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The reward hypothesis
“All of what we mean by goals and purposes can be well thought of  
as the maximization of the expected value of the cumulative sum  
of a received scalar signal (called reward)”  
                                                               —Sutton & Littman ~1990; Sutton & Barto 2018
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Intelligence is…

“attaining consistent ends by variable means”                 —William James, 1890

“the computational part of the ability to achieve goals”    —John McCarthy, 1997

“the computational and domain-independent part of an agent’s ability to predict and control 
its stream of sensations”    
                                                                                         —me, now

John McCarthy 
  (1927 – 2011) 



Intelligence is often taken to be mimicking people
• As in “AI seeks to reproduce behavior that we would call intelligent if 

done by people”

• The classic Turing Test focuses on behaving like a person

• In supervised learning, the task is often to label the same as people

• ChatGPT (etc) is tasked to generate text like a person.

So we have two definitions of “intelligence”: 
1) as mimicking people and 2) as achieving goals

Which is better?



Dictionary on the Mac



“Intelligence is the most powerful phenomenon in the universe.” 

–Ray Kurzweil

Could the ability to mimic people be such a powerful phenomenon?

Could the ability to achieve goals be such a powerful phenomenon? Yes

No

Conclusion #1: 
The powerful part of intelligence is not the ability to mimic people, 
but the ability to achieve goals



McCarthy’s definition restricts intelligence 
to the computational part of the ability to achieve goals

• This rules out being able to achieve goals just because you are  
stronger, faster, or have better sensors

• These would make you better able to achieve goals

• But it would not be because of your computations. Not intelligence.

• Similarly, you could achieve goals better if you were given help  
in the form of domain knowledge

• But not because of your computations (thus not your intelligence)

• but because of the computations/intelligence of your helper

Conclusion #2: Intelligence is the computational and domain-independent part  
                   of the ability to achieve goals



Summary so far:

Mimicry and domain knowledge  
are not the powerful part of intelligence

• Mimicry is getting goal-directed behavior without the goals  
or the processes that compute behavior from goals

• Injecting domain knowledge is getting goal-directed behavior 
without the processes for obtaining the domain knowledge

• Both are incomplete; they can’t stand on their own

• These shortcuts don’t have the power of intelligence

• They can be very useful. But that shouldn’t make them “intelligence”

• Using the word that way would weaken the search for an understanding of 
intelligence that is powerful in Kurzweil’s sense





The reward hypothesis
“All of what we mean by goals and purposes can be well thought of  
as the maximization of the expected value of the cumulative sum  
of a received scalar signal (called reward)”  
                                                               —Sutton & Littman ~1990; Sutton & Barto 2018

The reward-is-enough hypothesis
“Intelligence, and its associated abilities, can be understood  
 as subserving the maximisation of reward”  
                                                                                —Silver, Singh, Precup & Sutton 
                                                                                                  Artificial Intelligence 2021



Reward does not seem enough! 
• Enough for animals maybe, enough for engineering okay,  

but not enough for people, not enough for intelligence 

• A single number? From outside the mind!? 

• People seem to choose their own goals 

• Reward just seems too small. Too reductive. Too demeaning. 

• Surely peoples’ goals are grander 

• to raise a family, save the planet, contribute to human knowledge,  
or make the world a better place 

• not just to maximize our pleasure and comfort!



AI is still uneasy with reward, but is coming around
• Early problem-solving AI formulated goals as world states to reach 

• The latest edition of the standard AI textbook still defines goals in 
terms of world states, not experience 

• But it also has chapters on reinforcement learning, using reward 

• With the rise of machine learning in AI, the reward formulation 
of goals is becoming standard 

• For example, Markov decision processes are now one standard 
way of formulating planning in AI

Section 10.1. Definition of Classical Planning 371

Init(On(A,Table) ∧ On(B,Table) ∧ On(C, A)

∧ Block (A) ∧ Block (B) ∧ Block (C) ∧ Clear (B) ∧ Clear (C))

Goal (On(A, B) ∧ On(B, C))

Action(Move(b, x, y),

PRECOND: On(b, x) ∧ Clear (b) ∧ Clear (y) ∧ Block (b) ∧ Block (y) ∧
(b "=x) ∧ (b "=y) ∧ (x"=y),

EFFECT: On(b, y) ∧ Clear (x) ∧ ¬On(b, x) ∧ ¬Clear (y))

Action(MoveToTable(b, x),

PRECOND: On(b, x) ∧ Clear (b) ∧ Block (b) ∧ (b "=x),
EFFECT: On(b,Table) ∧ Clear (x) ∧ ¬On(b, x))

Figure 10.3 A planning problem in the blocks world: building a three-block tower. One
solution is the sequence [MoveToTable(C, A),Move(B,Table , C),Move(A,Table , B)].
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Figure 10.4 Diagram of the blocks-world problem in Figure 10.3.

of what other blocks. For example, a goal might be to get block A on B and block B on C

(see Figure 10.4).
We use On(b, x) to indicate that block b is on x, where x is either another block or the

table. The action for moving block b from the top of x to the top of y will be Move(b, x, y).
Now, one of the preconditions on moving b is that no other block be on it. In first-order logic,
this would be ¬∃x On(x, b) or, alternatively, ∀x ¬On(x, b). Basic PDDL does not allow
quantifiers, so instead we introduce a predicate Clear(x) that is true when nothing is on x.
(The complete problem description is in Figure 10.3.)

The action Move moves a block b from x to y if both b and y are clear. After the move
is made, b is still clear but y is not. A first attempt at the Move schema is

Action(Move(b, x, y),

PRECOND:On(b, x) ∧ Clear(b) ∧ Clear(y),

EFFECT:On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y)) .

