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Abstract

This thesis investigates the idea of artificial intelligence as an agent making sense of its experience,

illustrating some of the benefits of representing knowledge as predictions of future experience. Ex-

perience is here defined as the temporal sequence of sensations and actions that are the inputs and

outputs of the agent. One characteristic of this sequence is that it can have temporal coherence:

what is experienced in a short period of time is likely to be consistent. The first part of this thesis

examines how an agent with dynamic memory can take advantage of the temporal coherence of its

experience. Results in a simple prediction task and the more complex problem of Computer Go

show how such an agent can dramatically improve on the performance of the best stationary solu-

tions. The prediction task is then used to illustrate how temporal coherence can provide a natural

testbed for meta-learning.

In the second part of the thesis, the frameworks of predictive representations and options are

adapted for use in knowledge representation. The traditional approach to knowledge representation

for artificial intelligence uses the framework of formal logic, in which knowledge is dissociated

from experience. The knowledge representation presented here is defined in terms of experience,

predictions and time. This kind of representation is defined in this thesis as an empirical knowledge

representation. Using objects as a case study, the final chapter shows how an empirical knowledge

representation makes it possible to represent even abstract concepts in terms of experience.
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Chapter 1

Investigating Experience

The view of artificial intelligence (AI) adopted in this work is that AI is about understanding and

creating an intelligent agent: a system that responds to the sensations it receives from the larger

world by choosing actions that seem to make sense. In such a system, the continual sequence of

sensations and actions that are input and output make up the experience of the agent. Experience

has received comparatively little attention in artificial intelligence and machine learning research.

Emphasis has instead been placed on separating out elements of intelligence such as knowledge rep-

resentation, planning and learning, and these pieces are frequently investigated outside the context

of an agent interacting with an environment. The problem of connecting experience to an underlying

reality is too often considered separate from the problem of understanding, planning with and learn-

ing about that reality. The view taken in this thesis is that experience is intrinsic to AI. Experience is

the data that is always available to the agent—ever-changing but continually being renewed without

requiring human intervention or interpretation.

This thesis investigates the benefits of representing knowledge in terms of experience and illus-

trates how such a representation might encode abstract knowledge.

1.1 Temporal Coherence

Time is an inherent property of experience, but temporal relationships are often ignored in AI re-

search. The typical assumption in machine learning is that there are two separable phases in any AI

application: training and testing. All learning occurs during the training phase, and then the agent

executes the best learned solution during the testing phase. This division is necessary for purely

supervised learning, where the agent must learn from data that has been labeled by a human and

then apply that learning to unlabeled data. However, the train and test paradigm dominates even

in unsupervised learning or reinforcement learning, where the agent is not constrained by manually

labeled data.

An agent that is not restricted to distinct training and testing phases may benefit from the greater

flexibility learning from experience can allow. Like the training phase of supervised learning, past
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experience provides an agent with data to learn from. Like the unlabeled test data, future experience

is the unknown testing ground of an agent’s knowledge. However, an agent that is learning from

experience has a potential advantage over a supervised learner or any other learner that maintains

a sharp division between training and testing. An agent that is continually learning does not have

to weight all past training data equally. Such an agent may take advantage of certain temporal

characteristics of experience by adapting to the present.

One important temporal characteristic of experience is a tendency for sensations to be consis-

tent over short periods of time. This characteristic is here called temporal coherence. Temporally

coherent sensations are common in everyday life. The temperature of the room, the colours and

brightness of my monitor, the sounds my computer is making and the texture of the keys beneath

my fingers—all these tend to be consistent over short periods of time. The temporal coherence of

experience can extend beyond immediate sensations as well. My prediction of whether I will win or

lose a chess game changes while I am playing, but on a moment-by-moment basis it stays remark-

ably consistent. What I expect to see when I open my lab door is a temporally coherent prediction.

If I have been away for weeks, I expect the change to be more drastic than if I have stepped out for

a moment. Ordinary experience is frequently temporally coherent.

When experience is temporally coherent, what an agent is experiencing now is a good predictor

of near future experience. An agent that is continually learning and adapting to its environment

is able to take advantage of the temporal coherence of experience. One way it may do so is by

having memory that adapts to recent experience, giving weight to present and near-past experience

rather than remembering only the long term average over all experience. Such dynamic memory is

not necessarily available to learning agents with strictly enforced separation between training and

testing phases. The following three chapters investigate temporal coherence and dynamic memory.

in greater detail.

Chapter 2 presents the background for this work on temporal coherence, introducing discrete

dynamical systems, reinforcement learning and the Computer Go testbed. The concept of discrete

dynamical systems gives a mathematical framework for understanding intelligent systems that is

used throughout this thesis. Reinforcement learning is a framework for learning through interaction

that has been successfully applied in psychology and machine learning to understand and direct the

behaviour of intelligent agents. Reinforcement learning has much in common with the approach

to AI advocated in this thesis, and the Computer Go experiments use the reinforcement learning

framework. The rules of Go are described in Chapter 2, along with an introduction to RLGO, the

reinforcement-learning program developed by David Silver and collaborators (Silver et al., 2007).

Two approaches to dynamic memory, tracking and transience, are introduced in Chapter 3.

Tracking, or forgetting through interference, allows the memory of an agent to change in response to

recent experience, replacing past knowledge quickly. Transience, or spontaneous forgetting, allows

for the effect of experience to fade as the temporal distance increases. For sensations with high
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temporal coherence, these techniques can significantly improve the accuracy of an agent’s memory.

The experiments with dynamic memory lead to some surprising conclusions: forgetting can be good

for knowledge representation and focusing learning on the now can lead to dramatic improvements

in performance.

Chapter 4 investigates the implications of temporal coherence for meta-learning. Meta-learning

means learning not only the parameters of a knowledge representation but also some of the compo-

nents that define the learning process. In particular, a parameter that controls the learning rate, and

thus the amount of tracking, can be tuned through interaction with an environment. One algorithm

for tuning this parameter is applied in both a temporally coherent and temporally incoherent world.

In both cases the agent learns the best parameter value, but the improvement from meta-learning

dominates only in the temporally coherent world. The difference in the strength of the effect sug-

gests that temporally coherent worlds provide a useful testbed for meta-learning.

1.2 Empirical Knowledge Representation

A knowledge representation is most generally the framework an intelligent agent uses to store and

process information. In the field of AI, knowledge representation has come to refer almost ex-

clusively to formal logic systems, where knowledge is captured in a database of statements about

symbols and a set of rules for manipulating those statements. While the formal logic approach has

had some success, for example in expert systems and applications in computer game-playing, it has

some drawbacks. Most notably, it poses difficulties for autonomous agents. In traditional knowl-

edge representation research, knowledge is abstract and symbolic by design and as a result generally

requires human maintenance. For autonomous AI, it is desirable for a knowledge representation to

be independently meaningful. One way this independence can be achieved is if the knowledge is

constructed out of data that is immediately accessible to the agent, such as its experience. When

knowledge is represented in a way that is accessible to the agent without human interpretation, it is

possible for knowledge to be verified, tuned and even learned autonomously.

Chapters 5 to 7 address the development of a knowledge representation framework that is explic-

itly based on experience, predictions and time. The underlying data of this knowledge representation

is the agent’s continual sequence of sensations and actions. All knowledge in this framework is ex-

plicitly verifiable against future experience. This general approach is referred to in this work as

empirical knowledge representation. The first formal framework for empirical knowledge represen-

tation is introduced in Chapter 5.

An empirical knowledge representation is a knowledge representation that is grounded in expe-

rience and makes predictions that can be verified against experience. Empirical is used here in the

sense of empirical science: what is known must be ultimately verified through experimentation. It is

not necessary that everything be learned from experience, but all knowledge in this framework must

be verifiable through interactions with the environment.
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Concepts in the knowledge representation presented in Chapter 5 are grounded in experience

using the frameworks of options and predictive representations. These frameworks have been de-

veloped by the reinforcement learning research community. The options framework allows for tem-

poral abstraction by providing a principled framework for extending single actions to patterns of

behaviour. The framework of predictive representations allows for the abstraction of sensations by

formally defining predictions as statements about future experience, computed from past experi-

ence. Section 5.4 and Section 5.5 explain these frameworks with the slight adaptations necessary for

general knowledge representation.

Chapter 6 provides a brief survey of previous work in experience-oriented artificial intelligence

and current developments in the area of predictive representations. Predictive representations have

been used to represent several kinds of knowledge, although knowledge representation has not been

thought of as the primary motivation for work on predictive representation. Relevant results in

predictive representation research are briefly described, then compared and contrasted with the aims

of empirical knowledge representation.

A common complaint leveled at grounded representations is that the emphasis on concrete ex-

perience makes it difficult, if not impossible, to represent abstract knowledge. The beginning of an

answer to this complaint is presented in Chapter 7. Taking the notion of objects as a case study,

a series of examples are presented to describe how some of what is meant by the idea of objects

can be understood in terms of patterns of experience and represented by the empirical knowledge

representation presented in Chapter 5. The investigation suggests that even abstract notions such as

existence and permanence may be possible to understand in terms of experience.
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Chapter 2

Background for Temporal Coherence

The first results presented in this thesis look specifically at how an agent that learns from experience

can benefit from the temporal coherence of its experience. Temporal coherence is a general term

for the consistency of data across time. An agent with dynamic memory can take advantage of this

characteristic of experience to improve performance. The following chapters use two environment

to illustrate this potential advantage: a simple prediction task known as the Half-Moon World and

the more difficult problem of Computer Go. This chapter provides a brief introduction to impor-

tant background concepts for understanding temporal coherence and the experiments of Chapter 3

and Chapter 4.

In this thesis, temporal coherence is studied within the framework of dynamical systems and re-

inforcement learning. Dynamical systems, presented in Section 2.1, are formal mathematical models

for systems that change over time. The experiments presented in this thesis are, more specifically,

discrete dynamical systems. In a discrete dynamical system the actions and sensations experienced

by an agent system are chosen from a discrete set and alternate over small, fixed-length periods of

time known as timesteps. When presented as a reinforcement learning problem, the sensations of

an underlying discrete dynamical system include a scalar signal known as reward. The agent in a

reinforcement learning problem must behave in a way that maximizes the reward sensation in some

way. The reinforcement learning framework is described in more detail in Section 2.2.

A learning agent that is able to take advantage of the temporal coherence of sensations and

predictions is presented in Chapter 3 and tested in the domain of Computer Go. This ancient board

game has remained a grand challenge for AI, resisting brute-force solutions due to the huge state

space and large branching factor. Go has proved to be problematic for expert systems due in part

to the intuitive nature of advanced Go knowledge. The game of Go is introduced in Section 2.3.

The experiments presented here treat Go as a reinforcement learning problem, adapting RLGO, the

reinforcement-learning Go agent developed by David Silver (Silver et al., 2007). RLGO is described

in Section 2.4.
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2.1 Discrete Dynamical Systems

A dynamical system is any system that changes over time. One mathematical description of a

dynamical system consists of the set X and the function T . The set X is the set of all possible states

the system might be in.1 In a discrete dynamical system, the members of X can be represented with

discrete values and the system changes over discrete intervals of time, usually small. These intervals

of time are known as timesteps. At any given timestep t the current state of the system is denoted

by xt. The function T determines the movement of the system through the state space over time:

T (xt, xt+1) returns the probability that when the system is in state xt on timestep t, the system will

be in state xt+1 on timestep t + 1.

In the description of the transition function given above, the probability distribution over future

states depends only on the current state, xt. Because the probability distribution over future states

does not depend on the entire history of states, x0:t�1, the Markov property holds for this system.

The Markov property states that the probability of future states depends only on the current state; the

probability distribution is conditionally independent of the history, given the current state (Higgins

and Keller-McNulty, 1995).

Agent Environment

action choice

state information

Figure 2.1: The Agent-Environment Interface. The agent takes an action, and in response the en-
vironment changes state and sends the agent a sensation. Note that the agent is separate from the
environment: it can only affect the state of the world by taking actions, and can only perceive the
world through the sensations and reward signals the environment sends back.

A Markov decision problem (MDP) is a dynamical system where the transition function depends

not only on the current state but also on an action at that is chosen from a set A, and the probability

distribution over future states depends only on that pair: T (xt+1|xt, at). MDPs can be described

as an agent interacting with an environment, receiving sensations generated by the environment and

choosing actions. The agent-environment interface is illustrated in Figure 2.1. The sensation on each

timestep, st, is generated according to a sensation function from a set S: S(xt, st). In the stochastic,

discrete case, A and S are discrete sets and S(xt, st) gives the probability of generating sensation

st when in state xt. The sensation may directly map to the underlying state. In this fully-observable

case, the sensation is known as a sufficient statistic, as knowing the sensation at time t is sufficient to

determine the probabilities for every possible next sensation. When the sensation is not a sufficient
1Note that calligraphic capital letters denote a set and lowercase letters denote members of a set. This convention is used

throughout this thesis.
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statistic, the system is called a partially observable Markov decision problem.

2.2 Reinforcement Learning

Reinforcement learning is a computational approach to learning from interaction (Sutton and Barto,

1998). The field of reinforcement learning deals with the problem of an agent learning to act in

an environment. The agent must choose actions which maximize a scalar reward signal, receiving

sensations from the environment at each timestep. It is a special case of a discrete dynamical system,

where part of the sensation received by the agent is a numeric reward signal. The reinforcement

learning interface is illustrated in Figure 2.2.

Agent Environment

st+1

rt+1

at

Figure 2.2: The Reinforcement-Learning Interface in a discrete dynamical system. Note the addition
of the reward signal.

Reward, which can be thought of as analogous to pleasure and pain, is determined solely by the

environment. Because an RL agent learns to maximize reward, the reward function ultimately guides

the agent’s behaviour and in some sense defines the goal of the system. For example, formulated

as a reinforcement learning problem, chess may have a reward signal of +1 if the agent wins the

game and 0 if the agent loses. Control of a chemical process in a factory may have a negative reward

signal when the temperature approaches a dangerous level, and a positive reward signal related to

the speed of the reaction. A maze, formulated as a reinforcement learning problem, might have a

reward signal of -1 on each timestep: to maximize its reward, the agent must minimize the number

of steps to the goal state. The reward function determines what reward signal will be output to the

agent. The reward might be a probabilistic value, and generally depends on the current state and the

action chosen by the agent: R(rt+1|xt, at).

The goal of an RL agent is to maximize reward, but this objective can be measured in many

different ways: Should it choose an action that has high reward but leads to states with low reward

or choose an action with low immediate reward that leads to states with higher reward? Should it be

penalized for selecting an action that normally gives high reward but, because of the probabilistic

reward function, happened to return a low value? The question of what exactly to maximize is

answered by the return function. The return, Rt, is some function of reward values from time t

onward (Sutton and Barto, 1998).

Return can be calculated in several ways. The simplest way is to simply add up all the rewards
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received from time t onward:

Rt = rt + rt+1 + rt+2 + .... (2.1)

In environments with well-defined endpoints such as games that may be won or lost, or factory

control of processes that shut down for the night, return can be meaningfully computed as a simple

sum. In continuing tasks, such as a factory processes that is never intentionally turned off or a robot

that interacts with its environment in a complex way over a long time span, a different formulation

is needed for return. A continuing task has no well-defined end point. If the rewards are summed up

from time t into the infinite future, the return could be infinite (either positive or negative, depending

on the reward function) regardless of the behaviour of the agent. In continuing tasks, the most

common function for return is to sum the discounted future reward values:

Rt = rt + �rt+1 + �

2
rt+2 + .... (2.2)

The discount factor, �, is a number between 0 and 1 that controls how much weight future reward is

given. If � is very small, the weight given to future reward decreases quickly, so the return is myopic

and includes only the reward the agent will receive in the near future. If � is 0, the return includes

only the immediate reward. If � is high, reward in the distant future is still given significant weight,

and the return thus favours long-term performance.

The agent uses its policy to chose actions. A deterministic policy function returns the action

that the agent chooses in every state. A stochastic policy function returns the probability that the

specified action will be chosen from the specified state. For an MDP that is fully observable—that is,

where the sensation is a sufficient statistic for the environment state—the policy can be represented

as a function that takes the current sensation and an action as input and 1 when the action should be

taken and 0 otherwise. The policy may be learned directly from environment interactions, but more

often the value function is used as an intermediate structure.

