)) = lim
0<η→0

(
0(y+ ηv(y))− y

η

)
.

In case the above limit is not unique, we let 0̂(v(y)) be the set of all
possible limit points (see p. 191 of Kushner & Clark, 1978). Consider
now the ODE (in lieu of Lemma 4, see Bhatnagar et al., 2009)

θ̇ = 0̂ (−∇J(π)− eπ) , (47)

where eπ =
∑
s∈S d

π (s)(∇V̄π (s) − ∇vπ>fs). Consider also an
associated ODE:

θ̇ = 0̂ (−∇J(π)) . (48)

Let Z denote the set of asymptotically stable equilibria of (48),
i.e., the local minima of J , and let Zε be the ε-nbd of Z, i.e., Zε

=

{x |‖ x − z ‖< ε, z ∈ Z}. Further, let Y denote the set of
asymptotically stable equilibria of (47). We have

Theorem 1. Under Assumptions (A1)–(A3), given ε > 0, ∃δ > 0
such that for θt , t ≥ 0 obtained using Algorithm 1, if supπt ‖ e

πt ‖<
δ, then θt → Zε as t →∞, with probability one.

Proof. Let F2(t) = σ(θr , r ≤ t) denote the sequence of σ -fields
generated by θr , r ≥ 0. We have

θt+1 = 0(θt − βt)E[δπtt ψstat | F2(t)] − βtγ1(t)− βtγ2(t),

where γ1(t) = (δtψstat − E[δtψstat | F2(t)]) and γ2(t) =
E[(δt − δπtt)ψstat | F2(t)]. Here, πt is the policy corresponding
to θt . Because the critic converges along the faster timescale,
from Lemma 5, it follows that γ2(t) = o(1). Now let M2(t) =∑t−1
r=0 βrγ1(r), t ≥ 1. The quantities δt can be seen to be uniformly

bounded because from the proof in Lemma 5, { Ĵt+1} and {vt} are
bounded sequences. It is now easy to see (Bhatnagar & Kumar,
2004) using (20) that {M2(t)} is a convergentmartingale sequence.
Thus, for any T > 0, with nT

4
= min{m ≥ n |

∑m
r=n βr ≥ T }, we

have that
∑nT
r=n βrγ2(r)→ 0 a.s. as n→∞.

Next, it can be seen using similar arguments as before (see
proof of Lemma 4) that E[δπtt ψstat | θt] = −h1(θt), where
h1(θt)

4
= −

∑
s∈S d

πt (s)
∑
a∈A ∇πt(s, a)[R(s, a) − J(πt) +∑

s′∈S P(s, a, s
′)vπt>fs′]. We now show that h1 is Lipschitz contin-

uous. Here vπt corresponds to the weight vector to which the critic
update converges along the faster timescale when the correspond-
ing policy is πt (see Lemma 5). A simple calculation shows that for
s ∈ S, a ∈ A, ∇2πt(s, a) exists and is bounded. Further, from (18),
it can be seen that dπt (s), s ∈ S are continuously differentiable in θ
and have bounded derivatives. Also, J(πt) is continuously differen-
tiable as well and has bounded derivative as can also be seen from
(41). Further, vπt can be seen to be continuously differentiablewith
bounded derivatives. Thus, h1(θ) is a Lipschitz continuous func-
tion and the ODE (47) is well posed. Using Hirsch lemma (Theo-
rem 1, p. 339 of Hirsch, 1989; see also Lemma 6 of Bhatnagar et al.,
2009), it is easy to see that θt → Y as t → ∞ w.p. 1. Now as
supπ ‖ eπ ‖→ 0, the trajectories of (47) converge to those of (48)
uniformly on compacts for the same initial condition in both. The
claim follows from the Hirsch lemma (Theorem 1, p. 339 of Hirsch,
1989; also given as Lemma 6 in Bhatnagar et al. (2009)). See
Theorem 2 of Bhatnagar et al. (2009) for detailed arguments. �

Remark 2. From Theorem 1, it follows that if the error term∑
s∈S d

π (s)[∇V̄π (s)−∇vπ>fs] is small, the algorithmwill converge
almost surely to a small neighborhood of a local minimum
of J . (For the original problem, this corresponds to a small
neighborhood of a local maximum of J .) Note that, in principle,
the stochastic approximation scheme may get trapped in an
unstable equilibrium. Pemantle (1990), with noise assumed to be
sufficiently ‘omnidirectional’ in addition, showed that convergence
to unstable fixed points will not occur; see also Brandiere (1998)
for conditions on avoidance of unstable equilibria that lie in
certain compact connected chain recurrent sets. However, in most
cases (even without extra noise conditions) due to the inherent
randomness, stochastic approximation algorithms converge to
stable equilibria.

