
Learning a Nonlinear Model of a Manufacturing Process Using
Multilayer Connectionist Networks

Charles W. Anderson Judy A. Franklin Richard S . Sutton

GTE Laboratories Incorporated
40 Sylvan Road

Waltham, MA 02254

Abstract

A connectionist (neural) network learns a
nonlinear process model by observing a sim-
ulated manufacturing process in operation.
The objective is to use the model to estimate
the effects of different control strategies, re-
moving the experimentation from the actual
process. Previously we demonstrated that a
linear, single-layer connectionist network can
learn a model as accurately as a conventional.
linear regression technique, with the advan-
tage that the network processes data as it is
sampled. Here we present experiments with
a multilayer extension of the network that
learns a nonlinear model.

1 Introduction
The control of a manufacturing process can be very
risky when the process is incompletely understood.
The effects of minor adjustments in one stage of a pro-
cess can be magnified in subsequent stages and result
in a grossly inferior product. The risk of making ad-
justments can be decreased by building a model of the
process and experimenting with changes to the con-
trols of the model rather than of the actual process.

A model of a process is an abstraction that to
some level of detail is an accurate simulation of the
process. Below this level of detail and for other less-
understood aspects of the process, the model can only
be a mathematical approximation of the relationships
between measurable variables. Ideally, the modeler
knows enough about a process to simulate the known
reactions and to implement mathematical approxima-
tions of the remaining relationships. Usually this much
knowledge is not available and the modeler must resort
to alternative methods.

A more general approach to modeling a process
is to build a model incrementally by observing val-
ues of process sensors while the process is operating.
The modeler first constructs an initial, parameterized

model using all available knowledge about the pro-
cess. Then an automatic parameter-adjustment pro-
cedure observes the process in operation and updates,
or learns on-line, the model’s parameters to drive the
output of the model closer to the corresponding sen-
sor values. Learning an accurate model is confounded
by a large number of sensors, different ranges in values
among sensor readings and ranges that vary over time,
noise in the sensor readings, unknown and variable
delays as material moves through various stages, and
nonlinear interactions among sensed variables. This
kind of model-a mathematical model that is learned
on-line-is the subject of the research reported in this
memo. We do not address how to use available knowl-
edge to simulate the known dynamics of a process.

Connectionist networks show promise for handling
many frequently-sampled, noisy sensors, and of track-
ing changes in a process, because of the parallel and
incremental nature of a connectionist network’s com-
putations. In our work, we are combining these fea-
tures of connectionist networks with new techniques
for dealing with incompletely known sensor ranges, de-
lays, and nonlinearity. Here we focus on our approach
to tracking sensor ranges and learning nonlinear mod-
els. We will address delays in future work.

When the modeler knows all nonlinear relation-
ships among the process variables and can implement
them, modeling is straightforward. The modeler im-
plements a preprocessing stage in which the known
nonlinear functions transform the sensor values into a
new set of inputs for the model. If the modeler includes
all nonlinearities, a linear adaptive model would suffice
that could be trained via well-known parameter adap-
tation algorithms, like the Least-Mean-Square (LMS)
algorithm (Widrow and Steams, 1985). If the mod-
eler is not aware of every nonlinearity, he can guess
which nonlinear functions might exist in the process.
Existing process knowledge can constrain the number
of nonlinear functions that could possibly be present.
In general, the large number of possible functions pro-
hibits including them all. Another difficulty is that the
nonlinear relationships present in the process might
change with time.

404
TH0333-5/90/0000/0404$01 .OO 0 1990 IEEE

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on January 30, 2009 at 17:10 from IEEE Xplore. Restrictions apply.

There is no general solution to this problem, called
the “representation problem” in the artificial intelli-
gence field. When the modeler’s knowledge is insuffi-
cient to specify a good preprocessor, the only alterna-
tive is to design a preprocessor using what knowledge
is available and then adapt the preprocessor as expe-
rience is gained by observing the process. The set of
functions implemented by the preprocessor must be
changed to represent more accurately the information
that is needed to form a good model.