The value function represents how good it is to be in a given state. The value of a state is More

formally, the value function is the function V

⇡
(x) that maps states to the expected return, given the

policy ⇡ is followed:

V

⇡
(x) = E⇡[Rt|xt = x]. (2.3)

When the transition function and reward function for the environment are known, the value function

can be computed in a recursive fashion, using the Bellman equations2:

V

⇡
(x) = E⇡[rt+1 + �V

⇡
(xt+1)]. (2.4)

Computing the exact value of each state can be an expensive process, prohibitive when the state

space is large and not possible when the transition and reward functions are unknown (Sutton and

Barto, 1998).
2The equation for discounted return is given here. The equation generalizes to the simple sum when � = 1
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An approximate value function, ˆ

V (x), can be learned through temporal-difference (TD) learn-

ing. TD learning is often referred to as boot-strapping or ‘learning a guess from a guess’ (Sutton

and Barto, 1998). The TD-learning rule uses the value function estimate of the current state to im-

prove the estimate for the previous state. On each timestep, the agent receives a new reward value,

rt+1, and new state information, xt+1. The sum (discounted or not) of the reward actually received

and the estimate of the next state’s value is like a more accurate estimate of the value of xt.3 The

difference between this sum and the previous estimate for state xt is known as �t, the TD error at

time t:

�t = rt+1 + �

ˆ

V (xt+1)� ˆ

V (xt). (2.5)

The TD-learning rule uses the TD error in an incremental update rule:

ˆ

V (xt) ˆ

V (xt) + ↵�t. (2.6)

The estimate of the previous state’s value is changed by some amount controlled by the step-size

parameter ↵ and the TD error.

The step-size parameter, ↵, is sometimes also known as the learning rate, because it influences

how quickly the agent learns from experience. It is called a step-size parameter because it controls

how much the estimated value moves (or ”steps”) towards the improved estimate. When ↵ is high,

the TD error is given more weight and the estimate is changed significantly to reflect the new data.

When ↵ is low, more weight is given to the previous estimate and the agent resists changing its

value function. If the reward the agent receives in each state has high variance, having a small ↵

can prevent the estimate from chasing the noise in each reward. With an ↵ that decreases at an

appropriate rate, TD learning will learn an accurate value function in an environment that satisfied

certain properties (Tsitsiklis and van Roy, 1997).

The value function can be used by the agent to calculate a policy, as the agent can use the

value function to compare states. The best action is the one that leads to the state with the highest

estimated value. Two important policies based on the best action estimate are greedy policies and

✏-greedy policies. An agent following a greedy policy always chooses the action that appears to

lead to the best state. An ✏-greedy policy defines a small number between 0 and 1, though usually

✏ << 0.1, that represents the probability of not taking the best action. An agent following an ✏-

greedy policy chooses the best action most of the time, but some of the time (with probability ✏) it

chooses a random action. Taking random actions with some small probability allows for exploration

of the state space. If only the best actions are taken, the agent can suffer from an inaccurate value

function or simply never learn about large portions of the state space.

The value-function equations described so far are for the table-lookup case, when a single and

separate value is learned for each possible state. Such a perfect representation is not always possi-

ble, practical or desirable. Table-lookup is impossible when the state-space is larger than memory
3In fact, it is guaranteed to approach perfect accuracy with infinite experience, in certain circumstances (Tsitsiklis and

van Roy, 1997).
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resources allow. When the number of possible states is small enough to fit in memory, table-lookup

might still be inappropriate if the sensation received on each timestep is not a sufficient statistic, if

the sensation does not map directly to the state of the MDP. Then the agent might need to construct

an internal summary of its history that is a sufficient statistic. In either case, if it were possible to

represent the value for each state in memory, it might not be practical or desirable to learn those

values independently. Simple table-lookup does not allow for generalization between states. States

may have common characteristics that an agent can exploit if its value function representation al-

lows information to be shared across similar states. When such generalization is allowed, learning

time can be improved, particularly with incremental learning rules, learning rules that update with

each new bit of data such as the TD update presented above. When the exact details of every state

of the environment are smoothed away, knowledge learned in one state may be applied in another.

The speed of learning can be improved when learning is applied to groups of states that are grouped

based on some shared characteristics (Rafols et al., 2005).

The structure used in this thesis for state representation is the state-variable vector xt. In the

table-lookup case, this internal state representation is a bit vector identifying the sensation returned

by the environment. In the most general case, xt can be an arbitrary function of the history.

Function approximation is the technique of using a function of the state variables xt to represent

the value function. One common choice of function is the logistic or squashing function, which

combines the state variables with a set of learned weights, wt, and scales the result between 0 and 1

with the sigmoid function �:

ˆ

V (xt) = �(xt) =

1

1 + e

�w

t

T

x

t

(2.7)

The learned weights wt are multiplied linearly with the state variables, then put through the logistic

function �. The linear portion, wt
T
xt, allows for fast computations even with a large number of

state variables. The logistic function can improve stability during the learning process.

2.3 Go

The game of Go is a challenging domain for artificial intelligence and is used in this thesis to test

how agents can exploit temporal coherence. Go is one of the oldest board games in the world. It

has also been one of the hardest for computers to master. Only in recent months has any Computer

Go program beaten a professional human, and that was one game out of three on a teaching-size

board (Silver, 2007). The achievement is not to be belittled, however. Go has long been considered

a “grand challenge” problem for AI (Müller, 2002), with the popular notion being that Go is one

area humans will always dominate (Macintyre, 2007). The CGOS game server is one popular testing

ground for Computer Go players (Dailey, 2007).

The game of Go has deceptively simple rules. The board is typically a 19 ⇥ 19 square, though

boards of 13 ⇥ 13, 9 ⇥ 9 and 5 ⇥ 5 are also commonly used. A Go board in mid-play is illustrated
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in Figure 2.3. Two players alternate turns, one placing black stones and the other white on the

intersections of the board. The sets of adjacent stones of the same colour are known as blocks. The

open intersections adjacent to a block are the block’s liberties. A stone is captured and removed from

the board when its last liberty is taken by the other player—that is, when the last open intersection

adjacent to the block is claimed by the other colour. Blocks might be alive, dead or unsettled. A

block is alive when, because of the nature of its liberties and position on the board, it can not be

captured. One reason a block might be alive is because it has two or more eyes. Eyes are open

intersections where the other colour cannot play without being immediately captured.4 A block

is dead when it can be captured by the opponent regardless of any defensive moves. A block is

unsettled if it can be saved by a defensive move or captured if the opponent is to play next.

Figure 2.3: A Go board in mid-game.

The player with the most territory at the end of the game wins. Territory is defined as either the

total number of captured stones and intersections surrounded by the player or the total number of

stones and surrounded intersections. The Elo rating of a Go player, similar to the Elo ratings used

in chess, gives an indication of the player’s strength relative to other players. An Elo rating of under

2000 roughly indicates a student, or kyu, level of play, where a beginner might have an Elo rating of

200. An Elo rating over 2000 roughly indicates a master, or dan, level of play. A professional player

may have an Elo rating over 2700 (van der Steen, 2007).

One of the reasons Go has been particularly difficult for computers is the large branching factor.

In the full 19⇥19 game, the number of legal states is larger than the estimated number of atoms in the

universe, and the branching factor is extremely high (Müller, 2002). However, the branching factor

is not the only or even the most significant difficulty. In 9⇥9 Go, the branching factor is comparable

to chess, yet computers cannot play 9 ⇥ 9 Go as well as their chess-playing counterparts. In chess,

even programs that do not use special hardware routinely beat experts (Müller, 2002). In contrast,

until recently the best Go programs in the world had never beaten a professional player on 9⇥ 9 Go.
4Some rules do not allow a player to place a stone on an intersection that has no liberties—i.e., commit suicide.
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The highest barrier to computer excellence in Go seems to be the difficulty of making a useful

evaluation function, caused largely by the non-local interactions between pieces over the course

of the game (Schraudolph et al., 2000; Müller, 2002). Human Go players are able to glance at

a board and make reasonably accurate guesses about which player is ahead, what groups are in

danger, whether stones are alive or dead, and where the attack may be pressed most advantageously.

Humans view the Go board simultaneously as a whole and as separable groups, often recognizing

patterns that will be played out over dozens of moves. This skill in visual and predictive pattern

matching has not yet been mastered by AI.

The reliance of professional Go players on intuition has posed problems for expert systems

attempting to emulate them. The expert system approach to computer game playing requires that

human experts be able to articulate how they know one position is strong and another weak. As it

turns out, humans do not always know why they make the decisions they do (see Polanyi, 1958, for

example), and relying on experts to determine what they are basing decisions on can lead programs

astray. Because of the difficulty of getting expert humans to verbalize their process accurately, there

has been steady interest in using machine learning to create a Go program that can learn to play

well directly from games. An approach that uses the reinforcement learning framework, RLGO, is

described in the next section. Another learning approach, which has proved so successful almost

all the strongest Go programs now use it, is the Upper Confidence Tree (UCT) approach. The UCT

approach uses a value function that estimates the probability of winning from each state. A UCT

agent selects actions according to a combination of which leads to the highest value state and how

uncertain the estimate of the value function is (Gelly and Silver, 2007). In other words, an action

with an intermediate value that has not been tried very often could be chosen over an action with

a pretty good value that has been tried very often. By combining an estimate of the value with

knowledge about how uncertain the estimate is, and using the combination to select actions, UCT

balances exploration of the moves with exploitation of the agent’s knowledge in a more principled

way than the the ✏-greedy policy described earlier.

2.4 RLGO

The RLGO agent is a reinforcement learning Go player, invented and developed by David Silver and

collaborators (Silver et al., 2007). The RLGO agent uses a simple reward function with a reward of

1 for winning and 0 for losing. The agent uses binary features computed from the board position

to learn a logistic value function. It learns the parameters of the value function by playing many

thousands of games against itself or other players. RLGO is the strongest Go player that does not

use UCT currently running on the CGOS 9⇥ 9 server.

The state variables used by RLGO are shape-variable functions that return 0 or 1 according to

whether the current board position matches their settings, something like visual receptive fields for

particular patterns. Each variable may be location dependent or location independent. Location-
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dependent variables return 1 only when their pattern is located at a specific position on the board.

Location-independent variables return 1 when their pattern is visible at any location on the board.

Each variable has a size, which indicates the number and arrangement of intersections it is concerned

with: 1⇥ 1, 1⇥ 2, 2⇥ 2, up to 3⇥ 3. Within that shape, each variable has a pattern that specifies the

arrangement of black stones, white stones, empty intersections, and irrelevant or wildcard locations

it recognizes. The full set of variables up to the 3 ⇥ 3 shapes can result in several million state

variables, most of which return 0. The sparsity of the binary representation, combined with a logistic

value-function approximation, allows for fast evaluation of states.

Figure 2.4: Value function construction in RLGO

The value for each state is computed as the logistic of the weighted sum of the state variables:

V

⇡
(st) ⇡ V (xt) = �(w

T
t xt). (2.8)

The value function computation is illustrated in Figure 2.4. The state variables x

t

are computed

directly from the current board position, then combined with the appropriate learned weights and

squashed via the logistic function, as described in Section 2.2, so that the value is a number between

0 and 1 that represents the probability of winning the game. During learning, each weight w

i
t can be

updated according to the TD learning rule:

w

i
t+1 = w

i
t + ↵�tx

i
t. (2.9)

Although Go is a perfect information game, like most Computer Go players, RLGO does not

operate directly on the board position. Rather, it uses the binary features described above. The binary

features allow for fast learning: exact board positions are rarely encountered more than once, and the

value for every legal board position can be difficult or impossible to represent in memory, depending

on the size of the board. The range of sizes and the duplication between location-dependent and

-independent shapes allows for information to be shared between similar states. The 3⇥ 3 location-

dependent variables are the most specific. The 1 ⇥ 1 location-independent variables are the most

general and encountered the most often. This combination of specific and general features allows

the RLGO agent to learn things that are generally true quickly using the general variables and then

learn about specific variations using the more precise variables. The less precise variables provide

no more information than the detailed state variables, but can allow for faster, abstract learning and

greater transfer to new situations.
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RLGO makes further improvements to learning speed by exploiting symmetries in the game of

Go: symmetry between players and in the board positions. A valuable shape for white player would

be similarly valuable for black, were all the stones reversed. The weight an RLGO agent assigns

to a shape when playing black is used with the inverted pattern to evaluate white’s position. When

RLGO is training through self-play, only one value function needs to be learned and represented.

The symmetry of the Go board itself provides another opportunity for weight sharing. State variables

that indicate patterns and locations that are invariant under reflection and rotation also share weights.

The game of Go has high temporal coherence: it is rare that the placement of a stone drastically

changes the status of a block, particularly to a player that is able to project into the future. The

following chapter will explore how an RLGO agent with dynamic memory can benefit from the

temporal coherence of the game.
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Chapter 3

Tracking and Transience

The ability to build dynamic models of memory is one of the benefits of relating knowledge to expe-

rience. An agent that learns directly from the continual sequence of experience may be able to take

advantage of certain characteristics of experience, such as temporal coherence, that other models can

not. This chapter provides illustrations of how a single best-fit solution over all possible experience

may not be as good as knowledge that is customized to the current experience of the agent through

dynamic memory. The two ways of adapting memory dynamically that are investigated here are

tracking and transience. Tracking occurs when the agent continually updates its internal representa-

tion rather than maintaining a single, stationary model. Transience occurs when the passage of time

causes the effects of recent experience to fade.

The first set of experiments illustrates tracking, or forgetting by interference. Tracking occurs

when new, current information replaces information previously stored in memory. In Section 3.1

a simple prediction task called the Half-Moon World is used to illustrate temporal coherence and

the effects of tracking through a high step-size (recall from Section 2.2 that the step-size parameter

affects the learning rate). The experiments show that tracking in the Half-Moon World can result in

a three-fold improvement in performance over the best stationary memory. The experiments in the

Half-Moon World show tracking through a fast learning rate.

The next set of experiments illustrate transience, or spontaneous forgetting. Transience occurs

when the passage of time causes the memory of past experience to fade. In Section 3.2 a forgetting

term is added to the learning rule of the Half-Moon World agent, so that its memory decays over

time whether or not it receives new, relevant observations. The addition of the forgetting term

allows further improvements in performance. The degree of improvement relates to how frequently

the prediction is verified through experience.

Section 3.3 presents an RLGO agent that tracks through simulated experience. This tracking

RLGO agent is pitted against a converging RLGO agent who learns a single, stationary solution,

in 5 ⇥ 5 Computer Go. The tracking agent starts with no information and learns during a single

game by simulating experience from each state encountered over the game. Even with less overall
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learning time than the converging agent, the tracking agent wins the majority of games.1

Section 3.4 further investigates the issues of memory by combining long- and short-term mem-

ory in RLGO. The long-term memory parameters maintain a stable representation of the long-term

benefits of state variables. The short-term parameters use tracking and transience to customize the

agent’s memory to current experience. The combination of the two types of memory result in a

stronger Go player than either of the two independently.

3.1 Tracking in the Half-Moon World

It is rarely possible for any intelligent agent to have a perfect understanding of its world. One

reason perfect knowledge can elude an AI agent is its limited memory resources. Often the memory

available to the agent is not sufficient to store all of its experience exactly. This section uses a simple

environment, the Half-Moon World, to show how tracking can benefit an agent with limited memory

resources. The Half-Moon World is a simple prediction task where an agent wanders between two

regions of the environment and must predict the colour of the region it is in, black or white. This

task is made difficult through strict memory limitations and partial observability.

The Half-Moon World is used here to explore the interaction between the temporal coherence

of the environment and the dynamics of the agent’s memory. The prediction of black is temporally

coherent. If that prediction has recently been verified (i.e., black was observed), then the agent is

likely to still be in the black region. The more frequently the agent checks the colour, the higher

the temporal coherence of the sensation it observes. As the probability of looking up decreases, the

temporal coherence of its sensation decreases, and the sensation becomes almost uniformly random.

An agent in the Half-Moon World has limited memory resources. How those resources are

allocated affects the accuracy of its predictions. The agent’s memory resources are not sufficient

to learn about every state in the world, and so the agent is guaranteed to have some error in its

prediction. A converging agent learns the single best solution—the one that, given the memory

resources available, minimizes the error or loss equally over all states experienced. A tracking agent

learns a dynamic solution—one that adapts to recent experience. Tracking allows an agent to take

advantage of the temporal structure in its experience and improve prediction accuracy.

The tracking algorithm

A tracking agent adapts its memory in response to experience. In the following experiments, this

adaptation is done with a large step-size in the learning rule. In the TD learning rule presented

in Section 2.2, the weight placed on recent experience is controlled through the step-size parameter

↵. A high ↵ means memory changes significantly to reflect recent experience, whereas a low ↵

means that long-term memory is given precedence, and memory changes only slightly towards the

most recent experience.
1Results and figures were first published in ICML 2007, (Sutton et al., 2007).

16



Both the tracking agent and the converging agent use the logistic function with a single memory

parameter, wt, to predict the probability of seeing black, yt:

yt =

1

1 + e

�w
t

. (3.1)

The loss in the prediction yt is computed on every timestep on which the look action is

taken, according to the cross-entropy loss between the prediction and the sensation on the following

timestep, st+1:

Lt = �st+1 log(yt)� (1� st+1) log(1� yt). (3.2)

The cross-entropy loss is a standard loss measure for the prediction of binary features because it

is sensitive to changes in the prediction (Hastie et al., 2001). The cross-entropy loss approaches

infinity as the prediction yt approaches extreme wrong values and quickly approaches 0 as the yt

approaches correct values.

The memory parameter wt is updated according to a TD-like learning rule:2:

wt+1 = wt + ↵(st+1 � yt). (3.3)

The weight update occurs on every timestep the look action is taken.

