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Abstract. An approach to solving nonlinear control 
problems is illustrated by means of a layered asso- 
ciative network composed of adaptive elements ca- 
pable of reinforcement learning. The first layer adap- 
tively develops a representation in terms of which the 
second layer can solve the problem linearly. The 
adaptive elements comprising the network employ a 
novel type of learning rule whose properties, we argue, 
are essential to the adaptive behavior of the layered 
network. The behavior of the network is illustrated by 
means of a spatial learning problem that requires the 
formation of nonlinear associations. We argue that this 
approach to nonlinearity can be extended to a large 
class of nonlinear control problems. 

1. Introduction 

Nonlinearity is an important property of most pattern 
recognition and control tasks, and the inability of 
learning systems composed of neuron-like elements to 
handle nonlinearity in an extensible way has formed 
the basis of many criticisms of this approach to 
problem solving and its relevance to biological infor- 
mation processing (e.g., Minsky, 1961; Minsky and 
Papert, 1969). In this article we present an associative 
memory network composed of neuron-like adaptive 
elements that is capable of solving a class of nonlinear 
control problems. The network is an extension of the 
associative search network (ASN) described previously 
by Barto et al. (1981) that employs a novel type of 
adaptive element based on the theory of Klopf (1972, 
1979, 1982). The control problem with which we 
illustrate its behavior is an extension of the landmark 
learning task presented by Barto and Sutton (1981a). 
In this type of problem, the ASN controls movement 
in a spatial environment and forms associations be- 
tween optimal directions of movement and stimulus 

patterns determined by its position with respect to a 
configuration of landmarks. While suggestive of ani- 
mal learning behavior, these illustrations are not in- 
tended to be realistic models of the behavior of any 
particular animal. Barto and Sutton (1981a) point out 
that the spatial environment can be interpreted as a 
more abstract type of space, such as the state space of a 
dynamical system. 

2. Approaches to Nonlinearity 

Nonlinearity is not really a property of a problem per 
se, but rather a property of a particular way of 
representing a problem in terms of a set of variables, 
usually called features, properties, or predicates (see 
Minsky and Papert, 1969). A problem is linear for a 
given representation if the desired outputs of the 
pattern recognizer or controller are linear functions of 
the representation variables. A variety of well-known 
algorithms exist, and can be implemented by networks 
of neuron-like elements, that are able to find the 
correct weighting factors for the contribution of each 
representation variable to each output function of the 
adaptive system (e.g., Amari, 1977; Duda and Hart, 
1975; Sutton and Barto, 1981). Many approaches to 
solving problems that are not linear in terms of a given 
representation involve specifying higher dimensional 
representations in which the problem is linear. For 
example, a problem that is not linear in terms of the 
variables x and y may be linear in terms of the 
variables x, y, x 2, y2, and xy, and coefficients can be 
found by existing linear learning rules to express a 
desired function as a weighted sum of these five 
variables. This is the approach discussed by Poggio 
(1975). 

The additional feature variables need not be pro- 
ducts of the original variables but can be arbitrary 
functions of these variables as discussed, for example, 
by Nilsson (1965) and Minsky and Papert (1969). A 
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straightforward instance of this approach is provided 
by a method that explicitly divides the feature space in- 
to a large number of small regions so that a different 
system action can be associated with each region. For 
example, the BOXES system of Michie and Chambers 
(1968) uses a representation in which the control space 
is divided into 225 independently accessable "boxes", 
and a similar scheme is used in the sensorimotor 
learning system of Raibert (1978). Albus (1979) pro- 
poses a related coding scheme in which the regions are 
not disjoint. These table-lookup approaches are mem- 
ory intensive and require a priori selection of a 
sufficiently fine representation. Moreover, a repre- 
sentation that is too fine results in poor generalization 
capabilities and needlessly slow learning. 

Various methods have been proposed for adap- 
tively generating features rather than requiring them to 
be specified a priori. The central ideas in most of these 
methods are to generate features that are "like" pre- 
viously useful features or to form nonlinear com- 
binations of features that have proven useful. Minsky 
(1961) discusses this problem and examples are provid- 
ed by Klopf and Gose (1969), Selfridge (1955), and 
Ivakhnenko's method of groups (1971). Michie and 
Chambers suggest that their BOXES system could be 
improved by the addition of mechanisms for "splitting" 
boxes when finer discriminations are needed and for 
"lumping" boxes that are associated with the same 
control action. They do not, however, provide a 
mechanism for doing this. 