The structure of a multilayer connectionist net-
work is an adaptive preprocessor followed by an output
stage. For example, the first layer of a two-layer net-
work preprocesses the network’s inputs and provides a
new set of transformed values as input to the second
layer. The second layer calculates the output of the
network. Connectionist learning algorithms exist that
treat learning in a uniform manner in all layers. Their
ability to learn new representations in initial layers of
a network partially accounts for the popularity and
success of connectionist networks.

1.1 Previous Work
Members of the Connectionist Machine Learning
Project at GTE Laboratories have tested and continue
to develop a number of connectionist algorithms for
learning process models on-line. The process that is
the subject of most of our experiments is the coating
process of a fluorescent-lamp manufacturing line.

Previous work resulted in two achievements. First,
after considerable discussions on technical details of
the line, we created a simulation, called CIMSIM
(Computer Integrated Manufacturing SIMulation), of
the coating process. Our second achievement was
the development of a new connectionist learning algo-
rithm, called the NADALINE (Sutton, 1988), or Nor-
malized ADALINE. The NADALINE is an extension
of Widrow’s ADALINE learning algorithm (Widrow
and Stearns, 1985) that normalizes the input values to
have zero mean and unit variance.

Using CIMSIM, we demonstrated that the NADA-
LINE algorithm learned a model as accurately as a
conventional regression technique (Franklin, Sutton,
and Anderson, 1988). The NADALINE algorithm has
a practical advantage over regression in that it incre-
mentally processes the sensor values as they are sam-
pled. Standard regression procedures gather samples
into a large matrix and processes the matrix at a later
time. The NADALINE, however, is limited in its treat-
ment of nonlinearity and delays. It forms only linear
models and delays must be identified beforehand.

1.2 Overview
Here we describe an extension of the NADALINE, re-
ferred to as the nonlinear NADALINE, with which a
connectionist network can learn nonlinear models. We
used CIMSIM2, an elaboration of CIMSIM, to test
the nonlinear NADALINE. CIMSIM2 and the mod-
eling problem are described in Section 2. Section 3

briefly describes the two-layer connectionist network.
Results of experiments with the nonlinear NADALINE
network and CIMSIM2 are presented in Section 4, fol-
lowed by conclusions in Section 5.

-key factors
- how they affect quality
- what controls need to
be adjusted

Figure 1: The Simulated Fluorescent-Lamp Coating
Process

2 CIMSIM2: The Process Simulation

The nonlinear NADALINE was tested by applying it
to the task of learning a model of the fluorescent-lamp
coating process as simulated in CIMSIM2. As shown
in Figure 1, trays of glass tubes pass through a se-
quence of stages. CIMSIM2 simulates individual trays
and alters their attributes as they are processed at each
stage. One of these attributes is the percentage of the
tubes in the tray that have flaws. Flawed tubes are re-
jected at the end of the coating stage. The stages also
have attributes whose values, along with those of the
tray attributes, can be “sensed” by simulated sensors.
CIMSIM2 currently simulates 16 sensors, including a
sensor for percent rejects. The process monitoring task
is to learn a model that predicts percent rejects from
the sensor values.

The original CIMSIM simulated the interactions
between process variables as linear functions with
added noise and delays. To create CIMSIM2, we
added the following nonlinear relationships. The ef-
fects of two of the sensed variables on the percent re-
jects were specified to be V-shaped, piecewise linear
functions with each variable having a single optimum
value for which the effect on the percent rejects was at
a minimum. This kind of relationship is often found in
real processes; performance drops as certain variables
drift from their optimum values. The noise and de-
lays present in CIMSIM are also present in CIMSIM2.
These factors prevent a perfect model from ever being
learned.

405

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on January 30, 2009 at 17:10 from IEEE Xplore. Restrictions apply.

The purpose of CIMSIM and CIMSIM:! is to al-
low us to explore issues, such as noise, nonlinearity,
delays, and changes over time, that arise in the on-
line learning of models. The simulations do not ac-
curately reflect the values of variables in the actual
manufacturing process. To truly test the usefulness of
our model-learning algorithms we must apply them to
the actual process; the simulation studies are neces-
sary for developing the algorithms in preparation for
their installation at the manufacturing plant.

3 The Connectionist Network
This section summarizes the connectionist network
and its computations. See Anderson, Franklin, and
Sutton (1990) for details of the network structure and
a complete specification of the nonlinear NADALINE
learning algorithm.