Unfortunately, this does not maintain Clear properly when x or y is the table. When x is the
Table , this action has the effect Clear(Table), but the table should not become clear; and
when y =Table , it has the precondition Clear(Table), but the table does not have to be clear



Even Yann LeCun now accepts a (small) role for 
reward as ultimately defining the goal of intelligence

Training demands too much data

§ Yann LeCun’s chocolate cake

- In reinforcement learning, the 
learning algorithm focuses on the 
reward signal.

- In supervised learning, the learning 
algorithm focuses on the manually 
annotated class labels.

- But there may be a lot of signal in 
the patterns themselves.

Reward is the “cherry on top” 
of the overall cake of 
intelligence (Yann LeCun,  
2018 Turing award lecture)



The Soar cognitive architecture now includes reward

various stages of procedural matching, selection and
execution. Outside of direct connections between the
perception and motor modules, working memory
acts as the intercomponent communication buffer for
components. It can be considered as unitary, or con-
sist of separate modality-speci!c memories (for exam-
ple, verbal, visual) that together constitute an aggre-
gate working memory. Long-term declarative
memory, perception, and motor modules are all
restricted to accessing and modifying their associated
working memory buffers, whereas procedural memo-
ry has access to all of working memory (but no direct
access to the contents of long-term declarative mem-
ory or itself). All long-term memories have one or
more associated learning mechanisms that automati-
cally store, modify, or tune information based on the
architecture’s processing.

The heart of the standard model is the cognitive
cycle. Procedural memory induces the processing
required to select a single deliberate act per cycle. Each
action can perform multiple modi!cations to working
memory. Changes to working memory can corre-
spond to a step in abstract reasoning or the internal
simulation of an external action, but they can also ini-
tiate the retrieval of knowledge from long-term declar-

ative memory, initiate motor actions in an external
environment, or provide top-down in"uence to per-
ception. Complex behavior, both external and inter-
nal, arises from sequences of such cycles. In mapping
to human behavior, cognitive cycles operate at rough-
ly 50 ms, corresponding to the deliberate-act level in
Newell’s hierarchy, although the activities that they
trigger can take signi!cantly longer to execute.

The restriction to selecting a single deliberate act
per cycle yields a serial bottleneck in performance,
although signi!cant parallelism can occur during
procedural memory’s internal processing. Signi!cant
parallelism can also occur across components, each of
which has its own time course and runs independ-
ently once initiated. The details of the internal pro-
cessing of these components are not speci!ed as part
of the standard model, although they usually involve
signi!cant parallelism. The cognitive cycle that arises
from procedural memory’s interaction with working
memory provides the seriality necessary for coherent
thought in the face of the rampant parallelism with-
in and across components.

Although the expectation is that for a given system
there can be additional perceptual and motor mod-
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Figure 2. Soar Cognitive Architecture.

• Soar is classic GOFAI 
(1980s, Newell, Laird, Rosenbloom…) 

• Production rules, symbols 

• Since 2008 it has included 
a form of reward and 
reinforcement learning

—Laird, Lebiere & Rosenbloom. A Standard Model of the Mind, AI Magazine 2017  
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• Psychology
• Control theory

• Artificial intelligence
• Economics

• Neuroscience
• Operations research

The “Common Model of the Intelligent Decision Maker”, an agent model  
common to the many fields dealing with decision-making over time:



A fancier agent sets tasks for itself
as a way of better solving the main task (reward)

Multiple policies and value functions 

Still just one reward

Each policy is a skill (option)  
for attaining some state feature

  - without losing much reward

The transition model learns the outcomes  
of the skills (and actions)

Planning works with the skills (and actions)
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Reward and Value
• Reward defines what is good

• We seek a policy that maximizes reward

• But reward is often delayed, making it hard to learn a good policy
• Value functions map states to predictions of future reward

• If accurate, value functions eliminate the delay,  
making it much easier to learn a good policy

“All efficient methods for solving sequential decision problems 
determine (learn or compute) value functions as an intermediate step”  
                                                               —Sutton 2004

The value-function hypothesis



Plato on good and evil, pleasure and pain (Protagoras):
• “Even enjoying yourself you call evil whenever it leads to the loss of a 

pleasure greater than its own, or lays up pains that outweigh its pleasures

• “Isn't it the same when we turn back to pain?  

• “To suffer pain you call good when it either rids us of greater pains  
than its own or leads to pleasures that outweigh them”

In other words:
• Good and evil are about the sum of upcoming reward

• which is what is predicted by value functions

• It is all hedonism, but value functions make it hedonism with foresight



State 1 State 2 State 3

Expectation
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Expectation and reinforcement—moment by moment



State 1 State 2 State 3

Expectation
=0

Expectation
=10

Expectation
=0

Reward
=0

Reward
=8

Reinf?
=10

Reinf?
= -2

Reinforcementt = Rewardt � Expectationt + Expectationt+1

Reinforcement  =  the temporal-difference (TD) error
       =  reward-prediction error

Expectation and reinforcement—moment by moment



The theory that brain reward systems are implementing TD learning 
may be the most important interaction ever  

between the engineering sciences and neuroscience

Read Montague
Wolfram Schultz

data 1992+

Workshops in 1994; early papers in 1995; Science article in 1997

Peter Dayandata <1995

Martin Hammer
James Houk

Terry
Sejnowski

Andy Barto



And finally: ethics
• Reward is a good way to think about the ultimate goal
• Value functions—predictions of reward—are a good way to think 

about how that goal is achieved
• All this is neat and complete, a good theory of decision making

• but it is only about the single agent; it is not universal

• Ethics is when we reach for universal values

“Ethics is just values held in common by many agents” 

The ethics hypothesis:



Thank you for your attention