We discuss now the difficulties involved in proving bounded-
ness of iterates when projection 0(·) is not used in (40). Sup-
pose we rewrite h1(θ) as h1(θ) = −

∑
s∈S d

π (s)
∑
a∈A π

θ (s, a)ψθ
sa

[R(s, a) − J(π) +
∑
s′∈S P(s, a, s

′)vπ>fs′]. Note here that we write
ψθ
sa in place of ψsa in order to show explicit dependence of ψsa
on θ . Then defining h1

∞
(θ) as h1

∞
(θ) = limr→∞ h1(rθ)

r , one ob-
tains h1

∞
(θ) = − limr→∞ 1

r

∑
s∈S d

π (s)
∑
a∈A π

rθ (s, a)ψ rθsa
∑
s′∈S

P(s, a, s′)vπ
rθ >
fs′ . It is not clear whether the limit above exists be-

cause of the complex dependence of dπ and vπ on θ . Note that
vπ is obtained as a solution to a linear system of equations (see
Lemma 5) with thematrix D therein also depending on θ . Assump-
tion (A1′) on p. 454 in Borkar and Meyn (2000) considers the case
where the above limits may not exist. However, it requires that for

Please cite this article in press as: Bhatnagar, S., et al. Natural actor–critic algorithms. Automatica (2009), doi:10.1016/j.automatica.2009.07.008

ARTICLE IN PRESS
S. Bhatnagar et al. / Automatica () – 9

r ≥ R and t ≥ T , for some R, T > 0, the trajectories φ̂(t) of the
ODE θ̇t = h1(rθt)

r should lie within a ball of radius 1/2 around the
origin. This can be shown provided the origin is a unique asymp-
totically stable attractor for the above ODEs for all r ≥ R. Again,
it is not clear if this is the case here. Next, note that the methods
described by Abounadi et al. (2001) and Tsitsikis (1994) for stabil-
ity of iterates are for different classes of algorithms, largely of the
Q-learning type, and are not directly applicable in our setting.
Finally, we discuss the use of the stochastic Lyapunov function

method (Kushner & Yin, 1997) for stability of iterates in (40).
The prime requirement here is that there exists a real-valued
nonnegative functionW (·) that satisfies

E[W (θt+1) | θt = θ] −W (θ) ≤ −K(θ)

for all θ ∈ Q λ
4
= {θ | W (θ) ≤ λ}, where K(θ) ≥ 0 is continuous

on Qλ. Then by Thm. 4.1, pp. 80–81 of Kushner and Yin (1997), the
stability and convergence of iterates would follow. Hence consider
the recursion (40). By Taylor’s expansion for ‘‘small’’ βt assuming a
smoothW (·), one gets

E[W (θt+1)|θt] ≈ W (θt)− βtE[δπt ψstat |θt]
T
∇W (θt)+ o(βt). (49)

It appears difficult to obtain such aW (·) here. On the other hand, if
we use the look up table representation (viz., d2 = n in Assumption
(A3) or that δt is as in (12)), then from Lemma 4 above, as also
Theorem 1 of Sutton et al. (2000), one would get E[δtψstat | θ] =
∇θ J(θ). Then W (θ) = J(θ) would serve as a Lyapunov function
and the iterates (40) (without the projection) will be bounded and
almost surely convergent, in lieu of Theorem 4.1 of Kushner and
Yin (1997). It is only because of the use of function approximation
in the iterates that a Lyapunov function is hard to obtain. However,
in our experiments, we do not use projection but still observe that
the iterates remain bounded and convergence is achieved.
Note that if function approximation is not used, J(θ) also serves

as a Lyapunov function for the ODE associated with (40) without
the projection. When function approximation is used (as with our
case), the above problem of finding a suitable Lyapunov function
(now) for the associated ODE also carries over and it is difficult to
suitably characterize the set of stable attractors.
Remark 1 andmany of the arguments in the analysis of Alg. 1 are

valid for the analysis of the other algorithms. We skip the details
in such cases to avoid repetition.