A tracking agent uses a large ↵ value so that its memory parameter wt is shifted in response to

recent experience. A converging agent uses a decreasing ↵ to learn the single best wt that minimizes

cross-entropy loss over all timesteps.

Task

The Half-Moon World is illustrated in Figure 3.1. There are twenty states, half in a black region and

half in a white region. The agent can chose between two actions. When the wander action is taken,

the agent moves to either neighbouring state with equal probability, and the environment returns a

sensation of 0. When the look action is taken, the agent does not move, and the environment returns

a sensation of 1 if the agent is currently in the black region and 0 otherwise. The temporal coherence

of the agent’s sensation increases when the look action is taken more frequently. It decreases the

longer the agent repeats the wander action without taking the look action. By manipulating how

frequently the agent takes the look action, the interaction between tracking and temporal coherence

can be studied in detail.

The agent’s task is to predict the probability it will sense 1 if it takes the look action. This

task would be simple if the environment was a fully-observable MDP (that is, if the agent was able

to sense which state it was in rather than only sense a single bit). It would be possible to solve

completely if the agent was allowed to build up a large enough representation for a complete state

model. However, with the memory limitations described above it is not so simple.
2The learning rule is the incremental update for gradient descent in Lt. For a related derivation, see Section 4.1
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Figure 3.1: The Half-Moon World. The agent follows a uniform random walk, occasionally observ-
ing the colour of the region it is in through a binary sensation bit.

A sample trajectory is illustrated in Figure 3.2. The colour of the region the agent is in during a

50 timestep period is shown at the bottom of the figure. The overall probability of seeing black is

given by the green dashed line. The solid blue line shows a prediction that tracks the sensation: when

the wander action is taken, the prediction remains steady as no updates to the memory parameter

are made. When the look action is taken, the prediction is updated towards the sensation. When

the agent is in the black region, as illustrated from time 0 to time 15, the prediction yt increases and

approaches 1. When the agent moves into the white region, the prediction is decreased, approaching

0. The speed of that adaptation is determined by the step-size used in the learning rule.

Timestep

Prediction

Figure 3.2: A sample trajectory in the Half-Moon World, showing the prediction made by a tracking
agent on each timestep and the actual colour of the current region. The prediction is modified only
on timesteps on which the colour is observed. Here ↵ = 2. Adapting to the current experience can
lead to better predictions than focusing on the single best solution.
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Experiment details

The following experiments used a twenty-state Half-Moon World with ten contiguous black and ten

contiguous white states. The probability of the agent taking the look action on each timestep was

.8, .5 and .2. The values of ↵ ranged from .003 to 64 in powers of 2.

For each value of ↵ and each look probability, the mean loss was measured over 30 episodes of

200,000 steps, counting only the timesteps on which the look action was taken. The mean loss per

look timestep was recorded for the last 100,000 steps, to remove any effect of initial conditions.

The mean loss and standard error of the mean loss per episode are shown in Figure 3.3.

Results
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Figure 3.3: Comparison of the mean cross-entropy loss for tracking agents in the Half-Moon World.
Loss is measured per timestep where the look action was taken. The dotted green line marks
the loss of the converged solution. The solid blue lines show the loss for tracking agents with
↵ set according to the x axis. Temporal coherence is varied through manipulation of the look
probabilities. Standard error bars are given.

The cross-entropy loss per step of the converged solution was .69, illustrated in Figure 3.3 with

the green dashed line. For very large values of ↵, the tracking solutions had higher mean loss than the

converged solution. For intermediate values of ↵, the tracking solutions had significantly lower loss

than the converged solution. Which ↵ value was best varied depending on the temporal coherence.

When the look probability was .8, an ↵ value of 8 was best, with a mean loss of 0.10. When the

look probability was .5, an ↵ value of 4 was best, with a mean loss of .24. Even with a look

probability of .2, an ↵ value of 4 improved on the converged solution, with a mean loss of .45. In all

cases, as the ↵ values decreased the mean loss approached that of the converged solution.
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Discussion

Very large step-sizes result in higher loss and greater variance in mean loss. With a large step-size,

it is possible for the agent to become over-confident in its prediction, driving the memory parameter

high enough (or low enough) that when the agent moves into a different region it takes many steps

before the learning rule’s corrections to the parameter are sufficient to change its prediction. The

large number of steps needed to change the memory parameter, even when the error is high, is

partly an effect of the logistic function. The prediction is bounded by 0 and 1, but as the prediction

approaches extreme values, it takes much larger changes in the parameter value to have a noticeable

effect on the prediction. Thus, even with a large step-size, when the prediction has been driven to an

extreme value it cannot change back quickly.

Very small step-sizes approach the loss of the converged solution, as a decreasing step-size would

converge to the single best solution. In the case of a small step-size, changes to the parameter in

response to prediction error are so small that the agent is likely to move to a new region before the

prediction is driven to extremes. With small ↵ values, the prediction does not move very far from

.5, the long-term average.

Tracking through a reasonably large step-size can result in drastic improvements in prediction

accuracy. The greater the temporal coherence of the sensation being predicted, the greater the im-

provement provided by tracking. Tracking allows the agent to take advantage of the structure in its

experience without that structure being explicitly programmed in. The best step-size for a tracking

agent depends on temporal coherence of the target of its prediction. The next chapter will illustrate

how the best step-size can be learned through interaction with the environment.

3.2 Transience in the Half-Moon World

Transient memory, or spontaneous forgetting, is the familiar kind of forgetting where things slip

from your memory for no (apparent) reason other than the passage of time. Spontaneous forgetting

provides an additional way to represent temporal coherence. The temporal coherence of the Half-

Moon World means not only that the most recent sensation has particular relevance, but also that

the longer ago the sensation was perceived, the less relevance it has. The particular relevance of

the most recent sensation is captured by a tracking parameter that updates towards the most recent

observation, illustrated in Section 3.1. In order to allow the sensation’s relevance to fade over time,

a new parameter, the spontaneous forgetting term, is introduced here.

The transient algorithm

The weight update equation now has two parts: the correction due to error, as before, and a decayed

weight. The step-size ↵, as before, determines how much the knowledge of the agent is updated in

response to the current observation. The new decay parameter,  , determines how long that effect
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holds in the absence of other updates.

The new memory update occurs on every timestep, with the error �t defined as 0 on timesteps

when the look action is not taken and the difference between the sensation and the prediction,

�t = st+1 � yt, otherwise:

wt+1 =  wt + ↵�t. (3.4)

The decay parameter is bounded:  2 (0, 1). If  is 0, there is no memory from step-to-step. If  is

1, then the weight update is the usual update rule as described in Section 3.1.

Experiment details

As before, results are averaged over 30 trials of 200,000 look steps in the Half-Moon World. The

look probabilities were again .8, .5 and .2, and each was tested with several settings of  . The

step-size ↵ was set to 4, which was found to be the best value overall in the tracking experiments

(see Figure 3.3. Again, to remove the effect of initial conditions, only the mean loss for the last

100,000 look steps was measured. Results are illustrated in Figure 3.4.

Results

For  = 1 the learning-rule update is equivalent to the tracking case with ↵ = 4, and thus again

the greatest improvement was seen the case of highest temporal coherence, where the probability of

taking the look action was .8. The addition of the decay parameter did not improve the prediction

error when the probability of taking the look action was high, as the lowest loss in this world was

with  = 1. In the world with intermediate temporal coherence, the lowest loss occurred with

 = .9, though the difference was barely statistically significant. The greatest improvement was

in the world with lowest probability of taking the look action, where  values between .2 and

.9 resulted in improved loss. In all cases, the standard error decreased with the size of the decay

parameter, with the largest standard error coinciding with  = 1.

Discussion

When the agent is frequently looking up, the error term �t seems to dominate the learning update,

and improvements due to the decay parameter are slight. When the agent is looking up infrequently,

the decay parameter seems to be particularly important for reducing the effect of tracking over time.

These results suggest that the best  depends not only on the temporal coherence of the feature being

predicted, but also on the frequency of verification. If the agent frequently verifies its prediction

against real experience, then correcting towards that experience provides the most benefit. If the

agent does not frequently check, then correcting its prediction towards that experience is useful, but

it is also beneficial to shift the prediction towards the long-term average.

The decay parameter  is similar to that used for weight decay in neural networks (Krogh and

Hertz, 1992), a machine-learning technique for learning arbitrary functions, which in turn is related
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Figure 3.4: Comparison of the mean cross-entropy loss for transient agents in the Half-Moon World.
Loss is measured per timestep where the look action was taken. The dotted line marks the loss of
the converged solution. The solid lines show the loss for transient agents with  set according to
the x axis. Temporal coherence is varied through manipulation of the look probabilities. Standard
error bars are given.

to ridge regression (Orr, 1996). Ridge regression helps in ill-posed problems (where there is more

than one solution) by adding the constraint that the weights be small. This constraint increases sta-

bility. The increased stability can be seen in the results above, where having a high decay parameter

decreased the standard error of the mean.

The fact that the long-term best solution is wt = 0 provided an extra benefit in the results

above. The decay parameter  i moves the weight on the ith state variable towards 0 over time.

This shift towards 0 is generally appropriate in that it causes the importance of that state variable to

decay. In the experiment presented here, it has the secondary effect of moving the weight towards

the converged result. Thus, when verified through experience, the prediction jumped toward a fixed

value. When experience was not available, the prediction shifted towards the long-term average.

The shift towards the long-term average can be captured in general by maintaining a long- and short-

term set of parameters. The short-term parameters may track and decay quickly, while the long-term

parameters maintain the best converged solution. The combination of long- and short-term memory

parameters is explored in Section 3.4.

3.3 Simulating Experience in RLGO

The experiments in the Half-Moon World show that it is possible for a dynamic solution to perform

significantly better than the best converged solution, when there are limited memory resources and

temporal coherence in the relevant sensations. Both these conditions also hold for the game of Go. It
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is impossible to exactly represent all possible games and game positions on any existing computer, so

function approximation is necessary. Furthermore, the probability of winning has strong temporal

coherence during a game: the placement of a single stone can sometimes drastically change the

course of the game, but usually does not. The following experiment uses the RLGO framework

described in Section 2.4 to compare a tracking agent to a converging agent. The converging agent

uses a typical approach to learning in computer games—it learns the best overall policy or value

function estimate through extensive offline play and then uses that learned solution during games.

b

a

Figure 3.5: (Left) A 1⇥1, location-dependent feature with a central black stone. (Right) With Black
to play, move b is the winning move. Playing at b creates two eyes in the black block, making that
block alive (impossible for White to capture). If Black plays at a, then White can play at b, and the
black block is dead (impossible for Black to save). Using 1⇥ 1 features, the converging agent plays
centrally at a, having learned a high weight for the feature that has a black stone there. However,
the tracking agent learns that Black must play at b in this particular game, even though in general a
corner move is not best.

An RLGO agent’s memory is stored in the weights it uses to compute the value function (see Sec-

tion 2.4). The weights an RLGO agent learns for each binary state variable represent how that par-

ticular feature of the board contributes to the probability of winning the game. A converging agent

learns those weights over the course of many games, with a small or decreasing step-size. The

end result for a converging agent is an estimate of the worth of each state variable over all games.

A tracking agent adjusts its value function to the positions of the current game: in the algorithm

presented below, it adjusts its value function by using simulated experience. The end result for a

tracking agent is an estimate of the worth of each feature for the current game. Figure 3.3 illus-

trates the difference between a tracking agent’s estimate and a converging agent’s estimate for a

location-dependent 1⇥ 1 feature. This feature matches a black stone in the centre of the board. The

converging agent learns a high weight for this feature—meaning that in general, playing at a is a

good move, as indeed it is. The board position for a particular 5⇥ 5 game is illustrated on the right.

If Black plays at a, the generally good central position, White is free to play at b, rendering the black

block dead. If Black plays at b, a generally poor corner position, it creates two eyes in the black

block, guaranteeing the block is alive and winning the game. In this example, knowing what is best
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now means winning the game and relying on what is usually best means losing.

b

a

Figure 3.6: (Left) A 3⇥3 feature making two eyes in the corner. (Right) With Black to play, move a

is now the winning move. Using 3⇥ 3 features, the converging agent makes two eyes at b, knowing
this to be a valuable shape in general. However, the tracking agent can determine that move b is
redundant (Black already has two eyes) and learns to play the winning move at a.

State variables that take account of larger portions of the board are more able to capture spe-

cific situations and complex stone interactions, but unless the state variables are detailed enough to

distinguish between all board positions it can be possible that the particulars of the current game

differ drastically from what is generally best. Another dilemma using the 3⇥3 features is illustrated

in Figure 3.3. The figure on the left shows a location-dependent 3⇥3 feature that makes two eyes in

the corner. This shape feature is generally a very strong position, as a block that contains two eyes

pattern is alive. It is not a good play in the game illustrated on the right. The black block already

has two eyes, beyond the boundaries of the 3 ⇥ 3 feature. Playing at b is unnecessary and gives up

the territory at a to the white player, in turn giving up the game. On the full-size 19⇥ 19 board, the

complex interactions between the stones all but guarantee situations where the representation is not

quite detailed enough to include crucial knowledge.

The tracking algorithm

A tracking RLGO agent tracks the current game by customizing its value function through simulated

experience. On every turn, before choosing a move through greedy action selection, it simulates

some large number of games using self-play starting from the current board position. Because of

the sparse, binary state variables, the tracking agent is able to simulate many games within the time

allowed for legal moves.

Task

The game of Go was explained in Section 2.3. In the following experiments, a tracking agent plays

5⇥ 5 Go against a converging agent that has learned a good value function through self-play. Both

agents use the RLGO framework described in Section 2.4. Each agent plays an even number of
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games starting as Black and White, as Black has an advantage in 5⇥ 5 Go: with perfect play, Black

wins (van der Werf et al., 2003).

Recall that RLGO agents both use a logistic value function over binary state variables, and the

output of the value function the represents the probability that the agent will win the game. The

weights for each state variable x

i
t are learned according to the TD learning rule:

w

i
t+1 = w

i
t + ↵�tx

i
t. (3.5)

The learning rule uses TD error, �t = (rt+1 + V (xt+1) � V (xt)), introduced in Section 2.2. The

TD error is multiplied with the step-size ↵ and the value of the state variable at time t, xt. Both

agents use a greedy policy during play and an ✏-greedy policy to train through self-play.

Experiment details

The following experiments compared a converging RLGO agent to a tracking RLGO agent in 5⇥ 5

Computer Go with state variables with three levels of specificity. The first experiment used only the

1⇥ 1 state variables. The second included increasingly complex state variables up to 2⇥ 2, and the

third included all state variables up to 3 ⇥ 3. The weights were initialized to small random values.

A total of 200 games were played, with each agent starting an even number of games as black.

The converging agent was trained offline with 250,000 self-play games for each game against the

tracking agent. Weights were randomly initialized each time to protect the converging agent from

settling into a local optima—finding a solution that seems best given the starting point, but in fact

could be better. The step-size ↵ =

0.1
||x

t

|| , which is .1 divided by the number of active state variables.

This ↵ was the best step-size found through hand-tuning (Sutton et al., 2007).

The tracking agent simulated 10,000 self-play games on every turn. Because 5⇥5 Go is typically

decided within the first 25 moves, the tracking agent usually received less training overall than the

converging agent and never received more.

The percentage wins and total CPU time for each agent are given in Table 3.1 and Table 3.2

respectively. The percentage wins as each colour is given in Figure 3.7.

Results

For all state-variable sets, the tracking agent won the majority of games while taking less than half

the CPU time to train. Increasing the specificity of the state variables resulted in more wins for

the tracking agent, from 82% wins with the 1 ⇥ 1 state variables to 93% wins with the 3 ⇥ 3 state

variables.

Discussion

The tracking agent beat the converging agent even when both were using a more informative repre-

sentation. This result is slightly surprising, given that memory limitations were put forward in Sec-

tion 3.1 as one of the reasons tracking is particularly important. The strength of the tracking agent
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Features Tracking beats converging
Black White Total

1⇥ 1 82% 43% 62.5%
2⇥ 2 90% 71% 80.5%
3⇥ 3 93% 80% 86.5%

Table 3.1: Percentage of 5⇥ 5 Go games won by the tracking agent playing against the converging
agent when playing as Black (first to move) and as White.

Features Total CPU (minutes)
variables Tracking Converging

1⇥ 1 75 3.5 10.1
2⇥ 2 1371 5.7 13.8
3⇥ 3 178518 9.1 22.2

Table 3.2: Memory and CPU requirements for tracking and converging agents. The total number of
binary state variables indicates the memory consumption. The CPU time is the average training time
required to play a complete game: 250,000 episodes of training for the converging agent; 10,000
episodes of training per move for the tracking agent.

may be due to an interaction between the representation and the game itself. It is possible for the

black player to always win in 5⇥5 Go. As the agents’ memory becomes more detailed, and therefore

more expressive, the ability of both agents approaches near-optimal play, and the edge the tracking

agent received from tuning its representation is enough to let it continue to beat the converging agent.

