
On the Role of Tracking
in Stationary Environments

Rich Sutton
Anna Koop
David Silver

University of Alberta

with thanks to Mark Ring and Alborz Geramifard

Modern ML is focused on
convergence to a static solution

We usually assume learning is complete and over
by the time the system is in normal operation

In this sense we are more concerned with learned
systems than with learning systems

Even in reinforcement learning

where learning could be continual

still we focus on convergence to a static
optimum

Converging:

approaching a static best solution

Tracking:

chasing an ever-changing best solution

Converging vs Tracking

Outline

Tracking wins in Computer Go

Tracking wins in the Black & White world

Tracking may revolutionize transfer learning

Computer Go has come of age

It is now suitable for use as a challenging
yet workable ML testbed

RLGO
(Silver, Sutton & Müller, 2007)

Best static evaluation function in 9x9 Go
without prior knowledge

A component of the world’s best Computer Go
player, MoGo (Gelly & Silver, 2007)

V(s)

x(s) w

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

.
.
. .
.
.

s

.
.
.

-0.013522 -0.035203
(a) (b) (c) (d)

Figure 1: (a) Capturing moves for black, (b) A position from a game of 5x5 Atari-Go, (c)
A 2x2 location invariant shape feature that matches once on the left and twice on the right
hand side of the game position, and a corresponding weight learned by the agent (d) A 2x2
location dependent feature that matches both the top-left and top-right corners of the same
position, and corresponding weight.

2 Local Shape

Professional Go players analyse positions using a large vocabulary of local shapes, such
as joseki (corner patterns) and tesuji (tactical patterns). These may occur at a variety of
different scales, and may be specific to a position on the board or equally applicable across
the whole board. To encapsulate all these forms of knowledge, we encoded local shape
knowledge using a multi-scale representation that includes both location dependent and
location invariant features.

In addition, current Computer Go programs rely heavily on the use of pattern databases to
represent local positional knowledge [?, ?] . Manyman-years are devoted to hand-encoding
professional expertise into the strongest programs, in the form of local shape knowledge
(see Figure ??). If these databases could be learned purely from experience, it is likely to
significantly boost the robustness and overall performance of the top programs.

Prior work on local shape extraction has focussed on supervised learning for local move
prediction [?, ?]. Despite some limited success, this approach has not led to strong play,
due perhaps to its focus on mimicking rather than evaluating and understanding the shapes
encountered. A second approach has been to train neural networks by temporal difference
learning, where the networks implicitly contain some representation of local shape [?, ?].
Although successful in many regards, the local shape knowledge is limited in scope by the
network architecture. Furthermore, the results cannot be directly understood or interpreted
in the manner of pattern databases.

Table 1: For each feature set F , the total number n(F) of local shape features in F , and
the total number of active featuresm(F) active in any given position.

F 1x1 2x1 2x2 3x2 3x3

n(F)
LI 3 9 81 729 19,683
LD 27 54 324 2,916 78,732

m(F)
LI 50 80 128 32 72
LD 50 40 32 32 32

!

Tracking vs converging in Go
Converging player:

Self-play TD learning for 250,000 games

Final value function used for play (greedy)

Tracking player:

Each game starts with random value function

For each position encountered, apply self-play
TD learning for 10,000 possible continuations

Current value function used for play

fast and practical

Computer Go results
Tracking player plays
100 games as white
and 100 games as
black

Tracking player wins
significant majority of
games

Advantage is greater
with larger-template
features

%

%

Tracking wins on a stationary problem

9x9 Go results
(not in paper)

Tracking player beats all handcrafted Go programs

Against 9x9 GnuGo:

converging player wins 5%

tracking player wins 57%

Tracking player beats all converging Go programs

higher rated than NeuroGo (Enzenberger 2003)

Tracking algorithms now dominate this domain

Black & White world

States are indistinguishable

Agent wanders back and forth

Occasionally looks up

Predict probability of seeing 1

0

1 1 1 1

0 0 0 0 0 0

0 0 0 0

Brief Article

The Author

June 14, 2007

Lt = −zt log(yt)− (1− zt) log(1− yt)

wt+1 = wt + α(zt − yt)xt

(p = 0.5)

1

B&W: Sample trajectory

5 10 15 20 25 30 35 40 45 50

0

0.5

1

Prediction
y

t

time!step

didn’t look up

approaches 1

color above state:

Time steps (all)

approaches 0

best
converged
prediction

Tracking should be better than always predicting 0.5

0.0039 0.0156 0.0625 0.25 1 4 16 64

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step!size !