Although the system described here does not rely 
on a representation consisting of a large number of 
disjoint "boxes", we were motivated by Michie and 
Chamber's suggestion of splitting as a useful method of 
representation development. We use a network con- 
sisting of two layers. The output layer is a linear ASN 
as discussed by Barto et al. (1981) and is thus subject to 
all of the limitations of linearity including those em- 
phasized by Minsky and Papert (1969). The input 
layer, however, is designed to adaptively form a repre- 
sentation in terms of which the problem can be solved 
linearly by splitting each of the input features. 

3. The Linear Landmark Learning Problem 

We briefly describe the linear landmark learning pro- 
blem and the linear ASN capable of solving it (Fig. 1) 
that was presented by Barto and Sutton (1981a) 1 and 
then extend the problem and the network to the 
nonlinear case. Figure 1A shows a spatial environment 
consisting of a central landmark (shown as a tree) 

1 Our presentation here differs slightly from that of Barto and 
Sutton (1981a). The symbols for the landmarks and the ordering of 
sensory input pathways to the network are different 

surrounded by four other landmarks (shown as boxes 
and circles). Thinking of this as an olfactory environ- 
ment for a simple organism, each landmark emits a 
distinctive "odor" that decays with distance. The 
"odors" extend as far as the large circles shown in Fig. 
1A. The "odor" of the central landmark will act as an 
attractant for the network. The asterisk shows the 
location of the ASN. The ASN's input pattern is 
therefore determined by its location in this 
environment. 

Figure 1B shows an ASN with four input pathways 
labeled vertically according to the landmarks to which 
they respond. The lowermost "payoff' input is a 
specialized pathway responding to the attractant dis- 
tribution produced by the tree. The four output path- 
ways labeled horizontally at the bottom each produce 
a 0 or 1 at each time step and determine the direction 
of movement of the network. For example, if N=0,  
S = 1, E = 1, and W= 0 (as shown by the shaded output 
elements in Fig. 1B), the network will move a fixed 
distance south and east. Connection weights between 
input and output elements are shown as circles cen- 
tered on the intersections of the input pathways with 
the element "dendrites". Positive weights appear as 
hollow circles, and negative weights appear as shaded 
circles. Circle size codes weight magnitude. 

The ASN's task in this environment is to 1) find the 
central tree landmark by climbing the attractant distri- 
bution and 2) associate with each sensory input pattern 
(and hence with each place in the environment) that 
action which causes movement toward the tree. These 
place-action associations are to be stored by means of 
the network's matrix of connection weights ; they are 
never explicitly available in the environment. As a 
result of learning these place-action associations, the 
network can proceed directly to the tree by "reading 
out" the action associated with each position along its 
path, even in the absence of the attractant distribution. 
Since for the environment just described, the correct 
associative mapping is linear in terms of the stimulus 
patterns, the linear ASN shown in Fig. 1B is able to 
solve the landmark learning problem by forming the 
weights shown in Fig. 1C. The operation of this ASN is 
fully described by Barto and Sutton (1981a) and is 
identical to that of the second layer of the network 
described below. Figure 1D shows the results of learn- 
ing in rived form as a vector field giving the expected 
direction of the network's movement through each 
position in space. This vector field is determined from 
the network's weight values and is never literally 
present in the environment. 