The connectionist network is shown in Figure 2.
The input to the network consists of the values sam-
pled from the sensors at a given time. In our devel-
opment of the nonlinear NADALINE and the experi-
ments with CIMSIM2, we ignored the effects of delays.
The network accepts the input values and calculates
an output value. During training, CIMSIM2 provides
the desired output value, which is the percent rejects.

Inputs to the network are not necessarily just the
sampled sensor values. They can also be functions of
combinations of sensor values. When some knowledge
of the possible interdependencies among sensor values
exists, these interdependencies should be represented
by building in additional inputs as functions of sen-
sor values. This preprocessing of the sensor data can
greatly reduce the time required to learn a good model
of the process. For our experiments, each input corre-
sponded to a single sensor value.

The first operation performed by the connectionist
network is a normalization of the input values. The
normalization is identical to the procedure defined as
part of the NADALINE algorithm (Sutton, 1988). The
result is a set of input values with zero mean and unit
variance. This step can speed learning considerably,
especially for cases in which the sensor values have
widely varying means and variances. NADALINE per-
forms the normalization by maintaining exponentially-
weighted averages of each sensor’s mean and variance.
The value of the parameter X controls the exponential
weighting.

The normalized inputs become inputs to two layers
of adaptive units. The units of the first layer are called
hidden units, because their outputs are not visible out-
side the network. Each hidden unit has a numeri-
cal weight associated with each input value, plus an
additional “bias” weight. The hidden units compute
nonlinear functions that are parameterized by their
weights. Hidden units learn new functions by adjust-
ing the weight values. A general method is not known
for determining the number of hidden units that a par-
ticular problem requires. The effect of the number of

hidden units on performance was explored experimen-
tally by testing a number of different sized networks,
as described in the following section’.

The second layer of adaptive units contains a single
unit-the output unit. It receives as input the normal-
ized sensor values plus the outputs of the hidden units.
This unit has its own weights associated with each in-
put, plus a bias weight.

The calculations performed by each unit is a func-
tion of its inputs and weight values. The network is
trained by adjusting the weights in every unit in such
a way that the network’s output more closely matches
the desired output. In this case, the output of the
network is a prediction of the percent rejects and the
weight update algorithm is based on a gradient-descent

Normalized Sensor
Measurements

Output
Redicted Reject Input

Sensor Percentage

Desired Output
Actual Reject
Percentage

w i d d e n Outputs Unit

Hidden Units

Figure 2: The Connectionist Network

procedure in the mean square error between the pre-
dicted and the actual percent rejects (from CIMSIM2).
The update algorithm is a synthesis of the NADALINE
algorithm and the error back-propagation algorithm of
Rumelhart, Hinton, and Williams (1985).

For some connectionist network applications, the
weight update algorithm can terminate after it
achieves a desired accuracy (small difference between
the network output and the desired output). However,
the problem of modeling a changing process is never
complete. ‘The dynamics of a manufacturing line in-
volve many time scales. Some aspects of the process
will change very slowly and necessitate constant ad-
justment of the model to match the drift in the pro-
cess.

4 Results
We ran CIMSIMZ for 10 simulated weeks, sampling all
16 sensors every 15 minutes. We trained the network
on the first 9 weeks of data for a total of 6,048 samples.
Then we tested the trained network by freezing the
weights and calculating the root-mean-square (RMS)
error over the loth week. This error is a measure of
how well the network generalizes its 9 weeks of learning
experience to the additional week of novel data.

406

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on January 30, 2009 at 17:10 from IEEE Xplore. Restrictions apply.

We trained networks having different numbers of
hidden units and values of A. We repeated each exper-
iment five times. Figure 3 shows the resulting average
errors. The value of 0.999 for X is clearly the best value
of those tested. Which value is best depends on the
speed with which process variables change and the de-
lays in the process between sensed variables and their
effects on the percent rejects.