Mean
loss per

time!step

B&W world results

Best static solution

Tracking
performance

Tracking is up to 3 times better than converging

Learn only when “looking up”

Learn a single weight

Logistic semi-linear prediction

Log loss wrt observed target

Gradient descent learning algorithm

B&W learning details

On the Role of Tracking in Stationary Environments

Figure 1. The Black and White world. The agent follows
a random walk right and left, occasionally observing the
color above it. The states wrap.

is to predict the probability of observing black using a
single scalar parameter. The environment is station-
ary, but cannot be represented accurately with only
one parameter.

The prediction yt ∈ (0, 1) is computed from a logistic
sigmoid over the learned parameter w:

yt =
1

1 + e−wtxt
, (1)

where wt ∈ "n denotes the learned parameter at time
step t, and xt ∈ "n denotes a feature vector at time
step t, where here in the Black and White world we
have the simplest case in which n = 1 and xt = 1
for all t. We describe it here in the general, multi-
dimensional form because we will use that form in the
computer Go application presented in the next section.
We will refer to the parameter wt as the weight vector
or, in the scalar case, simply as the weight.

The target value for the prediction is the actual obser-
vation when the agent looks up, which we denote as
zt, where zt = 0 if the agent looks up and sees white,
zt = 1 if the agent looks up and sees black, and zt is
undefined if the agent does not look up on time step t.
On time steps on which the agent looks up it incurs a
loss, the cross entropy between the target zt and the
current prediction yt:

Lt = −zt log (yt)− (1− zt) log (1− yt). (2)

On these time steps the weight is updated by gradient
descent:

wt+1 = wt + αδtxt, (3)

where δt is the difference between the target and the
prediction: δt = zt − yt. The learning rate is deter-
mined by the step-size parameter α > 0.

In the Black and White world, the single best param-
eter value for minimizing loss is wt = 0, because in
the long run the frequency of seeing black is 0.5. With
a sufficiently small step-size parameter, wt approaches
0. With a larger step-size parameter, the weight up-
date is more influenced by the current error than by
the long term average, and wt will vary by a larger
amount. In the Black and White world, observations
made soon after each other are more likely to be the
same color than observations separated by longer time

5 10 15 20 25 30 35 40 45 50

0

0.5

1

Prediction
y

t

time!step

Figure 2. A sample trajectory in the Black and White
world, showing the prediction on each time-step and the
actual color above the agent. The prediction is modified
only on time steps on which the color is observed. Here
α = 2.

frames. This temporal coherence suggests that track-
ing may be beneficial. Figure 2 illustrates this, chart-
ing which part of the world (black or white) the agent
is in together with the prediction at that time for a
typical sequence of 50 time steps.

When the agent remains in a consistent region, the
prediction approaches the correct value. After the first
observation in a new region, the prediction is adjusted
accordingly. With a small α, as in this example, it may
take several observations before the prediction catches
up with the target.

To empirically illustrate the benefits of tracking in a
stationary environment, we tested several settings of α
in the Black and White world. For each setting, we ran
30 episodes each with 200,000 observation steps. Re-
sults are reported for the second 100,000 steps only,
to remove any effect of the initial conditions. The
look, left, and right actions were chosen randomly
with probabilities 0.5, 0.25, and 0.25 respectively. The
boundaries of the world wrap: taking the left action
in the leftmost state moves the agent to the rightmost
state, and similarly for the right action in the right-
most state.

The mean loss and standard errors are displayed in
Figure 3. The dotted line is the loss of the best con-
verged solution. The solid line shows the tracking re-
sults. For small values of α the solution was arbitrar-
ily close to the converged solution, with corresponding
loss. For very high values of α, the loss of the tracking
solution was worse than that of the converged solu-
tion. For intermediate values, the loss of the tracking
solution was significantly better than the converged
solution. In this world, an α value of 4 resulted in
the lowest loss among the values tested. Across all
α = 4 runs, the average loss was 0.24. The loss of the
best converged solution was almost three times this,
at 0.69.