5.2. Convergence analysis for Algorithm 2

The analysis in Lemma 5 of the recursions for the average
reward (27), TD error (13), and critic (28) proceeds in the same
manner as for Algorithm 1. We thus concentrate on showing
convergence of the recursion for the inverse of the Fisher
information matrix (26) and the actor recursion (29). We assume
(A1)–(A4) for our analysis here. We have

Lemma 6. For any given parameter θ , G−1t , t ≥ 1, in (26) satisfy
G−1t → G(θ)−1, as t →∞ with probability one.

Proof. It is easy to see from recursion (25) that Gt → G(θ) as
t → ∞ with probability one, for any given θ held fixed. Now for
fixed θ , we have,

‖ G−1t − G(θ)
−1
‖ = ‖ G(θ)−1(G(θ)− Gt)G−1t ‖

≤ sup
θ

‖ G(θ)−1 ‖ sup
t,s,a
‖ G−1t ‖ · ‖ G(θ)− Gt ‖

→ 0 as t →∞,

by (A4). In the above, I denotes the d2 × d2 identity matrix. The
inequality above follows from the property on induced matrix
norms (see Proposition A.12 of Bertsekas & Tsitsiklis, 1989). The
claim follows. �

As with Algorithm 1, we consider again the transformed
problem with rewards replaced with costs (see above). This
transformation, however, only affects the actor recursion (29) that
now becomes

θt+1 = 0(θt − βtG−1t δtψstat). (50)

We have

Theorem 2. Under Assumptions (A1)–(A4), given ε > 0, ∃δ > 0,
such that for θt , t ≥ 0 obtained using Algorithm 2, if supπt ‖ e

πt ‖<
δ, then θt → Zε as t →∞, with probability one.

Proof. As with the proof of Theorem 1, let F3(t) = σ(θr , r ≤ t),
t ≥ 0. Note that

θt+1 = 0(θt − βtE[G(θt)−1δπtt ψstat | F3(t)] − βtγ3(t)+ βtξ1(t)),

where γ3(t) = G(θt)−1δtψstat − E[G(θt)−1δtψstat | F3(t)]. In lieu
of Lemmas 5 and 6, ξ1(t) = o(1). As before, the critic recursion
(28) converges faster for a given policy πt , corresponding to an
actor update θt , and converges to vπt . For t ≥ 1, let M3(t)=∑t−1
r=0 γ3(r). The quantities δt and G(θt)

−1 are uniformly bounded
from Lemmas 5 and 6, and from (A4) respectively. Now using
(20), it can be seen (Bhatnagar & Kumar, 2004) that {M3(t)} is a
convergent martingale sequence. Hence,

∑nT
r=n βrγ3(r)→ 0 a.s. as

n→∞, with nT as before (see proof of Theorem 1). As before, also
note that

E[G(θt)−1δπtt ψstat |θt] = G(θt)
−1
∑
s∈S

dπt (s)

×

∑
a∈A

∇πt(s, a)

[
R(s, a)− J(πt)+

∑
s′∈S

P(s, a, s′)vπt>fs′

]
.

Consider now the ODE associated with (50) (in lieu of Lemma 4)

θ̇ = 0̂
(
−G(θ)−1(∇J(π)+ eπ)

)
. (51)

Consider also the associated ODE

θ̇ = 0̂
(
−G(θ)−1∇J(π)

)
. (52)

As with Theorem 1, from the Hirsch lemma, θt → Y as t → ∞
w.p. 1. Now as supπ ‖ eπ ‖→ 0, the trajectories of (51) converge
to those of (52) uniformly on compact sets for the same initial
condition. See the proof of Theorem 3 of Bhatnagar et al. (2009)
for details. The claim follows. �

5.3. Convergence analysis for Algorithm 3

As stated previously, the main idea in this algorithm is to
minimize the least-squares error in estimating the advantage
function via function approximation. The analysis of the average
reward (31), TD error (13), and critic (32) recursions proceeds in
the same manner as before (cf. Lemma 5). We thus concentrate
on recursion (33) and the actor recursion (34). We require
Assumptions (A1)–(A3) here. In the transformed problem (with
costs in place of rewards), recursion (33) can be rewritten as

wt+1 = (I − αtψstatψ
>

stat)wt − αtδtψstat , (53)

with the actor recursion (34) the same as before. Note that (53)
moves on a faster timescale as compared to the actor recursion.
Hence, on the timescale of the former recursion, one may consider
the parameter θt to be fixed. We have the following result:

Lemma 7. Under a given parameter θ , the wt , t ≥ 1, in (53) satisfy
wt →−G(θ)−1E[δπt ψstat] as t →∞with probability one, where π
is the policy corresponding to θ .

