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Modern ML is focused on
convergence to a static solution

® We usually assume learning is complete and over
by the time the system is in normal operation

® |n this sense we are more concerned with learned
systems than with learning systems

® Even in reinforcement learning
® where learning could be continual

® still we focus on convergence to a static
optimum



Converging vs Tracking

® Converging:

® approaching a static best solution

» ® Tracking:

® chasing an ever-changing best solution



Outline

® Tracking wins in Computer Go
® Tracking wins in the Black & White world

® Tracking may revolutionize transfer learning



Computer Go has come of age

® |t is now suitable for use as a challenging
yet workable ML testbed



RLGO

(Silver, Sutton & Muller, 2007)

B Best static evaluation function in 9x9 Go
without prior knowledge

® A component of the world’s best Computer Go
player, MoGo (Gelly & Silver, 2007)



Tracking vs converging in Go

® Converging player:
® Self-play TD learning for 250,000 games
® Final value function used for play (greedy)
® Tracking player:

® Each game starts with random value function

® For each position encountered, apply self-play
TD learning for 10,000 possible continuations

® Current value function used for play

® fast and practical



Percentage wins for Tracking vs. Converging

Computer Go results
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Binary Features

Tracking wins on a stationary problem



9%x9 Go results
(not in paper)

® Tracking player beats all handcrafted Go programs
B Against 9x9 GnuGo:
® converging player wins 5%
® tracking player wins 57%
® Tracking player beats all converging Go programs
® higher rated than NeuroGo (Enzenberger 2003)

® Tracking algorithms now dominate this domain



Black & VVhite world
——

® States are indistinguishable

® Agent wanders back and forth
® Occasionally looks up (p = 0.5)

® Predict probability of seeing |



B&WV: Sample trajectory
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Tracking should be better than always predicting 0.5



B&VV world results
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Tracking is up to 3 times better than converging



B&VV learning details

Learn only when “looking up”
Learn a single weight w;

Logistic semi-linear prediction
B 1
14 e wen

Log loss wrt observed target 2

Yt

Ly = —z¢log (y) — (1 — 2¢) log (1 — )
Gradient descent learning algorithm

Wiyl = W + a2 — Yt) T



Conclusion:
Tracking systems perform better

® |n Computer Go, in B&W world,
in Mountain Car (Alborz Geramifard)

® Tracking wins wherever there is
® limited function approximation
® temporal coherence

® more state in the world than in your
function approximator

® Tracking is a method, not a problem



Second conclusion: Tracking could
revolutionize transfer learning

® Tracking involves continual, repeated learning

® Thus there is an opportunity for transfer
learning methods

® such as feature selection, learning-to-learn,
meta-learning, and discovery of structure/
representations/options...

® To have dramatic performance benefits

® Thus removing the need for multiple tasks



Example of transfer in tracking:
Incremental delta-bar-delta (IDBD)

® A meta-learning method for automatically setting
step-size parameters based on experience

® An incremental form of hold-one-out cross
validation

® Originally proposed for supervised learning
(Sutton, 1981; Jacobs, 1988; Sutton, 1992)

® Extended to TD learning (Utgoff, Schraudolf)

® Here extended to the semi-linear case



Incremental delta-bar-delta

Aw = X = error

AX < Aw * Aw

)

average Aw in the recent past



Algorithm 1 Semi-linear IDBD

Initialize h; to 0, w; and (; as desired, 1 = 1..n

for each time step ¢t do

) 1
Y s 1_|_€—wa

0 «— 2 —1
for each s = 1..n do
Bi < Bi + pox;h;

o+ ePi

hi < hi[l — oy (x;)*y(1 — y)] + ooz,
end for
end for




IDBD meta-learning on the B&WV world
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IDBD learns X = 5 for

a wide range of meta-
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Without IDBD, the best
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VWVe can use a stationary tracking task
to show the benefits of meta-learning



Final conclusion:
Tracking rocks!

® Tracking systems can perform better

® Tracking shows off the benefits of meta-
learning without multiple tasks

® Tracking recognizes the temporal structure
of life/learning

® Tracking may be the way of the future for ML