The best choice of α depends on the degree of temporal

On the Role of Tracking in Stationary Environments

Figure 1. The Black and White world. The agent follows
a random walk right and left, occasionally observing the
color above it. The states wrap.

is to predict the probability of observing black using a
single scalar parameter. The environment is station-
ary, but cannot be represented accurately with only
one parameter.

The prediction yt ∈ (0, 1) is computed from a logistic
sigmoid over the learned parameter w:

yt =
1

1 + e−wtxt
, (1)

where wt ∈ "n denotes the learned parameter at time
step t, and xt ∈ "n denotes a feature vector at time
step t, where here in the Black and White world we
have the simplest case in which n = 1 and xt = 1
for all t. We describe it here in the general, multi-
dimensional form because we will use that form in the
computer Go application presented in the next section.
We will refer to the parameter wt as the weight vector
or, in the scalar case, simply as the weight.

The target value for the prediction is the actual obser-
vation when the agent looks up, which we denote as
zt, where zt = 0 if the agent looks up and sees white,
zt = 1 if the agent looks up and sees black, and zt is
undefined if the agent does not look up on time step t.
On time steps on which the agent looks up it incurs a
loss, the cross entropy between the target zt and the
current prediction yt:

Lt = −zt log (yt)− (1− zt) log (1− yt). (2)

On these time steps the weight is updated by gradient
descent:

wt+1 = wt + αδtxt, (3)

where δt is the difference between the target and the
prediction: δt = zt − yt. The learning rate is deter-
mined by the step-size parameter α > 0.

In the Black and White world, the single best param-
eter value for minimizing loss is wt = 0, because in
the long run the frequency of seeing black is 0.5. With
a sufficiently small step-size parameter, wt approaches
0. With a larger step-size parameter, the weight up-
date is more influenced by the current error than by
the long term average, and wt will vary by a larger
amount. In the Black and White world, observations
made soon after each other are more likely to be the
same color than observations separated by longer time

5 10 15 20 25 30 35 40 45 50

0

0.5

1

Prediction
y

t

time!step

Figure 2. A sample trajectory in the Black and White
world, showing the prediction on each time-step and the
actual color above the agent. The prediction is modified
only on time steps on which the color is observed. Here
α = 2.

frames. This temporal coherence suggests that track-
ing may be beneficial. Figure 2 illustrates this, chart-
ing which part of the world (black or white) the agent
is in together with the prediction at that time for a
typical sequence of 50 time steps.

When the agent remains in a consistent region, the
prediction approaches the correct value. After the first
observation in a new region, the prediction is adjusted
accordingly. With a small α, as in this example, it may
take several observations before the prediction catches
up with the target.

To empirically illustrate the benefits of tracking in a
stationary environment, we tested several settings of α
in the Black and White world. For each setting, we ran
30 episodes each with 200,000 observation steps. Re-
sults are reported for the second 100,000 steps only,
to remove any effect of the initial conditions. The
look, left, and right actions were chosen randomly
with probabilities 0.5, 0.25, and 0.25 respectively. The
boundaries of the world wrap: taking the left action
in the leftmost state moves the agent to the rightmost
state, and similarly for the right action in the right-
most state.

The mean loss and standard errors are displayed in
Figure 3. The dotted line is the loss of the best con-
verged solution. The solid line shows the tracking re-
sults. For small values of α the solution was arbitrar-
ily close to the converged solution, with corresponding
loss. For very high values of α, the loss of the tracking
solution was worse than that of the converged solu-
tion. For intermediate values, the loss of the tracking
solution was significantly better than the converged
solution. In this world, an α value of 4 resulted in
the lowest loss among the values tested. Across all
α = 4 runs, the average loss was 0.24. The loss of the
best converged solution was almost three times this,
at 0.69.

The best choice of α depends on the degree of temporal

On the Role of Tracking in Stationary Environments

Figure 1. The Black and White world. The agent follows
a random walk right and left, occasionally observing the
color above it. The states wrap.

is to predict the probability of observing black using a
single scalar parameter. The environment is station-
ary, but cannot be represented accurately with only
one parameter.