In another experiment described by Barto and 
Sutton (1981a), the ASN was allowed to learn in the 
environment just described, and then the box shaped 
landmarks were interchanged. Figure 1E shows the 
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Fig. 1A-F.  A l inear  l a n d m a r k  l ea rn ing  problem. A A spat ia l  envi ronment .  B A l inear  associat ive search ne twork  for con t ro l l ing  locomot ion .  
Posi t ive weights  appea r  as ho l low circles;  negat ive  weights  appea r  as shaded  circles. C The  conf igura t ion  of  the ne twork  after it has  solved the 
problem.  D A vector  field represen ta t ion  of the contents  of the ne twork ' s  m e m o r y  after it has  solved the problem. E The  vector  field showing  
how the ne twork  would  tend to m o v e  if the loca t ions  of the box  l a n d m a r k s  were in te rchanged  after learning,  b" The  ne twork  after re learn ing  in 
the a l tered env i ronmen t  
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Fig. 2A and B. A nonlinear landmark learning problem. A An environment with two regions labeled "region A" and "region B". B A two-layer 
network. Layer 2 is identical to that shown in Fig. 1B except that it has eight input pathways in addition to the payoff pathway 

vector field resulting from evaluating the ASN's asso- 
ciative matrix in the altered environment. The ASN is 
initially misled by its sensory information but quickly 
relearns to the altered environment resulting in the 
associative matrix shown in Fig. 1F. If we were to 
change the environment back to its original con- 
figuration, the ASN would change its associative ma- 
trix back to that shown in Fig. 1C. Thus, it is clear that 
the ASN as described is not capable of maintaining 
both control surfaces at the same time. As it learns in 
an environment with a different configuration of the 
same landmarks, it "re-writes" its memory, erasing 
traces of previous learning. This suggests the following 
task, which turns out to be nonlinear in terms of the 
landmark signals. 

4. A Nonlinear Landmark Learning Problem 

Figure 2A shows an environment containing two areas 
labeled "region A" and "region B". Corresponding 
landmarks produce the same sensory signals in both 
regions (e.g., the shaded box "smells" the same in both 
regions), but sensing a box landmark should produce 
movement in opposite directions in the two regions. 
That is, "hollow box in region A" should be associated 
with movement west, but "hollow box in region B" 
should be associated with movement east. Similarly, 
the correct associations for the shaded box depend on 
the region in which it is sensed. We consider the case in 
which there exist features, detectable by the network, 
that distinguish region A from region B. In the most 
general case, these distinguishing features may be 
complex patterns or relationships between more basic 
features, but for simplicity, and without undue loss of 

generality given our purposes, we simply assume that 
there is a sensor that is activated whenever the system 
is in region A and one that is activated whenever it is in 
region B. A signal from one of the region sensors must 
be capable of switching the effects of the two box 
landmarks on the east and west output elements in 
opposite senses. This cannot be accomplished by the 
sort of linear mapping the network shown in Fig. 1B is 
capable of forming (this is proved in detail in Appendix 
A). 

What seems to be needed are signals distin- 
guishing the sensing of a landmark in region A from 
sensing that same landmark in region B. Figure 2B 
shows a network consisting of two layers of adaptive 
elements (questions about why the network takes this 
particular form and why it is able to solve problems of 
this type will be discussed in a more general setting 
below). The output layer shown at the bottom, which 
we call layer 2, is identical to that shown in Fig. 1B 
except that it has eight rather than four input path- 
ways in addition to the tree or payoff pathway. The 
input layer, which we call layer 1, consists of eight 
adaptive elements each receiving input from the four 
landmarks, the region A and region B indicators, and 
the tree. 

The eight elements of layer 1 are organized in 
pairs: elements 1 and 2, elements 3 and 4, etc. The 
elements in each pair inhibit one another so that only 
the most strongly stimulated element of each pair can 
be active at any time. The large positive connection 
weights in layer 1 are all set permanently to the same 
value. Consequently, before any learning takes place in 
layer 1, the layer 1 elements simply transmit the layer 1 
input signals to layer 2, sometimes via one element of 



each pair and sometimes via the other (so that this 
network can also solve the linear problem described 
above)�9 If the task cannot be solved linearly, then the 
paired elements will differentiate, or "split", in terms of 
the input patterns to which they are tuned and the 
influences they exert on layer 2 elements. The layer 2 
elements are also paired so that at each time step only 
one element in each of the north/south and east/west 
pairs is active [if, however, e in Eq. (3) below is 
nonzero, then both elements of each pair can be active 
with a probability depending on the size of e]. This 
merely serves to keep the network moving efficiently 
and is not an important feature of the system. 

