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History 
 

It is known that brains use networks of neurons to learn and that neuroscientists are studying 

where different things are learned in human and other brains. The model to be described here 

is not made of neurons but if it turns out to be the right sort of model, neuron net versions of 

this model should be helpful in understanding how the human and other animal brains learn.  

 

   The model is called PURR-PUSS, or PP for short, and it is to be realized in computing 

hardware, suitable for installing in a robot as the learning part of a brain for that robot.  

  

   Of course, we are now hearing on a regular basis how artificial neural networks (ANNs) 

are performing statistical functions important for the operation of the human brain. In 

particular, deep learning has had dramatic successes with statistical tasks like speech and face 

recognition, but Daniel Dennett1 has reservations: “... although they will give us great answers to 

hard questions like never before, they won’t be able to tell us why.”  (p.316)  

 

   Surprisingly, I am not aware of any system that makes PP obsolete, even though it was 

invented 43 years ago in 19742 with two lasting ideas: multiple context and novelty goals. 

The first idea was helped by theoretical work of my postgraduate student John Cleary and the 

second idea was a result of my attempt to get the system to explore its world. 

 

  A pervasive idea in the field of artificial intelligence (AI) since the 1960’s has been that the 

brain is under the control of a very elaborate computer program with learning as a secondary 

process governed by that program. In my first book Thinking with the Teachable Machine,3  I 

compared the programs of AI at that time with the water system in a man-made house, while 

claiming that PP was more like a river flowing down to the sea. PP has no top level program 

that determines what it does. PP can be taught by reward and punishment to do what others 

want it to do (reinforcement learning4), but when reinforcement is withdrawn it continues to 

use what it has learned while seeking its own novelty goals. Now that Bayesian predictive 

processing (also called PP by Andy Clark5) has taken centre stage in AI, my PP is no longer 

out on its own but my multiple context system isn’t just statistical: it has a computational base 

with a statistical overlay. In AI, learning is still something to be optimized by exposure to large 

amounts of data with particular tasks in mind. However, with robots needing to be able to 

respond immediately and intelligently to new stimuli, such as words and objects, ANNs with a 

computational base must be just around the corner. Perhaps my PP will help in their design.   
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   Another key argument in my 1977 book3 referred to the limitations of formal systems shown 

by Gödel’s Theorem and explained the importance of embodiment for human and robot 

intelligence:  

 
Now, every machine, robot or computer on its own (isolated from its surroundings) is a formal system 
and will never be able to do some of the things that we can do. ... Sometimes people think of their 
bodies as cages within which they live, but bodies are quite the opposite of cages. My body connects 
me to the world around me in such an intimate and interactive way that I become part of that world. ... 
It is not possible at the present time to give PURR-PUSS an adequate body for intimate interaction with 
the world around her, so Teacher has to provide the missing link. By giving PURR-PUSS a close, 
interactive link with Teacher, we defer the need for an adequate walking-and-talking body until such 
time as we can provide it. (p.6) 
 

40 years later PP is still waiting for someone to provide it with an adequate robot body! 
 
 

Templates 
 

   There is no question that we use context6 in our deliberations, but there is so much context 

for whatever we do that there must be some limit on how much context we use. My assumption 

has been that the human body with all its sensorimotor equipment has evolved over millions of 

years in a mostly rural environment, so the context used by the human brain is largely 

determined by that sensorimotor equipment and the tasks it has been used for. George Miller’s7 

famous 7+2 for the number of items we have immediate access to, suggests how far back in 

time we need to go when including context for our immediate decisions. Our sensors and 

muscle movements limit what is available to us in those 7+2 time-slots, but this is still an 

enormous amount of context, so we need to take into account the pre-processing done by (e.g.) 

statistical neuron nets in our visual, auditory and muscle control systems, and confine our 

attention to high level sensorimotor information such as recognized sounds, composite motor 

commands and the results of object and face recognition. PP has a Short Term Memory 

(STM) for holding this high level sensorimotor information.  