Please cite this article in press as: Bhatnagar, S., et al. Natural actor–critic algorithms. Automatica (2009), doi:10.1016/j.automatica.2009.07.008

ARTICLE IN PRESS
10 S. Bhatnagar et al. / Automatica () –

Proof. Consider the following ODE associated with (53) for given
θ

ẇ = Est∼dπ ,at∼π [−ψstatψ
T
statw − δ

π
t ψstat]

4
= g2(w). (54)

Note that g2(w) is Lipschitz continuous in w. Now let g2
∞
(w) =

limr→∞
g2(rw)
r . The function g2

∞
(w) exists and can be seen to

satisfy g2
∞
(w) = −G(θ)w. For the ODE ẇ = −G(θ)w, the

origin is an asymptotically stable equilibrium (because G(θ) is
positive definite). Define now {M4(t)} as M4(t) = ĝ2(wt) −
E[ĝ2(wt) | F4(t)], where ĝ2(wt) = −ψstatψ

T
statw − δ

π
t ψstat and

F4(t) = σ(wr ,M4(r), r ≤ t). It is easy to see that there exists a
constant C0 <∞ such that

E[‖ M4(t + 1) ‖2 | F4(t)] ≤ C0(1+ ‖ wt ‖2),

for all t ≥ 0. For the ODE (54), it can be easily verified that wπ =
−G(θ)−1E[δπt ψstat] is an asymptotically stable equilibrium (see
Lemma 8 of Bhatnagar et al., 2009). Now from Thm. 2.2 of Borkar
and Meyn (2000), (53) converges with probability one towπ . �

We now consider the actor recursion (34), which is the slower
recursion.

Theorem 3. Under Assumptions A1–(A3), given ε > 0, ∃δ > 0 such
that for θt , t ≥ 0, obtained using Algorithm 3, if supπt ‖ e

πt ‖< δ,
then θt → Zε as t →∞, with probability one.

Proof. Note that the recursion (34) can be written as

θt+1 = 0(θt − βtG(θt)−1E[δπtt ψstat | θt] + βtξ2(t)),

where ξ2(t) = o(1) by Lemma 7. The rest can be shown in a similar
manner as Theorem 2. �

5.4. Convergence analysis for Algorithm 4

As with Algorithm 2, we require Assumptions (A1)–(A4). The
result in Lemma 6 continues to hold here and we get for fixed θ ,
G−1t → G(θ)−1 as t → ∞ with probability one. The recursions
for average reward (36), TD error (13), and critic (37) are the
same as before and have been analyzed earlier (cf. Lemma 5). We
now concentrate on recursion (38) and the actor recursion (39).
Under the transformed problem (with costs in place of rewards),
recursion (38) can be rewritten as

wt+1 = (1− αt)wt − αtG−1t δtψstat , (55)

with the actor recursion the same as before. An exactly similar
result as Lemma 7 holds in this case as well (below); see Lemma
9 of Bhatnagar et al. (2009) for a proof.

Lemma 8. Under a given parameter θ , thewt , t ≥ 1, defined by (55)
satisfy wt → −G(θ)−1E[δπt ψstat | θ] as t → ∞ with probability
one, with π being the policy corresponding to θ . �

We finally consider the actor recursion (39) and have the
following result whose proof follows as in Theorems 2 and 3.

Theorem 4. Under Assumptions (A1)–(A4), given ε > 0, ∃δ > 0
such that for θt , t ≥ 0, obtained using Algorithm 4, if supπt ‖ e

πt ‖<

δ, then θt → Zε as t →∞, with probability one. �

6. Relation to the previous algorithms

As we mentioned in Section 1, the actor–critic algorithms
presented in this paper extend prior actor–critic methods,
especially those of Konda and Tsitsiklis (2003) and of Peters et al.
(2003). In this section, we discuss these relationships further.
Actor–Critic Algorithm of Konda and Tsitsiklis (2003): Contrary