Let x~(t),..., x6(t) denote the signals at time t from 
the landmarks and the region indicators in the order 
shown in Fig. 2B and let z(t) denote the attractant 
signal from the tree. Let y~(t),...,y~(t) and 
y2(t),...,y2(t) respectively denote the outputs of the 
elements of layer 1 and layer 2. Finally, let w~j(t), 
i = 1, ..., 8, j = 1, ..., 6, denote the connection weight at 
time t between input pathway xj and element i in layer 
1, and let w2(t), i=  1,...,4, j = 1, ..., 8, denote the con- 
nection weight at time t between element i in layer 1 
and element j in layer 2. In order to represent the 
pairing of the layer 1 elements, let 7 be the element 
paired with element i, i=  1,..., 8. Thus, if i=  1, then 
T= 2, etc. We denote the pairing of the north/south and 
east/west elements in layer 2 in the same manner. The 
layer 1 weights shown as large circles in Fig. 2B are 
fixed at the value 1. 

The elements of layer 1 operate as follows. For each 
time t = 0, 1,... and each i=  1,..., 8, let 

6 
s](t) = 2 w]~(t)x~(t) + NOISE~(t) (1) 

j = l  

denote the weighted sum of the input signals to 
element i of layer 1, plus a random number NOlSEia(t) 
sampled from a mean zero normal distribution. Then 
the output of element i of layer 1 is 

]max(O,s}(t)) if s](t)>s~(t) yl(t)= 
/o otherwise. 

This means that at each time step only one element of 
each pair has nonzero output. The active element is the 
one having the largest sum of input stimulation and a 
random number. 

The layer 2 elements operate in a similar manner. 
For i = 1, ..., 4, let 

8 
s2i(t) = ~ w2(t)yJ(t) + NOISE2(t) (2) 

j = l  

and 

y2(t)={10 if s2(t)-s{(t)>e 
otherwise. (3) 
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Thus, the outputs of layer 1 elements act as inputs to 
layer 2 elements ; and, whereas the outputs of layer 1 
elements have positive real values, the outputs of layer 
2 elements are binary valued. 

The network interacts with the environment in 
such a way that the values of the input signals at any 
time t depend on the position of the network in the 
environment at time step t -  1 together with the layer 2 
element output values at time step t - 1 .  The con- 
nection weights of each layer are updated based on the 
input received, the action taken, and its consequences 
in terms of a change in attractant level z. In particular, 
except for the fixed weights in layer 1, the connection 
weight values are determined through these difference 
equations : 

= w (t- 1) + q 1)] 
�9 [y]( t -  1 ) - y ] ( t -  2)Jxj(t- 1), (4) 

w (t) = w (t- 1) + c2 z ( t -  

�9 1). (5) 

Equation (4) implies that the weight corresponding to 
the connection between input pathway j and layer 1 
element i increases if an increase in element i's activity 
in the presence of input signal x~ is followed by an 
increase in attractant level z. Equation (5) implies that 
the weight corresponding to the connection from layer 
1 element j to layer 2 element i increases if layer 2 
element i "fired" in the presence of a signal from layer 1 
element j, and this is followed by an increase in the 
attractant level z. The layer 1 and layer 2 connection 
weights change according to these slightly different 
rules because layer 1 elements have real valued activity 
whereas layer 2 elements are binary. See Barto et al. 
(1981) and Barto and Sutton (1981a, b) for additional 
discussion of this class of learning rules 2. Appendix B 
contains detailed information regarding parameter 
values and protocols of the computer simulation ex- 
periment we describe next. 

We first place the network in region A where it 
climbs the attractant distribution due to the presence 
of the tree and produces the trail shown in Fig. 3A. At 
the same time, it forms associations between its stim- 
ulus patterns and the optimal actions. These asso- 
ciations are shown in vector field form in Fig, 3B. 
Notice that the associations are correct for region A 
but are incorrect for region B. This is because the 