The prediction yt ∈ (0, 1) is computed from a logistic
sigmoid over the learned parameter w:

yt =
1

1 + e−wtxt
, (1)

where wt ∈ "n denotes the learned parameter at time
step t, and xt ∈ "n denotes a feature vector at time
step t, where here in the Black and White world we
have the simplest case in which n = 1 and xt = 1
for all t. We describe it here in the general, multi-
dimensional form because we will use that form in the
computer Go application presented in the next section.
We will refer to the parameter wt as the weight vector
or, in the scalar case, simply as the weight.

The target value for the prediction is the actual obser-
vation when the agent looks up, which we denote as
zt, where zt = 0 if the agent looks up and sees white,
zt = 1 if the agent looks up and sees black, and zt is
undefined if the agent does not look up on time step t.
On time steps on which the agent looks up it incurs a
loss, the cross entropy between the target zt and the
current prediction yt:

Lt = −zt log (yt)− (1− zt) log (1− yt). (2)

On these time steps the weight is updated by gradient
descent:

wt+1 = wt + αδtxt, (3)

where δt is the difference between the target and the
prediction: δt = zt − yt. The learning rate is deter-
mined by the step-size parameter α > 0.

In the Black and White world, the single best param-
eter value for minimizing loss is wt = 0, because in
the long run the frequency of seeing black is 0.5. With
a sufficiently small step-size parameter, wt approaches
0. With a larger step-size parameter, the weight up-
date is more influenced by the current error than by
the long term average, and wt will vary by a larger
amount. In the Black and White world, observations
made soon after each other are more likely to be the
same color than observations separated by longer time

5 10 15 20 25 30 35 40 45 50

0

0.5

1

Prediction
y

t

time!step

Figure 2. A sample trajectory in the Black and White
world, showing the prediction on each time-step and the
actual color above the agent. The prediction is modified
only on time steps on which the color is observed. Here
α = 2.

frames. This temporal coherence suggests that track-
ing may be beneficial. Figure 2 illustrates this, chart-
ing which part of the world (black or white) the agent
is in together with the prediction at that time for a
typical sequence of 50 time steps.

When the agent remains in a consistent region, the
prediction approaches the correct value. After the first
observation in a new region, the prediction is adjusted
accordingly. With a small α, as in this example, it may
take several observations before the prediction catches
up with the target.

To empirically illustrate the benefits of tracking in a
stationary environment, we tested several settings of α
in the Black and White world. For each setting, we ran
30 episodes each with 200,000 observation steps. Re-
sults are reported for the second 100,000 steps only,
to remove any effect of the initial conditions. The
look, left, and right actions were chosen randomly
with probabilities 0.5, 0.25, and 0.25 respectively. The
boundaries of the world wrap: taking the left action
in the leftmost state moves the agent to the rightmost
state, and similarly for the right action in the right-
most state.

The mean loss and standard errors are displayed in
Figure 3. The dotted line is the loss of the best con-
verged solution. The solid line shows the tracking re-
sults. For small values of α the solution was arbitrar-
ily close to the converged solution, with corresponding
loss. For very high values of α, the loss of the tracking
solution was worse than that of the converged solu-
tion. For intermediate values, the loss of the tracking
solution was significantly better than the converged
solution. In this world, an α value of 4 resulted in
the lowest loss among the values tested. Across all
α = 4 runs, the average loss was 0.24. The loss of the
best converged solution was almost three times this,
at 0.69.

The best choice of α depends on the degree of temporal

On the Role of Tracking in Stationary Environments

Figure 1. The Black and White world. The agent follows
a random walk right and left, occasionally observing the
color above it. The states wrap.

is to predict the probability of observing black using a
single scalar parameter. The environment is station-
ary, but cannot be represented accurately with only
one parameter.

The prediction yt ∈ (0, 1) is computed from a logistic
sigmoid over the learned parameter w:

yt =
1

1 + e−wtxt
, (1)

where wt ∈ "n denotes the learned parameter at time
step t, and xt ∈ "n denotes a feature vector at time
step t, where here in the Black and White world we
have the simplest case in which n = 1 and xt = 1
for all t. We describe it here in the general, multi-
dimensional form because we will use that form in the
computer Go application presented in the next section.
We will refer to the parameter wt as the weight vector
or, in the scalar case, simply as the weight.