With only 1⇥ 1 state variables, there may not be enough distinctions for even the tracking agent to

determine the best moves.

It is also, perhaps, surprising that simulating 10,000 games on every move is at all feasible.

As can be seen from Table 3.2, the simulation is quite fast. The tracking RLGO agent is able to

play on the CGOS servers in realtime, where there is a time limit per turn. There are also further

opportunities for speeding up the algorithm. Simulating far fewer games but starting with a better

initial value function might lead to improvements. Some experiments that combine tracking with

long-term memory are presented in Section 3.4.

Tracking through simulated experience is particularly applicable to two-player games like Go,

where the transition function of the environment is a combination of the agent’s own policy and

the opponent’s policy. The agent’s policy provides an approximate model of the opponent’s pol-

icy and thus the environment, without requiring extra memory or learning time. The model may

not be accurate—the opponent could be using any policy—but it is available without dedicating

extra resources to the problem of modeling the environment. In more complicated games or other

environments, a predictive model needs to be learned separately, but can then be used to simulate

experience for tracking. It may prove that a combination of learning from direct experience and

simulating experience is ideal for an intelligent agent.
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Figure 3.7: Wins by tracking agents against converging agents in 5⇥ 5 Go.

3.4 Long- and Short-Term Memory in RLGO

The RLGO agent presented in Section 3.3 has no long-term memory: the value function is re-

initialized to small random values at the beginning of each game. Although tracking clearly provides

a benefit, long-term best solutions can also be useful. David Silver’s latest RLGO program, RLGO

2.1, uses a combination of long- and short-term memory parameters. His results are presented

below.3 On the 9⇥ 9 CGOS servers, RLGO 2.1 is ranked in the top ten Computer Go players with

an Elo rating of 1880.

The RLGO 2.1 agent maintains two sets of weights over the state variables described in Sec-

tion 2.4. The long-term parameters are learned offline through ✏-greedy self-play. During games,

short-term parameters are also learned. The short-term parameters do not use weight sharing and

are learned as described in Section 3.3. The value of each state is a function of these two sets of

parameters. In order to select a move, the agent simulates some number of moves, including the

opponent’s response, and chooses the action that led to the highest-value state in simulation. This

technique is known as sample-based search. It differs from a typical greedy policy in that the agent

considers more than the immediate next state when choosing the action that led to the best value.

Silver ran three RLGO agents against the open-source Go program GnuGo to compare the per-

formance of long- and short-term memory agents. One RLGO agent used only long-term param-

eters, one only short-term, and one combined long- and short-term memory. The full set of state

variables to 3 ⇥ 3 were used. The long-term parameters were learned during 100,000 games of

self-play. GnuGo played at level 0, the fastest and weakest level. The short-term parameters were

learned over only 1000 simulated games on each move. The step-size was set to ↵ =

0.1
||x

t

|| . Each

agent played 200 games, split between black and white as before.

The agent using only long-term memory won 5.0% games against GnuGo. The agent using only

short-term memory won 18.0% of games, and the agent using both long- and short-term memory
3Personal communication, used with permission.
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won 32.0% of games.

RLGO 2.1 was also tested against GnuGo at full strength, level 10. In this case both long- and

short-term parameters were used and the short-term parameters learned through 10,000 simulated

games on each move. In this case, RLGO won 57% of 200 games against GnuGo. This version,

playing 100 games on the 9⇥ 9 Computer Go Open Server, reached an Elo rating of 1880, beating

the best handcrafted programs and the strongest converging agent.

The tracking RLGO agent illustrates that an agent with all its memory resources devoted to con-

tinually learning improves on an agent with all its memory resources devoted to the best-in-general

solution. Silver’s RLGO 2.1 results illustrate that a combination can be best. The agent that devotes

some resources to continually learning and some to learning a long-term, general solution plays sig-

nificantly better than one using either type of memory in isolation. It appears that the combination of

specializing memory to now and learning what is generally true provides the strongest representation

and best results.

3.5 Conclusion

The temporal sequence of experience profoundly affects what we learn and how we learn it. Tempo-

ral characteristics of experience, such as temporal coherence, are available to an agent with dynamic

memory. Continual learning through tracking is one form of dynamic memory that allows the agent

to take advantage of the temporal coherence of its experience and adapt to the current situation.

Continual learning systems have been studied by the machine learning and control theory com-

munities, but almost always in the context of dynamic environments. This chapter showed how

two stationary environments, the Half-Moon World with its constant environment and the Go games

against an opponent with a single, fixed policy, still benefited from continual learning. The benefit

of tracking in stationary environments is due to the limited memory resources—the inability of the

agents to perfectly represent the stationary environments induces nonstationarity in the knowledge

representation. It is perhaps not a surprising result, but one that is frequently brushed over. Learn-

ing algorithms are often tested only against their ability to find the single best solution, with strict

separation between the training and testing phases. The results above suggest that researchers are

losing more than they might realize with a strict focus on stationary, globally optimal solutions. Seg-

menting and rearranging experience or collecting data for learning offline can be useful for learning

long-term, generally applicable solutions. It appears, however, that important information can be

lost when temporal structure is ignored.

In this chapter, tracking and continual-learning methods have been set in contrast to converging

to a global solution. Tracking can also be thought of as converging quickly to a locally optimal

solution. The large step-size in the Half-Moon World allowed quick steps along the gradient of

error towards the minimum at that timestep. The simulated experience of the tracking agent in

RLGO allowed the value function to converge (given sufficient simulated experience) to the optimal
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solution from the current state. In both those cases, convergence itself is not the problem. Allocation

of memory resources towards the temporary but critical experience of the moment is what matters.

The idea of a single, stationary solution is rejected in favour of a method for finding the optimal

solution for now. This ability to focus learning and memory resources on what is impermanent may

be critical for an autonomous, intelligent agent.

The results presented here suggest that knowledge is best understood as more than the fixed

product of learning. Knowledge can be understood as dynamic: constantly being verified against

experience and changing in response to it. A continual-learning agent can make use of the recent

past, simulated futures and the richness of the present. The learning process is a crucial part of the

knowledge representation of the agent.
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Chapter 4

Learning to Learn

An intelligent agent can benefit not only from learning the parameters of its knowledge representa-

tion through experience, but also from learning how to learn. Section 3.1 showed how significantly

a good choice of step-size parameter can improve results. Learning this meta-parameter through

interaction with the world can be as useful as learning the regular parameters.

Meta-learning is used here to refer to algorithms that change the process of learning itself. The

automatic learning of useful state variables is one example of meta-learning. Adapting step-size is

another example. Through meta-learning, the building blocks of the agent’s representation can be

autonomously adapted according to the agent’s experience.

Section 4.1 presents one particular algorithm for adapting step-size, the logistic form of the

incremental delta-bar-delta (IDBD) algorithm. The IDBD algorithm provides a way of adapting

step-size online in response to experience (Sutton, 1992a). In Section 4.2, IDBD is tested in the

Half-Moon World and is shown to provide improved performance over the fixed-↵ tracking agent.

One of the outstanding problems in meta-learning research is that it can be difficult to prove

the benefit provided by meta-learning. Meta-learning takes time and data. On a single task, the

benefits of learning the best representation can be outweighed by the benefits of learning quickly

with an adequate representation. The natural solution to this dilemma is to propose a sequence of

tasks and demonstrate the cumulative benefit of meta-learning (Caruana, 2005). But how should

those tasks be chosen? If the tasks are too different, meta-learning does not transfer, and no benefit

can be demonstrated. If the tasks are too similar, meta-learning is unnecessary as the solution for

one is adequate for the other. The experiments of Section 4.2 show that meta-learning provides a

significant improvement over the fixed-↵ agent even on the single prediction task of the Half-Moon

World. Section 4.3 explores why this discrepancy in improved performance might be so, proposing

that in temporally coherent environments, a sequence of tasks arises naturally from the temporal

dynamics of the environment. In the Half-Moon World, the combination of memory limitations

and the resultant infinite sequence of temporally coherent regions provides us with a sequence of

tasks that arises naturally out of a single environment. The effects of meta-learning, in this case

through logistic IDBD, are shown to be greater on the temporally coherent Half-Moon World than a
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similar environment with no temporal coherence. Temporally coherent environments thus provide a

potential testbed for meta-learning algorithms.

4.1 Incremental Delta-bar-Delta

Adapting step-size has been investigated in the fields of statistics, control theory and machine learn-

ing. In most cases, the goal of step-size adaptation is to converge quickly to the global optimum. The

concern of step-size adaptation for tracking is to find the step-size that results in the lowest error for a

continual-learning agent. This section extends the work of Sutton’s gradient-descent meta-learning

algorithm (Sutton, 1992a,b). The linear IDBD algorithm allows step-sizes to be tuned individu-

ally for each state variable. It has been used as a method of discovering which state variables are

most important to the knowledge representation: when state variables have large step-sizes, quickly

adapting their parameters to changes reduces error.

Schraudolph’s work deserves special mention here. His stochastic meta-descent framework pro-

vides a general model of gradient-descent step-size learning (Schraudolph, 1999). The derivation

below is a special case of the stochastic meta-descent framework. In Schraudolph’s version of

stochastic meta-descent, he uses an approximation to the Hessian where Sutton uses a diagonaliza-

tion and an approximation of the exponential function where Sutton uses the exact function.

The IDBD algorithm uses gradient descent, as does the fixed-↵ learning rule, but in the space of

a new parameter �i rather than only in w

i. The update rules are derived here for the most general

case, where the prediction is computed as a logistic function of the state-variable vector at time t,

xt, and the current parameter vector, wt:

yt =

1

1 + e

�w

t

T

x

t

. (4.1)

The equation to minimize is again the cross-entropy loss, Lt:

Lt = �zt log(yt)� (1� zt) log(1� yt). (4.2)

The equations here use zt rather than st+1, as in Equation 3.2 to indicate that the target value need

not be a sensation directly. It may be the TD-target, rt + V

⇡
(st+1), as in the RLGO algorithm

presented in Section 2.4, or the sensation on the next timestep, as in the Half-Moon World presented

in Section 3.1, or any other function of the agent’s representation.

The weight update rule is similar to that for the scalar case used in the Half-Moon World, but

with the ↵ now indexed by time:

w

i
t+1 = w

i
t + ↵

i
t+1�tx

i
t. (4.3)

The step-size ↵i
t for state variable i at time t is calculated as the exponential of �i:

↵

i
t = e

�i

t

. (4.4)
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The parameter �i
t should be adjusted to minimize future loss. The adjustment can be done with

the gradient-descent rule, taking the derivative with respect to �i. This derivative can be thought

of as the derivative of the loss with respect to an infinitesimal change in �i
t at all timesteps. Let

h

i
t =

@wi

t

@�i

, µ be a meta-step-size parameter for the �i
t update and �t be the difference between the

prediction and target, �t = zt � yt. Then:
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The derivative @w

t

T

x

t

@�i

is approximated with the assumption that the effect on w

j
t due to changes

in �i for i 6= j is small. This diagonalization allows us to avoid computing the Hessian on each

timestep. Instead of this expensive computation, the accumulating trace, h

i
t is used here. Note that

in the case of the Half-Moon World, where there is only one parameter, this derivation is exact.

In order to compute the �i
t update, h

i
t must be calculated. A recursive function can be derived

from the weight update equation given in Equation 4.3:
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The full algorithm for logistic IDBD is given in Figure 1.

Algorithm 1 Logistic IDBD
Initialize h

i
0 to 0, w

i
0 and �i

0 as desired.
for each timestep t do
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end for
end for

4.2 Step-size Adaptation in the Half-Moon World

The tracking agent in Section 3.1 uses a fixed ↵ set by the programmer. Because the benefit of ↵

depends on characteristics of the agent’s experience, it might be useful to give the agent the ability

to autonomously tune ↵. The logistic IDBD algorithm provides just this ability, allowing the agent

to tune the step-size to adjust the learning rate appropriately.

The IDBD algorithm

In the logistic IDBD algorithm, presented in pseudo-code in Figure 1, the weight update occurs on

every look timestep as for the non-adaptive learning rule used in Section 3.1, with one change.

Instead of a fixed ↵, ↵t is computed on each timestep using the exponential function and a new

parameter �t:

wt+1 = wt + ↵t�t (4.5)
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↵t = e

�
t+t

. (4.6)

Before the weight update, the parameter �t is itself updated with a similar learning rule:

�t+1 = �t + µ�tht. (4.7)

The meta-step-size µ affects how quickly �t changes in response to experience. The error, �t, is the

same as for the weight update—the difference between the target and predicted value, �t = zt � yt.

The trace ht is a second new parameter that maintains a record of the effect changing the step-size

has had on the error:

ht+1 = ht[1� ↵tyt(1� yt)] + ↵t�t (4.8)

Task

The test environment was the Half-Moon World with a look probability of .5. The performance

of an IDBD agent was contrasted with the performance of a fixed-↵ tracking agent to determine

whether learning-to-learn can provide any appreciable benefit. The learning rule for a tracking Half-

Moon World agent was adapted according the IDBD algorithm.

Experiment details and results

Three different sets of experiments were run. The first was a basic test of IDBD, to show whether

or not it learns the best ↵ value. The second was to determine the sensitivity of the IDBD algorithm

to the choice of meta-step-size µ, showing the rate at which IDBD found the best ↵ for several

different choices of µ. The third was to show whether or not meta-learning can provide a benefit. In

this experiment the mean loss of the IDBD algorithm was compared directly to the mean loss of an

agent that tracks through fixed step-size as in Section 3.1.

Finding ↵

To evaluate the ability of the IDBD algorithm to find a good ↵ parameter, single trials starting from

different initial step-size settings were run past convergence, to 1,000,000 look timesteps. The

starting step-size, ↵0 values ranged from .1 to 10. All trials used a meta-step-size of 0.0001, so that

the final ↵T values were fairly consistent.

To determine whether the ↵T found by IDBD was in the best range, the fixed-↵ experiments

of Section 3.1 were repeated at finer increments, with ↵ values incremented by .25 from 2 to 8.

These results are displayed in Figure 4.1 and Figure 4.2.

The ↵ values found by IDBD ranged between 4.7 and 4.9 in the last 10,000 steps, as shown

in Figure 4.1. Larger initial values of ↵0 converged to the correct range most quickly, while the

smallest ↵0 took around 500,000 steps to reach the final range. In the detailed evaluation of the fixed-

↵ tracking agent, shown in Figure 4.2, the lowest loss occurred between 4.25 and 5.5. Significantly

higher loss occurred for agents with ↵ > 6 and ↵ < 3.5.
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Figure 4.1: Illustration of the change in ↵t over time with the logistic IDBD algorithm in the Half-
Moon World. In the final 10,000 steps the ↵t values stayed within 4.7 and 4.9 for all initial ↵0

settings.
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Figure 4.2: A more detailed look at mean loss for tracking agents with fixed step-sizes in the Half-
Moon World (cf.Figure 3.3)

Meta-learning rate

To illustrate the effects of µ on the meta-learning rate, single trials of 1,000,000 look timesteps

were run with six different µ settings ranging from 0.01563 to 0.00002 in powers of 4. The initial

↵0 was set to 1. The step-size over time, ↵t, was recorded and is shown in Figure 4.3.

Small values of µ resulted in slower convergence. Large values of µ resulted in high variance

in ↵t (Figure 4.3). After 1,000,000 steps, the agent with µ = 0.000002 had not converged, with
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Figure 4.3: Illustration of the change in ↵t over time for various settings of meta-step-size, µ.

↵t << 4. For µ values greater than 0.0010, convergence of a sort happened within the first 100,000

steps, but the step-size values fluctuated by large amounts. In the case of µ = 0.0156, the ↵t values

ranged between 3.2 and 7.4. In the case of µ = 0.0010, the values ranged between 4.3 and 5.3. The

µ setting that provided the most stable solution that still converged within 1,000,000, µ = 0.00006,

moved between 4.72 and 4.79 in the last 10,000 steps.

Loss comparison

To investigate the effect of the IDBD algorithm on training error, loss was averaged over 30 trials

of 2,500 look timesteps for an IDBD agent with different ↵0 initializations and a fixed-↵ tracking

agent with corresponding ↵. The ↵ values ranged from 0.0039 to 32 in powers of 2. The weight

w0 was initialized to -5. The mean loss incurred over the entire 2,500 steps was recorded and is

illustrated in Figure 4.4.

In the comparison of the loss incurred by the IDBD and fixed-↵ agent, shown in Figure 4.4, the

IDBD agent performed as well as or better than the fixed-↵ agent in all cases, though there was

no statistically significant difference in their performances with 2  ↵  8. The improvement for

↵ � 16 was most significant, with the fixed-↵ agent having almost double the loss for ↵ = 16 and

almost triple for ↵ = 32. The loss the IDBD agent incurred for 0.0156  ↵  0.5000 improved on

the fixed-↵ agent by around .07 and this difference increased for ↵ values smaller than 0.0313.