2 The timing of the weight changes implied by Eqs. (4) and (5) 
differs slightly from that implied by the rules discussed in these 
references. A one time step delay between the calculation of a change 
in weights and the use of the weights in choosing an action is 
eliminated in the network presented here. This increases the rate of 
learning slightly but does not qualitatively change the behavior of 
these systems for any of the problems we have studied 
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Fig, 3A-J, Solving the nonlinear landmark learning problem. A The trail produced by 
the network as it climbs the attractant distribution in region A. B A vector field 
representation of the associations formed during the experience in region A. C The 
network resulting from the region A experience. D The trail produced in region B after 
the experience in region A shown in A. E Vector field representation of the associa- 
tions formed during the region B experience. F The network resulting from the region 
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resulting associations shown as a vector field�9 I The resulting network. J Demonstration 
of the network's use of the knowledge gained during its experiences in regions A and B 
(both trees and their attractant distributions have been removed) 
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network's generalization from its experience in region 
A to region B is inappropriate due to the reversed box 
landmarks. The network resulting from this experience 
is shown in Fig. 3C. Notice that there has been a 
tendency for one element of each of the layer 1 element 
pairs to become tuned to respond strongly to various 
patterns of landmark "odors" in region A and less 
strongly to these patterns outside of region A (since 
positive weights form from the region A sensor to these 
elements). These elements initially happen to be active 
more frequently and, as they begin to be excited by the 
region A input pathway, their probabilities of activity 
steadily increase. During this period, the connections 
from these elements to layer 2 are established in a 
manner appropriate for moving in region A. Thus a 
control surface appropriate for directing action in 
region A is formed. 

What happens when the organism is then placed in 
region B? Initially, the region A control surface is 
accessed since the layer 1 elements that are tuned to 
respond strongly to certain "odor" patterns in region 
A also respond to these patterns in region B, although 
less strongly. This results in the trail shown in Fig. 3D 
and can be seen as the network's attempt to generalize 
its region A experience to region B. Having been 
placed north of the shaded circular landmark, the 
network proceeds almost directly south and west as a 
result of being correctly directed by the shaded circle 
and incorrectly directed by the hollow box. These 
actions are punished since the network moves down 
the attractant gradient in region B. This tends to 
"erase" the region A control surface. However, this 
also causes inhibitory connections to form from the 
region B sensor to the elements selected in region A. 
This steadily decreases the probability that the ele- 
ments selected in region A become active in region B. 
Then, whenever activation switches to the untuned 
element of a pair (and the probability of this steadily 
increases) and the network happens to move in the 
correct direction, then this element will begin to be 
tuned to respond to an "odor" pattern in region B and 
therefore provide a signal to layer 2 that can be 
associated with the correct actions for region B. 
Consequently, the erasure of the region A control 
information eventually stops as new associations are 
formed appropriate for region B (Fig. 3F). Continued 
exploration results in the formation of the associations 
shown in Fig. 3E as a vector field. New experience in 
region A quickly reinstates any lost information (Fig. 
3G-I). By examining Fig. 3I, one can see that the layer 
1 elements have tuned themselves to represent the 
environmental features as follows: 
Element 1: unused 
Element 2: shaded circle in both regions 
Element 3 : hollow box in region A 

Element 4: hollow box in region B 
Element 5: unused 
Element 6: hollow circle in both regions 
Element 7: shaded box in region A 
Element 8: shaded box in region B. 
Layer 2 can therefore generate the appropriate actions 
even though they are restricted to being linear func- 
tions of its input patterns. Although this process 
sounds complicated, it does in fact occur with great 
reliability and is not overly sensitive to parameter 
values. 

Figure 3J shows the network behavior as the 
information is used that was stored during the ex- 
periences we have described. Both trees and their 
attractant distributions have been removed, and the 
network is started from places it has never before 
visited. Its path in each region shows direct approach 
to the former location of the tree. 

5. Comments on the Problem and the Network 

The particular landmark learning problem and net- 
work we have described are too simple to illustrate 
clearly some properties of the general approach we are 
suggesting. First, we have assumed the existence of 
single distinguishing features for each region and have 
provided input pathways to the network for these 
features. Although we labeled these pathways "region 
A" and "region B" and did not provide them with fixed 
connections in layer 1, they do not play specialized 
roles in the structure of the network. If it had been 
necessary for the problem's solution, the network 
could have formed features by combining any of its 
input variables. A two-layer network such as described 
here can solve these problems as long as the regions 
are distinguishable by linearly separable patterns of 
the problem's variables. This does not, however, imply 
that these problems as wholes can be solved linearly. 