to Algorithms 2–4, this algorithm does not use estimates of the
natural gradient in its actor’s update. It is somewhat similar to our
Algorithm 1, but with some key differences. (1) Konda’s algorithm
uses the Markov process of state–action pairs and thus its critic
update is based on an action-value function. Algorithm 1 uses
the state process and therefore its critic update is based on a
value function. (2) Whereas Algorithm 1 uses TD error in both
critic and actor recursions, Konda’s algorithm uses TD error only
in its critic update. The actor recursion in Konda’s algorithm uses
a Q -value estimate instead. Because the TD error is an unbiased
estimate of the advantage function (Lemma 3), the actor recursion
in Algorithm 1 uses estimates of advantages instead of Q -values,
which may result in lower variances. (3) The convergence analysis
of Konda’s algorithm is based on the martingale approach and
aims at bounding error terms and directly showing convergence.
Convergence to a local optimum is shownwhen TD(1) critic is used.
For the case when λ < 1, they show that given ε > 0, there
exists λ close enough to one such that when a TD(λ) critic is used,
one gets lim inft |∇J(θt)| < ε with probability one. Unlike Konda
and Tsitsiklis, we primarily use the ordinary differential equation
(ODE) approach for our convergence analysis. Even though we
also use martingale arguments in our analysis, these are restricted
to showing that the noise terms asymptotically diminish and the
resulting scheme can be viewed as a Euler-discretization of the
associated ODE.
Natural Actor–Critic Algorithm of Peters et al. (2003): Algo-

rithms 2–4 extend this algorithm by being fully incremental and
by providing convergence proofs. Peters’s algorithm uses a least-
squares TD method in its critic’s update, whereas our algorithms
are all fully incremental. It is not entirely clear how to satisfacto-
rily incorporate least-squares TD methods in a context in which
the policy is changing. Our proof techniques do not immediately
extend to this case. However, we use estimates of the advantage
function in Algorithms 3 and 4 as in Peters’s algorithm.

7. Conclusions and future work

We have introduced and analyzed four actor–critic reinforce-
ment learning algorithms utilizing linear function approximation.
All the algorithms are based on existing ideas such as temporal dif-
ference learning, natural policy gradients, and two-timescale con-
vergence analysis, but we combine them in new ways. The main
contribution of this paper is the proof of convergence of the four
algorithms to a local maximum in the space of policy and value-
function parameters. Our four algorithms are the first actor–critic
algorithms to be shown convergent that utilize both function
approximation and bootstrapping, a combination which seems
essential to large-scale applications of reinforcement learning.
Our Algorithms 2–4 are explorations of the use of natural

gradients within an actor–critic policy-gradient architecture. The
way we use natural gradients is distinctive in that it is totally
incremental: the policy is changed on every time step yet we never
reset the gradient computation as is done in the algorithmof Peters
and Schaal (2008). Algorithm 3 is perhaps the most interesting
of the three natural-gradient algorithms. It never explicitly stores
an estimate of the inverse of the Fisher information matrix,
and as a result, it requires less computation. In our empirical
experiments (Bhatnagar et al., 2009), we found it easier to find

Please cite this article in press as: Bhatnagar, S., et al. Natural actor–critic algorithms. Automatica (2009), doi:10.1016/j.automatica.2009.07.008

ARTICLE IN PRESS
S. Bhatnagar et al. / Automatica () – 11

good parameter settings for Algorithm3 than for the other natural-
gradient algorithms, and perhaps because of this, it converged
more rapidly than them and than Konda’s and Tsitsiklis’ algorithm.
These empirical observations should be taken only as suggestive;
more experiments to properly assess the relative performance of
these algorithms must be carried out.
The most important potential extension of our results would

be to characterize the quality of the converged solution. It may be
possible to bound the performance loss due to bootstrapping and
approximation error in a way similar to how it was bounded by
Tsitsiklis and Van Roy (1997). Because of the use of function ap-
proximation, our convergence analysiswould carry through for the
case of continuously valued state–action spaces as well. It would
be interesting to study empirical evaluations of our algorithms in
such settings in order to evaluate their applicability in such sce-
narios. There are a number of other ways in which our results are
limited and suggest future work. (1) There is the issue of rate of
convergence. Ideally one would like analytic results but, short of
that, it would be useful to conduct a thorough empirical study,
varying parameters and schedules in a more extensive and sophis-
ticated way than what we have done in Bhatnagar et al. (2009).
(2) The algorithms could be extended to incorporate eligibility
traces and least-squares methods. As discussed earlier, the former
seems straightforward whereas the latter seems to require more
fundamental extensions. (3) A thorough study of the sensitivity of
our algorithms to the various system parameters and settings is
needed. (4) A study of the choice of the basis functions for the critic
to obtain a good estimate of the policy gradient needs to be done.
(5) Application of these ideas and algorithms to a real-world prob-
lem is needed to assess their ultimate utility.