Discussion

The IDBD algorithm finds an ↵t within the range that the fixed-↵ experiments showed is best for

the Half-Moon World. An agent that learns to learn not only benefits from finding the best step-size
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Figure 4.4: Comparison of the mean cross-entropy loss in the Half-Moon World from a fixed-↵
tracking agent and a logistic-IDBD agent. Loss is measured per timestep where the look action
was taken. The darker line marks the loss of the fixed-↵ agent, using the ↵ value indicated by the x

axis, and the lighter the IDBD agent, with initial ↵ set according to the x axis.

parameter, but also sees a reduction in loss.

The learning rate is affected by two things: the magnitude of µ, as shown in Figure 4.3, and the

initial value ↵0, as shown in Figure 4.1. The fact that IDBD recovers more quickly from ↵0 values

that are too large than from ↵0 values that are too small may provide guidance when choosing initial

parameters. The results in Figure 4.4 show that large ↵0 do not greatly increase the mean loss. In

addition, they show that setting ↵0 to be too small can cause greater loss than setting ↵0 too high, at

least in the early stages of learning.

With a small meta-step-size, convergence is slow, but the final ↵t value fluctuates within the

range of values that perform well on the environment. With a large meta-step-size, ↵t quickly

changes, but the fluctuations are large and the extremes move beyond the best ↵t values for the en-

vironment. A decaying meta-step-size might be particularly useful in this setting, to take advantage

of the quick learning in early stages due to a large µ without suffering from the constant fluctuations

in later stages.

4.3 Temporal Coherence for Task Transfer

Meta-learning is usually considered a second-order effect, which requires a long sequence of tasks

before its benefits are clearly apparent. The results in Section 4.2 illustrate a large improvement in

error even during the early stages of learning. The improvement was present over a range of initial

↵0 settings, including those very close to the best hand-tuned values. One interpretation of these

improvements is that there is, in fact, an infinite series of tasks. As the agent moves from the black
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region to the white region, the prediction task changes continually. The environment itself only

has twenty states, but because of the memory limitations of the agent, the agent is encountering a

sequence that is impossible to represent and recall exactly. Some learning is transferred from one

timestep to another when the region remains the same. At a higher level, the best meta-step-size

transfers across the entire infinite series of tasks.

If the temporal coherence of the environment makes the benefits of meta-learning apparent, then

in a temporally incoherent environment, the benefits provided by IDBD should not be as obvious.

The following experiment compares the benefits of meta-learning in the temporally coherent Half-

Moon World to meta-learning in a similar, but temporally incoherent, prediction task.

Task

In the temporally incoherent task, the agent must predict a sensation that is 1 or 0 with equal proba-

bility. There is only one state and the sensation received on one timestep is completely independent

of the sensation received on the next. The best prediction is always 0.5.

The performance of an IDBD agent and a fixed-↵ tracking agent on the temporally incoherent

task is compared to their performance on the temporally coherent task (the Half-Moon World with

look probability of .5) in order to determine where meta-learning provides greater benefit.

Experiment details

A fixed-↵ agent and an IDBD agent were tested in both environments for ↵ and ↵0 values ranging

from 0.004 to 8 in powers of 2. The Half-Moon World had a look probability of .5. In the Half-

Moon World, the mean cumulative loss over the first 2,500 look timesteps was recorded and is

reported with the standard error of the mean over 30 episodes in Figure 4.5. In the temporally-

incoherent world, the mean cumulative loss over the first 2,5000 timesteps was also recorded and is

similarly reported in Figure 4.6.

Results

For values of ↵ from 0.0625 to .5000, there was no statistically significant improvement for the

IDBD agent in the temporally incoherent world. For values of 0.0313 � ↵ � 1, the IDBD agent

had lower loss than the fixed-↵ agent. In the Half-Moon World, the IDBD agent had a statisti-

cally significant reduction in loss for all ↵ values tested except for ↵ = 4 (This is the result seen

in Figure 4.4 as well).

Discussion

Meta-learning with the IDBD algorithm reduces loss in both temporally coherent and temporally

incoherent worlds. Adapting the step-size helps the agent recover from poor parameter settings, sig-

nificantly improving the error when the initial ↵ value is too high and slightly speeding up recovery
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Figure 4.5: Comparison of the mean cross-entropy loss in the Half-Moon World for a fixed-↵ track-
ing agent and a logistic-IDBD agent. Loss is measured per timestep where the look action was
taken. The darker line marks the loss of the fixed-↵ agent, using the ↵ value indicated by the x axis,
and the lighter the IDBD agent, with initial ↵ set according to the x axis. The improvement due
to IDBD is statistically significant everywhere but at the best ↵ value (see Figure 4.4 for a wider
range).
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Figure 4.6: Comparison of the mean cross-entropy loss in a temporally incoherent prediction task
for a fixed-↵ tracking agent and a logistic-IDBD agent. Loss is measured per timestep. The darker
line marks the loss of the fixed-↵ agent, using the ↵ value indicated by the x axis, and the lighter
the IDBD agent, with initial ↵ set according to the x axis. The improvement due to IDBD is only
statistically significant for very large and very small ↵ values.
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from a poor initial w0 when the ↵ value is set low. Having a high ↵ causes problems particularly in

the temporally incoherent world, where convergence to a small range of values is important for re-

ducing error. Having too small an ↵ increases loss over the first 2,500 steps in both worlds, because

the agent does not have time to recover from the poor initialization of w0 = �5.

The difference between the IDBD and fixed-↵ algorithms arises not in the qualitative improve-

ment, but in the extent of the effect. For extreme values in all worlds, IDBD allows the agent to

recover from poor parameter choices. In the Half-Moon World, the improvement is apparent for all

but the best ↵ value. In the temporally incoherent world, the improvement is only significant for

very wrong ↵ values. Only in the high-loss case is there any significant advantage to using IDBD.

Although the choice of step-size is important in the temporally incoherent problem, there is not the

time to find it in the single, small, stationary task. Performance is dominated by the choice of the

initial step-size (and initial weight), swamping the effect of meta-learning.

4.4 Conclusion

Being situated in experience means that learning how to learn can be an important part of an agent’s

knowledge representation. In AI and machine learning research, learning often refers only to learn-

ing the parameters of a function, with the form and meta-parameter chosen a priori or laboriously

tuned. In fact, at some level there is no difference between learning that the parameter for some state

variable should be high and learning that the parameter should adapt quickly. A continual-learning

agent has the ability to meta-learn and tune its knowledge representation. The experiments presented

in this chapter show that it can be beneficial to devote memory resources to meta-learning.

The Half-Moon World would not generally be thought of as a series of tasks appropriate for

meta-learning, because testing the learning of meta-knowledge usually requires a long series of dis-

tinct tasks. A long series is usually required because the effects of meta-learning are dominated by

the effects of learning parameters. Distinct tasks are considered necessary because retrieving a mem-

orized solution does not count as transferring general knowledge to a new task. The experiments

above show how a single environment might suffice for testing meta-learning and transfer. The tem-

porally coherent regions of the environment provide an infinite series of distinct tasks as the agent

moves between the regions of the world. The tasks are distinct because of the memory limitations

imposed on the agent: it is not possible for the agent to memorize an exact solution. The agent must

reconstruct the best solutions as it experiences a new region. Learning the best meta-parameters

helps the agent to do so faster.
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Chapter 5

Empirical Knowledge
Representation

The following chapters recast some of the ideas already discussed and apply them to knowledge

representation. Chapter 7 shows how the temporal coherence of predictions can lead to abstract

knowledge representation. Chapter 5 presents a new framework for representing knowledge in

terms of experience. Such a representation can use characteristics of experience, like temporal

coherence, to represent abstract knowledge.

The term empirical knowledge representation is defined here as the class of knowledge repre-

sentations that represent empirical knowledge. In an empirical knowledge representation, as in the

empirical sciences, knowledge both describes and derives from verifiable experience rather than

logical conclusions or theories. This tie to experience has two implications: first, all knowledge

must be defined in terms of experience or in terms of other knowledge that is itself defined in terms

of experience, and second, knowledge is predictive—it makes a verifiable statement about future

experience. It is important to note that empirical knowledge representation does not demand that

all knowledge be learned from scratch. Prior knowledge may be encoded in an empirical knowl-

edge representation, but, whether learned from experience or built in, all knowledge in an empirical

representation must be verifiable through experience.

The empirical approach to knowledge representation is unorthodox in the AI community, where

the traditional approach to knowledge representation is not based in experience. Instead, knowledge

is represented in a formal-logic framework. In this framework, all knowledge is symbolic, logi-

cal and completely separable from experience. A brief introduction to the traditional approach to

knowledge representation is given in Section 5.1.

Empirical knowledge representation draws inspiration from the reinforcement learning frame-

work. Reinforcement learning is a framework for solving decision-making problems by using ex-

perience. For an empirical knowledge representation, experience is the basis of knowledge. The

similarities and differences between reinforcement learning and empirical knowledge representa-

tion are described in Section 5.2.
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The key components of an empirical knowledge representation—experience, prediction and

time—are described in Section 5.3. It is useful, in a representation built out of the raw data in-

put to and output by the agent, to have a well-understood mechanism for abstraction. Two such

frameworks are employed for the empirical knowledge representation presented in this chapter: op-

tions and predictive representations. Options are temporally extended actions, well-defined ways of

behaving. An adaptation of the options framework is given in Section 5.4. Predictive representa-

tions provide the inspiration for the predictions that make up the core of an empirical knowledge

representation. The formal definition of predictions used in this thesis is given in Section 5.5.

5.1 Non-Experiential Knowledge Representation

Knowledge representation is usually defined by the AI community in terms of formal logic and ma-

nipulation of symbolic entities (Russell and Norvig, 2003; Poole et al., 1998; Barr and Feigenbaum,

1981). In such symbolic logic systems, knowledge is considered to be logical statements about

entities, where each statement has a true or false assignment. The statements are interpretable by

humans as facts about the external world, but the system knows only symbols and relations. New

knowledge must be manually added or uncovered by applying logical operators to the statements in

the knowledge base—the database of symbols, relations and rules. This non-experiential approach

has advantages and disadvantages, but it clearly emphasizes human-understandable meaning over

machine-accessible data.

A prominent representative of the non-experiential approach to knowledge is Cyc, an encyclo-

pedic knowledge base of ‘commonsense knowledge’ started by Lenat and collaborators, now run by

Cycorp (Lenat et al., 1990). It is meant to contain the kind of knowledge that people draw on to

interpret scenes, disambiguate sentence meaning and reason about behaviour. Cyc represents this

kind of knowledge by encoding commonsense knowledge in a formal logical framework that has

been carefully defined by humans. In order to be used by a decision-making agent, these symbols

and relations must be translated into the framework used by the agent. Like other non-experiential

knowledge representations, Cyc is built on the assumption that knowledge is separable from expe-

rience and that the question of relating agent-accessible data to knowledge is separable from the

question of knowledge representation.

Encoding human-level knowledge in machine readable form requires humans translate their

intuitions and knowledge into a special representation language (Matuszek et al., 2006). To add

knowledge to Cyc, that knowledge must be fit into the allowed concepts. In Cyc, these concepts are

hierarchical. Everything is a Thing and a Thing may be an Intangible Thing or an Individual. An

Individual may have parts, but is not a Collection (a Collection is an Intangible Thing) (Cycorp,

2007). Encoding all possible relations and categorizations for every entity is difficult, but the diffi-

culty is somewhat mitigated by the size of the knowledge base. A new fact might be that JillBarber

IsA Musician. Because Musician is an entity already in Cyc, the symbol JillBarber may be auto-
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matically categorized as a Person, SocialBeing, Professional, etc. This automatic categorization is

one of the main goals of Cyc—to make the interpretation and acquisition of knowledge possible in a

machine by drawing on a knowledge base that rivals that of humans. Such automatic categorization

requires, however, that all the informal, fuzzy concepts human use be translated into strict relations

and categorizations. It puts a burden on the designers of the representation to define the right cat-

egories and relations. New kinds of knowledge might require a great deal of restructuring of the

database or require that knowledge to be force-fit into the existing framework.

Building and maintaining such a knowledge base requires extensive human input. More than 900

person-years have been spent entering commonsense knowledge into Cyc (Matuszek et al., 2006).

The possibility of using machine learning for pulling information from the Internet or placing new

facts in the hierarchy has been explored (Shah et al., 2006; Taylor et al., 2007), but the vast majority

of data in Cyc has been entered by hand. New relations among existing facts can be discovered au-

tomatically through inference, but no new symbols or kinds of relations can be added automatically.

The inability to create new symbols or kinds of relations is a direct consequence of Cyc’s disem-

bodied nature. Knowledge in the knowledge base just is: it is not tied to data outside the knowledge

base. The lack of verifiability poses a difficulty for agent-driven acquisition of knowledge.

As with any large knowledge base, Cyc faces problems of brittleness. Inconsistent data is intro-

duced to the knowledge base through typographical errors or mistakes in hierarchical classification.

Besides these matters of data-entry error, there is the problem of unspoken or unrealized assump-

tions. One example of problematic assumptions is when the context of a fact is implicitly assumed.

Dracula IsA Vampire, and Vampires DoNot Exist. Does Dracula exist? In the context of a novel

or movie, yes. In other contexts, no (Lenat, 1995). To capture contextual errors, contextual infor-

mation has to be added alongside the facts (Lenat, 1995; Taylor et al., 2007). Some errors can be

caught by comparing against facts already in the database. For comparing new facts against existing

facts, the size of the knowledge base is both a blessing and a curse: the more knowledge Cyc has,

the more likely it is to know useful relations and accurately verify new knowledge. However, the

more knowledge Cyc has, the more difficult it is to maintain consistency. Checking every new bit

of knowledge against all existing knowledge and all knowledge that can be inferred is an extremely

difficult and costly search problem. Cyc has long been too large for such exhaustive checking to be

feasible, thus other methods for error detection must be used as well. The problems of brittleness

derive at least in part from the dependence the knowledge representation has on human interpreta-

tion. In commonsense knowledge systems, the ultimate meaning of the knowledge is dependent on

human interpretation. This dependence makes agent-driven evaluation of knowledge difficult.

5.2 Reinforcement Learning

Empirical knowledge representation draws inspiration from the reinforcement learning (RL) frame-

work introduced in Section 2.2. The integral role of experience in reinforcement learning and the
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emphasis on agent-directed learning in RL provides valuable insights for creating autonomous AI

and empirical knowledge representations. In turn, an empirical knowledge representation frame-

work might be particularly useful to reinforcement learning agents. The predictive nature of empiri-

cal knowledge means it is likely to be informative for an agent choosing actions to maximize future

reward.

Reinforcement learning and empirical knowledge representation both have a mechanism for

self-contained evaluation and share an emphasis on the primacy of experience. Experience is the

fundamental unit of agent-environment interaction (illustrated in Figure 2.2) just as experience is

one of the key components of an empirical knowledge representation. An RL problem always has

a decision-making agent interacting with an environment. In both RL and empirical knowledge

representation, an evaluation mechanism is directly accessible to the agent. The success of an RL

agent is indicated by the reward it receives. The accuracy of an empirical knowledge representation

is similarly evaluated against its experience.

Empirical knowledge representation departs from the the RL framework in a few significant

ways. Reward is an essential signal in an RL problem. For knowledge representation, it is possible

to develop a representation while treating reward as just another sensation or ignoring it entirely.

Although the most successful approaches to RL use a value function to represent knowledge about

anticipated reward, as discussed briefly in Section 2.2, an RL agent does not necessarily have a

knowledge representation. Empirical knowledge representation does assume there is something to

be gained in modeling and predicting experiential patterns.

5.3 Key Components of Empirical Knowledge Representation

An empirical knowledge representation is computed as a function of the past and makes predictions

about the future. It is dynamic, responding to what the agent is experiencing now. It is verifiable,

with all knowledge defined in terms of data accessible to the representation. The three essential

components of an empirical knowledge representation are experience, time and prediction.

Experience is the sequence of sensations received and actions chosen by the agent, the data input

and output. For a robot moving along the surface of Mars, the input is the sensations it receives from

its cameras, spectrometers, thermometers and other sensors. The output signals to its various motors

and joints. For a computer playing chess, the input is the position of the pieces on the board. The

output is the movement of one of those pieces. This raw input and output is all the data that is

accessible to the agent. What is meant by experience in an empirical knowledge representation is no

more or less than the temporal sequence of data.

Experience is crucial for an empirical knowledge representation because it provides the means

by which an agent can evaluate its knowledge. The meanings we humans ascribe to colours and tem-

peratures and chess pieces are not part of the data another agent has access to, and so a knowledge

representation that relies on those meanings can not be independent. An experience-based knowl-
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edge representation is not reliant on external signals: it can develop independently of the designer.

An empirical knowledge representation is thus equipped with a means for autonomous knowledge

representation.

Time is an intrinsic characteristic of experience, but deserves particular mention because the con-

sequences of a temporally situated knowledge representation are so often overlooked. The temporal

situation of experience means that what is happening right now has particular relevance to the agent.

It is now that the agent must chose an action. It is now that the agent is receiving sensations. As

demonstrated in earlier chapters, the richness of immediate experience can be exploited to provide a

knowledge representation with more detail than is possible in a knowledge representation divorced

from time and averaged over all experience.