Another set of issues relates to the small size of the 
network. One might wonder, for example, why we did 
not just supply layer 2 from the start with all possible 
pairwise combinations of the landmark and region 
variables rather than requiring layer 1 to form the 
necessary combinations. There are two answers to this. 
First, the strategy of supplying all possible com- 
binations of variables quickly leads to obvious com- 
binatorial difficulties as problems become larger. The 
approach illustrated by our network is one in which 
enough structure (i.e., hardware) is provided for a fixed 
number of combinations, and the network itself must 
form the most useful combinations consistent with this 
structural constraint. A second reason for requiring 
the network itself to form combinations of variables 
only when necessary is that generalization capabilities 
are facilitated. Unnecessarily "splitting" a variable 
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prevents generalization from taking place along that 
dimension of the representation. This is illustrated by 
the example shown in Fig. 3. After experience in region 
A, the network attempted to use the relationships 
learned in region A to guide its behavior in region B. 
The relationships involving the boxes happened to be 
inappropriate in region B, but those involving the 
circles successfully generalized. The network immedi- 
ately moved south when placed in the northern part of 
region B (Fig. 3D). If separate variables for each 
landmark in each region had been initially supplied to 
the layer 2 network, then no use of the region A 
experience would have been attempted in region B, 
and learning would have been slower. 

6. Lateral Inhibition and the Enforcement of Variety 

The network we have described does not explicitly 
employ a neural-like mechanism for restricting activity 
to one element of each pair (we simply select the 
element having maximal excitation). A variety of 
modeling efforts have shown that a lateral inhibitory 
network of neuron-like elements with the appropriate 
dynamics can select the maximally activated element 
and suppress the activity of all others. The reticular 
formation model of Kilmer et al. (1969) was the first to 
employ this process, and many other related models 
have been described (e.g., Amari and Arbib, 1977; 
Didday, 1976; Fukushima, 1973, 1980; Grossberg, 
1976a, b; Spinelli, 1970; yon der Malsburg, 1973). It 
should be clear that an explicit lateral inhibitory 
structure could be added to our network in order to 
perform the selection process, and we view the pairs of 
layer 1 elements as the simplest instances of popu- 
lations of mutually inhibiting elements. Our network 
employs the selection process for the same reason that 
others have put forward for lateral inhibition, namely, 
to enforce variety during a learning process. For 
example, von der Malsburg's (1973) model of the 
development of orientation columns in visual cortex 
posits lateral inhibition in order to prevent neighbor- 
ing cells from becoming tuned to the same optimal 
orientations. If no selection process were employed in 
our network, then there would be no tendency for the 
elements of each pair to become tuned to different 
input patterns and to cause different effects on layer 2. 
This differential tuning might still occur, but with a 
much lower probability. 

7. Search and Layered Networks 

We have called networks of the type described above 
associative search networks because they auton- 
omously generate activity patterns via a random 
process that becomes biased as learning proceeds 

toward producing patterns of higher payoff. The ele- 
ments of which these networks are composed differ 
from those previously studied in two fundamental 
ways. First, the random component of each element's 
activity is essential to the learning process since it 
generates trials in the absence of any pre-established 
influence from sensory input. Second, the feedback 
from the environment that governs the learning pro- 
cess is a reinforcement signal rather than a signal that 
provides either the difference between the pattern 
generated and the optimal pattern (a signed-error) or 
the optimal pattern itself. This latter type of signal is 
employed by most adaptive elements previously stu- 
died, including those forming various associative me- 
mory structures that use Hebbian or perceptron learn- 
ing rules. Either type of these previously studied 
systems can only learn if its environment actually 
knows what the optimal responses are for a training 
sequence of stimulus patterns. A reinforcement learn- 
ing system, on the other hand, can learn to produce 
optimal patterns in environments that can only pro- 
vide evaluations of the system's actions. A rather 
subtle but important point here is that an adaptive 
system's environment can evaluate the system's ac- 
tions, that is, can provide payoff or reinforcement 
signals, without containing explicit knowledge of what 
would constitute an optimal action. See Barto and 
Sutton (1981b) for a more complete discussion of these 
and related issues. 