The target value for the prediction is the actual obser-
vation when the agent looks up, which we denote as
zt, where zt = 0 if the agent looks up and sees white,
zt = 1 if the agent looks up and sees black, and zt is
undefined if the agent does not look up on time step t.
On time steps on which the agent looks up it incurs a
loss, the cross entropy between the target zt and the
current prediction yt:

Lt = −zt log (yt)− (1− zt) log (1− yt). (2)

On these time steps the weight is updated by gradient
descent:

wt+1 = wt + αδtxt, (3)

where δt is the difference between the target and the
prediction: δt = zt − yt. The learning rate is deter-
mined by the step-size parameter α > 0.

In the Black and White world, the single best param-
eter value for minimizing loss is wt = 0, because in
the long run the frequency of seeing black is 0.5. With
a sufficiently small step-size parameter, wt approaches
0. With a larger step-size parameter, the weight up-
date is more influenced by the current error than by
the long term average, and wt will vary by a larger
amount. In the Black and White world, observations
made soon after each other are more likely to be the
same color than observations separated by longer time

5 10 15 20 25 30 35 40 45 50

0

0.5

1

Prediction
y

t

time!step

Figure 2. A sample trajectory in the Black and White
world, showing the prediction on each time-step and the
actual color above the agent. The prediction is modified
only on time steps on which the color is observed. Here
α = 2.

frames. This temporal coherence suggests that track-
ing may be beneficial. Figure 2 illustrates this, chart-
ing which part of the world (black or white) the agent
is in together with the prediction at that time for a
typical sequence of 50 time steps.

When the agent remains in a consistent region, the
prediction approaches the correct value. After the first
observation in a new region, the prediction is adjusted
accordingly. With a small α, as in this example, it may
take several observations before the prediction catches
up with the target.

To empirically illustrate the benefits of tracking in a
stationary environment, we tested several settings of α
in the Black and White world. For each setting, we ran
30 episodes each with 200,000 observation steps. Re-
sults are reported for the second 100,000 steps only,
to remove any effect of the initial conditions. The
look, left, and right actions were chosen randomly
with probabilities 0.5, 0.25, and 0.25 respectively. The
boundaries of the world wrap: taking the left action
in the leftmost state moves the agent to the rightmost
state, and similarly for the right action in the right-
most state.

The mean loss and standard errors are displayed in
Figure 3. The dotted line is the loss of the best con-
verged solution. The solid line shows the tracking re-
sults. For small values of α the solution was arbitrar-
ily close to the converged solution, with corresponding
loss. For very high values of α, the loss of the tracking
solution was worse than that of the converged solu-
tion. For intermediate values, the loss of the tracking
solution was significantly better than the converged
solution. In this world, an α value of 4 resulted in
the lowest loss among the values tested. Across all
α = 4 runs, the average loss was 0.24. The loss of the
best converged solution was almost three times this,
at 0.69.

The best choice of α depends on the degree of temporal

On the Role of Tracking in Stationary Environments

Figure 1. The Black and White world. The agent follows
a random walk right and left, occasionally observing the
color above it. The states wrap.

is to predict the probability of observing black using a
single scalar parameter. The environment is station-
ary, but cannot be represented accurately with only
one parameter.

The prediction yt ∈ (0, 1) is computed from a logistic
sigmoid over the learned parameter w:

yt =
1

1 + e−wtxt
, (1)

where wt ∈ "n denotes the learned parameter at time
step t, and xt ∈ "n denotes a feature vector at time
step t, where here in the Black and White world we
have the simplest case in which n = 1 and xt = 1
for all t. We describe it here in the general, multi-
dimensional form because we will use that form in the
computer Go application presented in the next section.
We will refer to the parameter wt as the weight vector
or, in the scalar case, simply as the weight.

The target value for the prediction is the actual obser-
vation when the agent looks up, which we denote as
zt, where zt = 0 if the agent looks up and sees white,
zt = 1 if the agent looks up and sees black, and zt is
undefined if the agent does not look up on time step t.
On time steps on which the agent looks up it incurs a
loss, the cross entropy between the target zt and the
current prediction yt:

Lt = −zt log (yt)− (1− zt) log (1− yt). (2)

On these time steps the weight is updated by gradient
descent:

wt+1 = wt + αδtxt, (3)

where δt is the difference between the target and the
prediction: δt = zt − yt. The learning rate is deter-
mined by the step-size parameter α > 0.

