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Abstract. In a previous paper we defined the associative 
search problem and presented a system capable of 
solving it under certain conditions. In this paper we 
interpret a spatial learning problem as an associative 
search task and describe the behavior of an adaptive 
network capable of solving it. This example shows how 
naturally the associative search problem can arise and 
permits the search, association, and generalization 
properties of the adaptive network to be clearly 
illustrated. 

In a previous paper (Barto et al., 1981) we defined the 
associative search problem and presented a system, 
called an Associative Search Network (ASN), capable of 
s.olving it under certain conditions. An ASN incor- 
porates learning rules that have been carefully designed 
following Klopfs  hypothesis that neurons are goal- 
seeking systems (Klopf, 1972, 1979, 1980). Here we 
present a simple spatial learning problem as an example 
of the associative search task. The ASN controls 
locomotion in a spatial environment containing various 
types of "olfactory" gradients�9 This interpretation illus- 
trates the task in an intuitively clear form, shows how 
naturally it can arise, and allows the capabilities of a 
simple ASN to be clearly described. It was not our 
intention to either model animal spatial learning be- 
havior or to fully exploit the capabilities of an ASN; 
rather, we wanted to illustrate its capabilities in as simple 
a problem as we could construct�9 

Associative Search 

Figure 1 shows an ASN interacting with an environment 
E. At each time t, E provides the ASN with a vector 
X ( t ) = ( x l ( t  ) . . . . .  x,(t)), where each xi(t ) is a positive real 
number, together with a real valued payoff or reinforce- 

ment signal z(t). The ASN produces an output pattern 
Y ( t ) = ( y l ( t  ) . . . .  ,ym(t)), where each yi(t)~{0,1}. The 
ASN's action Y is received by E. Each input vector X(t) 
provides information to the ASN about the sensory 
situation at time t in which it acts. After performing an 
action, i.e., after producing an output pattern, the ASN 
receives (1 time step later) an evaluation from E of the 
appropriateness of that action for the situation in which 
it was made. This evaluation is received by the ASN as 
the value of a payoff or reinforcement signal z. The 
evaluation alone is not sufficient to determine whether 
the preceding action was the best possible in the given 
context. The associative search task is to learn, for each 
input vector, to perform the action which maximizes the 
payoffvalue. In other words, it must learn to perform the 
best action in each sensory situation�9 Different actions 
can be optimal in different sensory situations. This class 
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Fig. 1. An ASN interacting with an environment E. The ASN 
receives input signals x,, ..., x, and a payoff or reinforcement signal z 
from E and transmitts actions to E via the output signals Yl, ..., Y,, 
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Fig. 2. A spatial environment consisting of a central landmark 
(shown as a tree) surrounded by four other landmarks (shown as 
disks). Each landmark possesses a distinctive "odor" which can be 
sensed at a distance. Odor distributions decrease linearly from their 
associated landmarks and become undetectable at ellipses. The 
asterisk shows the location of the ASN 
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Fig. 3. The ASN controlling locomotion in the spatial environment. 
The five input pathways are labelled vertically on the left according 
to the landmarks to which they respond. The shaded input pathway 
N indicates that the ASN is near the north neutral landmark. The 
four output pathways controlling actions are labelled horizontally at 
the bottom according to the direction of movement they cause. The 
shaded output elements indicate that a southeast movement is being 
made. The associative matrix weights are displayed as circles 
centered on the intersections of the horizontal input pathways and 
vertical output pathways. Positive weights are shown as hollow 
circles, and negative weights are shown as solid circles 

of problems is more completely described in Barto et al. 
(1981), where it is distinguished from the simpler pattern 
recognition tasks that can be solved by perceptron-like 
learning rules. 

Spatial Learning as Associative Search 

If an ASN is viewed as controlling the locomotory 
behavior of an organism in a spatial environment, then 
input vectors are associated with places in space and 
ASN output patterns control movement. We have 
created a simple spatial environment in which to 

illustrate this interpretation of the associative search 
problem and a simple ASN's behavior. Figure 2 shows a 
spatial environment consisting of a central landmark 
(shown as a tree) surrounded by four other landmarks 
(shown as disks). Thinking of this as an olfactory 
environment for a simple organism, we let each land- 
mark possess a distinctive "odor"  which can be sensed 
at a distance. Accordingly, to each landmark is associat- 
ed a spatial distribution, linearly decreasing with dis- 
tance from the landmark. The distributions extend as far 
as the large circles (they appear as ellipses due to the 
aspect ratio of our printer) shown in Fig. 2. The 
asterisk shows the location of the ASN. 