References

Abdulla, M. S., & Bhatnagar, S. (2007). Reinforcement learning based algorithms for
average costMarkov decision processes.Discrete Event Dynamic Systems: Theory
and Applications, 17(1), 23–52.

Abounadi, J., Bertsekas, D., & Borkar, V. S. (2001). Learning algorithms for Markov
decision processes. SIAM Journal on Control and Optimization, 40, 681–698.

Aleksandrov, V., Sysoyev, V., & Shemeneva, V. (1968). Stochastic optimization.
Engineering Cybernetics, 5, 11–16.

Amari, S. (1998). Natural gradient works efficiently in learning.Neural Computation,
10(2), 251–276.

Baird, L. (1993). Advantage updating. Technical Report WL-TR-93-1146, Wright
Laboratory, OH.

Baird, L. (1995). Residual algorithms: Reinforcement learning with function
approximation. In Proceedings of the twelfth international conference on machine
learning (pp. 30–37).

Bagnell, J., & Schneider, J. (2003). Covariant policy search. In Proceedings of
international joint conference on artificial intelligence (pp. 1019–1024).

Barto, A., Sutton, R. S., & Anderson, C. (1983). Neuron-like elements that can
solve difficult learning control problems. IEEE Transactions on Systems, Man and
Cybernetics, 13, 835–846.

Baxter, J., & Bartlett, P. (2001). Infinite-horizon policy-gradient estimation. Journal
of Artificial Intelligence Research, 15, 319–350.

Bellman, R. E., & Dreyfus, S. E. (1959). Functional approximations and dynamic
programming.Mathematical Tables and Other Aids to Computation, 13, 247–251.

Benveniste, A., Metivier, M., & Priouret, P. (1990). Adaptive algorithms and stochastic
approximations. Berlin: Springer.

Bertsekas, D. (1999). Nonlinear programming. Belmont, MA: Athena Scientific.
Bertsekas, D., & Tsitsiklis, J. (1989). Parallel and distributed computation. New Jersey:
Prentice Hall.

Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-dynamic programming. Belmont, MA:
Athena Scientific.

Bhatnagar, S., & Kumar, S. (2004). A simultaneous perturbation stochastic
approximation based actor–critic algorithm forMarkov decision processes. IEEE
Transactions on Automatic Control, 49(4), 592–598.

Bhatnagar, S. (2005). Adaptive multivariate three-timescale stochastic approxima-
tion algorithms for simulation based optimization. ACM Transactions on Model-
ing and Computer Simulation, 15(1), 74–107.

Bhatnagar, S. (2007). Adaptive Newton-based multivariate smoothed functional
algorithms for simulation optimization. ACM Transactions on Modeling and
Computer Simulation, 18(1), 2:1–2:35.

Bhatnagar, S., Sutton, R.S., Ghavamzadeh, M., & Lee, M. (2009). Natural actor-critic
algorithms. Technical Report, Department of Computing Science, University of
Alberta, Canada [http://www.cs.ualberta.ca/research/techreports/2009/TR09-
10.php].

Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., & Lee, M. (2008). Incremental natural
actor-critic algorithms. Advances in Neural Information Processing Systems, 20,
105–112.

Borkar, V. S. (1997). Stochastic approximation with two timescales. Systems and
Control Letters, 29, 291–294.

Borkar, V.S. (2008). Reinforcement learning – a bridge between numerical methods
and Monte-Carlo, Preprint .

Borkar, V. S., & Meyn, S. (2000). The O.D.E. method for convergence of stochastic
approximation and reinforcement learning. SIAM Journal on Control and
Optimization, 38(2), 447–469.

Boyan, J. (1999). Least-squares temporal difference learning. In Proceedings of the
sixteenth international conference on machine learning (pp. 49–56).

Boyan, J., & Moore, A. (1995). Generalization in reinforcement learning: Safely
approximating the value function. Advances in Neural Information Processing
Systems, 7, 369–376.

Brandiere, O. (1998). Some pathological traps for stochastic approximation. SIAM
Journal on Control and Optimization, 36, 1293–1314.

Bradtke, S., & Barto, A. (1996). Linear least-squares algorithms for temporal
difference learning.Machine Learning , 22, 33–57.

Cao, X., & Chen, H. (1997). Perturbation realization, potentials and sensitivity
analysis of Markov processes. IEEE Transactions on Automatic Control, 42,
1382–1393.