 

   Multiple context in PP is made up of hierarchies of templates for each event-type. In my 

latest, and probably last, experiment8 the simulated robots had 9 action event-types (Body 

Move, Speech and Hand Pointing were the main ones) and 32 stimulus event-types (including 

Hearing, Touch, and various Visual event-types saying which robots were pointing at what and 

giving the relative positions of robots and other items in their small World). An event-type may 

refer to a specific collection of events, like BodyMove which included the events Forward, 

Left, Right, Pat and Slap.  Or it may, like the Speech event-type, include an unlimited number 

of events (Words). PP had 67 templates for these event-types, 32 for predicting actions and 35 

for predicting stimuli.  

 

   Templates are central to the structure of PP, because they prescribe what contexts can be 

formed as well as prescribing the event-type of events that can be associated with the contexts. 

By ‘associated’ I mean ‘immediately following’9. A context plus associated event is an 

association. Since any context may be followed by different associated events on different 

occasions, there may be more than one association with the same context. (Later, we will see 

that action-predicting associations with the same context are lumped together in a node of a 

network.) The order of the event-types in a context is arbitrary: a context is just a collection of 

event-types. Here is a simple template: 
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Formal description of template:  [SW: Speech,2   Speech,1 >> Speech] 

     Name of template: SW 

     Context of template: Speech,2   Speech,1 

     Symbol for “predicts” : >> 

     Associated event-type: Speech         (It could be written Speech,0)  

     Speech,2  is the Speech event-type of an event 2 steps earlier than the associated event. 

     Speech,1  is the Speech event-type of an event 1 step earlier than the associated event. 

    Example of an association:  [SW11: “A”   “Short”   >>   “Introduction”] 

 

              TEMPLATES use EVENT-TYPES          [SW: Speech,2   Speech,1 >> Speech] 

                             to prescribe 

              ASSOCIATIONS using EVENTS            [SW11: “A”  “Short”  >>  “Introduction”] 

 

   This template SW is prescribing two processes: how to store or strengthen an association and 

how to use an association that is already stored. Storing and using occur at different stages of 

PP’s processing cycle, so the two cannot be confused. For storing, the template says “ If two 

consecutive Speech events occur and they are followed by another Speech event, store the latest 

Speech event in the context of the previous 2 events as an association. If the association has 

already been stored with that associated event, strengthen it. If the association has been stored 

but not with that associated event, store a new association with the same context and the new  

associated event.”  For using, the template says “If two consecutive Speech events occur and 

they already exist as the context in an association of this template, then predict that the 

associated Speech event will follow next. If more than one associated event has been stored 

with the context of the two consecutive Speech events, predict that the preferred associated 

event will follow (using extra probabilistic data stored with the associated events, as will be 

explained later).” Associations are stored in Long Term Memory (LTM). 

 

   An association stored by the template SW can be seen as the learning of a rule “if the context 

occurs then do or predict the associated event”, but the rule has to be seen as just one rule in a 

collection of rules, with some cooperating and some competing. This storage and use of 

associations is a form of  associative learning. To distinguish a system like PP from earlier 

forms of associative learning, such as the conditioned reflex, it is called multiple context 

associative learning (MCAL).  

 

   It was mentioned above that PP had no top-level program to control it, so how is it controlled? 

In my view, the answer to this question is an important feature of PP. This is what makes it a 

river-like system. PP is controlled by its associations and it starts with none! It starts with a 

blank slate or tabula rasa  attributable to John Locke10 in 1690: 

 
Let us then suppose the mind to be, as we say, white paper void of all characters, without any ideas. 

How comes it to be furnished? Whence comes it by that vast store which the busy and boundless fancy 

of man has painted on it with an almost endless variety? Whence has it all the materials of reason and 

knowledge? To this I answer, in one word, from EXPERIENCE. In that all our knowledge is founded; 

and from that it ultimately derives itself. Our observation, employed either about external sensible 

objects, or about the internal operations of our minds perceived and reflected on by ourselves, is that 

which supplies our understandings with all the materials of thinking.  

   Locke clearly envisaged the importance of learning for intelligence and anticipated many of 

the ideas that have driven the design of PP. 