In its acknowledgment of the primacy of now and the inescapable passing of time, empirical

knowledge representation stands in contrast to other approaches in learning and knowledge repre-

sentation. Most modern learning theory is oriented towards a static knowledge representation that

weights all experience equally. An empirical knowledge representation, in contrast, is continually

learning. Continual learning can, as in the environments explored in Chapter 3, lead to a great

improvement in performance and prediction accuracy.

The third component of an empirical knowledge representation is prediction. An empirical

knowledge representation uses information computed from past experience to make predictions

about future experience. These predictions can be understood as answers to questions about fu-

ture experience: What is the probability I will see a wall if I move forward? Will making this move

win the game? These questions are computed as a function of the current knowledge representation,

answering a question about something still to come. They may directly estimate the probability of

future events or estimate what other predictions will be: If I capture my opponents’ piece, how will

that change my expectation of the final score? An agent’s empirical knowledge representation is

stored in predictions.

Predictions are well-suited to knowledge representation because they are both informative and

verifiable. Predictions are informative for decision making because they can explicitly encode the

consequences of decisions; predictions can be conditioned on ways of behaving and predict relevant

sensations (such as reward). They are verifiable against the future experience of the agent because

they are defined in terms of experience. Section 5.5 formally presents how this verification and

construction is done in an empirical knowledge representation.

5.4 Options

The options framework provides a formal mathematical framework for actions that extend over a

period of time (Sutton et al., 1999). It was introduced as a way to add temporal abstraction to

Markov Decision Processes. This section introduces the options framework and explains how it has

been adapted for empirical knowledge representation.
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Formally, an option is mathematically described by the functions ⇡ and � and the set I. The

option policy, ⇡, like the regular policy described in Section 2.2, maps states variables x to a proba-

bility distribution over actions a 2 A. The termination condition, �, determines when the option is

finished. It is a probability distribution over state variables, giving the probability in each state that

the option will terminate. The initiation set, I, describes when the option is available to be taken. It

is the set of state-variable conditions in which the option may be started. Using options rather than

primitive actions that extend over only a single timestep in a discrete dynamical system allows us to

easily define temporally extended ways of behaving.

If an agent is provided with a useful set of options, it can learn a good solution faster than it

could with only primitive actions. This speed-up can happen when the number of options between

the current state and some goal is fewer than the number of primitive actions. Learning can also

be sped up when the number of states where options need to be chosen is smaller than the number

of states where individual actions need to be chosen because the options extend over more than

one state. Options do not necessary extend over more than one state, however. The set of options

may, and often does, include the set of primitive actions. Even when the set of options includes all

primitive actions, learning can be sped up when the options provide ways of behaving that are more

appropriate for maximizing reward (McGovern, 2002).

The options framework allows details of the agent’s behaviour to be abstracted away when nec-

essary. As long as the ⇡, � and I can be defined in terms of the actions and state variables of the

agent, then the option can be treated a single choice. Because the agent can have many different op-

tions that last for different and variable amounts of time, it is possible for the agent to both learn and

plan at multiple time-scales (McGovern, 2002). This abstraction has the potential to allow the gen-

eralization of knowledge to new domains, for example from a training or ‘sandbox’ environment to

a more complex one (Singh et al., 2005). However, traditional options can only transfer knowledge

across domains where the state space is exactly the same. McGovern and Precup describe exper-

iments where an option-conditioned value function is usefully transferred between domains, but

those tests involved only moving the goal and changing action-success probabilities within a consis-

tent state space (McGovern, 2002; Precup, 2000). Although this limited kind of transfer is certainly

useful, transfer between domains with greater differences might be valuable. Konidaris and Barto

have begun development on an agent-space options framework, where the options are defined over

the parts of the state features that are consistent across tasks and has shown how these options can

be transferred between similar domains (Konidaris and Barto, 2007). The options framework used

in this thesis is defined over state variables, rather than a tabular state representation, and thus has

the potential to transfer in a similar way.

The options framework used in this thesis is a simple extension of the options framework as

used in the RL community. The functions and set that describe an option for empirical knowledge

representation are defined over the internal state variables of the agent, rather than directly over the
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sensation output by the environment. The application of options also differs slightly from the usual

use of the options framework. The agent’s policy is not necessarily defined over options in this

thesis. Rather than directing the agent’s behaviour, as in most RL applications of options, options

are used in this thesis for abstraction. Whether or not the option is followed, predictions can be

conditioned on options to provide a certain level of abstraction. This is explained in more detail

in Section 7.3.

5.5 Predictions

A prediction is defined by two functions: the loss function and the answer function. The loss

function implicitly defines the question a prediction is asking by defining how error is calculated

with respect to future experience. The answer function computes an answer as a function of the state

variables. These functions are illustrated in Figure 5.1. The loss function L(ft) defines the error of

the prediction with respect to the future ft and is computed when the condition ct is met. The target

zt is used in the learning rule to update the parameters. In the answer function the state-variable

vector, xt 2 Rn, is combined with the learned parameters, wt 2 Rn, to make the prediction. The

predicted outcome, yt 2 R, is computed from some function of the state-variable vector, �(wt,xt).

#

state variables answer

xt yt

�(wt ; xt)

Answer function

#

target question condition

c(xt+1)

c(xt+1)E(zt)zt

L( ft)

Loss function

Figure 5.1: The anatomy of a prediction. The answer yt is computed with function �, combining
the state variables xt and parameters wt. The loss function provides the means for verifying the
prediction against experience, defining the error between the answer and the target zt when condition
c(xt) is met. The question induced by the loss function usually asks what the expected value of some
future state variable is.

One example of a simple question is ‘What am I likely to see on the next timestep?’. The loss

function for this question reports the error between the predicted outcome and the actual value of

the relevant sensation over time. In one common case, it computes the squared error, (yt�zt)
2. The

cases presented so far use the cross-entropy loss, �yt log(zt)� (1� yt) log(1� zt). A conditional

version of the question is ‘What am I likely to see on the next timestep if I turn right? The loss

function L(ft) defines the error of the prediction with respect to the future ft and is computed when

the condition ct is met. The target zt is used in the learning rule to update the parameters.’. The

loss function would be similar to the unconditional case, except it would be undefined when the
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condition was not met (i.e., the action ‘turn right’ was not taken). A learning rule can be constructed

based on the loss function and the predicted outcome function.

The Half-Moon World experiments presented in Section 3.1 can be recast using empirical knowl-

edge representation. The state variable in the Half-Moon World is a constant term: xt = [1]. The

loss function for the single prediction of the current region is the cross-entropy loss between the

sensation on the next timestep and the prediction, yt, with c(at =look) = 1. The answer function

is the logistic sigmoid, yt =

1
1+e�w

t

T

x

t

. The corresponding target, for the gradient-descent learning

rule, is st+1.

This particular framework for prediction owes much to the recent work on predictive representa-

tions described in Chapter 6, but is formally presented and applied to knowledge representation for

the first time here.
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Chapter 6

Experiential and Predictive
Knowledge Representation

Several branches of AI and cognitive science research have developed in reaction to the heavy em-

phasis on symbols in most approaches to knowledge representation. This chapter provides a brief

introduction to AI research that emphasizes experience over abstract symbolic knowledge. In experi-

ential AI, research is focused on systems that react to experience, sometimes rejecting representation

entirely but always maintaining an emphasis on sensorimotor experience. A few key approaches to

experiential AI are presented in Section 6.1.

Though the focus of reinforcement learning (RL) is on behaviour rather than knowledge, RL

has inspired research on experiential knowledge representation through emphasis on the value func-

tion. Section 6.2 presents TD-Gammon, an RL agent that plays backgammon, as an example of how

knowledge can be captured through value-function learning.

Recently, an empirical approach to state representation has arisen from the RL community. Pre-

dictive representations are very closely related to empirical knowledge representation. Predictive

representations focus on learning and using predictions about future experience in order to model

the state of a dynamical system. These predictive representations of state have also demonstrated

the capability to encode certain kinds of knowledge. An introduction to work in predictive represen-

tations and how recent results relate to knowledge representation is given in Section 6.3 and 6.4.

6.1 Experiential Knowledge Representation

The historical emphasis on symbolic logic for AI resulted in a backlash against strong AI, the claim

that a computational model of mind is possible. Philosophers claimed that systems that manipulated

meaningless symbols could never be said to know anything and strong AI was doomed to fail-

ure (Searle, 1980). Partly in response to these criticisms, Harnad introduced “the symbol grounding

problem”: the question of how “the semantic interpretation of a formal symbol system [can] be made

intrinsic to the system, rather than just parasitic on the meanings in our heads” (Harnad, 1990). This
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question of making interpretation intrinsic to the AI agent is similar to the notion driving empirical

knowledge representation: that knowledge must be representable in terms of data directly accessible

to an intelligent agent. Indeed, most attempts to address the symbol grounding problem focus on

tying representation to sensorimotor data (Taddeo and Floridi, 2005). However, the framework for

empirical knowledge representation is not meant to directly address the symbol grounding problem.

Discussions of the symbol grounding problem seem mainly united by the idea that there is a prob-

lem with symbolic representation, but with little agreement about exactly what the problem is or

what the correct aim of representation is. Philosophical entanglements around meaning, knowing

and consciousness make it difficult to address the problem of symbol grounding. Instead, this thesis

is a look at what can be done with experience without attempting to answer the question of what it

all truly means.

An alternative to the idea of knowledge as symbolic manipulation is the idea of embodied cog-

nition, which arose from the cognitive science community. Embodied cognition describes learning

and knowing as situated activities, not separable from a body’s interaction with an environment (An-

derson, 2003; Wilson, 2002). The emphasis embodied cognition places on environment interactions

is similar to the emphasis in empirical knowledge representation on the primacy of experience. The

aim and definition of knowledge in both empirical knowledge representation and embodied cogni-

tion is tied to the interactions between the intelligent agent and its environment. For both, knowledge

itself depends on the actions taken by the agent as well as the sensations received and is not con-

sidered separable into an abstract, symbolic system. If symbolic manipulation can be thought of

as divorcing knowledge from experience and narrowing cognition to consider only the symbolic

processes within the mind of the agent, embodied cognition might be said to expand knowledge to

encompass not just the agent with its inputs and outputs, but the entire world it lives in as well.

Empirical knowledge representation falls between these extremes, insisting that experience is part

of knowledge while allowing that the cognitive processes of the agent can be considered without

direct reference to the external world. Embodied cognition emphasizes not just the inputs and out-

puts of a mind but also physicality and the reality of the environment the agent is situated in. In the

most extreme view a disembodied computer can never be said to know anything, and strong AI is

only realizable in a robot. In this thesis, experience is defined as the sequence of inputs to and out-

puts from an intelligent agent, rather than explicitly demanding a body interacting with a physical

world. This understanding of experience allows us to discuss and experiment with virtual intelligent

agents. The environment of the agent certainly effects cognition, but that effect is mediated by expe-

rience. Empirical knowledge representation assumes that defining knowledge in terms of experience

is sufficient for capturing the situation and embodiment of cognition.

The most extreme kind of experiential AI is reactive systems. They dispense with representation

altogether and “use the world as its own model” (Brooks, 1991). The concern in developing a reac-

tive system is not the representation of knowledge, but the development of reactive behaviour mod-

50



ules and the subsumption architecture that determines how these modules interact. A less extreme

version of reactive systems is behaviour-based systems (Matarić, 1997). Behaviour-based systems

use the subsumption architecture of reactive systems, but individual behaviour modules may main-

tain internal representations. In both approaches, the system relies on simple behaviour modules

that propose actions in direct response to experience. An empirical knowledge representation does

not, obviously, dismiss representation altogether. Empirical knowledge representation and reactive

or behaviour-based systems do however share the idea that knowledge apart from experience—

knowledge that is not empirical—is not absolutely necessary for an intelligent agent. Empirical

knowledge representation differs from behaviour-based systems in that the empirical knowledge

representation can be considered as a unified whole. Behaviour-based systems have decentralized

control, with each behaviour module accessing only its own representation. The various predic-

tions made by an empirical knowledge representation provide a kind of decomposition, but the state

variables provide a centralized representation, available to any individual prediction.

6.2 Value Function Representation

One of the most successful approaches to reinforcement learning problems is to compute a value

function as an intermediary between experience and a policy. Like the components of an empirical

knowledge representation, the value function is computed from experience, tuned according to expe-

rience and makes a prediction about future experience—specifically, what the expected discounted

sum of reward will be from a given state. The value function may be thought of as a special case of

a prediction in an empirical knowledge representation. Flexible value function representations, such

as neural networks, have been shown to be capable of representing interesting knowledge about a

system (Orr and Müller, 1998). A specific example of this capability is described next.

TD-Gammon, the backgammon program developed by Gerald Tesauro, uses reinforcement learn-

ing with a multilayer neural network to represent the value function (Tesauro, 1995). A neural

network is a data structure that can learn to model arbitrarily complex nonlinear functions. TD-

Gammon’s neural network takes information about the current board position as input and uses

learned parameters to compute the value of that position.

The first version of TD-Gammon, TD-Gammon 0.0, used non-informative features that indi-

cated the position of pieces on the board fairly directly (Sutton and Barto, 1998). It learned the

parameters of the neural network by playing many thousands of games against itself. Initially, of

course, TD-Gammon played very poorly, as moves were essentially random. However, after many

thousands of games, TD-Gammon learned weights that could be seen as representing spatial in-

formation, giving high weight to favourably arranged board positions (Tesauro, 1992). The neural

network used by TD-Gammon is a more complicated function than those discussed so far, but is a

legitimate answer function, computable from experiential state variables (here, the features of the

current board arrangement). TD-Gammon 0.0 thus is a simple empirical knowledge representation.
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The second version of TD-Gammon, TD-Gammon 1.0, used handcrafted features. These fea-

tures were still computed from the current board position but incorporated some expert knowl-

edge (Tesauro, 1995). With this expert knowledge added, TD-Gammon became one of the strongest

backgammon players, human or computer, in the world. The combination of expert knowledge for

feature selection and experience-based knowledge of the correct parameters led to some surpris-

ing results. In contrast to the oft-cited claims that AI never leads to novelty, TD-Gammon’s play

overturned some world-champion wisdom about the best moves. Backgammon expert Kit Woolsey

concluded that, unlike the chess computers that were strong on positions where tactical moves can be

calculated out and weak on “vague positional games, where it is not obvious what is going on”, TD-

Gammon’s “strength is in the vague positional battles where judgment, not calculation, is the key.

There, it has a definite edge over humans” (Tesauro, 1995). In an empirical knowledge framework,

state variables may be arbitrary functions of experience. As long as the expert-crafted features are

computed from the board position, they can be included in an empirical knowledge representation.

However, such features are not, themselves, empirical knowledge, as they are not verifiable against

experience and make no statement about future experience.

6.3 Predictive State Representations

State representation is one of the fundamental issues in knowledge representation for reinforcement

learning. Sometimes the state is directly observable, as in perfect-information games where the cur-

rent position of pieces on the board is as informative as the entire history of the game. Other times,

such as in the Half-Moon World of Chapter 3, the immediate sensations of the system do not provide

a reasonable state representation. In these cases of partial observability, a state representation must

be constructed (Shani, 2004). The state representation is a crucial part of the agent’s knowledge.

Predictive representations use questions about future sensations as the basis for state. In the

predictive representation framework, states are identified by the answers to a set of predictions about

future experience. These predictions are estimated and updated online and the unique set of values

provide a unique state label. Predictive State Representations (PSRs) are a particular method for

representing state predictively (Littman et al., 2002; Singh et al., 2004). A PSR is a set of predictive

tests, which can be informally thought of as questions: ‘If I were to execute the specified sequence

of actions, would I see the specified sequence of sensations?’ When the specified sequence of

actions results in the specified sequence of sensations, the test is said to succeed. When the specified

sequence of actions does not result in the specified sequence of sensations, the test is said to fail.

Answers that estimate the probability of success are computed on each timestep as a function of the

current sensation, the current action and the answers from the previous timestep.

The focus in PSRs, and the difficulty, is to find the questions that are a sufficient statistic—the

questions that, if the agent knows the answers, give the agent all the information it needs to distin-

guish between possible futures. This set of core tests provides the basis for the state representation:
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the answers at any given time provide a unique identifier for the world state. If the test set forms

a sufficient statistic, then they capture all distinguishing information possible (see Section 2.1).

Theoretical work on PSRs has shown that PSRs are able to represent state for any dynamical sys-

tem (Singh et al., 2004). The predictions in the empirical knowledge representation presented in

this thesis are similar to the core tests of a PSR in that they are computed from experience and may

make predictions about future experience. However, empirical knowledge representation research

has a more general aim than representation state. In the empirical knowledge framework used in the

next chapter, state variables that are not predictions are permitted and the set of state variables is not

required to form a sufficient statistic.

Generalization and abstract concepts

The state of a dynamical system is an important piece of knowledge to represent, but for knowledge

representation it is usually considered important to represent abstract or general concepts as well.