Crites, R., & Barto, A. (1998). Elevator group control using multiple reinforcement
learning agents.Machine Learning , 33, 235–262.

Farahmand, A. M., Ghavamzadeh, M., Szepesvári, Cs, & Mannor, S. (2009).
Regularized policy iteration. Advances in Neural Information Processing Systems,
21, 441–448.

Ghavamzadeh, M., &Mahadevan, S. (2003). Hierarchical policy gradient algorithms,
In Proceedings of the twentieth international conference on machine learning
(pp. 226–233).

Ghavamzadeh, M., & Engel, Y. (2007a). Bayesian policy gradient algorithms.
Advances in Neural Information Processing Systems, 19, 457–464.

Ghavamzadeh, M., & Engel, Y. (2007b). Bayesian actor-critic algorithms, In
Proceedings of the twenty-fourth international conference on machine learning
(pp. 297–304).

Glynn, P. (1990). Likelihood ratio gradient estimation for stochastic systems.
Communications of the ACM , 33, 75–84.

Gordon, G. (1995). Stable function approximation in dynamic programming,
In Proceedings of the twelfth international conference on machine learning
(pp. 261–268).

Greensmith, E., Bartlett, P., & Baxter, J. (2004). Variance reduction techniques
for gradient estimates in reinforcement learning. Journal of Machine Learning
Research, 5, 1471–1530.

Hirsch, M. (1989). Convergent activation dynamics in continuous time networks.
Neural Networks, 2, 331–349.

Kakade, S. (2002). A natural policy gradient. Advances in Neural Information
Processing Systems, 14.

Kohl, N., & Stone, P. (2004). Policy gradient reinforcement learning for fast
quadrupedal locomotion, In Proceedings of the IEEE international conference on
robotics and automation (pp. 2619–2624).

Konda, V., & Borkar, V. S. (1999). Actor–critic like learning algorithms for Markov
decision processes. SIAM Journal on Control and Optimization, 38(1), 94–123.

Konda, V., & Tsitsiklis, J. (2003). On actor–critic algorithms. SIAM Journal on Control
and Optimization, 42(4), 1143–1166.

Kushner, H., & Clark, D. (1978). Stochastic approximation methods for constrained and
unconstrained systems. New York: Springer Verlag.

Kushner, H., & Yin, G. (1997). Stochastic approximation algorithms and applications.
New York: Springer Verlag.

Lagoudakis, M., & Parr, R. (2003). Least-squares policy iteration. Journal of Machine
Learning Research, 4, 1107–1149.

Marbach, P., & Tsitsiklis, J. (2001). Simulation-based optimization ofMarkov reward
processes. IEEE Transactions on Automatic Control, 46, 191–209.

Meyn, S. (2007). Control techniques for complex networks. Cambridge, UK: Cambridge
Univ. Press.

Ng, A., Coates, A., Diel, M., Ganapathi, V., Schulte, J., & Tse, B. et al. (2004). Inverted
autonomous helicopter flight via reinforcement learning, In International
symposium on experimental robotics.

Pemantle, R. (1990). Nonconvergence to unstable points in urn models and
stochastic approximations. Annals of Probability, 18, 698–712.

Peters, J., Vijayakumar, S., & Schaal, S. (2003). Reinforcement learning for humanoid
robotics, In Proceedings of the third IEEE-RAS international conference on
humanoid robots.

Peters, J., & Schaal, S. (2008). Natural actor-critic. Neurocomputing , 71(7–9),
1180–1190.

Puterman, M. (1994). Markov decision processes: Discrete stochastic dynamic
programming. New York: John Wiley.

Richter, S., Aberdeen, D., & Yu, J. (2007). Natural actor-critic for road traffic
optimization. Advances in Neural Information Processing Systems, 19, 1169–1176.

Rust, J. (1996). Numerical dynamic programming in economics. In Handbook of
computational economics (pp. 614–722). Amsterdam: Elsevier.

Sutton, R.S. (1984). Temporal credit assignment in reinforcement learning. Doctoral
dissertation, Amherst: University of Massachusetts.

Please cite this article in press as: Bhatnagar, S., et al. Natural actor–critic algorithms. Automatica (2009), doi:10.1016/j.automatica.2009.07.008

http://www.cs.ualberta.ca/research/techreports/2009/TR09-10.php
http://www.cs.ualberta.ca/research/techreports/2009/TR09-10.php
http://www.cs.ualberta.ca/research/techreports/2009/TR09-10.php

ARTICLE IN PRESS
12 S. Bhatnagar et al. / Automatica () –

Sutton, R. S. (1988). Learning to predict by the method of temporal differences.
Machine Learning , 3, 9–44.