4 
 

   Of course, you don’t have to start PP without associations, but learning is the easiest and 

probably the best way to acquire associations. Even if not started with a blank slate, PP will 

need reflexes, or a more primitive brain, or something to imitate in order to keep it going in its 

world when its associations cannot select actions.  PP has plenty of inbuilt or innate structure, 

including the templates, (but no associations when it starts) so it isn’t touched by Steven 

Pinker’s arguments against a blank slate in his book of that name.11 

 

   The next question is “If the associations are in control, where are the associations going to 

take PP?” Certainly we can give PP reward and punishment, which I prefer to call approval 

and disapproval because the reward and punishment are volatile, disappearing if they are not 

continued. But if PP does no more than seek approval and disapproval given to it by a teacher 

or whatever, then that approval and disapproval is controlling PP through the associations. If 

that happened all the time, PP would be a reinforcement learning system and it would lack all 

the interesting features of our own brains, the curiosity and creativity that make us special. 

 

   At first, my intention was to enable PP to explore its world in an interesting way, when it 

wasn’t being given approval and disapproval. The method I hit upon was to make any new 

association a novelty goal and then, when PP used that association again, to stop it being a 

novelty goal. A novelty mark was put on any association stored for the first time and the mark 

was removed when it was used again. What surprised me was that it made teaching PP with 

approval easier because when I had taught part of a task and went on to the next part of the 

task, PP no longer reacted to the removal of approval for the first part. Novelty goals in the 

next part took over from the removed approval until approval was given at the end of that next 

part. Approval used to teach something wasn’t needed to keep PP using what was learned.     

 

   Soon I came to realize that novelty goals were doing much more than just making teaching 

with approval easier. Not only did they help to integrate new associations into PP’s LTM, but 

they were goals made by PP’s interaction with its world through its own body, not goals given 

to it by an external agent. These were PP’s own goals even if most of them would be of little 

use. Now PP could be controlled by its own associations and its own goals. It would still need 

some teaching by approval, by disapproval and through imitation, but it could also branch out 

on its own, if allowed to. Here was the germ of free will and creativity, even if they were still 

a long way off.  

 

 

Acting in the World 
 

While PP is deciding on its actions by means of contexts of events from its body and world, it 

does not need associations that predict what stimulus events the body and world will provide 

next. The body and world are supplying them. Only when we consider planning, imagining and 

thinking to oneself will associations that predict the stimuli from its body and world be needed. 

 

   PP has two kinds of goal. I have talked about the novelty goals. The other goals are approval 

goals. If approval is given just after an action is chosen by an association, that action in the 

association is marked as an approval goal. Similarly, if disapproval is given, the action is 

marked as disapproved. If several associations contribute to the choice of action, the actions in 

all the contributing associations are marked as approval goals. PP is designed to try to reach 

the contexts of associations which have actions marked as goals. How does it do this? 
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   Obviously, PP has to have routes to its goals and must choose the most promising route. 

 

   When PP moves from having the context of one association in its STM to having another 

context of the same template in its STM by means of the associated action of the first 

association, that associated action has the number of the second context attached to it with a 

count of 1 to show that the transition has occurred once. The count is increased by 1 every time 

the transition is repeated and it is used to calculate the transition probability of that transition. 

Because of these transitions between contexts of a template, a network of contexts is formed, 

where nodes are contexts and connections are the transitions caused by associated actions. The 

diagram has 3 nodes and 7 connections from part of an imagined network. 

 

   Because there can be several associations with the same context, a node, which represents a 

context, will have as many actions as there are associations with that context. So node-1 in the 

diagram has 3 associations with the same context, node-2 has 1 association and node-3 has 2 

associations with its context.  

 

   Some of the actions on nodes will be marked as goals, either approval or novelty goals. Some 

may be marked as disapproved. When PP has a particular context in its STM corresponding to 

one of the nodes in a network for a particular action event-type, it needs to know which action 

on that node to prefer, if there are several. This is where Bayesian conditional probability 

calculations made by a process called leakback give each node the expectation of reaching a 

goal from that node, and give each action on that node the expectation of reaching a goal by 

choosing that action with the context of that node. Leakback starts from all the goals and works 

backward through the network until either a maximum depth to the calculation has been 

reached or the expectations are below a minimum limit. This is not the place to bother the 

reader with the details, which can be found in my 1998 book Associative Learning for a Robot 

Intelligence12. Computer scientists may well have more efficient algorithms than mine for 

calculating the expectations. 