For all but the smallest value of A , the error de-
creases as the number of hidden units increases. How-
ever, the error does not change significantly as the
number of hidden units is increased past 10. There
is currently no way of determining how many units in
a network will result in the best solution for a given
problem other than simply varying the number and
observing the results. One must perform similar ex-
periments when applying the connectionist learning al-
gorithms to the real process in order to explore the

RMS Error
Over

10th Week
1 -

h = 0.99-
h = 0.9999 XI
h = 0.999

o b ; l b ' i o ' I " 50 '
Number of Hidden Units

Figure 3: RMS Errors for Various Number of Hidden
Units

1 ;; Linear Prediction Error

RMS Error
During

Tmining Phase

0 2000 4Ooo 6Ooo

Figure 4: Errors During 9 Week Training Phase for
Linear and Nonlinear Networks

0.0 '
Number of Samples

effects of various parameter values.
A network with no hidden units is simply a single-

unit, linear network, exactly as used in the original ex-
periments with CIMSIM reported in Franklin, et al.,
(1988). The presence of hidden units obviously im-
proves the accuracy of the model learned from data
generated by the nonlinear simulation CIMSIM2.

The difference that hidden units make in the pre-
dictions made by the learned model is illustrated by
the following results. We trained a network with 10
hidden units and with X = 0.999. The error during
training is plotted in Figure 4 along with the error of a
linear network, with no hidden units. The graph shows
that the linear network failed to improve throughout
the training phase, while the nonlinear network de-
creased the RMS error from approximately 1.2 to 0.5.

The models learned by the two networks are more
readily compared by superimposing the outputs of the
networks and the actual percent rejects. We did this
for the first day of the novel testing data, resulting in
Figures 5 and 6 . Figure 5 shows the actual percent re-
jects generated by CIMSIM2 (dashed line) and the per-
cent rejects predicted by the linear network (solid line).
The corresponding graph for the nonlinear network
with 10 hidden units is in Figure 6 . The percent re-
jects predicted by the nonlinear network follows much

_-.__ Actual Percent Rejects
-Linear Prediction

50 100
0' '
0

Number of Samples

Figure 5: Actual Percent Rejects Compared with Lin-
ear Predictions During First Day of Testing Period

_ _ _ _ _ Actual Percent Rejects
-Nonlinear Prediction

6
Percent
Rejects

4

2

50 100
Number of Samples

Figure 6: Actual Percent Rejects Compared with Non-
linear Predictions During First Day of Testing Period

407

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on January 30, 2009 at 17:10 from IEEE Xplore. Restrictions apply.

more closely the actual percent rejects from CIMSIM2.
The model learned by the network can never exactly
match the actual percent rejects, because of the noise
and delays in the process simulation that we assumed
to be unknown.

Note that the percent rejects obtained from CIM-
SIM2 do not accurately reflect the values actually ob-
served moment to moment in the real manufacturing
line. CIMSIM and CIMSIM2 incorporate the kinds
of relationships between process variables that proba-
bly exist in the actual process, but do not accurately
represent all variables, magnitudes, time scales, and
disturbances.

Anderson, et al. (1990) reports the results of ad-
ditional experiments in which we varied other param-
eters of the nonlinear NADALINE algorithm, such as
constant factors that control the magnitude of every
weight update.

5 Discussion
The two-layer connectionist network with the non-
linear NADALINE learning algorithm successfully
learned an accurate model of the simulated fluorescent-
lamp coating process by observing the process on-line.
The network steadily decreased the error in its output
during the 9 weeks of training. During the 10 week of
new data, the model accurately predicted the percent
rejects, demonstrating that the model generalizes well
to novel situations.

By varying the network’s structure, we found that
the accuracy of the model increased as the number of
hidden units increased, but the increase in accuracy
with more than 10 units was relatively small. We also
varied the value of X and found that X = 0.999 re-
sulted in the best accuracy. Performance was worse
for higher and lower values of A. This shows that a de-
cay rate of X = 0.999 best matches the delays present
in CIMSIM2.

For our experiments, CIMSIMZ contained only
simple nonlinearities that are functions of single vari-
ables; we did not investigate interactions between mul-
tiple variables. In the real manufacturing line, the de-
pendence between sensor values and the rate of rejec-
tion will certainly involve such interactions. For exam-
ple, the effect on percent rejects of a viscosity variable
probably depends on air humidity and temperature.
Though not shown here, the nonlinear NADALINE
algorithm is capable of learning nonlinear interactions
like these. In fact, the hidden units initially learn func-
tions of many sensor values and only through further
experience do they learn that some sensor values are
not useful a s inputs to the model.