When the ASN is in a particular location, its input 
pattern is determined by its distance from each of the 
landmarks. We let the central landmark act as an 
attractant for the ASN by letting its "odor" be the value 
of the payoff or reinforcement signal z. The other 
landmarks are "neutral" in that proximity to them is not 
rewarding to the ASN. Input to the ASN therefore 
consists of five values giving the odor concentrations due 
to the central "tree" and the north, south, east and west 
neutral landmarks. 

Figure 3 shows an ASN with five input pathways, 
labelled vertically on the left according to the landmarks 
to which they respond. The shaded input pathway N 
indicates that the ASN is near the north neutral 
landmark. There are four output pathways labelled 
horizontally at the bottom as controlling "actions". The 
manner in which these actions determine locomotion 
was chosen solely for the sake of simplicity. There is an 
output element for each compass direction. Each output 
element produces an output of 0 or 1 at each time step. 
For  example, if N = 0, S = 1, E = 1, and W= 0 (as shown 
by the shaded output elements in Fig. 3), the ASN will 
move a fixed distance south and east. We use a kind of 
"reciprocal inhibition" between the north and south 
elements and between the east and west elements so that 
at each time step usually only one of each pair of 
elements outputs a 1. Clearly, we are not attempting to 
model in any detailed manner the motor  control system 
of an organism (for example, there is no explicit spatial 
orientation of the ASN). 

The arrangement of input and output pathways used 
in Fig. 3 permits the connection weights to be displayed 
in convenient form as circles centered on the in- 
tersections of input pathways and the vertical output 
element "dendrites". Positive weights are shown as 
hollow circles, and negative weights are shown as solid 
circles. The sizes of the circles indicate the relative 
magnitudes of the corresponding weights. The upper- 
most "tree" input is the specialized payoff pathway z 
which has no associated weights. These connection 
weights form an associative matrix which is similar to 
those widely discussed in the literature (e. g., Anderson et 



al., 1977; Amari, 1977; Kohonen, 1977) but which 
gathers information by means of the more complex 
closed-loop learning rules to be described below. 

The ASN's task in this environment is to 1) find the 
central landmark by climbing the attractant distribution 
and 2) associate with each sensory input pattern (and 
hence with each place in the environment) that action 
which causes movement toward the central landmark. 
These place-action associations are to be stored by 
means of the network's connection weights; they are 
never explicitly available in the environment. The first 
part of this task is a simple hill-climbing problem which 
does not require long-term memory. The second part is 
an example of the associative search task. Although the 
payoff signal is derived from a single spatial distribution 
(the "odor" of the tree), the optimal action is clearly a 
function of the ASN's location. For example, if the ASN 
is south of the central landmark, it is best for it to move 
north ; if it is north of the central landmark, it is best for it 
to move south. Consequently, the search for the optimal 
action in each place requires maximization of functions 
of ASN actions which differ from place to place. [A 
predictor as discussed in Barto et al. (1981) is not 
required for this spatial learning task since the functions 
to be maximized vary smoothly over time.] As a result of 
solving the second part of this problem, the ASN can 
proceed directly to the central landmark simply by 
performing the actions associated with its successive 
locations. Importantly, this direct approach is possible 
when the attractant distribution is very noisy, in- 
termittant, or even totally absent (as we demonstrate 
below). 

The Learning Rule 

The ASN presented here uses the same type of learning 
rule as discussed in Barto et al. (1981). Let xl(t ), x2(t), 
x 3(t), and x4(t ) denote the signals at time t from the north, 
south, east, and west landmarks respectively, and let z(t) 
denote the signal from the central landmark. Each 
output element j, j - -  1, ..., 4, has a weight w~j associated 
with neutral landmark input xg, i=  1, ..., 4, and an 
additional weight Woj. Let w~j(t), i=  0,..., 4, denote the 
values of these weights at time t. Let 

4 
si(t) = Woj(t) + Y~ w,i(t)xi(t). 

i=1 

The output of element j at time t is 

{~ if s,(t)+NOISE,(t)>O 
yj(t) = .  otherwise, (1) 

where each NOISEj,j  = 1 ... . .  4, is a mean zero normally 
distributed random variable (with the same variance for 
each j). 