In a recent paper, Tanner et al. used PSRs as a basis for supervised learning of human-labeled

concepts (Tanner et al., 2007). The experience-oriented nature of the PSRs allowed these concepts

to generalize to novel environments.

In the paper, gridworld-like maps were given two kinds of labels: automatically generated ab-

stractions such as ‘in a corner’ or ‘back to a wall’ and human-labeled abstractions such as ‘in a

room’ and ‘in a corridor’. The agent had egocentric actions: the ability to move forward, turn right

and turn left. A PSR was computed for the map and various numbers of core tests were used to learn

a decision tree for each concept. The PSR-based decision tree achieved high classification accuracy

on the test map.

This work illustrated that PSRs can be used as a basis for learning at least some of the abstrac-

tions that seem natural to humans, even when they are not obviously well-defined in experiential

terms. It is similar to empirical knowledge representation in that the state variables used to compute

the labels were predictive and experiential. It differs in that the knowledge represented by the system

is not necessarily empirical. The evaluation could only be done against a human-labeled map. As in

the case of TD-Gammon, the functions learned by this system are allowable state variables, though

without verifiability they are not considered empirical knowledge.

Relational PSRs

Relational PSRs take a different approach to grounding abstract knowledge. In particular, Wingate et

al. extend the traditional PSR framework with the introduction of wildcard tests, in order to capture

relational knowledge, like that of formal logic frameworks (Wingate et al., 2007). Predictions, rather

than only capturing state, are used to define various abstract concepts in grounded terms.

The test domain for Wingate’s work on relational PSRs was a blocks world, a simple domain

commonly used for planning with logical systems (Russell and Norvig, 2003). The blocks world
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consists of a table with several cube-shaped blocks of different colours. Blocks can be moved onto

the table or stacked on one another. The agent has an arm and an eye: a set of actions for picking up

a specified block and putting it down and a set of actions for looking around. This domain can be

(and usually is) described in completely symbolic terms with each block uniquely identified.

A relational PSR has two new types of tests and temporally extended actions, using the options

framework described in Section 5.4. The usual test of a PSR is a sequence of actions and sensations.

The two new test types of a relational PSR allow wildcards within the sequence of sensations. Set

tests allow some sensations in the test sequence to be arbitrary. In order for a set test to succeed, the

sensations following the specified actions must all match, except for the wildcard sensation, which

matches against all actions. Indexical tests allow more than one of the sensations to be a variable.

In order for an indexical test to succeed, every instance of the variable sensation must be the same

(for example, whatever is observed on the third timestep must also be observed on the tenth).

The new kinds of tests allowed for a mapping between abstract relational concepts and the tests

of the PSR. Knowledge such as ‘block 12 is on block 14’ and ‘two blocks of the same colour are

beside each other’ has direct ties to actions and sensations. In the case of the first, when the pre-

dicted success of the test with actions ‘find 12, look down’ and sensations ‘12, 14’ is 1, the agent

knows that ‘block 12 is on block 14’. Furthermore, using the set tests, the general concept of ‘on’ is

representable with the action sequence ‘find wildcard1, look down’ and sensations ‘wildcard1, wild-

card2’. Direct mapping between symbolic relations and wildcard predictions is thus demonstrated

as possible.

Though the components of relational PSRs are directly related to the components of an em-

pirical knowledge representation, the aim is different. The work on relational PSRs aims to map

symbolic logic onto an experiential framework. The investigation into experience of this thesis—

particularly the explication of the idea of temporal coherence and the framework for empirical

knowledge representation—is meant to illustrate how a focus on experience can lead to new insights

about knowledge, rather than provide a mapping to the symbolic logic framework.

6.4 Temporal-Difference Networks

Temporal-difference networks (TD nets), like PSRs, represent state as a set of answers to questions

about future experience (Sutton and Tanner, 2005; Tanner, 2005). A TD network is a network of

nodes rooted in a sensation bit, updated through TD learning, as introduced in Section 2.2 and used

in Section 3.3. The state variables in a TD net include the answers from each node from the previous

timestep. They may also take include the last sensation, action or other features extracted from the

history (Tanner and Sutton, 2005).

A TD net has two components: the question network and the answer network. A prediction

is represented as a node in both the question and answer network. The question network defines

the target of each prediction. Targets are usually the value of a sensation or prediction on the next
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timestep, often conditioned on actions, as the prediction in the Half-Moon World in Section 3.1 was

conditioned on the look action. The answer network defines the answer function, as described

in Section 5.5, for each prediction. The answer function can be any arbitrary function of the state

variables, but is usually linear or function (Tanner, 2005).

TD nets are a special case of an empirical knowledge representation, as the state variables are

always computed as a function of experience and the answers are explicitly verifiable against future

experience. Research on TD nets has mainly addressed the question of predicting sensations. Some

applications of TD nets to the representation of other kinds of knowledge are presented next.

Generalization in TD Networks

Because a temporal-difference network is defined by the subjective experience of the agent, it has

been proposed that TD networks are particularly well-suited to generalization (Rafols et al., 2005).

This generalization hypothesis was tested by Rafols and colleagues in a simple gridworld environ-

ment, where states were grouped according to predictive similarity. This grouping “dramatically

accelerated” learning (Rafols et al., 2005).

The idea that TD nets are useful for generalization starts with the observation that predictions that

are conditioned on short sequences of actions may give identical answers in many different states,

particularly in deterministic, fully observable environments. Similarly, for an action-conditioned

TD net of a given length, there may be groups of states for which the answers computed by the

TD net are identical. These sets of states are known as identically predictive classes. Identically

predictive classes group states according to the predictions made from those states. Depending on

the size of the TD net being used as the basis for grouping, the set of identically predictive classes

can be considerably smaller than the set of full states. A tabular value function learned over the sets

of identically predictive classes generalizes reward information between states within each class.

The generalization test domain in Rafols’ work was a deterministic reinforcement learning task

in an office-layout gridworld. The state was fully known, and the answers to the questions of the

TD network were computed exactly from a model of the environment. For TD nets of several

depths, the identically predictive classes were used as the basis for learning a tabular value function.

Using small depths allowed for high generalization between states and therefore faster learning

but less exact final solutions. As the depth of the TD networks increased, the generality of each

predictive class decreased (and therefore the learning rate slowed), but the accuracy of the final

answer increased. At a certain depth, the number of identically predictive classes equaled the number

of states in the gridworld, with the slowest learning and best final answer (Rafols et al., 2005). The

experiments demonstrated that generalization within an environment across identically predictive

states can dramatically speed up learning.
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Commonsense Knowledge

Further generalization and abstraction is possible in TD nets when action-conditioned links use

temporally extended actions (such as options, described in Section 5.4). Rafols defined the structure

and learning rule for an option-conditioned TD net (Rafols, 2006). In a simple, multi-sensation

gridworld, the TD net captured some abstract and commonsense knowledge about the world.

In a multi-sensation world, a TD net is constructed for each sensation bit. Within each TD net,

predictions are conditioned on the results of immediate actions and on the results of the results of

options. The parameters of the TD nets are learned through interaction with the environment.

Figure 6.1: The multi-sensation compass world for testing option-conditioned TD networks. The
agent, represented by the triangle, senses the colour of the square directly in front of it—this is
usually white, but when the agent is directly adjacent to a wall, will be the colour of the wall. The
primitive actions allow it to turn to the left or right or move forward.

The test domain for commonsense knowledge was a simple square gridworld with walls of dif-

ferent colours, illustrated in Figure 6.1 (Sutton et al., 2006). The agent’s sensation on each timestep

was a bit vector with one bit for every possible colour. When the agent was positioned directly

adjacent to a blue wall, the blue bit was 1 and all the rest 0. When the agent was directly adjacent to

an empty space, the white bit was 1 and the rest were 0. The agent had three primitive actions: turn

left, turn right and move forward, and two options: leap and wander. The policy for the leap

option moved the agent forward. It terminated when a colour other than white was observed and

could be initiated in every state. Informally, the leap option allowed the agent to move forward

until it hit a wall. The policy for the wander option was to choose actions randomly. It could be

initiated from every state and terminated with probability 1 when a non-white colour was observed

and with probability .5 otherwise. The wander-conditioned prediction thus represents knowledge
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of whether a wall is near.

In a 8 ⇥ 8 version of the compass world, the agent trained for 250,000 steps. The predictions

it learned allowed it to stay localized within the world, always knowing which wall it was facing

through the leap-conditioned predictions. The predictions were maintained even when the agent

moved around the middle of the world, where the immediate sensations were completely uninfor-

mative. Furthermore, it was possible for the agent to transfer learning to larger worlds, even worlds

that were too large to learn from scratch (Rafols, 2006).

The application of PSRs and TD nets to more abstract kinds of knowledge than state represen-

tation and immediate predictions has been promising. These specific cases of empirical knowledge

representation have provided inspiration for the general understanding of experience-driven knowl-

edge representation this thesis has attempted to describe. Ideally, a general empirical knowledge

representation framework will move AI research even further towards the ultimate goal of represent-

ing human-level knowledge. The next chapter uses the empirical knowledge framework described

in Chapter 5 to explore how objects might be understood in empirical terms.
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Chapter 7

Case Study in Empirical Knowledge
Representation: Aspects of
Objectness

Knowledge of the physical world is regularly assumed to include the notion of objects. In devel-

opmental cognition, for example, understanding objects as entities with independent external exis-

tence is considered a crucial step towards adult intelligence (Bower, 1977). This view of objects is

a central part of what might be called the objective-reality view of knowledge, where experience (if

considered at all) is a window to what is really out there. In contrast, the view taken in an empir-

ical knowledge representation is that experience is what is really available, and knowledge can be

directly concerned with experience rather than experience being a poor substitute for the real thing.

Taking account of experience is important, but an intelligent agent needs to move beyond the

minutiae of experience towards abstract and theoretical thought. Humans certainly use the idea of

things having independent existence and use that idea with some success. How can an empirical

knowledge representation, with its commitment to representing knowledge in terms of the ever-

changing and uninterpreted experience of the agent, represent abstract and theoretical concepts like

the existence and permanence of objects?

The notion of objects, though key to objective-reality views of knowledge, is not itself perfectly

understood. Philosophers, psychologists and, recently, computer scientists have attempted to define

objects, but the notion has defied precise definition. Is an object that which has a physical structure

independent of the perceiver (Spelke, 1994)? Or everything that can be assigned a symbol in formal

logic (Markosian, 2000)? We know what we mean when we talk about objects, but what are they

really? Representing such notions in a computer demands a precise definition, yet no definition has

been found that is universally agreeable.

Rather than proposing another definition of objects and then mapping experience to the com-

ponent parts, this chapter explores the experience of object knowledge by contrasting the objective-

reality and empirical views of knowledge. The case study explores how ephemeral and uninterpreted
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experience can shed some light on the our fuzzy notions of objectness and illustrates the first steps

towards using empirical knowledge representation for abstract concepts.

The first three sections of this chapter build towards representing the knowledge of object per-

manence. The knowledge is split into three phases: existence, persistence and permanence. Per-

manence is used in the same sense as the well-known object permanence experiments, where a

children’s understanding of objects is measured by hiding the test object with an occluding object

and measuring their reaction. For object permanence experiments with infants, looking time is used

as a measure of surprise: if the occluding object is removed and the test object is not there, an infant

who is thought to understand object permanence will look longer than when the occluding object is

removed and the test object is still there. (Baillargeon et al., 1985). The original object permanence

experiments of Jean Piaget had older children as subjects, and he supposed that where the child

was looking for the object was an indication of how well he or she understood object permanence.

Children who understood object permanence would look behind the occluding object to find the

more desirable test object. Children who did not would look wherever the test object had previously

been found, rather than where it was last seen (Piaget, 1954). Persistence is used here to describe

permanence without an occluding object—rather than having the test object blocked by an occlud-

ing object, the test object disappears when the subject is looking away. Existence is used in this

chapter to describe one of the most basic behaviours of objects—if I am starting at an object, it does

not suddenly disappear. Section 7.1 illustrates how temporal coherence relates to this description

of existence. Section 7.2 illustrates persistence and shows how the temporal coherence of predic-

tions allow an agent to represent consistent experience even when the immediate sensations are not

temporally coherent. Section 7.3 describes a full object permanence experiment, along with an

explanation of how such knowledge might be represented in the empirical framework introduced in

this thesis. Small computational examples are given for all three cases to illustrate how the temporal

coherence of sensations and predictions relate to the notion of objectness.

Recognizing an object involves more than responding to a single, simple sensation. Section 7.4

and Section 7.5 show how the temporal coherence of more complicated patterns of experience can

be identified in an empirical knowledge framework.

7.1 The Beginnings of Existence

Perhaps the most obvious feature of the existence of physical objects is that, when they are being

observed closely, objects do not disappear. Consider the scenario illustrated in Figure 7.1. An infant

is staring fixedly at a ball for some time. When the ball suddenly disappears, the infant registers

surprise (Moore, 1975). One explanation of this surprise, from an objective-reality view, is that the

infant recognizes the ball as a separate physical entity. As the ball is a physical object, it cannot just

disappear. That is not what things with independent physical existence do.

An empirical knowledge representation frames this knowledge differently. The sensation being
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Figure 7.1: An infant registers surprise if the object disappears suddenly.

received by an infant staring fixedly at a ball has high temporal coherence. When the ball disappears,

it violates the prediction that this sensory information should be consistent from timestep to timestep.

That prediction of high temporal coherence encodes knowledge of how ball-sensory-patterns should

behave.

A simple example of how temporal coherence is represented in this empirical knowledge frame-

work can be illustrated by a extremely simple environment with no actions and a single bit sensation

that changes probabilistically over time. This is a simplest representation of the situation described

above, where the infant is staring at the same thing and taking no actions. Table 7.1 illustrates two

trajectories: one with a uniformly random sensation, which is independent on each timestep, and

one with a temporally coherent sensation, which is constrained to change only rarely.

Uniformly Random Bit Temporally Coherent Bit
Sensation Prediction Sensation Prediction

0 0.50 1 0.88
0 0.50 1 0.92
0 0.50 1 0.94
0 0.50 1 0.95
1 0.50 1 0.96
0 0.50 1 0.97
1 0.50 1 0.97
1 0.50 0 0.40
1 0.50 0 0.12
1 0.50 0 0.08
1 0.50 0 0.06
0 0.50 0 0.05
1 0.50 0 0.04
0 0.50 0 0.03
1 0.50 0 0.03
0 0.50 0 0.03
0 0.50 0 0.02
1 0.50 0 0.02
1 0.50 0 0.02
1 0.50 0 0.02

Table 7.1: Sample trajectory for a uniformly random bit sensation and a temporally coherent bit
sensation.
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Knowledge of the temporal coherence of the bit is represented in the parameters of a predictive

state variable. The predictive state variable uses a logistic function to minimize the cross-entropy

loss between the sensation on the answer from the previous timestep, as in Section 3.2. The answer

is the expected value of the bit. The best answer depends on the long-term probability of the bit

being on and, if the bit has temporal coherence, on recent experience. If the agent knows the bit has

no temporal coherence, then the answer it computes will be consistent from timestep to timestep,

with no weight given to recent experience. If the agent knows the bit has high temporal coherence,

then it will put heavy weight on the most recent sensation when it is computing the expected value.

This knowledge is illustrated in the prediction columns in Table 7.1. For the uniformly random

bit, the predictive state variable places no weight on the sensation of the previous timestep, predicting

the same value regardless of the previous sensation. In the temporally coherent case, the expected

value of the bit fluctuates according to recent experience. The parameters of the predictive state

variable thus represent the tendency of the sensation bit to remain the same.

The prediction of the temporally coherent sensation gives us a starting point to represent a sim-

ple understanding of existence, the knowledge that the sensation should be consistent from timestep

to timestep. The higher the temporal coherence of the bit is known to be, the more surprising a

sudden change will be. In contrast, in the uniformly random case, where the prediction has maxi-

mum entropy, frequent changes are expected. Empirical knowledge representation can capture both

temporally coherent and temporally incoherent sensations.

7.2 Persistence

A further step towards object permanence is the recognition that objects persist even when the sensa-

tion does not. The immediate sensations of an agent looking at and away from an object do not have

temporal coherence, but there is a consistency in the sensations that it can be useful to represent.

Consider the scenario in Figure 7.2. Very young infants are surprised if the ball disappears before

their eyes, but are not surprised if the ball disappears while they are looking elsewhere. Older infants

do register surprise when they look back and the ball is no longer there (Ginsburg and Opper, 1969).

The usual description of this development is that older infants know that the ball is still there, even

though they are not perceiving it directly (Bower, 1977). They know that the ball continues to exist

independently of current sensations.

In an empirical knowledge representation, this knowledge is again represented in the predictions.

This time, the knowledge that the ball should still be there after looking away is captured in a pre-

diction conditioned on looking. Even when the immediate sensations change, accurate predictions

of ‘what would happen if’ are temporally coherent.