 

   The associations are rules which give PP its computational base. The network of transition 

probabilities give PP a statistical overlay. A computational, rather than statistical, base is 

needed for the complex task of using language because we learn new words and phrases from 

a single exposure to them. Statistical processes require many samples of their data. Unlike 

statistical processes, MCAL results can be analysed down to the last association.8 

 

So far, I have been talking about one template and the network of nodes formed by it. The main 

idea of multiple context is to make available to PP contexts from throughout the action-

stimulus-delay space for delays up to about 8 steps in the past. 

 

                                                                                              
                                                                                   node-2  action-4   
                           action-1 
              node-1   action-2 
                          action-3 
 
                                                                                    node-3  action-3 
                                                                                                action-1 
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 Multiple Context 
 

   If PP is considered to be a model of the human or animal brain, then the choice of templates 

is assumed to have been selected by evolution. In this case, it may be helpful to imagine that a 

template is an area of the neocortex (or perhaps the hypothalamus) with dendrites entering the 

area from sources of the event-types of the context, and axons exiting to a command centre for 

the associated event-type of the template. A neuron in the area, behaving like an association,  

would carry out the AND function needed to identify a particular context of events on its 

dendrites and its axon would travel to the particular action event in the command centre. This 

structure should be treated as no more than a rough mental aid until one day neuroscientists 

discover exactly how the neurons in the brain learn. 
 

   Imagine a large graphic table with a column for the each action event-type and each stimulus 

event-type and a row for each number of steps delay. This table would describe STM, which 

is the space of event-types and delays available to the contexts of templates. We would like the 

templates chosen to have contexts spread over this space, with the longer delays covered more 

thinly.  Here is a much smaller table with two possible contexts of many, indicated by blue and 

red blobs. Each of the two contexts would belong to a different template. Remember the 

auxiliary event-type has zero step delay because it refers to an event occurring now. 

Not all contexts are of equal “strength”. In general, those contexts with more event-types will 

be stronger than those with fewer because every event-type restricts what situations the context 

can apply to. A context with no event-types is out of the question because it would include 

every situation. A template with the blue context in the table allows associations with contexts 

containing just one particular speech action, one speech stimulus 2 steps back, one body move 

and one touch stimulus. The contexts of the associations would ignore other events and delays.  
 

   At this point, the reader could well be confused by my two uses of the word “context”. The 

context part of a template prescribes event-types and their delays, which the events in the 

context of an association of that template must satisfy. The template might say that a speech 

action delayed by 2 steps was required; an association of that template must have an actual 

speech action obtained with that delay.  I won’t usually need to distinguish between template 

contexts and association contexts because with one I will be talking about event-types and with 

the other I will be talking about events. 
 

   We need to give templates with stronger contexts higher priority so that PP will prefer to use 

their associations over the associations of templates with weaker contexts. There is no doubt 

that if one context is a subset of another context, the former will be weaker than the latter, and 

must be given a lower priority than the latter. When the contexts share few event-types, but 

appear to be of similar strength, they can be given equal priority. In choosing actions, PP tries 

the highest priority templates first and goes to lower priority templates only if it can’t find 

associations of the higher priority templates that tell it what action to choose. However, once 

the choice has been made, all associations with the current context are updated with the choice.  

Event-type: Speech 

Action 

Speech 

Stimulus 

Hand 

Action 

Body 

Move 

Eye 

Move 

Vision 

Stimulus 

Touch 

Stimulus 

One step delay:        

Two steps delay:        

Three steps delay:        

     ...        
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   The templates of PP should be chosen so that a wide range of tasks would be learnable in the 

particular body and world of the robot, for which PP is to be the learning brain. With a real 

robot in the real world, I would expect the choice of templates to take a considerable amount 

of experimentation. So far, I have had experience only with simple simulated robots and 

worlds.    

 

  Event-types are not restricted to action and stimulus types. The delay of a threading event is 

increased only when the next event is not null.  Null events don’t count as an event at all. I 

have also experimented with an event being the whole context of a template. If the template of 

such a context event is its own template, the contexts become re-entrant. Discussion of such 

variants is not appropriate in this short account, but it is important to note that multiple context 

is open to many avenues of research.    

 

   Since there can be several networks of nodes predicting actions of the same type, there is a 

need for standardizing the expectations obtained by leakback in the different templates. I see 

this as being done statistically when PP can be run for very long interactions.   

 

Speed and Memory 

 
An important aspect of multiple context is the way associations are stored in LTM so as to 

provide fast processing. Each template is seen as having its own hardware processor and 

memory, so that increases in the number of templates don’t slow down the overall system. 