These characteristics of the learning rules we em- 
ploy permit the layered network architecture to func- 
tion effectively. We might expect the layered network's 
environment to know the optimal actions of the 
elements in the network's output layer for a training 
sequence, but it is generally impossible for the environ- 
ment to know, even for a training sequence, how each 
element in the preceding layers should behave for each 
situation. If the interior elements of the network (i.e., 
those elements that are not output elements) can only 
adjust their parameters appropriately if they are ex- 
plicitly instructed how to respond, then one would not 
expect useful behavior to result since most environ- 
ments simply cannot provide such detailed infor- 
mation. On the other hand, elements in the interior of a 
layered network that are capable of reinforcement 
learning can suitably adjust their parameters on the 
basis of the environment's evaluations of the network's 
overall performance. If an action of an interior element 
is followed by improved network performance, then 
the occurrence of that action is made more likely. The 
environment need not know what the action was nor 
what it should have been 3. Despite considerable effort, 

3 Rosenblatt  (1962) ~onsidered this problem but proposed a 
different method for solving it. He proposed schemes to compute 
local error signals rather than  to use environmental evaluations 



little success has been achieved in designing layered 
adaptive networks capable of solving nonlinear pat- 
tern recognition and control problems 4. We believe 
that this has been due in part to the lack of experimen- 
tation with layered networks having interior elements 
capable of active search and reinforcement learning. 

8. Discussion 

Although the problem and network presented in this 
article are relatively simple, we believe the approach 
they illustrate can be applied to more complex non- 
linear control problems. Many control problems, both 
engineering and biological, have the property that the 
control surface cannot be specified in a simple manner 
for the entire control space. In these cases it is useful to 
divide the control space into regions, or control si- 
tuations, and specify local control surfaces for each 
region (e.g., Mendel and McLaren, 1970). When 
possessing a means for accessing the appropriate local 
control surface for each control decision that must be 
made, these types of systems can solve complex control 
problems. This situational control approach is useful 
when the dynamical characteristics of the controlled 
system or the objectives of the controller can change 
drastically, such as, for example, when one changes 
from driving a car forward to driving it in reverse 
(turning the wheel clockwise then turns the car left 
instead of right). 

The utility of this approach is made especially 
apparent by certain theories in artificial intelligence 
and psychology such as Minsky's theory of "frames" 
(1975) or Arbib's theory of "schemas" (1978, 1981). 
These theories suggest that when one encounters a new 
situation or shifts one's viewpoint, a structure is select- 
ed that contains general information about how to act 
and what to expect in that situation. This structure is 
parameterized by the situation's particular details. We 
cannot claim to have implemented a system of frames 
or schemas, but we do believe that in the example we 
have presented one can begin to see how such an 
organization might be learned by a system of neuron- 
like components using the principles of adaptive repre- 
sentation development, enforcement of variety via 
lateral inhibition, active search, and reinforcement 
learning. 

4 Some success has been achieved with layered networks capable 
of "unsupervised" clustering of their inputs into groups of similar 
patterns (e.g,, Fukushima's "neocognitron' ,  1980). However, this 
process should not be confused with reinforcement learning. The 
correctness of a particular clustering is determined solely by the 
initial representation and does not rely on any form of environmen- 
tal feedback. There is no functional verification 
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Appendix A 

Nonlinearity of the Landmark Learnin 9 Task 

We shall prove that the landmark learning task in the 
environment shown in Fig. 2A is nonlinear in terms of 
the seven input variables representing proximity to the 
four landmarks, presence in region A, presence in 
region B, and a constant input. Even though it is not 
provided to our network, we include a constant input 
in our analysis to show that the task would still be 
nonlinear if this input were available. In Minsky and 
Papert's (1969) terms, we shall prove that this is not an 
"order 1" problem. Although their "group invariance 
theorem" applies to this problem, we prove it in a more 
direct fashion. 

It is clear that the variables corresponding to the 
circular landmarks are not involved in the problem's 
nonlinearity since these landmarks are in the same 
relative positions in the two regions. We are therefore 
able to omit these variables from our analysis without 
loss of generality. 