At each time step, each weight wij, i, j = 1,..., 4, is 
updated according to the following equation: 

wo(t + 1) = wlj(t ) + c [z(t)-  z(t-  1)] y(t-  1)xi(t- 1). (2) 

The weights Woj are updated as follows: 

Woj(t+ 1)=f[Woj(t)+Co(Z(t)-z(t- 1))y(t- 1)], (3) 

where 

BOUND if x > BOUND 

f (x)=lO if x < 0  
/ 
t x otherwise 

bounds each Woj to the interval [0, BOUND]. The 
parameters c and c o are positive real numbers determin- 
ing rates of learning. In all of the simulations described 
below, c = 0.25, c o = 0.5, BOUND = 0.005, and the stan- 
dard deviation of the random variable NOISEj was 0.01 
forj  = 1, ..., 4. Each landmark "odor" distribution has a 
maximum value of 0.5. 

Rule (2) implies that if the firing of an output element 
in a given place is followed by a movement toward higher 
attractant concentration z, then the element will become 
more likely to fire in that place in the future. If firing is 
followed by a movement toward lower values of z, firing 
will become less likely in that place. See Barto et al. (198 t) 
for a more detailed discussion of this class of learning 
rules 1. 

The weights Woj changing according to (3) are 
necessary only to permit the ASN to climb the attractant 
distribution in the absence of landmark information. 
Rule (3) is similar to (2) applied to a constant signal from 
a universally present landmark [Xo(t ) = 1 for all t]. Ifc o is 
sufficiently large compared to BOUND (as it was in our 
simulations), then complete learning will occur in a 
single trial so that a movement in an up-gradient 
direction will tend to be followed by a movement in the 
same direction. This straight line trajectory will tend to 
continue until it takes the ASN down-gradient. Down- 
gradient moves will drive Woj to zero so that the random 
component will dominate. The bound function f is 
necessary to insure that down-gradient moves can 
return the weight to zero. The resulting hill-climbing 
strategy is similar to that used by certain types of 
bacteria to climb nutrient gradients (Koshland, 1979). 
Fraenkel and Gunn ( 1961) call this strategy klino-kine sis 
and Selfridge (1978) calls it "Run and Twiddle" (if things 
are improving, keep doing what you are doing ; if things 
get worse, do something else). 

1 The rule (2) is identical to that presented in Barto et al. (1981) 
except that the term y(t- 1) is used here instead o f y ( t -  1 ) -  y(t- 2). In 
the previous study, changes in z were attributable to changes in y. Here, 
y itself determines the change in z becauses a change in spatial location 
rather than movement to a particular place 



Fig. 4. The ASN's path is shown as it climbs the at tractant  gradient 
in the absence of landmark guidance. No  long-term memory  traces 
are formed, and later at tempts to climb the same gradient will 
proceed at essentially the same rate 

Learning in a Noiseless Environment 

If the attractant concentration can be reliably sensed, 
then the hill-climbing part of the ASN's task can be 
accomplished easily. Figure 4 shows the ASN's trajec- 
tory for the case in which there are no neutral landmarks. 
The central landmark is approached due to the action of 
(3). Since no associations are formed in this case, that is, 
since no long-term memory traces are formed, later 
attempts to climb the same hill will proceed at essentially 
the same rate as the first attempt. 