 

   All processing is in a forward direction through associations, which means that we never 

need to work backwards from an associated event to find its context. In fact, contexts of 

associations don’t need to be stored at all. The context of an association is just an address of, 

or pointer to, the node that holds the associated events for that context. The node is reached by 

“hashing” the context in STM as specified by the template. My first experiments with PP did, 

in fact, use hashing of contexts3, but in developing the system it was important for debugging 

that the contexts could be checked, so I now use tree structures, instead of hashing, to go from 

the events of a context to the nodes of a template. 

  

   As robots are given more complex bodies, they will also be given higher-level event-types, 

so it may well be that templates with contexts of no more than 20 event-types and delays less 

than 9 steps will be sufficient. 1000 templates, each with memory for 100,000 nodes, could be 

taking us into a region comparable with the capacity of the human brain. 

 

   Until PP is put into an effective robot body and long interactions become possible, it is 

difficult to anticipate the problems and opportunities that might ensue. 

  

Planning and Imagining 
 

The LTM of PP holds its past experience. The action-predicting templates were used to 

generate that experience, while the stimulus-predicting templates gathered information about 

how PP’s body and world reacted to those actions. The associations generated by the stimulus-

predicting templates do not form networks of nodes leading to goals because goals are 

irrelevant for them but, for convenience, groups of stimulus-predicting associations with the 

same context are still called nodes. These nodes don’t have expectations but do have ages 
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which count the number of times the context has occurred and the number of times each 

predicted stimulus has occurred after the context. 

 

   PP attempts to make a plan every step unless it is following a plan. To make a plan, STM is 

copied into a spare STM and PP chooses an action using the spare STM in the same way as it 

chooses actions normally. Then with the updated spare STM and the stimulus-predicting 

templates, it finds the most likely stimuli from the body and world. Then, another action is 

chosen, more stimuli are obtained, another action is chosen, ... and so on until a goal is reached 

or predictions fail. If a goal is reached, a plan has been made and the plan can now be followed 

using marks placed on the action-predicting networks during the plan-making. In one of my 

experiments13, when a plan was followed the associations responsible were put into a belief 

memory, to record that the associations had been confirmed. In that same experiment, PP was 

given a trail memory, which gave it an extended present, looking a few steps backward and 

forward, so that it had a better idea of where it was.  

 

   Moving through PP’s experience in LTM with a spare STM, as is done in planning, could 

also be done for other reasons, such as answering questions or just thinking and imagining. I 

have also suggested that spare STMs could be used as a form of working memory, WM.  
 

Experiments and Theory 
 

Novelty goals, the reaction of the world, and the volatility of teacher-given approval and 

disapproval make a mathematical description of the behaviour of PP difficult – beyond me, 

anyway.  
 

   In my paper about PP with John Cleary14 in 1976, we showed quite simply that PP could be 

taught to behave like a finite state machine (FSM). This is not surprising because a FSM 

follows a collection of rules which say “If you are in this state and you get this input then go 

into that state.”  To teach PP to behave like a FSM, we needed (i) an action-predicting template 

with a context comprising a stimulus event-type saying what state the FSM is in, and  a stimulus 

event-type saying what the input is, together with an associated action event-type to move it 

into the next state, and (ii) a stimulus-predicting template with a context of the event-type for 

a state-to-state action and an associated stimulus event-type saying what the new state is. We 

could then lead PP through all the state transitions of the FSM, giving it the appropriate state, 

input and state-to-state action. PP would then have learned the FSM and all we had to do was 

supply the inputs for it to move through different states by itself. After PP does each state-to-

state action learned with the first template, it predicts the new state with the second template.   
 