Consider any four points P1, P2, P3, and P4 in the 
environment shown in Fig. 2A such that P1 and P 2  in 
region A are located along the horizontal line connect- 
ing the boxes, with P1 the same distance from the 
shaded box as P2 is from the hollow box; and P3 and 
P4 are in the same positions but in region B. The 
vectors of sensory input at these points are: 

P1 =(x,y, 1,0, 1) 

P2 =(y,x, 1,0, 1) 

P 3  = (y, x, 0, 1, 1) 

P4=(x,y,O, 1, 1), 

where the first component is the input due to the 
shaded box ; the second is due to the hollow box ; a 1 in 
the third position indicates region A; a 1 in the fourth 
position indicates region B; and where the constant 
input in the fifth position is set, without loss of 
generality, to 1. Let the input pattern at point Pi be 
denoted by the vector (x], ..., x~). If the problem is to 
be solved, then the action "move east" must be associ- 
ated with points P~ and Pa, and the action "move 
west" must be associated with points P2 and P4. Again 
we can ignore north/south actions and consider ac- 
tions that are ordered pairs of real numbers. We 
assume that action (E, W) means "move east" if E > W 
and "move west" if W> E. Then, if the problem can be 
solved linearly, there exist constant vectors 
A=(a 1, ...,a 5) and B=(bl, ...,bs) such that 

5 5 
y' i i a j x j  > ~,, b j x j  

j = l  j = |  
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for i =  1, 3 since the correct movement  is east from 
points P1 and P3; and 

5 5 

ajxj< ~ bjxj 
j = l  j = l  

for i =  2, 4 since the correct movement  is west from 
points P :  and P4. 

Writ ing these inequalities explicitly for points P1 
and P~, we require 

(alx+a2y+a3+as)>(blx+b2Y+b3+bs), (A1) 

(alx+azy+a~+as)<(blx+b2y+b4+bs). (A2) 

Adding a 4 to bo th  sides of (A1) and a 3 to both  sides of 
(A2) yields 

(b~x +b2y+b3 +bs +a,)<(alx +azy+a3 +a4 +a5) 
<(blx +b2y+bg +bs +a3). 

Hence, 

b 3 + a 4 < b ,  + a 3 . (A3) 

Similarly, the inequalities for points P2 and P3 are 

(aty+azx+a3+as)<(blY+bzx+b3+b~), (A4) 

(aty+a2x+a4+as)>(bly+bzx+b4+bs). (A5) 

Adding a ,  to both  sides of (A4) and a 3 to both  sides of 
(A5) yields 

(bxy+b2x +b, +bs +a3)>(aly+a2x +a3 +ag +as) 

<(bly+bzx +b3 +b5 +aJ. 
Hence, 

b4 +a3 <b 3 + a 4  

which contradicts (A3). Therefore, the problem cannot  
be solved linearly in terms of  the representations we 
have assumed. 

Appendix B 

Details of the Simulation Experiment 

Inputs. Landmark  input values range from 0.0 to 1.0. 
Region A and region B inputs are either 0.0 or 0.5. 
At t ractant  signal values range from 0.0 to 1.0, 

Layer 1. The fixed weights have values 1.0. The 
r andom variables NOISE~ in Eq. (t) have mean zero 
normal  distributions with s tandard deviations of  0.1. 
Layer  1 learning rate constant  c t =4.0. 

Layer 2. The r andom variables NOISE~ in Eq. (2) have 
mean zero normal  distributions with s tandard de- 
viations of 0.1. Layer  2 learning rate constant  c 2 = 1.0. 
e=0.0001 in Eq. (3). Each spatial step is either 0 or 5 
pixels in each direction. 

Training Procedure. 1) 360 time steps in region A (Fig. 
3A-C).  2) 340 time steps in region B (Fig. 3D-F) .  3) 250 
time steps in region A (Fig. 3G-I).  4) Test of learning 
by 100 time steps in region A and 100 time steps in 
region B (Fig. 3J). 

Note. Learning was prevented from occuring for the 
first time step after the network was removed form one 
region and placed in another. This prevented any 
changes in at t ractant  level resulting from these mani-  
pulations (rather than from the network's  actions) 
f rom influencing the connection weight values. 
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