In the Black and White world, the single best param-
eter value for minimizing loss is wt = 0, because in
the long run the frequency of seeing black is 0.5. With
a sufficiently small step-size parameter, wt approaches
0. With a larger step-size parameter, the weight up-
date is more influenced by the current error than by
the long term average, and wt will vary by a larger
amount. In the Black and White world, observations
made soon after each other are more likely to be the
same color than observations separated by longer time

5 10 15 20 25 30 35 40 45 50

0

0.5

1

Prediction
y

t

time!step

Figure 2. A sample trajectory in the Black and White
world, showing the prediction on each time-step and the
actual color above the agent. The prediction is modified
only on time steps on which the color is observed. Here
α = 2.

frames. This temporal coherence suggests that track-
ing may be beneficial. Figure 2 illustrates this, chart-
ing which part of the world (black or white) the agent
is in together with the prediction at that time for a
typical sequence of 50 time steps.

When the agent remains in a consistent region, the
prediction approaches the correct value. After the first
observation in a new region, the prediction is adjusted
accordingly. With a small α, as in this example, it may
take several observations before the prediction catches
up with the target.

To empirically illustrate the benefits of tracking in a
stationary environment, we tested several settings of α
in the Black and White world. For each setting, we ran
30 episodes each with 200,000 observation steps. Re-
sults are reported for the second 100,000 steps only,
to remove any effect of the initial conditions. The
look, left, and right actions were chosen randomly
with probabilities 0.5, 0.25, and 0.25 respectively. The
boundaries of the world wrap: taking the left action
in the leftmost state moves the agent to the rightmost
state, and similarly for the right action in the right-
most state.

The mean loss and standard errors are displayed in
Figure 3. The dotted line is the loss of the best con-
verged solution. The solid line shows the tracking re-
sults. For small values of α the solution was arbitrar-
ily close to the converged solution, with corresponding
loss. For very high values of α, the loss of the tracking
solution was worse than that of the converged solu-
tion. For intermediate values, the loss of the tracking
solution was significantly better than the converged
solution. In this world, an α value of 4 resulted in
the lowest loss among the values tested. Across all
α = 4 runs, the average loss was 0.24. The loss of the
best converged solution was almost three times this,
at 0.69.

The best choice of α depends on the degree of temporal

Brief Article

The Author

June 14, 2007

Lt = −zt log(yt)− (1− zt) log(1− yt)

wt+1 = wt + α(zt − yt)xt

1

Conclusion:
Tracking systems perform better

In Computer Go, in B&W world,
in Mountain Car (Alborz Geramifard)

Tracking wins wherever there is

limited function approximation

temporal coherence

more state in the world than in your
function approximator

Tracking is a method, not a problem

Second conclusion: Tracking could
revolutionize transfer learning

Tracking involves continual, repeated learning

Thus there is an opportunity for transfer
learning methods

such as feature selection, learning-to-learn,
meta-learning, and discovery of structure/
representations/options...

To have dramatic performance benefits

Thus removing the need for multiple tasks

Example of transfer in tracking:
Incremental delta-bar-delta (IDBD)

A meta-learning method for automatically setting
step-size parameters based on experience

An incremental form of hold-one-out cross
validation

Originally proposed for supervised learning
(Sutton, 1981; Jacobs, 1988; Sutton, 1992)

Extended to TD learning (Utgoff, Schraudolf)

Here extended to the semi-linear case

Incremental delta-bar-delta

average Δw in the recent past

Δw = α * error

Δα ∝ Δw * Δw

Abstract

It is often thought that learning algorithms
that track the best solution, as opposed to
converging to it, are important only on non-
stationary problems. We present three re-
sults suggesting that this is not so. First
we illustrate in a simple concrete example,
the Black and White problem, that tracking
can perform better than any converging algo-
rithm on a stationary problem. Second, we
show the same point on a larger, more re-
alistic problem, an application of temporal-
difference learning to computer Go. Our
third result suggests that tracking in station-
ary problems could be important for meta-
learning research (e.g., learning to learn, fea-
ture selection, transfer). We apply a meta-
learning algorithm for step-size adaptation,
IDBD (Sutton, 1992a), to the Black and
White problem, showing that meta-learning
has a dramatic long-term effect on perfor-
mance whereas, on an analogous converg-
ing problem, meta-learning has only a small
second-order effect. This small result sug-
gests a way of eventually overcoming a major
obstacle to meta-learning research: the lack
of an independent methodology for task se-
lection.