Figure 5 illustrates the ASN behavior in the presence 
of the neutral landmarks. Figure 5A1 shows the ASN 
behavior for 35 time steps. Figure 5A2 shows the state of 
the ASN as a result of this behavior. Non-zero weights 
have appeared associated with the north and east 
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Fig. 5A and B. ASN behavior in the presence of neutral landmarks.  A1 ASN behavior for 35 time steps�9 A2 The state of the ASN as a result of  
the experience shown in A1. The north and east l andmark  "odors" have come to inhibit movement  north and excite movement  south since, in 
the vicinity of  the nor th  and east landmarks,  movement  north was correlated with attractant level decreases and movement  south was 
correlated with attractant level increases. The nor th  and east odors also enhance movement  west since movement  in this direction was also 
correlated with increases in attractant levels. A3 A vector field representation of the ASN state shown in A2. The direction of the vector at each 
location gives the direction of the ASN's most  probable first step if it were to start at that  location. These vectors represent the contents of the 
associative memory  and thus show how the ASN would move even in the absence of the attractant distribution. A simple form of generalization 
is shown by the existence of vectors at places never visited by the ASN. B1 ASN behavior for about  800 time steps. It climbs the at tractant  
gradient and  remains in the vicinity of the central landmark. B2 The state of the ASN after about  800 time steps shows that proximity to the 
nor th  landmark  will make  the ASN move south, proximity to the south landmark  will make it move north, and similarly for the east and west 
landmarks.  B3 A vector field representation of the ASN state shown in B2. Again, the vectors show how the ASN would tend to move even in 
the absence of the at tractant  gradient 



Fig, 6. A vector field representation of the ASN's state aRer about 
800 time steps in an environment with the attractant landmark 
located o~center. The learning rule is capable of determining the 
correct magnitudes ~ r  the weights in addifon to the correct signs 

Fig, 7. Use of long-term memory. With the ASN state as shown in 
Fig. 5B2 and the central landmark and its attractant gradient 
removed, the ASN takes a direct route to the central landmark's 
former position from a place it has never before visited. Stimulus 
patterns associated with successive positions "key-out" the appropri- 
ate actions 

landmark input pathways since the ASN has remained 
in the vicinity of these landmarks (and hence only these 
pathways were eligible for modification). Since move- 
ments north and south were correlated respectively with 
decreases and increases in the attractant level, weights 
have formed so that the north and east landmark 
"odors" inhibit movement north and excite movement 
south. Weights associated with the east landmark 
pathway are smaller in magnitude than those for the 
north landmark since the ASN remained closer to the 
north landmark. Similarly, the north and east landmark 
inputs inhibit movement west. Weights for the east 
output element are too small to be visible since the ASN 
only infrequently moved east. 

Figure 5A3 shows the results of learning in a vivid 
form. A vector is shown at each point in a grid covering 
the entire space. Each vector is the result of computing 
the values s j, j =  1 . . . .  , 4 ,  from the ASN input vector 
associated with the place at which the vector appears. 
The resulting 4-tuple is displayed as a vector in the 
obvious way. The direction of the vector at each location 
gives the direction of the ASN's most probable first step 

if it were to start at that location. The vector's magnitude 
is related to the probability that the ASN will take this 
step. It is important to note that the attractant distri- 
bution of the central landmark is not used to determine 
the vector fields. The vectors represent information 
stored in the ASN's memory - not information directly 
present in the environment. The vectors show how the 
ASN would tend to move even if the central landmark and 
its attractant distribution were not present. The general- 
ization capability of the ASN is clearly shown by the 
vectors associated with places never visited by the ASN. 

Figure 5B shows how the ASN behaves for about 800 
time steps. It climbs the attractant distribution and 
remains in the vicinity of the central landmark 
(Fig. 5B1). The resultant associative matrix values 
(Fig. 5B2) show that the north landmark signal inhibits 
the north output element and excites the south output 
element. Consequently, when the ASN is in the vicinity 
of the north landmark, it will tend to move south. 
Similarly, a strong signal from the south landmark Will 
cause the ASN to move north. The weights associated 
with the east and west landmarks similarly affect the east 
and west output elements. The resultant movement 
tendencies are shown as a vector field in Fig. 5B3. This 
form of learning is not dependent on the central location 
of the attracting landmark. Figure 6 shows a vector field 
determined from the contents of the ASN's memory after 
about 800 time steps of learning with the attracting 
landmark located off-center. The importance of this 
illustration is that it shows that the learning rule is 
capable of not only determining the correct signs for the 
weights but also their correct magnitudes. 

The information stored in the association matrix 
formed during exploration of this spatial environment 
can be used by the ASN to guide movement even in the 
absence of the attractant gradient. In Fig. 7 is shown the 
behavior of the ASN after learning by exploration of the 
environment with the attractant landmark in the center. 
The central landmark and its attractant distribution 
have been removed from the environment, and the ASN 
starts at a place it has never before visited. The ASN 
takes a direct route to the former location of the central 
landmark. This occurs because the context vector 
associated with each place "keys out" the appropriate 
action. The ASN remains near the central landmark's 
former location. 