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples
using sparse coarse coding. Advances in Neural Information Processing Systems,
8, 1038–1044.

Sutton, R. S., McAllester, D., Singh, S., &Mansour, Y. (2000). Policy gradient methods
for reinforcement learning with function approximation. Advances in Neural
Information Processing Systems, 12, 1057–1063.

Sutton, R. S., & Barto, A. (1998). Reinforcement learning: An introduction. Cambridge,
MA: MIT Press.

Tadic, V. (2001). On the convergence of temporal difference learning with linear
function approximation.Machine Learning , 42(3), 241–267.

Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Communications
of the ACM , 38, 58–68.

Tsitsikis, J. (1994). Asynchronous stochastic approximation andQ-learning.Machine
Learning , 16, 185–202.

Tsitsiklis, J., & Van Roy, B. (1997). An analysis of temporal-difference learning with
function approximation. IEEE Transactions on Automatic Control, 42(5), 674–690.

Tsitsikis, J., & Van Roy, B. (1999). Average cost temporal-difference learning.
Automatica, 35, 1799–1808.

White, D. (1993). A survey of applications of Markov decision processes. Journal of
the Operational Research Society, 44, 1073–1096.

Widrow, B., & Stearns, S. (1985). Adaptive signal processing. Englewood Cliffs, NJ:
Prentice-Hall.

Williams, R. (1992). Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning.Machine Learning , 8, 229–256.

Shalabh Bhatnagar received his Ph.D. in Electrical Engi-
neering from the Indian Institute of Science, Bangalore, in
1997. He was a postdoctoral research associate from 1997
to 2000 at the Institute for Systems Research, University
of Maryland, College Park and from 2000 to 2001 at the
Free University, Amsterdam, Netherlands. He is currently
an Associate Professor in the Department of Computer Sci-
ence and Automation, Indian Institute of Science, Banga-
lore. He has held visiting positions at the Indian Institute of
Technology, Delhi and the RLAI research laboratory, Uni-
versity of Alberta, Canada.

His research interests are in the areas of stochastic control and simulation-based
stochastic optimization with applications specifically in communication and wire-
less networks.

Richard S. Sutton is a professor and iCORE chair in
the department of computing science at the University
of Alberta. He is a fellow of the Association for the
Advancement of Artificial Intelligence and co-author of the
textbook Reinforcement Learning: An Introduction. Before
joining the University of Alberta in 2003, he worked
in industry at AT&T and GTE Labs, and in academia at
the University of Massachusetts. He received a Ph.D. in
computer science from the University of Massachusetts
in 1984 and a BA in psychology from Stanford University
in 1978. Rich’s research interests center on the learning

problems facing a decision-maker interacting with its environment, which he
sees as central to artificial intelligence. He is also interested in animal learning
psychology, in connectionist networks, and generally in systems that continually
improve their representations and models of the world.

Mohammad Ghavamzadeh received a Ph.D. degree in
Computer Science from the University of Massachusetts
Amherst in 2005. From 2005 to 2008, he was a postdoc-
toral fellow at the Department of Computing Science at
the University of Alberta, Canada. He has been a researcher
at INRIA Lille - Nord Europe, Team SequeL in France since
November 2008. The main objective of his research is
to investigate the principles of scalable decision-making
under uncertainty. In the last four years, Mohammad’s
research has been mostly focused on using recent ad-
vances in statistical machine learning, especially Bayesian

reasoning and kernel methods, to develop more scalable reinforcement learning
algorithms.

Mark Lee is a professional web developer and program-
mer, and the co-author of the book ‘‘C++ Programming for
the Absolute Beginner’’. He received a B.Sc. degree in com-
puter science from the University of Alberta in 2005.

Please cite this article in press as: Bhatnagar, S., et al. Natural actor–critic algorithms. Automatica (2009), doi:10.1016/j.automatica.2009.07.008

	Natural actor--critic algorithms
	Introduction
	The policy-gradient framework
	Policy gradient with function approximation
	Actor--critic algorithms
	Convergence analysis
	Convergence analysis for Algorithm 1
	Convergence analysis for Algorithm 2
	Convergence analysis for Algorithm 3
	Convergence analysis for Algorithm 4

	Relation to the previous algorithms
	Conclusions and future work
	References