A simple encoding of this knowledge is illustrated in Table 7.2. This environment allows multi-

ple actions. The first action, a1, behaves as in Section 7.1, returning a temporally coherent sensation

bit. All other actions, a2...an, result in a sensation of 0. These actions are like looking in different
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Figure 7.2: An infant registers surprise if the object disappears while the infant is looking away.

directions, most of which are boring. The conditional sensation generated by the environment during

a sample trajectory is given in the first column. This column shows the sensations that would result

if the agent took the specified action. The second column shows the sensation actually received by

the agent, given the action that was chosen.

Conditional Sensation Actual Sensation Conditional Prediction
a1 a2 a3 a4 a1 a2 a3 a4 Pr(s = 1|a = a1)
1 0 0 0 1 0.88
1 0 0 0 0 0.88
1 0 0 0 0 0.87
1 0 0 0 1 0.92
1 0 0 0 1 0.94
1 0 0 0 1 0.95
1 0 0 0 0 0.94
0 0 0 0 0 0.94
0 0 0 0 0 0.94
0 0 0 0 0 0.93
0 0 0 0 0 0.93
0 0 0 0 0 0.93
0 0 0 0 0 0.23
0 0 0 0 0 0.23
0 0 0 0 0 0.24
0 0 0 0 0 0.24
0 0 0 0 0 0.25
0 0 0 0 0 0.11
0 0 0 0 0 0.08
0 0 0 0 0 0.06

Table 7.2: A comparison of the conditional sensation, the sensation the agent would receive if it
were to take action 1 on each time step, to the actual sensation and prediction. The actual sensation
is what the agent receives given it is randomly selecting actions, and the conditional prediction is the
value of the predictive state variable that predicts the sensation after the search option is executed.

The agent maintains a predictive state variable that minimizes the log loss between the computed

answer and the sensation received upon taking action a1, much like the prediction made by the

Half-Moon World agent from Section 3.1. The last column in Table 7.2 indicates this prediction

of ‘What would the sensation be if I were to take action a1?’ With both tracking and transience,
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as in Section 3.2, the prediction updates towards the most recent sensation whenever a1 is taken

and decays towards the long-term average when a1 is not taken, as then the prediction is not being

frequently verified.

The size of the predictive state variable indicates knowledge of something beyond the current

sensation, the expected value of the bit if a1 is taken. The persistence of that prediction can be

represented regardless of what action the agent is taking. The example given uses the strict memory

limitations of Section 3. There is no reason, of course, that the agent should not be able to predict

the sensation bit exactly. In this example, the bit is temporally coherent but stochastic. In an en-

vironment where the sensation being returned was deterministic, the action-conditioned prediction

could exactly predict the sensation bit.

7.3 Permanence

Child-development pioneer Jean Piaget considered that proper development of the object concept

required actively looking for the missing object: passive observation, waiting for the object to reap-

pear in the same place, develops into active looking for the object, even to the point of moving

obstructions (Piaget, 1954; Ginsburg and Opper, 1969). A simple occlusion experiment is illus-

trated in Figure 7.3. At a young age, children do not register surprise if the ball disappears while

hidden or even if it changes into another thing entirely (Bower, 1977). Older children are surprised

when the obstruction is removed and the ball is missing or transformed into a train or a box. The

objective-reality explanation is similar to before. Older children know that the ball is still really there

behind the screen. They know that objects do not change form or disappear even when they are not

being observed (Baillargeon, 1999). Younger children do not know that objects do not change form

or disappear and are not surprised when the boundaries of objects shift or transform while they are

hidden.

!

Figure 7.3: An older infant registers surprise if an object disappears while it is hidden.
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The empirical account describes this knowledge differently. Knowing that there should be some-

thing behind the screen and that the something should still be a ball is knowing that the predicted

sensations should be the same before and after the screen is in view. Rather than simply being con-

ditioned on a single action, the prediction now must have a more complex condition to represent the

movement of the occlusion or the action of looking behind the screen.

The options framework gives us the complexity needed to handle this case. Whereas before the

agent maintained a prediction conditioned on a single actions, now the agent maintains a prediction

conditioned on an extended way of behaving. For the simplest illustration of extended predictions,

the environment described in Section 7.2 is extended by removing the restriction that the 1 bit is only

returned following a1. On any given timestep, the 1 may be sensed following any one of the actions

or none. The 1 still has temporal coherence: if any particular action results in the sensation of 1,

taking that action again will, with high probability, result in the sensation of 1. Taking a different

action will, with high probability, result in the sensation of 0. A sample trajectory is illustrated

in Table 7.3. The sensation the environment would return following each action is given in the first

column, while the actual sensation received by the agent is given in the second column.

Conditional Sensation Actual Sensation Search-Conditional Prediction
a1 a2 a3 a4 a1 a2 a3 a4 Pr(s = 1|option = search)
0 1 0 0 0 0.50
0 1 0 0 1 0.88
0 1 0 0 0 0.88
0 1 0 0 0 0.87
0 1 0 0 0 0.87
0 1 0 0 0 0.86
0 1 0 0 0 0.86
0 1 0 0 1 0.91
0 1 0 0 1 0.93
0 1 0 0 1 0.95
0 1 0 0 0 0.94
0 1 0 0 1 0.95
0 1 0 0 0 0.95
0 1 0 0 1 0.96
0 1 0 0 0 0.95
0 1 0 0 1 0.96
0 1 0 0 0 0.96
0 1 0 0 0 0.95
0 1 0 0 0 0.95
0 1 0 0 0 0.95

Table 7.3: A comparison of the conditional sensation, the sensation the agent would receive if it
were to take action 1 on each time step, to the actual sensation and prediction. The actual sensation
is what the agent receives given it is randomly selecting actions, and the conditional prediction is the
value of the predictive state variable that predicts the sensation after the search option is executed.

Suppose there is an option-conditioned prediction where the option is a random search proce-

dure: for example, the option can be initiated at any time, the policy randomly selects among the

available actions, and it terminates after all actions have been taken a specified number of times or

the 1 has been sensed. If the option terminates on a 1 sensation, the 1 is present. If it terminates on

0, the 1 is very likely absent. Thus, a prediction of the terminal sensation of that option gives us an
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indicator of the presence or absence of the 1.

Predictions conditioned on search procedures gives us something like object permanence. The

agent ‘knows the ball is there’ when it has a prediction that a search procedure will end in the ball

sensation. The search procedure in the above example is very simple, but it may be as complicated

as necessary. Knowing the ball is there means knowing there is something I could do (or get some-

one else to do) to make the ball appear. Through the options framework, this kind of knowledge can

be encoded as predictions of future experience, conditioned on arbitrary behaviour. The agent does

not necessarily have to execute the behaviour to represent the prediction. Through the temporal co-

herence of option-conditioned predictions, knowledge that moves beyond the immediate sensations

into abstract concepts can be clearly represented.

7.4 Configural Patterns

It is relatively straightforward to extend the single bit of the previous examples to more complicated

inputs. Sensory input in robots and people is usually more than a single binary sensation and not all

temporally coherent patterns can be identified by a single bit. In many cases, the single units of an

agent’s sensations are not temporally coherent, but configural patterns of the sensations are.

A simple example is illustrated in Table 7.4. An objective view of the environment is shown

in the first column, with the part visible to the agent surrounded by a dotted line. The consistent

pyramid pattern is completely visible to the agent on the first two steps and partially visible on the

last. The actual sensation vector received by the agent is shown in the second column. There is little

temporal coherence in the individual elements of this vector, but there is temporal coherence in the

overall pattern. The agent has a pattern-recognition function that returns 1 when the pyramid pattern

is present in the sensation vector and 0 otherwise. The output of this function is given in the third

column. This output is more temporally coherent than the raw sensations, but still does not represent

the consistency seen in the objective view. As in Section 7.3, the temporal coherence of the pattern

can be represented with an option-conditioned prediction, shown in the fourth column. Knowledge

of the pyramid’s presence is encoded in a search-conditioned prediction, where the target of the

prediction is the output of the pattern-recognition function rather than an immediate sensation.

The temporal coherence of configural patterns can thus be represented by defining a recognition

function that returns 1 when the sensory inputs match a specified configuration and 0 otherwise.

By considering the temporal coherence of the output of this function, persistence and permanence

can be represented in the same way as in the single-bit case. The pattern-recognition function can

be arbitrarily complex, indicating any patterns in the sensations received by the agent. The state

variables used by the RLGO agent introduced in Section 2.4 are examples of one kind of pattern

recognition.
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Objective Actual Pattern-Recognition Search-conditioned
View Sensation Output Prediction

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1

Table 7.4: A comparison of an objective view of the environment, the sensation vector received by
the agent and recognition function for a pattern of sensation bits.

7.5 Predictive Patterns

Predictive state variables give an empirical knowledge representation powerful tools for representing

complex patterns. What if the distinguishing features of an object can not be perceived all at once?

This is the case illustrated below.

The environment in Figure 7.4 has two distinguishable shapes, E and F. As before, the agent’s

sensation on each timestep is a bit vector that maps onto a 4⇥4 square. This area is not large enough

to always distinguish between the two patterns. An example ambiguous sensation is illustrated

in Figure 7.5. The agent may have a recognition function for the two shapes, but there is not enough

information in the immediate sensation to recognize E and F directly. Pattern-recognition over all

the state variables, not just the immediate sensations, can address this case. With the addition of

predictions to the pattern-recognition function, the agent can represent both E and F in this world.

The disambiguating prediction is illustrated in Table 7.5. The first column shows the objective

view, the second the ambiguous sensation the agent is receiving. The agent has a special search

option that can be initiated by the ambiguous sensation and terminates when the last four bits are

0, with a policy that causes it to look for disambiguating sensations. One way to represent the

differences between the letters is to have two predictions conditioned on this search option, one

predicting the probability of experiencing the pattern that belongs to the E, shown in the top row

of the third column and one predicting the probability of experiencing the pattern that belongs to
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Figure 7.4: The objective view of a letter gridworld.

Figure 7.5: A recognition function that only looks at pattern of immediate sensations cannot neces-
sarily disambiguate the F from the E.

the F, shown in the bottom. The recognition function for the letter E is active when the ambiguous

sensation and the E-prediction are active at the same time and the recognition function for the letter

F is active when the ambiguous sensation and F-prediction are active, as shown in the last two

columns.

Extending the pattern-recognition function so that it includes predictive state variables extends

the representational power of the agent’s knowledge. In more complex environments, more expres-

sive patterns are possible. For example, ‘What will I sense if I eat this?’ captures knowledge of

tasty things, nourishing things, poisonous things and inedible things. Functional predictions provide

a way of categorizing experience into useful groups. Predictive state variables give us a way of

extending temporal coherence beyond immediate sensations, which in turn gives us the mechanisms

necessary for the representation of knowledge about complex patterns of experience.
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Objective View Actual Search-conditioned E Pattern- F Pattern-
Sensation Prediction recognition output recognition output

1 0

0 1

Table 7.5: The predictive state variable disambiguates between the E and F when the immediate
sensation is ambiguous.

7.6 Conclusion

The ideas presented above are meant to explore how empirical knowledge allows for the represen-

tation of abstract concepts, rather than provide a full model of the object-concept. We have only

begun to test the limits of empirical knowledge.

The clear definition of knowledge has great potential for the development of autonomous arti-

ficial intelligence and our understanding of human cognitive processes. Predictions and temporally

extended actions are well-defined in terms of the experience, and this chapter illustrates how they

might enable the representation of abstract knowledge. It is possible the representation of abstract

knowledge might be taken further. Empirical knowledge representation may provide an explana-

tion for the close interaction between knowledge and sensation that others have observed in hu-

mans (Spelke, 1991; Spelke and de Walle, 1993).

AI research can fruitfully draw inspiration from the cognitive development of humans. This

chapter models the progression of empirical knowledge towards the abstract along the lines of human

development and shown how the combination of options, predictions and pattern-recognition might

lead towards human-level cognition. Spelke suggests that infants’ understanding of the physical

world is centered around “divid[ing] perceptual arrays into units that move as connected wholes,

that move separately from one another, that tend to maintain their size and shape over motion and

that tend to act upon each other only on contact” (Spelke, 1990). It is just this kind of decomposition

that an empirical knowledge representation is suited for.

Knowledge of the external world, such as understanding the nature of physical objects, has been

thought difficult for subjective representations to capture. The power provided by predictive state

variables and temporal abstraction through the options framework makes the first steps towards such

abstract knowledge.
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Chapter 8

Conclusion

This thesis marks the beginning of an investigation into the commitment to experience as the fun-

damental data. The results presented here are that dynamic memory can be more accurate than

the best stationary solutions, that learning to learn can be essential to successful knowledge rep-

resentation and that a framework for knowledge representation that is grounded in experience can

capture at least some abstract knowledge. Chapter 2 introduced the idea of temporal coherence as a

critical characteristic of experience. Experiments in a simple prediction task and the difficult prob-

lem of Computer Go showed how temporal coherence enables continual learning agents to adapt

to their immediate environment and improve on their stationary counterparts. Chapter 5 provided

a formal explanation of the framework for empirical knowledge representation: a representation

that is grounded in experience and has the potential to answer the question of how an artificial agent

should represent knowledge. A case study of how this framework might represent the object concept

showed how empirical knowledge might allow for the representation of abstract knowledge.

8.1 Temporal Coherence

Current machine learning techniques are dominated by the idea of convergence to a single solution.

Learning and the use of learned knowledge are clearly separated in the training and testing phases.

In some sense, the product of learning has become more important than the process itself. Valuing

the product above the process is a reasonable formulation for supervised learning tasks: the point of

learning a classification through labeled training data is so that it can be applied to unlabeled data.

In this case, there is a natural separation between the training and testing phase.

The distinction between the training and testing phases is not necessary to the reinforcement

learning framework: the reward signal, which guides the learning in the training phase, continues

to be available during any operation of the system. Even so, the majority of work in reinforcement

learning applications retains the training/testing split of supervised learning. The split is done explic-

itly by converging to a single best answer over the course of training or by freezing the parameters

after a certain number of timesteps. It is also implicitly maintained through a training phase that is
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much shorter than the testing phrase or a learning rate that decays so experience gained during the

testing phase has little effect on the agent’s knowledge.

The results in Chapter 3 and Chapter 4 present the benefits of a different model, in which now

has special emphasis. Past experience is used to make accurate predictions about future experience,

much like training samples are used to make predictions on test samples. At any given point, the

learned product represents the knowledge of the system. But rather than a rigid division between

the past training phase and future test phase, there is the fluid tie to current experience. The agent

does not learn for some number of steps and then declare its knowledge complete; it uses long- and

short-term memory to continually learn, adapt and improve.

Why is it so important that now be treated as more than the dividing line between learning and

knowing? Now is when a decision needs to be made, an action chosen. Now defines the state to

which knowledge must be applied. Thus the knowledge representation needs to be tuned to the

experience of now. If the distribution of every future from every state could be perfectly known

and perfectly represented and the state itself could directly observed or computed, then it might

not matter what is happening now. With perfect knowledge the agent could perfectly remember

everything it needs to know about the state it is in now, as it perfectly remembers everything about

every state. Such a perfect memory is rare and may not even be desirable, as imperfect memory

allows for the transfer of knowledge to new situations. Aliasing between states can be useful for

generalization, even when the state space is immediately observable to the agent and small enough

to fit in a modern computer.

8.2 Empirical Knowledge Representation

What does it mean to know things? This question is fundamental to philosophy, psychology and

artificial intelligence. Centuries of thought have not produced a consensus on the answer, and a

definitive answer may not be possible. Is knowledge justified true belief? Then what is truth? And

what sort of justification is sufficient? Does knowing about the world mean knowing how it really

works down to the subatomic level—and beyond, if necessary—or does making accurate predictions

suffice? Is real knowledge innate or learned or taught? And what is reality? These questions have

prompted a wide variety of answers. But in the end, to develop an autonomous AI, we may have to

set aside questions about what everything really means and look instead at what can be successfully

used by AI agents.

The practical issue for artificial intelligence is how a machine can best represent knowledge. The

choice of representation determines what is possible and impossible; easy and hard. It determines

how well existing knowledge can be evaluated against new data and how robust the representation

is to mistakes. It determines what the machine can learn and how new knowledge can be discovered

and incorporated into the representation. It determines whether or not the representation can be

adapted to match experience. A representation that is meaningful to the machine allows knowledge
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to be automatically verified, tuned and even acquired.

The approach to meaningful knowledge representation advocated in this thesis is to use the

immediately accessible data, the input and output, to build a representation that is informative for the

decisions being made. The empirical knowledge representation presented in Chapter 5 is focused on

the subjective and concrete experience of an agent rather than logical and abstract statements about

an external world. Chapter 7 showed how it might be possible to represent some abstract knowledge

in this empirical framework.

Empirical knowledge is based on and verifiable through data immediately accessible to the

agent—its experience. Empirical knowledge is stored in and constructed from experience and pre-

dictions of future experience. It is continually updated in response to current sensations. It does not

require an external interpreter and is not reliant on an external mind assigning meaning. We propose

that knowledge is rightly understood in experiential terms, and that pursuing empirical knowledge

representation holds the key to creating autonomous artificial intelligence.
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