Re-learning in a Modified Environment 

Here we illustrate how the ASN can reorganize its 
associative matrix due to changes in its environment. We 
allowed the ASN to learn in the original environment 
(Fig. 2) until it was able to associate the best movement 
with each place. We then interchanged the east and west 
landmarks. Figure 8A shows the vector field resulting 
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Fig. 8A-C, Re-learning in a modified environment. After learning in the original environment (Fig. 2) we interchanged the east and west 
landmarks. Now the landmark to the west causes activity in the input pathway labelled east, and the landmark to the east causes activity in the 
input pathway labelled west. A The vector field resulting from evaluating the ASN's state in the altered environment. The east and west 
landmarks now provide misleading information. B Relearning from a western excursion. B1 Starting from the central position, the ASN is 
"misled" by its sensory information and goes away from the central landmark. Since this movement is down the attractant gradient, the ASN 
alters its weights and relearns as it climbs the attractant gradient back to the center. B2 The ASN state after the excursion west shown in B1. 
The influence of-the input pathway from the east landmark has reversed so that proximity to the east landmark (now to the west) causes the 
ASN to move east rather than west. B3 The vector field representation of the ASN's memory contents after the excursion west shown in B1. C 
Having experienced a western excursion and appropriately modifying its memory contents, the ASN is similarly misled by the information 
provided by the other re-located landmark. C1 The spatial path of an eastern excursion. C2 The ASN state after the eastern excursion. The 
influences from the input pathways have been reversed. C3 The vector field representation of the ASN's memory contents shows that the 
appropriate reorganization has taken place 

f r o m  e v a l u a t i n g  the  A S N ' s  a s soc i a t i ve  m a t r i x  in the  
a l t e r ed  e n v i r o n m e n t .  T h e  cen t r a l  l a n d m a r k  l o c a t i o n  is 

n o w  a sadd le  p o i n t  r a t h e r  t h a n  a s tab le  focus. S t a r t i ng  
f r o m  a cen t ra l  pos i t ion ,  the  A S N  is " m i s l e d "  by  its 

s enso ry  i n f o r m a t i o n  a n d  fo l lows  the  v e c t o r  f ield a w a y  

f r o m  the  cen t ra l  l a n d m a r k  (Fig. 8B1). S ince  this  m o v e -  

m e n t  is d o w n  the  a t t r a c t a n t  g rad ien t ,  t he  A S N  al ters  the  

we igh t s  to  t he  eas t  and  wes t  o u t p u t  e l e m e n t s  f r o m  the  
eas t  neu t r a l  l a n d m a r k  i n p u t  (which n o w  r e s p o n d s  to the  

l a n d m a r k  to  the  west). Th i s  r e - l e a rn ing  resul ts  in the  
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Fig. 9A and B. Learning in a noisy environment. 
A ASN behavior, starting with all weights zero, as it 
climbs the attractant gradient corrupted by additive 
noise. Hill-climbing performance is significantly 
degraded (cf. Fig. 4 or Fig. 5B1). B After sufficient 
experience with the noisy attractant gradient (1107 
time steps), the ASN uses neutral landmark guidance 
to directly approach the goal even with the same noise 
level in the attractant gradient. Previous experience in 
the same or similar environments can be used to 
improve performance 

network of Fig. 8B2 and the vector field of Fig. 8B3. A 
similar excursion to the east modifies the we!ghts 
associated with the west neutral input which now 
responds to the landmark to the east (Fig. 8C). If the 
attractant distribution had been absent, no re-learning 
would have occurred. 

Learning in a Noisy Environment 

Climbing a hill as large and reliably sensed as the 
attractant distribution of the preceding illustrations is 
not a difficult task. When the attractant concentration 
can be sensed only in the presence of noise, the task 
becomes more difficult and more interesting. The 
sensitivity of the ASN to neutral context information 
permits it to improve its performance in climbing a 
noisy hill with repeated attempts 2. 