The extension of the connectionist network to addi-
tional layers of hidden units is straightforward, but was
not investigated. It is possible to implement certain
functions more efficiently-using fewer connections-
with multiple hidden layers. However, it is not clear
that additional layers provide any advantage in learn-

ing speed. Theoretical analysis of the error back-
propagation algorithm suggests that, in general, the
convergence rate of the algorithm changes little as lay-
ers of hidden units are added, though convergence can
be faster in certain circumstances (Tesauro, He, and
Ahmad, 1989).

6 Conclusions
The nonlinear NADALINE algorithm successfully
learned an accurate model of the simulated nonlin-
ear process. However, general conclusions are limited
by the fact that CIMSIM2 only simulated simple non-
linearities and a small number of variables. Another
limitation is that we designed CIMSIM2 to exhibit ap-
proximately the kinds of delayed, nonlinear, and noisy
relationships that exist in the real manufacturing pro-
cess. The most significant test of the algorithm’s abil-
ity is its application to the real process. We plan to
install the algorithm at the manufacturing plant and
perform extensive tests. The simplicity of the connec-
tionist network and nonlinear NADALINE algorithm
makes them conducive to implementation on a rela-
tively small computer, making it easy to perform ex-
periments in it real manufacturing environment.

7 Future Work
In future work, we will address the problem of de-
lays. Our approach will be to combine Sutton’s (1988)
temporal-difference methods for handling uncertain
delays with the nonlinear, NADALINE algorithm. We
will test this in the actual manufacturing plant. The
incorporation of techniques for dealing with unknown
delays will make this approach more generally appli-
cable.

An interactive environment is being constructed to
facilitate the interpretation of what is learned by the
connectionist network. Plant operators and managers
will be able to query the model for predictions of per-
cent rejects for a variety of sensor values. For example,
they will be able to estimate the effects of an increase
in a temperature reading, perhaps in combination with
a decrease in humidity. Our eventual goal is closed-
loop control by combining model learning algorithms
with methods for directly controlling the process.

Acknowledgments
John Doleac, Bob DaSilva, Paul Feltri, Dominic
Checca, and Niru Pate1 were instrumental in build-
ing the original CIMSIM. Wendy Chow identified an
error in the nonlinear NADALINE algorithm. John
Vitta1 and Oliver Selfridge helped improve the clarity
of this report.

408

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on January 30, 2009 at 17:10 from IEEE Xplore. Restrictions apply.

Refer en c es
Anderson, C., Franklin, J . , and Sutton, R. (1990)

The nonlinear NADALINE algorithm for connec-
tionist networks and its application to modeling
a manufacturing process. GTE TM-0242-01-90-
509, GTE Laboratories Incorporated, Waltham,
MA.

Franklin, J . , Sutton, R., and Anderson, C. (1988)
Application of connectionist learning methods to
manufacturing process monitoring. Proceedings
of the Third IEEE International Symposium on
Intelligent Control, Arlington, VA.

Rumelhart, D.E., Hinton, G.E., and Williams, R.J.
(1985). Learning internal representations by er-
ror propagation. Institute for Cognitive Science
Technical Report 8506. La Jolla, CA: University
of California, San Diego. Also in Rumelhart, D.E.
and McClelland, J.L. (Eds.), Parallel distributed
processing: Explorations in the microstructure of
cognition, Volume 1: Foundations. Cambridge,
MA: MIT Press.

Sutton, R.S., (1988) NADALINE: A normalized adap-
tive linear element that learns efficiently, GTE
TR-88-509.4, GTE Laboratories Incorporated,
Waltham, MA.

Sutton, R.S. (1988) Learning to predict by the meth-
ods of temporal differences. Machine Learning, 3,
9-44.

Tesauro, G., He, Yu, and Ahmad, S. (1989) Asymp-
totic convergence of backpropagation. Neural
Computation, 1, 382-391.

Widrow, B. and Steams, S.D. (1985). Adaptive signal
processing. Englewood Cliffs, NJ: Prentice-Hall.

409

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on January 30, 2009 at 17:10 from IEEE Xplore. Restrictions apply.