   The FSM is not very interesting as such, because it is known that language use requires more 

computation power, possibly up to the maximum which is the Universal Turing Machine 

(UTM). Now a UTM has two parts. First there is a FSM controlling a read-write head, and 

secondly there is an infinite tape that is read and written on, symbol by symbol with the read-

write head. In 1981, Bruce MacDonald and I published a paper15 that showed PP being taught 

and then emulating a UTM. Of course, there was no infinite tape, but Marvin Minsky16 had 

already pointed out that the important feature of a tape was that it could be extended. Even 

humans couldn’t have an infinite tape in their heads! PP had an extendable tape, held by 

associations, which would only run out when there was no more room for associations or it 

couldn’t count any higher “in its head”.  Both limits were themselves extendable.  This was 

achieved with 11 templates.  
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    Another experiment17 which was carried out for its theoretical implications in 1990, when 

computer memory and speed were still severely limited, showed that PP could handle nested 

subroutines and embedded clauses. To achieve this, we introduced an auxiliary action, which 

is an action not used to carry out the main task. Raise Eyebrows was the auxiliary action used 

for the experiment that was about solving a 5-puzzle. The human face has plenty of muscles so 

it is not unreasonable to expect these to be of use as auxiliary actions, especially as they are 

visible to a child learning by imitation. The auxiliary action was used to mark the contexts 

when a new subroutine (B, say) was being entered and when it ended. Of course, information 

has to be held about the subroutine (A, say) being left, when the lower subroutine B is entered, 

so that the subroutine A can be continued after return from the lower subroutine B. Holding 

this information is the responsibility of working memory (WM).  
 

   My latest report8 on PP is mainly about WM. First recognized by Bruce MacDonald15, if an 

association keeps only the most recent of its associated events, it can be used, for example, for 

holding the most recent symbol in a particular position of a Turing Machine tape. It is called a 

recency association to distinguish it from a choice association that keeps all its associated 

events. (In fact all associations can be recency or choice if the associated events are put on a 

list with the most recent one always at the front.) The tape of a Turing Machine is its WM. The 

importance of WM was well illustrated by a sentence offered by Koenraad Kuiper18 in 1980 as 

a challenge to PP’s learning of language: 

It was her Mini which the police believed Andrea to have been driving, wasn’t it? 
 

Koenraad points out that at least 8 words have to be carried along in WM by any system 

understanding the sentence. Most obviously, the first word determines the last and the negation 

of the second word ‘was’ determines the one from last. It is a long time since I designed my 

first learning machine, STeLLA19, in 1962 and it is going to be a few years yet before a robot 

can learn from a blank slate to handle a sentence like Koenraad’s.  
 

   The report on WM8 describes an interaction between two similar robots, one being controlled 

by PP and the other by a teacher (me) in a small World. There is also a Cake object in the 

World which can be Squashed by one of the robots, if they get the Cake into a corner. PP started 

with a blank slate and has learned a lot but is still making plenty of mistakes. This conversation 

at the end of the run is luckily free of mistakes: 

 

993 PP: (turns left) I turned left. 
 Tchr: (moves forward) Good. You push cake. 
994 PP: (moves forward, pushing cake) Next turn is mine so you move forward.* 
 Tchr: (moves forward) Good. Next turn is yours so you push cake.  
995 PP: (moves forward, pushing cake) Next turn is mine so you wait. 
 Tchr: (waits) Good. Next turn is yours so you squash cake. 
996 PP: (moves forward, squashing cake) I squashed cake so next turn is yours. 
 Tchr: (turns right) Good. You squashed cake so next turn is mine. 
*  PP has remembered, using WM, that the last squash on step 803 was by Teacher so it’s PP’s turn to squash.    

 

Prospects 
 

MCAL demolishes Fodor and Pylyshyn’s claim20 that “This transition from associative to 

computational accounts of cognitive processes has the look of a true scientific revolution.” 

because PP is both associative and computational. 
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  Associative learning doesn’t need to be just statistical, like deep learning. When Dennett1 says 

“In effect, people can download and execute a virtual machine with no need for trial and error 

or associative learning, taking on hundreds of roles on demand, swiftly and reliably.” (p.303, 

my emphasis), ‘associative learning’, in the form of something like MCAL, may well be how 

people do it.  

 

   Perhaps the greater aptitude of humans for learning language, compared with that of other 

animals, which is attributed by many to an innate universal grammar (UG), is due to the 

equivalent (in MCAL terms) of having innate templates for sounds and gestures extending over 

a longer range of delays. The design of MCAL event-types and templates for modelling human 

language learning would benefit enormously from the multi-language experimental data that 

has accumulated for and against UG21. It would be particularly pleasing if a MCAL solution 

could satisfy researchers on both the innate side22 and the usage-based (or learning) side23 of 

the UG debate.  
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