Figure 9A shows the ASN performance, starting 
with all weights zero, as it climbs the attractant 
concentration corrupted by additive noise. The noise is 
normally distributed with a standard deviation of 0.02. 
Comparing Fig. 9A with Figs. 4 or 5B1 shows that hill- 
climbing performance is significantly degraded. After 
sufficient experience with the noisy attractant con- 
centration (1107 time steps), the ASN uses neutral 
landmark guidance to directly approach the goal even 
with the same noise level in the attractant concen- 
tration (Fig. 9B). 

There are other means for improving hill-climbing 
performance in the presence of noise such as direct 
low-pass temporal filtering of the attractant signal as it 
is received by the ASN over time. We have not 
optimized hill-climbing behavior of the ASN in the 
absence of landmark guidance. Consequently, Fig. 9 
does not compare landmark guided hill-climbing with 
the best hill-climbing behavior that can be accom- 

2 Although we do not illustrate it here, we would expect that context 
information would also facilitate the more difficult problem of higher 
dimensional search 

plished without landmark guidance. What is impor- 
tant in this comparison, however, is that the asso- 
ciation of neutral context information during a search 
permits the system to improve its performance with 
repeated attempts to approach a goal in the same or 
similar environments. Even the most highly tuned pure 
hill-climbing strategy does not learn from its ex- 
perience in this manner. This example illustrates that 
the exploitation of neutral sensory information can 
provide significant adaptive advantages if the same or 
similar search problems occur repeatedly. 

A Remark on Linearity 

The associative search problem posed by the spatial 
environment of Fig. 2 is simple enough to be solvable 
by an ASN capable of making only linear associations. 
The influences of the neutral landmarks merely super- 
impose to form the desired control surface. If this were 
not the case, the ASN which we have described would 
not be able to form a stable mapping. Due to its 
linearity, it is not able to represent arbitrary patterns of 
location-action associations ; that is, only certain types 
of vector fields can be learned. 

In our current research, we are investigating two 
methods for extending the ASN's capabilities to in- 
clude nonlinear associations. The first relies on the 
observation that more varied associations can be 
formed as the number of landmarks increases. If, for 
example, there were a landmark at each spatial lo- 
cation, then a linear ASN could learn arbitrary 
location-action associations [this would be similar to 
the approach taken in the BOXES system of Michie 
and Chambers (1968)]. This suggests that it would be 
useful for a system to effectively "create" landmarks 
where needed in order to refine its representation of 
space. Such a landmark, which we call a "virtual 
landmark", would be created by the formation of an 
appropriate nonlinear combination of the sensory 
signals provided by the real landmarks. 



Another approach to nonlinearity is related to the 
"Patchwork Map" theory described by Kuipers (1977). 
Here, the system's knowledge of space would consist of 
several different associative mappings appropriate for 
guiding locomotion in different regions of space. The 
system would need to ,develop nonlinear switching 
circuits for accessing the correct associative structure 
when entering each region. Both of these approaches 
to nonlinear learning are applicable to a wide range of 
spatial and non-spatial problems. We are finding that 
the simple spatial interpretation described in this 
article provides a concrete and generalizable frame- 
work for approaching these very difficult and general 
problems. 

Condu~on 

We have illustrated the behavior of an ASN in a simple 
spatial learning task. The spatial problem provides a 
vivid way to demonstrate the search, association, and 
generalization capabilities of an ASN. Although we 
have illustrated these capabilities in an extremely 
simple form, it should be realized that the methods 
employed have much wider applicability. The spatial 
learning problem is an example of a wide class of 
problems, some of which require paths to be learned 
through spaces which do not necessarily represent 
physical space. For example, the space may be the 
state-space of a dynamical system in which case the 
vector fields developed represent hypothesized system 
dynamics. Associative learning capabilities provide a 
simple means whereby experience in attempting to 
solve a problem can be accumulated and used to 
drastically improve performance in similar problems. 
The necessity for explicit search is minimized by 
storing in long-term memory the information gained in 
previous searches. 

Finally, we wish to comment on the simplicity of 
the ASN illustrated. It consists of just four adaptive 
elements acting in parallel. Since the adaptive elements 
themselves embody fairly sophisticated learning rules, 
utilizing both short-term and long-term memory, we 
did not need to construct a special purpose network to 
perform the landmark learning tasks which we have 
presented. The behavior illustrated is a very natural 

consequence of a set of elements operating according 
to a carefully designed closed-loop learning rule. 
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