The full algorithm for semi-linear IDBD is given in
Figure 1.

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

Algorithm 1 Semi-linear IDBD
Initialize hi to 0, wi and βi as desired, i = 1..n
for each time step t do

y ← 1
1+e−wTx

δ ← z − y
for each i = 1..n do

βi ← βi + µδxihi

αi ← eβi

wi ← wi + αiδxi

hi ← hi[1− αi(xi)2y(1− y)] + αiδxi

end for
end for

IDBD meta-learning on the B&W worldOn the Role of Tracking in Stationary Environments

Figure 8. The step-size parameters found by several runs of
IDBD in the Black and White world with different initial
step-size values.

In our earlier experiments with fixed values of α in the
Black and White world we found that the best step
size was approximately 4 (see Figure 3). Can IDBD
find this value? Several sample runs of one million
steps with µ = 2−13 are illustrated in Figure 8, with
different initial values for β0. In all cases, the α values
in the last ten thousand steps were between 4.69 and
4.88. These values are certainly closer to 4 than to any
of the other α values tried earlier, but is this range
near the optimum? To determine this, we repeated
the fixed-α experiment of Figure 3 at a finer grain. As
before, we measured the mean loss for the last 100,000
steps of thirty 200,000-step runs. We can see from
Figure 9 that the best α is between 4.5 and 5. The α
found by IDBD is consistently within this range.

5. Tracking as a sensitive assay for
meta-learning

In the Black and White world the advantages of step-
size meta-learning were apparent—finding the best α
parameter reduced the loss by a factor of three. This
benefit arose because the problem is temporally coher-
ent and is thus best approached as a tracking problem.
If the problem was best approached as a converging
problem it would be much harder to show a benefit for
meta-learning.

To illustrate this, we created a temporally-incoherent
version of the Black and White world. In it there is
only one state and the task is to predict an observation
that is randomly black or white with equal probabil-
ity. The best prediction is always 0.5, achieving the
minimal per-time-step loss of 1.0.

2 3 4 5 6 7 8

0.24

0.25

0.26

0.27

Step!size !

Mean
loss per

time!step

Figure 9. A more detailed look at performance in the Black
and White world as a function of step size (cf. Figure 3).

As before, only one weight is learned. We applied
our learning algorithm with and without IDBD to this
world. Without IDBD, a fixed step size was used for
the duration of a run. With IDBD, the step size was
initialized identically and then changed by the IDBD
rule with a meta step-size of µ = 2−10. Each run con-
sisted of 1,000 steps, and results were averaged over
thirty runs. The weight w0 was initialized to -5.

Results are shown in Figure 10. For intermediate val-
ues of α, the mean per time-step loss approached that
of the optimal, converged solution (1.0). For smaller
values of α, 1,000 steps was not long enough to learn
a good weight, and the loss was higher. For large val-
ues of α, the prediction was always chasing the last
observation, resulting in high loss. Only in the high
loss case is there any significant advantage to using
IDBD. Although the choice of step-size is important
in this problem, there is not time to find it in the sin-
gle, small, stationary task. Performance is dominated
by the choice of the initial step size, swamping the
effect of meta-learning.

6. Conclusion

We have shown two examples in which tracking al-
gorithms perform better than converging ones even
though the underlying problem is stationary. The
Black and White world is an extremely small illustra-
tion where the issues can be fully examined and un-
derstood. Our computer Go example shows that the
advantages of tracking methods over converging meth-
ods can arise in larger and more realistic problems.
One of our conclusions is that tracking algorithms de-
serve more attention than they have previously been

IDBD learns α ≈ 5 for
a wide range of meta-
step-size parameters

Without IDBD, the best
fixed step-size is α ≈ 5

0.0039 0.0156 0.0625 0.25 1 4 16 64

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step!size !

Mean
loss per

time!step

We can use a stationary tracking task
to show the benefits of meta-learning

Final conclusion:
Tracking rocks!

Tracking systems can perform better

Tracking shows off the benefits of meta-
learning without multiple tasks

Tracking recognizes the temporal structure
of life/learning

Tracking may be the way of the future for ML

